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“You, my forest and water! One swerves, while the other shall spout
Through your body like draught; one declares, while the first has a doubt.”

J. Brodsky

Òû, ìîé ëåñ è âîäà, êòî îáúåäåò, à êòî, êàê ñêâîçíÿê,

ïðîíèêàåò â òåáÿ, êòî ãëàãîëåò, à êòî îáèíÿê...

È. Áðîäñêèé

1



Diffusion for a random walk and for a brownian motion
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Let X1, ..., Xn be a sequence of independent and identically distributed

random variables (heads or tails, measurements in uncorrelated experiments,

etc). Assume that the variance σ2 is finite and that the expected value is 0. Let

Sn := X1 + · · ·+Xn. Clearly, with probability one one has

X1 + · · ·+Xn

n
=

Sn

n
→ 0 as n → +∞ .

The Central Limit Theorem describes the expected deviation of the sum Sn

from 0. In a sense, it is one of the fundamental laws of Nature:

Cental Limit Theorem. The distribution of the the sum Sn normalized by the

factor 1√
n

tends to the normal distribution with mean 0 and variance σ2.

Corollary: random walk or brownian motion in the plane. The root mean

square of the translation distance after n steps of a random walk with zero

mean is
√

E|S2
n| = σ

√
n = σ · n 1

2 .



Lorentz gas: diffusion in periodic billiard. Convex obstac les
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Theorem. (Bunimovich, Chernov, Sinai (1991)). For periodic configuration

of convex scatterers on the plane the particle after scaling by
√
t satisfies the

Central Limit Theorem if the horizon is finite (that is, if any ray intersects a
scatterer).

Theorem. (Sz ász, Varjú, (2007); some ideas — Bleher (1992)). In infinite

horizon case, for example, for round scatterers placed at the lattice points, the
Central Limit Theorem still holds but the scaling should be by

√
t ln t.

Chernov, Dolgopyat (2009) : further interesting results in this direction.

In all cases the diffusion rate is again 1

2
as for the random walk.



Diffusion in a periodic billiard (Ehrenfest “Windtree mode l”)
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Consider a billiard on the plane with Z2-periodic rectangular obstacles.

Theorem (V. Delecroix, P. Hubert, S. Leli èvre, 2014). For all parameters of

the obstacle, for almost all initial directions, and for any starting point, the

billiard trajectory spreads in the plane with the speed ∼ t2/3. That is,

limt→+∞ log (diameter of trajectory of length t)/ log t = 2
3 6= 1

2 .
The diffusion rate 2

3 is given by the Lyapunov exponent of certain renormalizing

dynamical system associated to the initial one.

Remark. Changing the height and the width of the obstacle we get quite
different billiards, but this does not change the diffusion rate!
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the obstacle, for almost all initial directions, and for any starting point, the

billiard trajectory spreads in the plane with the speed ∼ t2/3. That is,

limt→+∞ log (diameter of trajectory of length t)/ log t = 2
3 6= 1

2 .
The diffusion rate 2

3 is given by the Lyapunov exponent of certain renormalizing

dynamical system associated to the initial one.

Remark. Changing the height and the width of the obstacle we get quite
different billiards, but this does not change the diffusion rate!



Changing the shape of the obstacle
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Theorem (V. Delecroix, A. Z., 2015). Changing the shape of the obstacle we

get a different diffusion rate. Say, for a symmetric obstacle with 4m− 4 angles

3π/2 and 4m angles π/2 the diffusion rate is

(2m)!!

(2m+ 1)!!
∼

√
π

2
√
m

as m → ∞ .

Note that once again the diffusion rate depends only on the number of the

corners, but not on the (almost all) lengths of the sides, or other details of the

shape of the obstacle.



Changing the shape of the obstacle

6 / 51

Theorem (V. Delecroix, A. Z., 2015). Changing the shape of the obstacle we

get a different diffusion rate. Say, for a symmetric obstacle with 4m− 4 angles

3π/2 and 4m angles π/2 the diffusion rate is

(2m)!!

(2m+ 1)!!
∼

√
π

2
√
m

as m → ∞ .

Note that once again the diffusion rate depends only on the number of the

corners, but not on the (almost all) lengths of the sides, or other details of the

shape of the obstacle.



From a billiard to a surface foliation
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

A B A

D
C

D

A B A

Identifying the equivalent patterns by a parallel translation we obtain a torus;

the billiard trajectory unfolds to a “straight line” on the corresponding torus.
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

A B A

D
C

D

A B A

Join the endpoints of a piece of trajectory after time t to obtain a closed loop

c(t) on the torus. Vertical and horizontal displacement after time t of the

unfolded billiard trajectory is described by the intersection numbers c(t) ◦ h
and c(t) ◦ v with a parallel h and a meridian v of the torus.

h

v



From the windtree billiard to a surface foliation
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Similarly, taking four copies of our Z2-periodic windtree billiard we can unfold it
to a foliation on a Z2-periodic surface. Taking a quotient over Z2 we get a

compact surface endowed with a measured foliation. Vertical and horizontal

displacement (and thus, the diffusion) of billiard trajectories is described by the

intersection numbers c(t) ◦ h and c(t) ◦ v of the cycle c(t) obtained by closing

up a long piece of leaf with a “parallel” h and a “meridian” v. Here

h = h00 + h10 − h01 − h11 and v = v00 − v10 + v01 − v11.

h00

h01

h10

h11

v00 v10

v01 v11

Very flat metric. Automorphisms



Electron transport in metals in homogeneous magnetic field
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Measured foliations on surfaces naturally appear in the study of conductivity in

crystals. For example, the energy levels in the quasimomentum space (called

Fermi-surfaces) might give sophisticated periodic surfaces in R3.

Fermi surfaces of tin, iron, and gold.

Electron trajectories in the presence of a homogeneous magnetic field

correspond to sections of such a periodic surface by parallel planes. Passing to

the quotient by Z3 we get a measured foliation on the resulting compact surface.
Minimal components
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Outline of the story
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Billiards in polygons, straight line foliations on flat surfaces, horocyclic flows on

homogeneous spaces exhibit unusual behaviour of natural mean value quantities.

The corresponding deviation spectrum — a finite collection of numbers
generalizing the diffusion rate 2

3 in the windtree model, can be found studying

the renormalized dynamical system: the Teichmüller geodesic flow acting on

the moduli space of quadratic differentials. The fact that one can compute (or

estimate) the corresponding numbers comes from a beautiful interplay:

1. Dynamically, the moduli space of quadratic differentials pretends to be a
homogeneous space: Eskin–Mirzakhani-Mohammadi have recently proved

certain striking rigidity results (specific for homogeneous case).

2. Hodge theory provides rich geometric structure relating Lyapunov exponents

and characteristic numbers of holomorphic vector bundles over certain loci in
the moduli space first noticed by Kontsevich (talk of Martin Möller).

3. Geometrically, “Masur–Veech” volumes of the moduli spaces can be

expressed as sort of Hurwitz numbers first studied by Eskin–Okounkov (talk of

Elise Goujard).
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Observation 1. Surfaces can wrap around themselves.

Cut a torus along a horizon-

tal circle.
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Observation 1. Surfaces can wrap around themselves.
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a complete turn on the oppo-
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a

a

b bc

a

a

b bc

a

a

c cb
=

It maps the square pattern of the torus to a parallelogram pattern. Cutting and

pasting appropriately we can transform the new pattern to the initial square.
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Note that following this closed path we come back to the original square torus

having twisted the homology!
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Consider a composition

of two Dehn twists g = fv ◦ fh = ◦
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A =

(
1 1
1 2

)

=

(
1 0
1 1

)

·
(
1 1
0 1

)

. Cutting and pasting appropriately the

image parallelogram pattern we can check by hands that we can transform the

new pattern to the initial square one.
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Consider eigenvectors ~vu and ~vs of the linear transformation A =

(
1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions ~vu, ~vs. We

have just proved that expanding our torus T2 by factor λ in direction ~vu and

contracting it by the factor λ in direction ~vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of

one foliation and homogeneously contracting in direction of the transverse

foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square

torus by a continuous deformation expanding with a factor et in directions ~vu
and contracting with a factor et in direction ~vs. By construction such

one-parameter family defines a closed curve in the space of flat tori: after the
time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves

(actually, closed geodesics) in the moduli spaces of Riemann surfaces.



Pseudo-Anosov diffeomorphisms

14 / 51

Consider eigenvectors ~vu and ~vs of the linear transformation A =

(
1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions ~vu, ~vs. We

have just proved that expanding our torus T2 by factor λ in direction ~vu and

contracting it by the factor λ in direction ~vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of

one foliation and homogeneously contracting in direction of the transverse

foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square

torus by a continuous deformation expanding with a factor et in directions ~vu
and contracting with a factor et in direction ~vs. By construction such

one-parameter family defines a closed curve in the space of flat tori: after the
time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves

(actually, closed geodesics) in the moduli spaces of Riemann surfaces.



Pseudo-Anosov diffeomorphisms

14 / 51

Consider eigenvectors ~vu and ~vs of the linear transformation A =

(
1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions ~vu, ~vs. We

have just proved that expanding our torus T2 by factor λ in direction ~vu and

contracting it by the factor λ in direction ~vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of

one foliation and homogeneously contracting in direction of the transverse

foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square

torus by a continuous deformation expanding with a factor et in directions ~vu
and contracting with a factor et in direction ~vs. By construction such

one-parameter family defines a closed curve in the space of flat tori: after the
time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves

(actually, closed geodesics) in the moduli spaces of Riemann surfaces.



Pseudo-Anosov diffeomorphisms

14 / 51

Consider eigenvectors ~vu and ~vs of the linear transformation A =

(
1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions ~vu, ~vs. We

have just proved that expanding our torus T2 by factor λ in direction ~vu and

contracting it by the factor λ in direction ~vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of

one foliation and homogeneously contracting in direction of the transverse

foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square

torus by a continuous deformation expanding with a factor et in directions ~vu
and contracting with a factor et in direction ~vs. By construction such

one-parameter family defines a closed curve in the space of flat tori: after the
time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves

(actually, closed geodesics) in the moduli spaces of Riemann surfaces.



Space of lattices

15 / 51

• By a composition of homothety and

rotation we can place the shortest

vector of the lattice to the horizontal

unit vector.
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Space of lattices
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• By a composition of homothety and

rotation we can place the shortest

vector of the lattice to the horizontal

unit vector.

• Consider the lattice point

closest to the origin and

located in the upper

half-plane.

• This point is located

outside of the unit disc.

• It necessarily lives inside

the strip −1/2 ≤ x ≤ 1/2.

We get a fundamental domain in the space of lattices, or, in other words, in the

moduli space of flat tori.



Moduli space of tori

16 / 51

neighborhood of a
cusp = subset of
tori having short
closed geodesic

The corresponding modular surface is not compact: flat tori representing

points, which are close to the cusp, are almost degenerate: they have a very
short closed geodesic. It also have orbifoldic points corresponding to tori with

extra symmetries.



Very flat surface of genus 2

17 / 51

Identifying the opposite sides of a regular octagon we get a flat surface of

genus two. All the vertices of the octagon are identified into a single conical

singularity. We always consider such a flat surface endowed with a
distinguished (say, vertical) direction. By construction, the holonomy of the flat

metric is trivial. Thus, the vertical direction at a single point globally defines

vertical and horizontal foliations.
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Group action
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The group SL(2,R) acts on the each space H1(d1, . . . , dn) of flat surfaces of

unit area with conical singularities of prescribed cone angles 2π(di + 1). This

action preserves the natural measure on this space. The diagonal subgroup
(
et 0
0 e−t

)

⊂ SL(2,R) induces a natural flow on H1(d1, . . . , dn) called the

Teichmüller geodesic flow.

Keystone Theorem (H. Masur; W. A. Veech, 1992). The action of the groups

SL(2,R) and

(
et 0
0 e−t

)

is ergodic with respect to the natural finite measure

on each connected component of every space H1(d1, . . . , dn).
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Theorem of Masur and Veech claims that taking at random an octagon as

below we can contract it horizontally and expand vertically by the same factor

et to get arbitrary close to, say, regular octagon.
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Theorem of Masur and Veech claims that taking at random an octagon as

below we can contract it horizontally and expand vertically by the same factor

et to get arbitrary close to, say, regular octagon.

There is no paradox since we are allowed to cut-and-paste!
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Masur—Veech Theorem: an illustration

19 / 51

Theorem of Masur and Veech claims that taking at random an octagon as

below we can contract it horizontally and expand vertically by the same factor

et to get arbitrary close to, say, regular octagon.

−→ =

The first modification of the polygon changes the flat structure while the second

one just changes the way in which we unwrap the flat surface.



Outline of section 1: vague idea of renormalization
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We have reformulated the model problem of windtree billiard in terms of

intersection indices c(T ) ◦ h and c(T ) ◦ v of a cycle c(T ) obtained by closing

up a very long piece of vertical trajectory with two given cycles h and v on a

given translation surface S.

Idea: apply the Teichmüller geodesic flow to S for an appropriate time t to get a

flat surface gtS located very close to the original surface S. Close up the piece

of Teichmüller geodesic to get an associated pseudo-Anosov diffeomorphism

f : S → S.

Note that gt exponentially contracts the vertical direction. Choosing t ≃ log T
we can transform the very long cycle c(T ) to an ordinary integer cycle f∗c(T )
of length comparable to 1.

Conclusion: to compute c(T ) ◦ h = f∗c(T ) ◦ f∗h we have to figure out how

the pseudo-Anosov diffeomorphism f corresponding to a long piece of a

Teichmüller geodesic twists the first homology of the surface:

(gt)∗ : H1(S,R)
?
= H1(S,R) when t → ∞ .



2. Translation surfaces as
quadratic diffrentials

0. Model problem:
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billiard
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Consider a broken line constructed from vectors ~v1, . . . , ~vk.

~v1

~v2

~v3

~v4

and another one constructed from the same vectors taken in another order.
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Very flat surfaces: construction from a polygon
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Consider a broken line constructed from vectors ~v1, . . . , ~vk.

~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

and another one constructed from the same vectors taken in another order. If

we are lucky enough the two broken lines do not intersect and form a polygon.



Very flat surfaces: construction from a polygon
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~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

Identifying the corresponding pairs of sides by parallel translations we get a

closed surface endowed with a flat metric.



Holomorphic 1-form associated to a flat structure
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Consider the natural coordinate z in the complex plane, where lives the

polygon. In this coordinate the parallel translations which we use to identify the

sides of the polygon are represented as z′ = z + const.

Since this correspondence is holomorphic, our flat surface S with punctured

conical points inherits the complex structure. This complex structure extends to

the punctured points.

Consider now a holomorphic 1-form dz in the complex plane. The coordinate z
is not globally defined on the surface S. However, since the changes of local

coordinates are defined as z′ = z + const, we see that dz = dz′. Thus, the

holomorphic 1-form dz on C defines a holomorphic 1-form ω on S which in
local coordinates has the form ω = dz.

The form ω has zeroes exactly at those points of S where the flat structure has

conical singularities.
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• Reciprocally a pair (Riemann surface, holomorphic 1-form) uniquely defines

a flat structure: z =
∫
ω.

• In a neighborhood of a zero a holomorphic 1-form can be represented as

wd dw, where d is a degree of the zero. The form ω has a zero of degree d
at a conical point with cone angle 2π(d+ 1). Moreover,
d1 + · · ·+ dn = 2g − 2.

• The moduli space Hg of pairs (complex structure, holomorphic 1-form) is a

Cg-vector bundle over the moduli space Mg of complex structures.

• The space Hg is naturally stratified by the strata H(d1, . . . , dn)
enumerated by unordered partitions d1 + · · ·+ dn = 2g − 2.

• Any holomorphic 1-form corresponding to a fixed stratum H(d1, . . . , dn)
has exactly n zeroes of degrees d1, . . . , dn.
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d1 + · · ·+ dn = 2g − 2.

• The moduli space Hg of pairs (complex structure, holomorphic 1-form) is a

Cg-vector bundle over the moduli space Mg of complex structures.

• The space Hg is naturally stratified by the strata H(d1, . . . , dn)
enumerated by unordered partitions d1 + · · ·+ dn = 2g − 2.

• Any holomorphic 1-form corresponding to a fixed stratum H(d1, . . . , dn)
has exactly n zeroes of degrees d1, . . . , dn.
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Geometric language Complex-analytic language

flat structure (including a choice complex structure and a choice
of the vertical direction) of a holomorphic 1-form ω

conical point zero of degree d
with a cone angle 2π(d+ 1) of the holomorphic 1-form ω

(in local coordinates ω = wd dw)

side ~vj of a polygon relative period
∫ Pj+1

Pj
ω =

∫

~vj
dz

of the 1-form ω

family of flat surfaces sharing stratum H(d1, . . . , dn) in the
the same cone angles moduli space of holomorphic 1-forms

2π(d1 + 1), . . . , 2π(dn + 1)

local coordinates in the family: local coordinates in H(d1, . . . , dn) :

vectors ~vi relative periods of ω in

defining the polygon H1(S, {P1, . . . , Pn};C)



Flat surfaces and quadratic differentials
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Identifying pairs of sides of this polygon by isometries we obtain a surface of

genus g = 1. Now the flat metric has holonomy group Z/2Z; cone angles are

integer multiples of π. Flat surfaces of this type correspond to quadratic

differentials. For example, the quadratic differential representing the surface

from the picture belongs to the stratum Q(2,−1,−1).
The flat metric associated to a meromorphic quadratic differential has finite

area if and only if the quadratic differential has at most simple poles.
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Note that the vector space H1(S, {P1, . . . , Pn} ; C) contains a natural
integer lattice H1(S, {P1, . . . , Pn} ; Z ⊕

√
−1Z). Consider a linear volume

element dν normalized in such a way that the volume of the fundamental

domain in this lattice equals one. Consider now a real hypersurface

H1(d1, . . . , dn) ⊂ H(d1, . . . , dn) defined by the equation area(S) = 1, or,

equivalently, i
2

∫

S ω ∧ ω̄ = i
2

∑g
i=1AiB̄i − ĀiBi = 1. The volume element

dν can be naturally restricted to the hypersurface defining the volume element
dν1 on H1(d1, . . . , dn).

Theorem (H. Masur; W. A. Veech; 1982) The total volume

Vol(H1(d1, . . . , dn)), Vol(Q1(d1, . . . , dn)) of every stratum is finite.

An algorithm for volume computation was elaborated by Eskin and Okounkov in

2001. The Masur–Veech volumes of strata are always rational multiples of π2g.
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An algorithm for volume computation was elaborated by Eskin and Okounkov in

2001. The Masur–Veech volumes of strata are always rational multiples of π2g.

The corresponding rational numbers for all strata of Abelian differentials in

genera g ≤ 10 (and for some strata up to genus 200) were evaluated by

A. Eskin. The algorithm of Eskin and Okounkov for strata of quadratic

differentials was recently implemented by E. Goujard, who computed the

volumes of the first 300 low-dimensional strata.
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Theorem (H. Masur; W. A. Veech; 1982) The total volume

Vol(H1(d1, . . . , dn)), Vol(Q1(d1, . . . , dn)) of every stratum is finite.

An algorithm for volume computation was elaborated by Eskin and Okounkov in

2001. The Masur–Veech volumes of strata are always rational multiples of π2g.

The corresponding rational numbers for all strata of Abelian differentials in

genera g ≤ 10 (and for some strata up to genus 200) were evaluated by

A. Eskin. The algorithm of Eskin and Okounkov for strata of quadratic

differentials was recently implemented by E. Goujard, who computed the

volumes of the first 300 low-dimensional strata.

Volumes of strata of quadratic differentials in genus 0 are described by a simple

formula (conjectured by Kontsevich and recently proved by Athreya–Eskin–Z.).

Volumes of strata of Abelian differentials have simple large genus aymptotics
(conjectured by Eskin–Z. and almost proved by Chen–Möller-Zagier). Elise

Goujard will tell more about volumes in her talk.



Moduli spaces of Abelian differentials
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We have seen that any stratum H(m1, . . . ,mn) of all pairs

(Riemann surface S, holomorphic 1-form with n zeroes of degrees m1, . . . ,mn)

is locally modeled on H1(S, {n points};C) and, thus, is endowed with a

canonical volume element dν (the one normalized by the integer lattice).

The group SL(2,R) acts on the second term in the tensor product

H1(S, {n points};R ⊕ iR) ≃ H1(S, {n points};R)⊗ R2 .

The projectivized stratum

PH(m1, . . . ,mn) ≃ H1(m1, . . . ,mn)/SO(2,R) ≃ H(m1, . . . ,mn)/C
∗

is foliated by hyperbolic planes H2 = SL(2,R)/SO(2,R) called Teichmüller
discs. The natural projection of such disc to Mg is an isometric imbedding, so

Teichmüller discs are complex geodesics in the Teichmüller metric on Mg.

Similarly, any stratum of meromorphic quadratic differentials with at most

simple poles is locally modeled on the anti-invariant subspace of
H1(Ŝ, {n points};C), where p : Ŝ → S is the canonical double cover such

that p∗q = ω2 becomes a global square of a holomorhic form ω.
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3. Renormalization and deviation
spectrum

0. Model problem:
diffusion in a periodic
billiard

1. Teichmüller dynamics

2. Translation surfaces
as quadratic diffrentials

3. Renormalization and
deviation spectrum

• Asymptotic cycle

• First return cycles

• Renormalization
• Asymptotic flag:
empirical description
• Multiplicative ergodic
theorem

• Hodge bundle

• Selected (mostly
geometric) results of
1996–2012

2016. State of the art

∞. Challenges and
open directions
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“But still, my homeward way has proved too long.
While we were wasting time there, old Poseidon,
it almost seems, stretched and extended space.”

J. Brodsky

È âñå-òàêè âåäóùàÿ äîìîé äîðîãà

îêàçàëàñü ñëèøêîì äëèííîé,

êàê áóäòî Ïîñåéäîí, ïîêà ìû òàì

òåðÿëè âðåìÿ, ðàñòÿíóë ïðîñòðàíñòâî.

È. Áðîäñêèé

1



Asymptotic cycle for a torus
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Consider a leaf of a measured foliation on a surface. Choose a short

transversal segment X . Each time when the leaf crosses X we join the

crossing point with the point x0 along X obtaining a closed loop. Consecutive

return points x1, x2, . . . define a sequence of cycles c1, c2, . . . .

The asymptotic cycle is defined as limn→∞
cn

n
= c ∈ H1(T

2;R).

Theorem (S. Kerckhoff, H. Masur, J. Smillie, 1986.) For any flat surface

directional flow in almost any direction is uniquely ergodic.

This implies that for almost any direction the asymptotic cycle exists and is the

same for all points of the surface.
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Asymptotic cycle in the pseudo-Anosov case

32 / 51

Consider a model case of the foliation in direction of the expanding eigenvector

~vu of the Anosov map g : T2 → T2 with Dg = A =

(
1 1
1 2

)

. Take a closed

curve γ and apply to it k iterations of g. The images g
(k)
∗ (c) of the

corresponding cycle c = [γ] get almost collinear to the expanding eigenvector

~vu of A, and the corresponding curve g(k)(γ) closely follows our foliation.

The first return cycles to a short subinterval exhibit exactly the same behavior

by a simple reason that they are images of the first return cycles to a longer

subinterval under a high iteration of g.

Direction of the expanding
eigenvector ~vu of A = Dg
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Consider a model case of the foliation in direction of the expanding eigenvector

~vu of the Anosov map g : T2 → T2 with Dg = A =

(
1 1
1 2

)

. Take a

closed curve γ and apply to it k iterations of g. The images g
(k)
∗ (c) of the

corresponding cycle c = [γ] get almost collinear to the expanding eigenvector

~vu of A, and the corresponding curve g(k)(γ) closely follows our foliation.

The first return cycles to a short subinterval exhibit exactly the same behavior

by a simple reason that they are images of the first return cycles to a longer

subinterval under a high iteration of g.

First return cycle ci(g(X)) to g(X) is g∗(ci(X))

X
c1

c2

c3

X



First return cycles
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One should not think that in this phenomenon

there is something special for a torus. The same

story is valid for any pseudo-Anosov diffeomor-

phism g: first return cycles of the expanding foli-

ation to a subinterval X of the contracting folia-
tion are mapped by g to the first return cycles to

a shorter subinterval g(X).
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Idea of a renormalization
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By the theorem of Masur and Veech, the homogeneous expansion-

contraction in vertical-horizontal directions regularly brings almost

any flat surface, basically, back to itself. Multiplicative ergodic the-

orem states that, in a sense, there a matrix (one and the same for

almost all flat surfaces) which mimics the matrix of a fixed pseudo-
Anosov diffeomorphism as if the Teichmüller flow would be periodic.

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

(
et0 0
0 e−t0

)



Asymptotic flag: empirical description
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cN

H1(S;R) ≃ R2g

x1
x2

x3

x4

x5

x2g
To study a deviation of cycles

cN from the asymptotic cycle

consider their projections

to an orthogonal hyperscreen

Direction of the
asymptotic cycle

S
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cN

H1(S;R) ≃ R2g

x1
x2

x3

x4

x5

x2g
The projections accumulate

along a straight line

inside the hyperscreen

Direction of the
asymptotic cycle

S
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cN

H1(S;R) ≃ R2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S



Asymptotic flag: empirical description
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cN

‖cN‖λ2

‖cN‖λ3

H1(S;R) ≃ R2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S



Asymptotic flag
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Theorem (A. Z. , 1999) For almost any surface S in any stratum

H1(d1, . . . , dn) there exists a flag of subspaces

L1 ⊂ L2 ⊂ · · · ⊂ Lg ⊂ H1(S;R) such that for any j = 1, . . . , g − 1

lim sup
N→∞

log dist(cN , Lj)

logN
= λj+1

and

dist(cN , Lg) ≤ const,

where the constant depends only on S and on the choice of the Euclidean

structure in the homology space.

The numbers 1 = λ1 > λ2 > · · · > λg are the top g Lyapunov exponents of

the Hodge bundle along the Teichmüller geodesic flow on the corresponding

connected component of the stratum H(d1, . . . , dn).

The strict inequalities λg > 0 and λ2 > · · · > λg, and, as a corollary, strict
inclusions of the subspaces of the flag, are difficult theorems proved later by

Forni (2002) and A. Avila–M. Viana (2007).
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Geometric interpretation of multiplicative ergodic theor em:
spectrum of “mean monodromy”

40 / 51

Consider a vector bundle endowed with a flat connection over a manifold Xn.

Having a flow on the base we can take a fiber of the vector bundle and

transport it along a trajectory of the flow. When the trajectory comes close to

the starting point we identify the fibers using the connection and we get a linear

transformation A(x, 1) of the fiber; the next time we get a matrix A(x, 2), etc.

The multiplicative ergodic theorem says that when the flow is ergodic a “matrix

of mean monodromy” along the flow

Amean := lim
N→∞

(A∗(x,N) · A(x,N))
1

2N

is well-defined and constant for almost every starting point.

Lyapunov exponents correspond to logarithms of eigenvalues of this “matrix of

mean monodromy”.
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Hodge bundle and Gauss–Manin connection
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Consider a natural vector bundle over the stratum with a fiber H1(S;R) over a
“point” (S, ω), called the Hodge bundle. It carries a canonical flat connection

called Gauss—Manin connection: we have a lattice H1(S;Z) in each fiber,

which tells us how we can locally identify the fibers. Thus, Teichmüller flow on

H1(d1, . . . , dn) defines a multiplicative cocycle acting on fibers of this bundle.

The monodromy matrices of this cocycle are symplectic which implies that the

Lyapunov exponents are symmetric:

λ1 ≥ λ2 ≥ · · · ≥ λg ≥ −λg ≥ · · · ≥ −λ2 ≥ −λ1
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Selected (mostly geometric) results of 1996–2012
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• Sum of the Lyapunov exponents of the real Hodge bundle over a Teichmüller

curve equals the normalized degree of the determinant bundle (M. Kontsevich).

• Strict inequalities λg > 0 and λ2 > · · · > λg for all H1(d1, . . . , dn)
(G. Forni and A. Avila–M. Viana correspondingly).
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Selected (mostly geometric) results of 1996–2012

42 / 51

• Sum of the Lyapunov exponents of the real Hodge bundle over a Teichmüller

curve equals the normalized degree of the determinant bundle (M. Kontsevich).

• Strict inequalities λg > 0 and λ2 > · · · > λg for all H1(d1, . . . , dn)
(G. Forni and A. Avila–M. Viana correspondingly).

• Classification of connected components of H(d1, . . . , dn) (M. Kontsevich–A. Z.)

• Algorithms for computation of VolH1(d1, . . . , dn) and VolQ(d1, . . . , dn)
(A. Eskin–A. Okounkov).

• Quadratic symptotics for the number of closed geodesics on flat surfaces

(W. Veech; A. Eskin–H. Masur).

• Expression for Siegel–Veech constants in terms of the volumes of the
“principal boundary” strata (A. Eskin–H. Masur–A. Z.)

• Classification of SL(2,R)-invariant submanifolds in genus 2 (C. McMullen)

• Exponential mixing for the Teichmüller flow (A. Avila, S. Gouëzel, J.-C. Yoccoz)
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Formula for the Lyapunov exponents
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Theorem (A. Eskin, M. Kontsevich, A. Z., 2014) The Lyapunov exponents

λi of the Hodge bundle H1
R along the Teichmüller flow restricted to an

SL(2,R)-invariant suborbifold L ⊆ H1(d1, . . . , dn) satisfy:

λ1 + λ2 + · · ·+ λg =
1

12
·

n∑

i=1

di(di + 2)

di + 1
+

π2

3
· carea(L) .

The proof is based on the initial Kontsevich formula + analytic Riemann-Roch

theorem + analysis of det∆flat under degeneration of the flat metric.

Theorem (A. Eskin, H. Masur, A. Z., 2003) For L = H1(d1, . . . , dn) one has

carea(H1(d1, . . . , dn)) =
∑

Combinatorial types
of degenerations

(explicit combinatorial factor)·

·
∏k

j=1VolH1(adjacent simpler strata)

VolH1(d1, . . . , dn)
.
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Lyapunov exponents for strata of quadratic differentials
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Analogous formula exists for the moduli spaces of slightly more general flat

surfaces with holonomy Z/2Z. They correspond to meromorphic quadratic

differentials with at most simple poles. For example, the quadratic differential on

the picture below lives in the stratum Q(1, 1, 1,−1, . . . ,−1
︸ ︷︷ ︸

7

) =: Q(13,−17).

Flat surfaces tiled with unit squares define “integer points” in the corresponding

strata. To compute the volume of the corresponding moduli space

Q1(d1, . . . , dn) one needs to compute asymptotics for the number of surfaces
with conical singularities (d1 + 2)π, . . . , (dn + 2)π tiled with at most N
squares as N → ∞. When g = 0 this number is the Hurwitz number of

covers CP1 → CP1 with a ramification profile, say, as in the picture.



Lyapunov exponents for strata of quadratic differentials

45 / 51

Analogous formula exists for the moduli spaces of slightly more general flat

surfaces with holonomy Z/2Z. They correspond to meromorphic quadratic

differentials with at most simple poles. For example, the quadratic differential on

the picture below lives in the stratum Q(1, 1, 1,−1, . . . ,−1
︸ ︷︷ ︸

7

) =: Q(13,−17).

Flat surfaces tiled with unit squares define “integer points” in the corresponding

strata. To compute the volume of the corresponding moduli space

Q1(d1, . . . , dn) one needs to compute asymptotics for the number of surfaces
with conical singularities (d1 + 2)π, . . . , (dn + 2)π tiled with at most N
squares as N → ∞. When g = 0 this number is the Hurwitz number of

covers CP1 → CP1 with a ramification profile, say, as in the picture.



Lyapunov exponents for strata of quadratic differentials

45 / 51

Flat surfaces tiled with unit squares define “integer points” in the corresponding

strata. To compute the volume of the corresponding moduli space

Q1(d1, . . . , dn) one needs to compute asymptotics for the number of surfaces
with conical singularities (d1 + 2)π, . . . , (dn + 2)π tiled with at most N
squares as N → ∞. When g = 0 this number is the Hurwitz number of

covers CP1 → CP1 with a ramification profile, say, as in the picture.



Kontsevich conjecture
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Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem (J. Athreya, A. Eskin, A. Z., 2014 ; conjectured by M. Kontsevich
about 2003) The volume of any stratum Q1(d1, . . . , dk) of meromorphic

quadratic differentials with at most simple poles on CP1 (i.e. when

di ∈ {−1 ; 0} ∪ N for i = 1, . . . , k, and
∑k

i=1 di = −4) is equal to

VolQ1(d1, . . . , dk) = 2π ·
k∏

i=1

v(di) .

The loci in the moduli spaces of quadratic differentials obtained as orbit
closures of flat surfaces arising from wind-tree models are often covers of strata

in genus zero. Knowing volumes of these strata we can often compute the

Siegel–Veech constants of the covering loci, and, as a result, compute (or

estimate) their Lyapunov exponents.
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Magic Wand Theorem (A. Eskin–M. Mirzakhani–A. Mohammadi, 2 014).
The closure of any SL(2,R)-orbit is a suborbifold. In period coordinates any

SL(2,R)-suborbifold is represented by an affine subspace.

Any ergodic SL(2,R)-invariant measure is supported on a suborbifold. In

period coordinates this suborbifold is represented by an affine subspace, and
the invariant measure is just a usual affine measure on this affine subspace.

Theorem (S. Filip, 2014) Any SL(2,R)-invariant orbifold is, actually, a

complex orbifold.

Technology (A. Wright, 2014) Methods of construction of orbit closures.

Developement (C. McMullen–R. Mukamel–A. Wright, in progre ss)
Examples of SL(2,R)-invariant orbifolds (generalizing Bouw–Möller curves).

Theorem (J. Chaika–A. Eskin, 2014). For any flat surface S almost all vertical
directions define a Lyapunov-generic point in the orbit closure SL(2,R) · S.

Developement (A. Eskin-M.Kontsevich-A. Z.; G. Farkas-R. P handaripande;
M. Bainbridge–D. Chen–Q. Gendron–S. Grushevsky–M. M öller, in
progress) Better understanding of an adequate compactification of strata.
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Example of an application: windtree billiards
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Diffusion rate of any given generalized “windtree billiard ” with rational
polygonal obstacles (schematic solution)

• Detect all symmetries of the induced flat surface;
• Find the SL(2,R)-invariant locus L in the moduli space of quadratic

differentials corresponding to these symmetries;

• Prove that the SL(2,R)-orbit closure of S0 is indeed L;

• Compute or estimate the Lyapunov exponents λ(h) and λ(v).

Currently we do not have a slightest idea on how to approach the problem

when the periodic obstacles are irrational or even when periodic rectangular

obstacles are twisted with respect to the axes of the square lattice by an angle

π · α with α 6∈ Q.

Question. What diffusion rate has a windtree billiard with generic (in any

reasonable sense) obstacles? Is it, by any chance, 1
2?
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polygonal obstacles (schematic solution)

• Detect all symmetries of the induced flat surface;
• Find the SL(2,R)-invariant locus L in the moduli space of quadratic

differentials corresponding to these symmetries;

• Prove that the SL(2,R)-orbit closure of S0 is indeed L;

• Compute or estimate the Lyapunov exponents λ(h) and λ(v).
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Challenges and open directions
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• Study and classify all GL(2,R)-invariant suborbifolds in H(d1, . . . , dn).
(C. McMullen, M. Mirzakhani, R. Mukamel, and A. Wright have recently found

interesting SL(2,R)-invariant subvarieties generalizing Bouw–Möller curves.)

• Study extremal properties of the “curvature” of the Lyapunov subbundles
compared to holomorphic subbundles of the Hodge bundle. Estimate individual

Lyapunov exponents (details in the talk of M. Möller).

• Prove conjectural formulae for asymptotics of volumes, and of Siegel–Veech

constants when g → ∞. (Partial results are already obtained by

D. Chen–M. Möller–D. Zagier, and by A. Z. (both in progress)

• Express carea(L) in terms of an appropriate intersection theory (in the spirit

of ELSV-formula for Hurwitz numbers or Mirzakhani formula for WP-volumes).

• Study dynamics of the Hodge bundle over other families of compact varieties
(some experimental results for families of Calabi–Yau varieties are recently

obtained by M. Kontsevich; some results for families of K3 surfaces were

obtained by S. Filip). Are there other dynamical systems, which admit

renormalization leading to dynamics on families of complex varieties?
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D. Chen–M. Möller–D. Zagier, and by A. Z. (both in progress)

• Express carea(L) in terms of an appropriate intersection theory (in the spirit

of ELSV-formula for Hurwitz numbers or Mirzakhani formula for WP-volumes).

• Study dynamics of the Hodge bundle over other families of compact varieties
(some experimental results for families of Calabi–Yau varieties are recently

obtained by M. Kontsevich; some results for families of K3 surfaces were

obtained by S. Filip). Are there other dynamical systems, which admit

renormalization leading to dynamics on families of complex varieties?



Billiard in a polygon: artistic image
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Varvara Stepanova. Joueurs de billard. Thyssen Museum, Madrid


	0. Model problem: diffusion in a periodic billiard
	Diffusion for a random walk
	Lorentz gas: diffusion in periodic billiard
	Diffusion in a periodic billiard (Ehrenfest ``Windtree model'')
	Changing the shape of the obstacle
	From a billiard to a surface foliation
	From the windtree billiard to a surface foliation
	Electron transport in metals in homogeneous magnetic field
	Outline of the story

	1. Teichmüller dynamics
	Diffeomorphisms of surfaces
	Pseudo-Anosov diffeomorphisms
	Space of lattices
	Moduli space of tori
	Very flat surface of genus 2
	Group action
	Masur—Veech Theorem: an illustration
	Idea of renormalization

	2. Translation surfaces as quadratic diffrentials
	Very flat surfaces: construction from a polygon
	From flat to complex structure
	From complex to flat structure
	Dictionary
	Flat surfaces and quadratic differentials
	Volumes of the strata
	Moduli spaces of Abelian differentials

	3. Renormalization and deviation spectrum
	Asymptotic cycle
	First return cycles
	Renormalization
	Asymptotic flag: empirical description
	Multiplicative ergodic theorem
	Hodge bundle
	Selected (mostly geometric) results of 1996–2012

	2016. State of the art
	Formula for the Lyapunov exponents
	Strata of quadratic differentials
	Kontsevich conjecture
	Invariant measures and orbit closures
	Example of an application: windtree billiards

	. Challenges and open directions
	Challenges and open directions
	Joueurs de billard


