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Period coordinates and Masur–Veech volume
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector

space H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural

lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of the

volume element dν in these period coordinates.

The following homogeneous function is defined on every stratum H(m1, . . . ,mn):

area(C, ω) =
i

2

∫

C
ω ∧ ω̄ =

i

2

g
∑

i=1

(AiB̄i − ĀiBi) .

and area(C, t · ω) = |t|2 · area(C, ω). Denote by H≤1 the subset of those

(C, ω) in H(m1, . . . ,mn) where area(C, ω) ≤ 1.

Definition. VolH(m1, . . . ,mn) := 2d ·
∫

H≤1

dν , where

d = dimC H(m1, . . . ,mn) is just a conventional factor.

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H(m1, . . . ,mn) or Q(m1, . . . ,mn) of Abelian or quadratic differentials is finite.
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and area(C, t · ω) = |t|2 · area(C, ω). Denote by H≤1 the subset of those

(C, ω) in H(m1, . . . ,mn) where area(C, ω) ≤ 1.

Definition. VolH(m1, . . . ,mn) := 2d ·
∫

H≤1

dν , where

d = dimC H(m1, . . . ,mn) is just a conventional factor.

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H(m1, . . . ,mn) or Q(m1, . . . ,mn) of Abelian or quadratic differentials is finite.



Counting volume by counting integer points in a large cone
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X≤1

To count volume of the cone X≤1 one can take an ε-grid and count the number
of lattice points inside it.



Counting volume by counting integer points in a large cone

4 / 28

X≤1

To count volume of the cone X≤1 one can take an ε-grid and count the number
of lattice points inside it.

Counting points of the ε-grid in the cone X≤1 is the same as counting integer

points in the larger proportionally rescaled cone X≤1/ε.



Integer points as square-tiled surfaces
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point.
Let P1 be a zero of ω and P ∈ C any point of the Riemann surface C . Define

p : P 7→
∫ P
P1

ω (mod Z ⊕ iZ)

p : C → T = C/(Z ⊕ iZ)

The ramification points of the cover p are exactly the zeroes of ω.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point.
Let P1 be a zero of ω and P ∈ C any point of the Riemann surface C . Define

p : P 7→
∫ P
P1

ω (mod Z ⊕ iZ)

p : C → T = C/(Z ⊕ iZ)

The ramification points of the cover p are exactly the zeroes of ω.

Choosing the standard unit square pattern for T we get induced tiling of (C, ω)
by unit squares which form horizontal and vertical cylinders. The square-tiled

surface of genus two in the picture has 2 maximal horizontal cylinders filled with

periodic geodesics.



Contribution of k-cylinder square-tiled surfaces to VolH(3, 1)
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← the only quantity which is easy to compute
0.19 ≈ p1(H(3, 1)) =

3 ζ(7)

16 ζ(6)

0.47 ≈ p2(H(3, 1)) =
55 ζ(1, 6) + 29 ζ(2, 5) + 15 ζ(3, 4) + 8 ζ(4, 3) + 4 ζ(5, 2)

16 ζ(6)

0.30 ≈ p3(H(3, 1)) =
1

32 ζ(6)

(

12 ζ(6)− 12 ζ(7) + 48 ζ(4) ζ(1, 2) + 48 ζ(3) ζ(1, 3)

+ 24 ζ(2) ζ(1, 4) + 6 ζ(1, 5)− 250 ζ(1, 6)− 6 ζ(3) ζ(2, 2)

− 5 ζ(2) ζ(2, 3) + 6 ζ(2, 4)− 52 ζ(2, 5) + 6 ζ(3, 3)− 82 ζ(3, 4)

+ 6 ζ(4, 2)− 54 ζ(4, 3) + 6 ζ(5, 2) + 120 ζ(1, 1, 5)− 30 ζ(1, 2, 4)

− 120 ζ(1, 3, 3)− 120 ζ(1, 4, 2)− 54 ζ(2, 1, 4)− 34 ζ(2, 2, 3)

− 29 ζ(2, 3, 2)− 88 ζ(3, 1, 3)− 34 ζ(3, 2, 2)− 48 ζ(4, 1, 2)

)

0.04 ≈ p4(H(3, 1)) =
ζ(2)

8 ζ(6)

(

ζ(4)− ζ(5) + ζ(1, 3) + ζ(2, 2)− ζ(2, 3)− ζ(3, 2)

)

.



Computation of volumes
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Theorem (A. Eskin, A. Okounkov, R. Pandharipande). For every connected

component Hc(d1, . . . , dn) of every stratum, the generating function
∞∑

N=1

qN
∑

N-square-tiled
surfaces S

1

|Aut(S)|

is a quasimodular form. Volume VolHc(d1, . . . , dn) of every connected

component of every stratum is a rational multiple p
q · π2g of π2g, where g is the

genus.

A. Eskin implemented this theorem to an algorithm allowing to compute p
q for all

strata up to genus 10 and for some strata (like the principal one) up to genus

200. Based on these calculations we developed a conjecture on a very simple

asymptotic formula for volumes in large genera.

D. Chen, M. Möller, D. Zagier have recently constructed more general

generation function, which englobes all genera at once. In particular, they can
compute the volume of the principal stratum up to genus 2000 and prove for

some strata the conjecture on large genus volume asymptotics. Follow talks of

Martin and Don for these and further results.
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Volumes of the moduli spaces of quadratic differentials
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A. Eskin, A. Okounkov and R. Pandharipande proved analogous result for the

Masur–Veech volumes VolQ(d1, . . . , dk) of the moduli spaces of meromorphic

quadratic differentials with at most simple poles. However, with exception for

genus 0 the implementation is more painful: values for the first 300
low-dimensional strata in g > 0 were obtained only in 2015 by E. Goujard.

In dynamics you really do need these numbers!
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A. Eskin, A. Okounkov and R. Pandharipande proved analogous result for the

Masur–Veech volumes VolQ(d1, . . . , dk) of the moduli spaces of meromorphic

quadratic differentials with at most simple poles. However, with exception for

genus 0 the implementation is more painful: values for the first 300
low-dimensional strata in g > 0 were obtained only in 2015 by E. Goujard.

Pillowcase covers play the role of square-tiled surfaces: they represent integer

points in period coordinates. Pillowcase covers are branched covers over four

points of the sphere (pillow). The pillowcase cover as in the picture lives in the

stratum Q(1, 1, 1,−1, . . . ,−1
︸ ︷︷ ︸

7

) =: Q(13,−17).

In dynamics you really do need these numbers!



Exercise: in what stratum lives this pillowcase cover?
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Masur–Veech volume in genus zero
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics.

An idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes VolQ(ν,−1|ν|+4).

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics.

An idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes VolQ(ν,−1|ν|+4).

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem (J. Athreya, A. Eskin, A. Z., 2014 ; conjectured by M. Kontsevich
about 2003) The volume of any stratum Q(d1, . . . , dk) of meromorphic

quadratic differentials with at most simple poles on CP1 (i.e. when
di ∈ {−1 ; 0} ∪ N for i = 1, . . . , k, and

∑k
i=1 di = −4) is equal to

VolQ(d1, . . . , dk) = 2π ·
k∏

i=1

v(di) .

Volumes as asymptotics of certain very special Hurwitz numbers.



Asymptotic equidistribution

Masur–Veech volumes
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Equidistribution Theorems
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Theorem. The asymptotic proportion pk(L) of square-tiled surfaces tiled with

tiny ε× ε-squares and having exactly k maximal horizontal cylinders among all

such square-tiled surfaces living inside an open set B ⊂ L in a stratum L of

Abelian or quadratic differentials does not depend on B.

Let cylk(L) be the contribution of horizontally k-cylinder square-tiled surfaces
(pillowcase covers) to the Masur–Veech volume of the stratum L, so that

cyl1(L) + cyl2(L) + · · · = VolL, and pk(L) = cylk(L)/Vol(L). Let

cylk,j(L) be the contribution of horizontally k-cylinder and vertically j-cylinder ones.

Theorem. There is no correlation between statistics of the number of

horizontal and vertical maximal cylinders:

cylk(L)
Vol(L) =

cylkj(L)
cylj(L)

.

This formula is an asymptotic formula!
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Experimental evaluation of volumes
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The Equidistribution Theorem allows to compute approximate values of

volumes experimentally. Choose some ball B (or some box) in the stratum.

Consider a sufficiently small grid in it and collect statistics of frequency p1(B)
of 1-cylinder square-tiled surfaces (pillow-case covers) in our grid in B.

Now compute the absolute contribution cyl1(L) of all 1-cylinder square-tiled
surfaces to VolL; it is easier than for k-cylinder ones with k > 2. By the

Equidistribution Theorem, the volume of the ambient stratum is

VolL = cyl1(L)
p1(L)

.

The statistics p1(H) can be, actually, collected using interval exchanges, which

simplifies the experiment. Approximate values of volumes were extremely
useful in debugging numerous normalization factors in rigorous answers in the

implementation by E. Goujard of the method of Eskin–Okounkov.
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Meanders
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Meanders and arc systems
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A closed meander is a smooth simple closed curve in the plane transversally
intersecting the horizontal line.

According to S. Lando and A. Zvonkin the notion “meander” was suggested by

V. Arnold though meanders were studied already by H. Poincaré.

Meanders appear in various contexts, in particular in physics (P. Di Francesco,
O. Golinelli, E. Guitter).



Meanders and arc systems
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A closed meander on the left. The associated pair of arc systems in the middle.

The same arc systems on the discs and the associated dual graphs on the

right. We usually erase vertices of valence 2 from dual trees.

Compactifying the plane on the left with one point at infinity, or gluing two arc

systems together we get an ordered pair of smooth simple transversally

intersecting closed curves on the sphere.



Meanders versus multicurves
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It is much easier to count arc systems (for example, arc systems sharing the

same reduced dual tree). However, this does not simplify counting meanders

since identifying a pair of arc systems with the same number of arcs by the

common equator, we sometimes get a meander and sometimes — a curve with

several connected components

Attaching arc systems on a pair of hemispheres along the common equator we

might get a single simple closed curve (as on the left picture) or a multicurve
with several connected components (as on the right picture).
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Asymptotic frequency of meanders
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Consider arc system with the same number n ≤ N of arcs on a labeled pair of

oriented discs having Ttop and Tbottom as reduced dual trees. We draw Ttop on

the northern hemisphere and Tbottom on the southern hemisphere. There are

2n ways to identify isometrically the two hemispheres into the sphere in such

way that the endpoints of the arcs match. We consider all possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n ≤ N . Define

pconnected(Ttop, Tbottom;N) :=
number of triples giving rise to meanders

total number of different triples
.
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as described above for all n ≤ N . Define
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total number of different triples
.

Theorem. This ratio has a limit as N → +∞ which depends only on the

vertex type ν = [1ν12ν23ν3 . . . ] of the graph Tbottom ⊔ Ttop, where νj
encodes the total number of vertices of valence j + 2 in Tbottom ⊔ Ttop for
j ∈ N. The limit is given by closed formula.
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Consider arc system with the same number n ≤ N of arcs on a labeled pair of

oriented discs having Ttop and Tbottom as reduced dual trees. We draw Ttop on

the northern hemisphere and Tbottom on the southern hemisphere. There are

2n ways to identify isometrically the two hemispheres into the sphere in such

way that the endpoints of the arcs match. We consider all possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n ≤ N . Define

pconnected(Ttop, Tbottom;N) :=
number of triples giving rise to meanders

total number of different triples
.

Example. The fact that this asymptotic frequency is nonzero is already

somehow unexpected. For example, the following asymptotic frequency is not

even so small:

p1( , ) =
280

π6
≈ 0.291245 ,



Exact formula
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Theorem. For any pair of planar trees Tι, Tκ the following limit exists and is

positive:

lim
N→+∞

pconnected(Tι, Tκ;N) = p1(Q(ν,−1|ν|+4)) > 0 .

Moreover, the limit p1(ν) depends only on the partition ν = ι+ κ encoding

the total numbers of vertices of each valence for the two trees. It is expressed

by the formula

p1(ν) =
cyl1(Q(ν,−1|ν|+4))

VolQ(ν,−1|ν|+4)
,

where VolQ(ν,−1|ν|+4) is the Masur–Veech volume of the corresponding
stratum in genus 0, and cyl1(Q(ν,−1|ν|+4)) takes the value

cyl1(Q(ν,−1|ν|+4)) = 2
∑

µ⊢ν

(|ν|+ 4

|µ|+ 2

)(
ν0
µ0

)(
ν1
µ1

)(
ν2
µ2

)

· · · .



Fixing the number of vertices of valence one
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Theorem. For any pair of planar trees having the total number p of leaves

(vertices of valence one) the following limit exists:

lim
N→+∞

pconnected(p;N) = p1(Q(1p−4,−1p)) =

=
c1(Q(1p−4,−1p))

VolQ(1p−4,−1p)
=

1

2

(
2

π2

)p−3

·
(
2p− 4

p− 2

)

.

Applying Stirling’s formula we get the following asymptotics for

p1(Q(1p−4,−1p)) for large values of parameter p:

p1(Q(1p−4,−1p)) =
1

2

(
2

π2

)p−3

·
(
2p− 4

p− 2

)

∼ 2√
πp

·
(

8

π2

)p−3

for p ≫ 1

(we recall that in our setting we always assume that N ≫ p).
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p1(Q(1p−4,−1p)) for large values of parameter p:

p1(Q(1p−4,−1p)) =
1

2

(
2

π2

)p−3

·
(
2p− 4

p− 2

)

∼ 2√
πp

·
(

8

π2

)p−3

for p ≫ 1

(we recall that in our setting we always assume that N ≫ p).



Meanders with and without maximal arc
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These two meanders have 5 minimal arcs (“pimples”) each.

Meander with a maximal arc (“rainbow”) Meander without maximal arc
contributes to M+

5 (N) contributes to M−
5 (N)

Let M+
p (N) and M−

p (N) be the numbers of closed meanders respectively

with and without maximal arc (“rainbow”) and having at most 2N crossings with
the horizontal line and exactly p minimal arcs (“pimples”). We consider p as a

parameter and we study the leading terms of the asymptotics of M+
p (N) and

M−
p (N) as N → +∞.



Counting formulae for meanders

21 / 28

Theorem. For any fixed p the numbers M+
p (N) and M−

p (N) of closed

meanders with p minimal arcs (pimples) and with at most 2N crossings have

the following asymtotics as N → +∞:

M+
p (N) = 2(p+ 1) · cyl1,1

(
Q(1p−3,−1p+1)

)

(p+ 1)! (p− 3)!
· N

2p−4

4p− 8
+ o(N2p−4) =

=
2

p! (p− 3)!

(
2

π2

)p−2

·
(
2p− 2

p− 1

)2

· N
2p−4

4p− 8
+ o(N2p−4) .

M−
p (N) =

cyl1,1
(
Q(0, 1p−4,−1p)

)

p! (p− 4)!
· N2p−5

4p− 10
+ o(N2p−5) =

=
2

p! (p− 4)!

(
2

π2

)p−3

·
(
2p− 4

p− 2

)2

· N2p−5

4p− 10
+ o(N2p−5) .

Note that M+
p (N) grows as N2p−4 while M−

p (N) grows as N2p−5.



Asymptotics for large number of poles
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Applying Stirling’s formula we get the following asymtotics for the coefficients in

the above formulae for large values of parameter p:

2

p! (p− 3)!

(
2

π2

)p−2

·
(
2p− 2

p− 1

)2

· 1

4p− 8
∼ π2

256
·
(
32e2

π2p2

)p

for p ≫ 1 .

2

p! (p− 4)!

(
2

π2

)p−3

·
(
2p− 4

p− 2

)2

· 1

4p− 10
∼ π2e2

256p
·
(
32e2

π2p2

)p−1

for p ≫ 1 .

(we again recall that in our setting we always assume that N ≫ p).



Proof
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Step 1. There is a natural one-to-one correspondence between transverse

connected pairs of multicurves on an oriented sphere and pillowcase covers,

where the square tiling is given by the graph dual to the graph formed by the

pair of multicurves.

Step 2. Pairs of arc systems glued along common equator correspond to

square-tiled surfaces having single horizontal cylinder of height 1. Meanders

correspond to square-tiled surfaces having single horizontal cylinder and single
vertical one; both of height one. So we can apply the formula

cyl1,1(Q) = cyl21(Q)/Vol(Q), where cyl1(Q) is easy to compute and

Vol(Q) in genus zero is given by an explicit formula.

Step 3. Fixing the number of minimal arcs (“pimples”) we fix the number of

simple poles p of the quadratic differential. All but negligible part of the

corresponding square-tiled surfaces live in the only stratum Q(1p−4,−1p) of
the maximal dimension.



Large genus asymptotics

Masur–Veech volumes

Asymptotic
equidistribution

Meanders

Large genus
asymptotics

• Conjecture on
asymptotics of volume
for large genera

• Contribution of
1-cylinder diagrams.
Equivalent conjecture

• Conjectural
asymptotic distribution
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Conjecture on asymptotics of volume for large genera
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Let m = (m1, . . . ,mn) be an unordered partition of an even number 2g − 2,

|m| = m1 + · · ·+mn = 2g − 2. Denote by Π2g−2 the set of all partitions.

Conjecture on Asymptotics of Volumes (A. Eskin, A. Z., 2003) . For any

m ∈ Π2g−2 one has

VolH(m1, . . . ,mn) =
4

(m1 + 1) · · · · · (mn + 1)
· (1 + ε(m)) ,

where |ε(m)| ≤ const√
g

.

D. Chen, M. Möller, D. Zagier have recently proved this conjecture for certain

families of strata including the principal one using quasimodularity of certain

universal generating function.
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Contribution of 1-cylinder diagrams. Equivalent conjecture
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Theorem. The contribution cyl1 of 1-cylinder square-tiled surfaces to the volume

VolH1(m1, . . . ,mn) of any nonhyperelliptic stratum of Abelian differentials satisfies

ζ(d)

d+ 1
· 4

(m1 + 1) . . . (mn + 1)
≤ cyl1 ≤

ζ(d)

d− 10
29

· 4

(m1 + 1) . . . (mn + 1)
,

where d = dimC H(m1, . . . ,mn).

Theorem. Conjecture on volume asymptotics is (almost) equivalent to the

following statement: the relative contribution of 1-cylinder square-tiled surfaces to
the volume of the stratum is of the order 1/(dimension of the stratum) when g ≫ 1,

d · cyl1(H(m1, . . . ,mn))

Vol(H(m1, . . . ,mn))
= d · p1(H(m1, . . . ,mn)) → 1 as g → +∞ ,

where convergence is uniform for all strata in genus g.

It is a challenge to prove the statement on relative contribution directly, thus proving
volume asymptotics through an approach alternative to one of Chen–Möller–Zagier.



Contribution of 1-cylinder diagrams. Equivalent conjecture

26 / 28

Theorem. The contribution cyl1 of 1-cylinder square-tiled surfaces to the volume

VolH1(m1, . . . ,mn) of any nonhyperelliptic stratum of Abelian differentials satisfies

ζ(d)

d+ 1
· 4

(m1 + 1) . . . (mn + 1)
≤ cyl1 ≤

ζ(d)

d− 10
29

· 4

(m1 + 1) . . . (mn + 1)
,

where d = dimC H(m1, . . . ,mn).

Theorem. Conjecture on volume asymptotics is (almost) equivalent to the

following statement: the relative contribution of 1-cylinder square-tiled surfaces to
the volume of the stratum is of the order 1/(dimension of the stratum) when g ≫ 1,

d · cyl1(H(m1, . . . ,mn))

Vol(H(m1, . . . ,mn))
= d · p1(H(m1, . . . ,mn)) → 1 as g → +∞ ,

where convergence is uniform for all strata in genus g.

It is a challenge to prove the statement on relative contribution directly, thus proving
volume asymptotics through an approach alternative to one of Chen–Möller–Zagier.



Frequencies of 1, . . . , k-cylinder square-tiled surfaces in large genera
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Square-tiled surface in the stratum H(1, . . . , 1)
in genus 100 might have any number of cylinders

between 1 and 3g − 3. How often a “random”

square-tiled surface has 1, 2, ..., 297-cylinders?

What distribution do you expect?



Frequencies of 1, . . . , k-cylinder square-tiled surfaces in large genera
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Square-tiled surface in the stratum H(1, . . . , 1)
in genus 100 might have any number of cylinders

between 1 and 3g − 3. The experimental blue

graph shows the distribution of the impact to the

volume of 1, 2, . . . , k-cylinder square-tiled sur-
faces multiplied by dimH(1, . . . , 1) = 4g − 3.

We have not seen more than 23 cylinders out of

397 possible ones. The red graph is the normal

distribution with the same mean and variance.

Conjecture. For any nonhyperellyptic component of a stratum of Abelian

differentials, the mean of the distribution is asymptotically located at

const+ log(dimension of the stratum), where const is a universal constant.

Suspiction. The distribution tends to a universal limiting distribution.

Pure speculation. If it is true, is it some known distribution (like Tracy–Widom

distribution)? Is it also related to Airy function and to Painlevé equation?
Strata of different genera but of the same dimension.
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