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The Fibonacci sequence is the sequence of integer numbers {f0, f1, f2, . . . }
having f0 = 0 and f1 = 1 as the first two entries, and having any other entry

equal to the sum of the two preceding ones:

fn−1 + fn =: fn+1 (Fi)
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The Fibonacci sequence is the sequence of integer numbers {f0, f1, f2, . . . }
having f0 = 0 and f1 = 1 as the first two entries, and having any other entry

equal to the sum of the two preceding ones:

fn−1 + fn =: fn+1 (Fi)

Making a simple computation

0 + 1 = 1

1 + 1 = 2

1 + 2 = 3

2 + 3 = 5

. . . . . . . . .

we get the first several terms of the sequence {f0, f1, f2, f3, f4, . . . } =

= {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 . . . , }
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Let us study ALL sequences satisfying recurrence relation (Fi) and not only the

Fibonacci sequence. Are there any geometric progressions among such

sequences? For a geometric progression, ak = λk · a0 equation (Fi) becomes

λn−1 · a0 + λn · a0 = λn+1 · a0

Simplifying, we see that a geometric progression is a solution of (Fi) if and only

if λ is a root of the quadratic equation

1 + λ = λ2 .

There are two distinct roots

λ1 =
1 +

√
5

2
≈ 1.618 λ2 = − 1

λ1

=
1−

√
5

2
≈ −0.618

and, thus, there are two basic geometric sequences which we will denote by
{un} = {1, λ1, λ

2
1, λ

3
1, . . . } and by {wn} = {1, λ2, λ

2
2, λ

3
2, . . . }.
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1) The sum of any two solutions of (Fi) is also a solution of (Fi).

2) Multiplying any solution of (Fi) by a constant factor we still get a solution of (Fi).

3) The first two terms of any solution of (Fi) uniquely determine all subsequent ones.

Let us represent the vector ~ainit = (a0, a1) = (0, 1) of the initial data defining
the Fibonacci sequence as a linear combination of the vectors ~uinit = (1, λ1)
and ~winit = (1, λ2) defining solutions of (Fi) represented by the geometric

progressions {un} = {λn
1} and {wn} = {λn

2}. Here c1 and c2 are unknown.

~ainit = (0, 1) = c1 · (1, λ1) + c2 · (1, λ2) = c1 · ~uinit + c2 · ~winit .

Solving the system of linear equations

{
1+

√
5

2
c1 +

1−
√
5

2
c2 = 1

c1 + c2 = 0

we find the solutions c1 =
√
5/5, c2 = −

√
5/5.
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According to observations 1 and 2, the sequence an defined as

an := c1un + c2wn = c1λ
n

1 + c2λ
n

2

satisfies the equation (Fi).

By construction the initial vector ~ainit = (a0, a1) = (0, 1) of the latter

sequence coincides with the initial vector of the Fibonacci sequence. Hence, by

observation 3, the sequence {an} coincides with the Fibonacci one. We have
found a formula for the term number n of the Fibonacci sequence:

fn :=

√
5

5

(

1 +
√
5

2

)n

−
√
5

5

(

1−
√
5

2

)n

Since |λ2| =
∣
∣(1−

√
5)/2

∣
∣ ≈ 0.618 < 1, we conclude that for n ≫ 1 we

get λn
2 → 0 and hence

fn ≈
√
5

5

(

1 +
√
5

2

)n

.



Fibonacci sequence: the answer

6 / 35

According to observations 1 and 2, the sequence an defined as

an := c1un + c2wn = c1λ
n

1 + c2λ
n

2

satisfies the equation (Fi).

By construction the initial vector ~ainit = (a0, a1) = (0, 1) of the latter

sequence coincides with the initial vector of the Fibonacci sequence. Hence, by

observation 3, the sequence {an} coincides with the Fibonacci one. We have
found a formula for the term number n of the Fibonacci sequence:

fn :=

√
5

5

(

1 +
√
5

2

)n

−
√
5

5

(

1−
√
5

2

)n

Since |λ2| =
∣
∣(1−

√
5)/2

∣
∣ ≈ 0.618 < 1, we conclude that for n ≫ 1 we

get λn
2 → 0 and hence

fn ≈
√
5

5

(

1 +
√
5

2

)n

.



How to impress your friends
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Computing,

log10 an ≈ log10(
√
5/5) + n log10((1 +

√
5)/2) ≈ 0.209n− 0.349

we observe that an contains approximatively [0.209n+ 0.65] decimal digits,

where [x] denotes the integer part. For example, for n = 1000 this predicts

[209 + 0.65] = 209 digits.
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Computing,

log10 an ≈ log10(
√
5/5) + n log10((1 +

√
5)/2) ≈ 0.209n− 0.349

we observe that an contains approximatively [0.209n+ 0.65] decimal digits,

where [x] denotes the integer part. For example, for n = 1000 this predicts

[209 + 0.65] = 209 digits.

The exact number

a1000 = 4346655768693745643568852767504062580256466051737
17804024817290895365554179490518904038798400792551692959
22593080322634775209689623239873322471161642996440906533
187938298969649928516003704476137795166849228875 indeed

contains 209 digits as estimated!
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Writing the characteristic equation

1 + λ = λ2

associated to the recurrence relation

an−1 + an = an+1 (Fi)

we have found that the geometric progression {wn} = {1, λ2, λ
2
2, . . . } with

λ2 =
1−

√
5

2
satisfies the recurrence relation (Fi).

Since |λ2| ≈ 0.618 < 1 this sequence tends rapidly to 0.

Let us try to compute wn using a computer. Here is a program for “Maple” to

compute w100.
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Program for computing w100 in “Maple”
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Fibonacci := proc(u0,u1,n::nonnegint)

local old, new, buffer, i;

if n = 0 then return u0

elif n = 1 then return u1

else

old := u0;

new := u1;

for i from 2 to n do

buffer := new;

new := new + old;

old := buffer

end do

end if;

return new

end proc;



Wrong computation
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The program gives the value w100 ≈ 1011 while in reality w100 ≈ 10−21.

You can use your preferred computer and your preferred software to compute

w100 or w1000 by recurrence to realize that the results are disastrously wrong

(provided you make floating point calculations and NOT the algebraic ones).
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The program gives the value w100 ≈ 1011 while in reality w100 ≈ 10−21.

You can use your preferred computer and your preferred software to compute

w100 or w1000 by recurrence to realize that the results are disastrously wrong

(provided you make floating point calculations and NOT the algebraic ones).

To understand what is going on, let us study the recurrence relation (Fi)
geometrically. Consider the following transformation F of the plane R

2:

F : (x, y) 7→ (y, x+ y) .

If we take two consecutive elements (an−1, an) of any sequence satisfying (Fi)

and apply F to the planar vector (x, y) = (an−1, an) we get

F (an−1, an) = (an, an−1 + an) = (an, an+1) .

Thus, to produce any sequence satisfying (Fi) we can apply F many times

iteratively starting from the initial vector ~ainit = (a0, a1):

(an, an+1) = F (F (. . . F
︸ ︷︷ ︸

n

(a0, a1))...) .



Very special vectors for the map F
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The geometric progressions {un}, {wn} = {1, λ, λ2, . . . } with λ = λ1, λ2

are special for the map F . Every next vector is collinear to the previous one:

(un, un+1) = (λn, λn+1) = F (λn−1, λn) = λ·(λn−1, λn) = λ·(un−1, un) .

For the geometric progression with λ1 ≈ 1.6 every next vector is obtained by

the dilatation of the previous one by the factor λ1. For the geometric progression

with λ2 ≈ −0.6 every next vector is obtained by the contraction of the previous

one by the factor λ1 = −1/λ2 followed by flipping it to the symmetric one.

Consider now two basic vectors ~u = (1, λ1) and ~w = (1, λ2). Any other

vector ~v = c1~u+ c2 ~w of the plane R
2 is mapped to the vector

~v 7→ F (~v) = c1F (~u) + c2F (~w) = c1λ1~u+ c2λ2 ~w

It is the same story as:

1) The sum of any two solutions of (Fi) is also a solution of (Fi).
2) Multiplying any solution of (Fi) by a constant factor we still get a solution of (Fi).
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Let us follow several consecutive images of a unit circle under iterations of the map F .

F (~w)
F (~u)

The circle is transformed to an ellipse where the directions of the axes are

exactly the directions of the special vectors ~u and ~w, and the lengths of the
demi-axes are exactly λ1 and |λ2| = 1/λ1.When we pass to iterates

F ◦ F ◦ · · · ◦ F of the linear transformation F , the directions of the demi-axes

stay unchanged while their lengths change drastically.For a sufficiently long n
an ellipse is basically smashed to an interval aligned along ~u. Morally, a large

iterate of the transformation F projects the entire plane to the line spanned by
~u and then expands it by an enormous dilatation.
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Our software memorizes the initial data with a tiny error ε : instead of ~w we,

actually, have ~w + ε~u.
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1 ~u+ λ2n
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We have observed a phenomenon of instability of a trajectory with respect to

the stating data. Arbitrary tiny error makes the trajectory escape to infinity

instead of landing to the origin.

This effect is known as a “butterfly effect” : “Does the Flap of a Butterfly’s Wings

in Brazil Set a Tornado in Texas?”



Butterfly effect

15 / 35

We have observed a phenomenon of instability of a trajectory with respect to

the stating data. Arbitrary tiny error makes the trajectory escape to infinity

instead of landing to the origin.

This effect is known as a “butterfly effect” : “Does the Flap of a Butterfly’s Wings

in Brazil Set a Tornado in Texas?”



Butterfly effect

15 / 35

We have observed a phenomenon of instability of a trajectory with respect to

the stating data. Arbitrary tiny error makes the trajectory escape to infinity

instead of landing to the origin.

This effect is known as a “butterfly effect” : “Does the Flap of a Butterfly’s Wings

in Brazil Set a Tornado in Texas?”

In dynamical systems one studies the behavior of transformations after many

iterations (or flows after a long time, etc.)
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The surface T
2 at the picture is called a torus:
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The surface T
2 at the picture is called a torus:

It can be glued from a unit square:

Identifying the horizontal sides we first get a cylinder. Identifying next the
vertical sides (they became meanwhile the boundary components of the

cylinder) we get a torus.

More algebraically, we can consider the torus T2 as a quotient of the plane R
2

over the action of the group Z ⊕ Z of integer translations.
Considering the numbers x, y, x+ y modulo integers it is easy to check that

the transformation

F : (x, y) 7→ (y, x+ y) .

induces a well-defined continuous map of the torus T2 to itself.
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To illustrate the action of the map F on the torus we can draw a CAT (following

Vladimir Arnold) in the square and observe how it is transformed under F .
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Instability of trajectories
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Let us launch an orbit P0, P1 = F (P0), P2 = F (F (P0)), . . . of the map F
from some point P0 ∈ T

2. How it would be followed by an orbit

Q0, Q1, Q2, . . . launched from a nearby point Q0?

Up to a translation, a small neighborhood of P0 is mapped to its image by the

linear transformation F . We have already studied the behavior of iterates of F .
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For most of the nearby starting points the orbits would diverge with the

exponential rate of divergence like the blue orbit. However, if we move the initial

point exactly in the direction of the contracting vector ~w the orbits would
converge with the exponential rate of convergence like the red orbit.

Such behavior is called chaotic: orbits launched at two very close points

diverge rapidly and after a short time we do not see any relation between them.
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21 / 35

One can consider the publication in 1890 of the paper of Henri Poincar “On the

three body problem and equations of their dynamics” studying stability of the

Solar System as a birthdate of dynamical systems as a domain of

mathematics.

Despite a dramatic error (found by Poincaré after the paper has already

received the prize of the King of Sweden Oscar II) this paper created a base of
the theory and predicted numerous phenomena which were justified rigorously

much later.
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Ergodic Theorem: chaos is very regular in average
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The map F : T2 → T
2 has several important properties:

• It preserves area: the area of any small disc U is the same as the area of the

small ellipse F (U) obtained as the the image of U .

• Any subset invariant under F either has zero area or its complement has

zero area. In such situation one says that the map is ergodic.

Ergodic Theorem For any continuous function f : T2 → R and for almost

any starting point P0 in T
2 the mean value of the function f along the orbit

P0, . . . , F (F (. . . F
︸ ︷︷ ︸

n−1

(P0)...)) coincides with the mean value of f over T2:

lim
n→+∞

1

n



f(P0) + f(F (P0)) + · · ·+ f(F (. . . F
︸ ︷︷ ︸

n−1

(P0)...))



 =

∫

T2

f(x, y)dx dy .

The theorem implies that for almost any starting point, the number of visits of a

long orbit of F of large length n to a subset U is approximately area(U) · n.
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• It preserves area: the area of any small disc U is the same as the area of the

small ellipse F (U) obtained as the the image of U .

• Any subset invariant under F either has zero area or its complement has

zero area. In such situation one says that the map is ergodic.
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Billiards

24 / 35

Following Moon Duchin

let us play billiard in a

polygon which might be
more sophisticated than

a usual rectangle.

Actually, we assume

that a ball is very small,
the wall do not have any

holes, that there is no

friction, and that the re-

flections are ideal and

follow the rules of optic.



Motivation to study billiards: gas of two molecules in a one-
dimensional chamber
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Consider two elastic balls (“molecules”) sliding along a rod. They are bounded

from two sides by solid walls. All collisions are ideal — without loss of energy.
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Consider two elastic balls (“molecules”) sliding along a rod. They are bounded

from two sides by solid walls. All collisions are ideal — without loss of energy.

m1 m2

x1 x2
x

0 a
x1a
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Neglecting the sizes of the balls we can describe the configuration space of our

system using coordinates 0 < x1 ≤ x2 ≤ a of the balls, where a is the
distance between the walls. This gives a right isosceles triangle.



Gas of two molecules
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Rescaling the coordinates by square roots of masses{

x̃1 =
√
m1x1

x̃2 =
√
m2x2

we get a new right triangle ∆ as a configuration space.
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Rescaling the coordinates by square roots of masses{

x̃1 =
√
m1x1

x̃2 =
√
m2x2

we get a new right triangle ∆ as a configuration space.

m1 m2

x1 x2
x

0

x̃1 =
√
m1x1

x̃2 =
√
m2x2

Lemma In coordinates (x̃1, x̃2) trajectories of the system of two balls on a
rod correspond to billiard trajectories in the triangle ∆.



Closed billiard trajectories
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It is easy to find a periodic trajectory in an acute triangle:

Exercise. Show that the broken line joining the base points of the heights in

an acute triangle is a closed billiard trajectory (called Fagnano trajectory ).

Show that it is an inscribed triangle of the minimal possible perimeter.



Challenge
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It is difficult to believe, but for an obtuse triangle the problem is open:

Open Problem. Is there at least one periodic trajectory in any obtuse triangle?
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R. Schwartz has verified it by a rigorous heavily computer-assisted proof).
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It is difficult to believe, but for an obtuse triangle the problem is open:

Open Problem. Is there at least one periodic trajectory in any obtuse triangle?

The answer might be affirmative (for triangles with obtuse angle at most 100o

R. Schwartz has verified it by a rigorous heavily computer-assisted proof).

But even if it is affirmative, the natural question “And how many?..” is

completely and desperately open already for acute triangles.

Open Problem. Estimate the number N(Π, L) of periodic trajectories of

length at most L in a polygon Π as L → +∞.

Open Problem. Is the billiard flow ergodic for almost any triangle?



From a billiard to a surface
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the copies

of the billiard table we project this line to the original trajectory. At any moment

the ball moves in one of the four directions defining the four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.



From a billiard to a surface

29 / 35

Consider a rectangular billiard. Instead of reflecting the trajectory we can

reflect the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of the four directions defining the four types of

copies of the billiard table. Copies of the same type are related by a parallel
translation.



From a billiard to a surface

29 / 35

Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of the four directions defining the four types of

copies of the billiard table. Copies of the same type are related by a parallel
translation.



From a billiard to a surface

29 / 35

Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the copies

of the billiard table we project this line to the original trajectory. At any moment

the ball moves in one of the four directions defining the four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.



From a billiard to a surface

29 / 35

Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the copies

of the billiard table we project this line to the original trajectory. At any moment

the ball moves in one of the four directions defining the four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

A B

C
D

A

D

A
B

CC

B

D



From a billiard to a surface

29 / 35

Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the copies

of the billiard table we project this line to the original trajectory. At any moment

the ball moves in one of the four directions defining the four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

A B A

D
C

D

A B A

Identifying the equivalent patterns by a parallel translation we obtain a torus;

the billiard trajectory unfolds to a “straight line” on the corresponding torus.



Billiards in rational polygons
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One can apply a similar unfolding construction to any polygon with angles

which are rational multiples of π to pass from a billiard to a flat surface.
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One can apply a similar unfolding construction to any polygon with angles

which are rational multiples of π to pass from a billiard to a flat surface.

Consider, for example the triangle with angles π/8, 3π/8, π/2. It is easy to

check that a generic trajectory of such billiard moves at any time in one of 16
directions (compared to 4 for a rectangle). We can unfold the triangle to a
regular octagon glued from 16 copies of the triangle. Identifying opposite sides

of the octagon we get a flat surface. All “straight lines” on this surface project to

the initial billiard trajectories.



Flat surface more complicated than a torus
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Identifying the pair of horizontal sides and then the pair of vertical sides of a

regular octagon we get a torus with a single square hole. Identifying two

opposite sides of the hole we get a torus with two distinct holes. Identifying the
resulting holes we get a flat torus... with an extra handle.
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Identifying the pair of horizontal sides and then the pair of vertical sides of a

regular octagon we get a torus with a single square hole. Identifying two

opposite sides of the hole we get a torus with two distinct holes. Identifying
the resulting holes we get a flat torus... with an extra handle.



Geodesics on a cone
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Exercise. One can wrap a large piece of paper into a cone. Straight lines on

the plane become so-called geodesic lines on the cone. Launch a straight ray
in a direction different from the direction of the vertex of the cone. Would it

infinitely spiral around the vertex or it would come back? If you think that it

would come back, count the number of turns and count how close to the vertex

would it get. Can one create oscillations for some particular values of

parameters?



Magic Wand Theorem
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Developing ideas of Bill Thurston, American mathematicians Howard Masur

and William Veech have studied in early 80’s a natural dynamical system of the

moduli space of all flat surfaces to describe dynamics on an individual flat

surface. Couple of years ago Alex Eskin, Amir Mohammadi, Maryam

Mirzakhani, and Simion Filip have proved fantastic results about this dynamical
system proving that absolutely all complex geodesics in the moduli space

behave in some specific sense very nicely: they cannot have any fractal

behavior which is very common in dynamical systems.



Fields Medal
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At the last International Congress of Mathematics Maryam Mirzakhani has

received a Fields Medal for “for her exceptional contributions to dynamics and

geometry of Riemann surfaces and their moduli spaces” becoming the first

woman to receive the Fields Medal.



Billiard in a polygon : an artistic image
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Varvara Stepanova. Billiard players. Thyssen museum, Madrid


	Linear dynamics
	Fibonacci sequence
	Brothers and sisters of Fibonacci sequence
	Back to Fibonacci
	Fibonacci sequence: the answer
	How to impress your friends

	Butterfly effect
	The little sister of the Fibonacci sequence
	Program for ``Maple''
	Wrong computation
	Very special vectors for the map F
	Iterations of a linear transformation
	Divergence of trajectories
	Butterfly effect

	Chaotic systems
	Map from a torus to itself
	Arnold's CAT
	Instability of trajectories
	Chaos
	History. Works of Henri Poincaré
	Ergodic Theorem: chaos is very regular in average

	Billiards in polygons
	Billiards
	Motivation for studying billiards
	Gas of two molecules
	Closed billiard trajectories
	Challenge
	From a billiard to a surface
	Billiards in rational polygons
	Flat surface more complicated than a torus
	Geodesics on a cone
	Magic Wand Theorem
	Fields Medal
	Billiard players


