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Statistics of prime decompositions: integer numbers
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Let m be a positive integer, m ∈ N, and let m = p1 · p2 · · · · · pk be its

decomposition into product of primes. Considering integers m in a large

interval [1, N ], where N ≫ 1, as equiprobable, one can collect statistics of

their prime decompositions, say, number of distinct prime factors, their

multiplicities, etc, and in this sense speak of “probability” of this or that property
of the decomposition. The Prime Number Theorem gives an example of such

statistics.

Prime Number Theorem for Numbers. A randomly selected integer m of

size m ∼ N will be prime with probability of the order 1
logN when N is large.

(Actually, one can tell more. For example, T. Tao proved that log pk
logN

appropriately interpreted as a random variable follows the Poisson–Dirichlet

process.)



Statistics of prime decompositions: permutations
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Let σ ∈ SN be a permutation of N elements. and let Cj(σ) be the number of

cycles of length j in its decomposition into a product of cycles. By construction,
∑N

j=1 j · Cj(σ) = N . We denote by C(σ) =
∑N

j=1Cj(σ) the total number

of cycles.

Considering permutations σ ∈ SN as equiprobable, one can collect statistical
properties of their cyclic decompositions: total number of cycles, number of

cycles of given length j, etc, and in this sense speak of “probability” of this or

that property of a random cyclic decomposition.

Prime Number Theorem for Permutations. A randomly selected permutation

σ ∈ SN will be composed of a single cycle with probability 1
N

for any N ∈ N.

Proof. There are exactly 1
N

·N ! such permutations in SN .

Theorem (in this formulation: T. Tao). For any 1 ≤ j ≤ N , one has

ECj =
1
j

. In particular,

EC = 1 +
1

2
+ · · ·+

1

N
= logN +O(1) .



Shape of a random square-tiled surface
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Picture created by Jian Jiang

Squares of the tiling are polarized : horizontal

sides are glued to horizontal sides and verti-

cal sides to vertical sides.
A square-tiled surface has translation struc-

ture if the horizontal and vertical directions

on each square are oriented and if gluing the

squares together the orientation is respected.

Questions.

• With what probability a random square-tiled translation surface has
k = 1, 2, . . . , 3g − 3 maximal horizontal cylinders? How often it has a single

horizontal cylinder?

• What are the typical heights of cylinders?

• How many distinct singular horizontal layers it has?

• What is the shape of a random square-tiled surface of large genus?



Example of explicitly computed probabilities
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Consider translation square-tiled surfaces of genus 3 with two conical singularities

of angles 4π and 8π. The probabilities pk that a random square-tiled surface of this

type has k = 1, 2, 3, 4 maximal horizontal cylinders have the following values:

← the only quantity which is easy to compute
0.19 ≈ p1 =

3 ζ(7)

16 ζ(6)

0.47 ≈ p2 =
55 ζ(1, 6) + 29 ζ(2, 5) + 15 ζ(3, 4) + 8 ζ(4, 3) + 4 ζ(5, 2)

16 ζ(6)

0.30 ≈ p3 =
1

32 ζ(6)

(

12 ζ(6)− 12 ζ(7) + 48 ζ(4) ζ(1, 2) + 48 ζ(3) ζ(1, 3)

+ 24 ζ(2) ζ(1, 4) + 6 ζ(1, 5)− 250 ζ(1, 6)− 6 ζ(3) ζ(2, 2)

− 5 ζ(2) ζ(2, 3) + 6 ζ(2, 4)− 52 ζ(2, 5) + 6 ζ(3, 3)− 82 ζ(3, 4)

+ 6 ζ(4, 2)− 54 ζ(4, 3) + 6 ζ(5, 2) + 120 ζ(1, 1, 5)− 30 ζ(1, 2, 4)

− 120 ζ(1, 3, 3)− 120 ζ(1, 4, 2)− 54 ζ(2, 1, 4)− 34 ζ(2, 2, 3)

− 29 ζ(2, 3, 2)− 88 ζ(3, 1, 3)− 34 ζ(3, 2, 2)− 48 ζ(4, 1, 2)

)

0.04 ≈ p4 =
ζ(2)

8 ζ(6)

(

ζ(4)− ζ(5) + ζ(1, 3) + ζ(2, 2)− ζ(2, 3)− ζ(3, 2)

)

.

Moral: it is desperately difficult to compute individual contributions of k-cylinder surfaces. Conjecture: these contributions are rational polynomials in mzv.



Prime Number Theorem for Square-Tiled Surfaces
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Prime Number Theorem for Square-Tiled Surfaces. A random square-tiled

translation surface of genus g ≫ 1 with n conical singularities of any fixed

cone angles has single horizontal cylinder with probability ∼ 1
2g+n

.

Proof. Our proof with V. Delecroix, E. Goujard and P. Zograf uses large genus

asymptotics of Masur–Veech volumes of moduli spaces of Abelian differentials

recently proved by A. Aggarwal and independently by D. Chen, M. Möller,
A. Sauvaget, D. Zagier. An alternative prove is due to Ph. Engel.
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Conjecture. When g grows, the probability that a random translation
square-tiled surface as above has k cylinders tends to the probability that a

random permutation of N = 2g + n elements has k = 1, . . . , N cycles in its

cyclic decomposition. In particular, a random translation square-tiled surface

has about log(2g + n) cylinders.
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Prime Number Theorem for Square-Tiled Surfaces. A random square-tiled

translation surface of genus g ≫ 1 with n conical singularities of any fixed

cone angles has single horizontal cylinder with probability ∼ 1
2g+n

.

Proof. Our proof with V. Delecroix, E. Goujard and P. Zograf uses large genus

asymptotics of Masur–Veech volumes of moduli spaces of Abelian differentials

recently proved by A. Aggarwal and independently by D. Chen, M. Möller,
A. Sauvaget, D. Zagier. An alternative prove is due to Ph. Engel.

Conjecture. When g grows, the probability that a random translation
square-tiled surface as above has k cylinders tends to the probability that a

random permutation of N = 2g + n elements has k = 1, . . . , N cycles in its

cyclic decomposition. In particular, a random translation square-tiled surface

has about log(2g + n) cylinders.

Conjecture. A random square-tiled translation surface of genus g ≫ 1 with no

conical points of angles π has single horizontal cylinder with probability ∼
√

π
24g .



Mirzakhani’s count
of simple closed geodesics

Decomposition of a
random compound
object into primitive
blocks.

Mirzakhani’s count of
simple closed
geodesics

• Multicurves
• Frequencies of
multicurves

• Example

• Hyperbolic and flat
geodesic multicurves

Masur–Veech volumes

Masur–Veech versus
Weil–Petersson volume

Shape of random
multicurve

8 / 35



9 / 35

Picture by François Labourie taken at CIRM



Multicurves
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Consider a finite collection of pairwise nonintersecting essential simple closed

curves γ1, . . . , γk on a smooth surface Sg.n of genus g with n punctures.

For any hyperbolic metric X on Sg,n and for any simple closed curve γi there
exists a unique geodesic representative in the free homotopy class of γi.

Fact. For any hyperbolic metric X and any collection γ1, . . . , γk of pairwise

non-intersecting simple closed curves, their geodesic representatives do not
self-intersect and do not pairwise intersect either.
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Multicurves
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We can consider formal linear combinations γ :=
∑k

i=1miγi of such simple

closed curves with positive coefficients. When all coefficients mi are integer

(respectively rational), we call such γ integral (respectively rational) multicurve.

In the presence of a hyperbolic metric X we define the hyperbolic length of a
multicurve γ as ℓγ(X) :=

∑k
i=1miℓX(γi), where ℓX(γi) is the hyperbolic

length of the simple closed geodesic in the free homotopy class of γi.

We say that two multicurves γ, ρ have the same topological type [γ] = [ρ] if

and only if they belong to the same orbit of the mapping class group:

ρ ∈ Modg,n ·γ.
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Example: primitive multicurves on a surface of genus two

12 / 35

The picture below illustrates all possible types of primitive multicurves on a

surface of genus two without punctures.

Note that contracting all components of a multicurve we get a “stable curve” —
a Riemann surface degenerated in one of the several regular ways. In this way

the “topological types of primitive multicurves” on a smooth surface Sg,n of

genus g with n punctures are in the natural bijective correspondence with

boundary classes of the Deligne–Mumford compactification Mg,n of the

moduli space of pointed complex curves.



Frequencies of multicurves
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Theorem (M. Mirzakhani, 2008). For any rational multi-curve γ and any

hyperbolic surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) ·
c(γ)

bg,n
· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).
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Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).

Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in Mg,n, and

any two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to

the action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=
c(γ1)

c(γ2)
.



Example
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example (M. Mirzakhani, 2008); confirmed experimentally in 2017 by M. Bell;

confirmed in 2017 by more implicit computer experiment of V. Delecroix and by

relating it to Masur–Veech volume.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Left picture represents a geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on a
hyperbolic surface in M0,7. Right picture represents the same multicurve this

time realized as the union of the waist curves of horizontal cylinders of a

square-tiled surface of the same genus, where cusps of the hyperbolic surface

are in the one-to-one correspondence with the conical points having cone

angle π (i.e. with the simple poles of the corresponding quadratic differential).
The weights of individual connected components γi are recorded by the

heights of the cylinders. Clearly, there are plenty of square-tiled surface

realizing this multicurve.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Zorich, 2018). For any

topological class γ of simple closed multicurves considered up to

homeomorphisms of a surface Sg,n, the associated Mirzakhani’s asymptotic

frequency c(γ) of hyperbolic multicurves coincides with the asymptotic
frequency of simple closed flat geodesic multicurves of type γ represented by

associated square-tiled surfaces.

Remark. Francisco Arana Herrera recently found an alternative proof of this
result. His proof uses more geometric approach.

Singular layers and ribbon graphs
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Period coordinates, volume element, and unit hyperboloid
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
∑
mi = 2g − 2, is modelled on the vector

space H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural

lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of the

volume element dν in these period coordinates.

Flat surfaces of area 1 form a real hypersurface H1 = H1(m1, . . . ,mn)
defined in period coordinates by equation

1 = area(S) =
i

2

∫

C

ω ∧ ω̄ =
i

2

g
∑

i=1

(AiB̄i − ĀiBi) .

Any flat surface S can be uniquely represented as S = (C, r · ω), where

r > 0 and (C, ω) ∈ H1(m1, . . . ,mn). In these “polar coordinates” the
volume element disintegrates as dν = r2d−1dr dν1 where dν1 is the induced

volume element on the hyperboloid H1 and d = dimC H(m1, . . . ,mn).

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H1(m1, . . . ,mn) or Q1(m1, . . . ,mn) of Abelian or quadratic differentials is finite.
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Integer points as square-tiled surfaces

18 / 35

Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point:

S ∋ P 7→

(∫ P

P1

ω mod Z ⊕ iZ

)

∈ C/(Z⊕iZ) = T, where P1 is a zero of ω .

The ramification points of the cover are exactly the zeroes of ω.
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Integer points in the strata Q(d1, . . . , dn) of quadratic differentials are

represented by analogous “pillowcase covers” over CP1 branched at four

points. Thus, counting volumes of the strata is similar to counting analogs of

Hurwitz numbers.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point:

S ∋ P 7→

(∫ P

P1

ω mod Z ⊕ iZ

)

∈ C/(Z⊕iZ) = T, where P1 is a zero of ω .

The ramification points of the cover are exactly the zeroes of ω.

Let H = H(m1, . . . ,mn); let d = dimC H(m1, . . . ,mn) = 2g + n− 1. We get:

VolH1 = 2d · lim
N→+∞

(
number of square-tiled surfaces in H
tiled with at most N identical squares

)

Nd
.



Evaluation of volumes for strata of Abelian differentials
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Theorem (A. Eskin, A. Okounkov, R. Pandharipande). For every connected

component Hc(d1, . . . , dn) of every stratum, the generating function
∞∑

N=1

qN
∑

N-square-tiled
surfaces S

1

|Aut(S)|

is a quasimodular form. The Masur–Veech volume of every connected

component of every stratum is a rational multiple of π2g, where g is the genus.

• A. Eskin implemented this theorem to an algorithm allowing to compute
volumes for all strata in sufficiently small genera, which allowed us to state a

conjecture on a simple asymptotic formula for volumes in large genera.

• D. Chen, M. Möller, D. Zagier can compute the volume of the principal

stratum up to genus 2000 and more; in 2017 they proved our conjecture with

Eskin on large genus volume asymptotics for the principal stratum.
• In 2018 A. Aggarwal proved our conjecture for all strata.

• In January 2019 D. Chen, M. Möller, A. Sauvaget, D. Zagier suggested a

recursive formula for volumes of all components of all strata of Abelian

differentials and expressed them in terms of appropriate intersection numbers.

All these approaches treat the entire Masur–Veech volume as a single block.



Evaluation of volumes for strata of Abelian differentials

19 / 35

Theorem (A. Eskin, A. Okounkov, R. Pandharipande). For every connected

component Hc(d1, . . . , dn) of every stratum, the generating function
∞∑

N=1

qN
∑

N-square-tiled
surfaces S

1

|Aut(S)|

is a quasimodular form. The Masur–Veech volume of every connected

component of every stratum is a rational multiple of π2g, where g is the genus.

• A. Eskin implemented this theorem to an algorithm allowing to compute
volumes for all strata in sufficiently small genera, which allowed us to state a

conjecture on a simple asymptotic formula for volumes in large genera.
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• In January 2019 D. Chen, M. Möller, A. Sauvaget, D. Zagier suggested a

recursive formula for volumes of all components of all strata of Abelian

differentials and expressed them in terms of appropriate intersection numbers.

All these approaches treat the entire Masur–Veech volume as a single block.



Evaluation of volumes for strata of Abelian differentials

19 / 35

Theorem (A. Eskin, A. Okounkov, R. Pandharipande). For every connected

component Hc(d1, . . . , dn) of every stratum, the generating function
∞∑

N=1

qN
∑

N-square-tiled
surfaces S

1

|Aut(S)|

is a quasimodular form. The Masur–Veech volume of every connected

component of every stratum is a rational multiple of π2g, where g is the genus.

• A. Eskin implemented this theorem to an algorithm allowing to compute
volumes for all strata in sufficiently small genera, which allowed us to state a

conjecture on a simple asymptotic formula for volumes in large genera.
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volumes for all strata in sufficiently small genera, which allowed us to state a

conjecture on a simple asymptotic formula for volumes in large genera.

• D. Chen, M. Möller, D. Zagier can compute the volume of the principal

stratum up to genus 2000 and more; in 2017 they proved our conjecture with

Eskin on large genus volume asymptotics for the principal stratum.
• In 2018 A. Aggarwal proved our conjecture for all strata.

• In January 2019 D. Chen, M. Möller, A. Sauvaget, D. Zagier suggested a

recursive formula for volumes of all components of all strata of Abelian

differentials and expressed them in terms of appropriate intersection numbers.

All these approaches treat the entire Masur–Veech volume as a single block.
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Intersection numbers (correlators)
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The Deligne–Mumford compactification Mg,n of the moduli space of smooth
complex curves of genus g with n labeled marked points P1, . . . , Pn ∈ C is a

complex orbifold of complexx dimension 3g − 3 + n.

Choose index i in {1, . . . , n}. The family of complex lines cotangent to C at

the point Pi forms a holomorphic line bundle Li over Mg,n which extends to Mg,n.

The first Chern class of this tautological bundle is denoted by ψi = c1(Li).

Any collection of nonnegative integers satisfying d1 + · · ·+ dn = 3g − 3 + n
determines a positive rational “intersection number ” (or the “correlator ” in the

physical context):

〈τd1 . . . τdn〉g :=

∫

Mg,n

ψd1
1 . . . ψdn

n .

The famous Witten’s conjecture claims that these numbers satisfy certain

recurrence relations which are equivalent to certain differential equations on

the associated generating function (“partition function in 2-dimensional

quantum gravity ”). Witten’s conjecture was proved by M. Kontsevich; one of

alternative proofs belongs to M. Mirzakhani.
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Up to a numerical factor, the polynomial Ng,n(b1, . . . , bn) coincides with the

top homogeneous part of the Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn)
providing the Weil–Petersson volume of the moduli space of bordered Riemann

surfaces:

V top
g,n (b) = 22g−3+n ·Ng,n(b) .
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Define the formal operation Z on monomials as

Z :
n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extend it to symmetric polynomials in bi by linearity.
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b1
1
2 · 1 · b1 ·N1,2(b1, b1)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·

·N1,1(b2)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·

·N0,3(b2, b3, b3)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·

·N0,3(b1, b2, b3)
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) = 1

2 · b1
(

1
384(2b

2
1)(2b

2
1)
)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) = 1
4 · b1

(
1
48b

2
1

) (
1
48b

2
1

)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2) = 1

8 · b1b2 ·
(
1
4(2b

2
1 + 2b22)

)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·

·N1,1(b2) = 1
4 · b1b2 ·

(
1
)
·
(

1
48b

2
2

)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·

·N0,3(b2, b3, b3) = 1
16 · b1b2b3 · (1) · (1)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·

·N0,3(b1, b2, b3) = 1
24 · b1b2b3 · (1) · (1)



Volume of Q2
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b1
1

192 · b51
Z
7−→ 1

192 ·
(
5! · ζ(6)

)
= 1

1512 · π
6

b1

1
9216 · b

5
1

Z
7−→ 1

9216 ·
(
5! · ζ(6)

)
= 1

72576 · π
6

b1 b2
1
16(b

3
1b2+

+b1b
3
2)

Z
7−→ 1

16 · 2
(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

720 · π
6

b1
b2

1
192 · b1b

3
2

Z
7−→ 1

192 ·
(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

17280 · π
6

b1
b2

b3
1
16b1b2b3

Z
7−→ 1

16 ·
(
1! · ζ(2)

)3
= 1

3456 · π
6

b1
b2

b3
1
24b1b2b3

Z
7−→ 1

24 ·
(
1! · ζ(2)

)3
= 1

5184 · π
6

VolQ2 =
128
5 ·

(
1

1512 +
1

72576 +
1

720 +
1

17280 +
1

3456 +
1

5184

)
· π6 = 1

15π
6 .

These contributions to VolQ2 are proportional to Mirzakhani’s frequencies of corresponding multicurves.
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Volume of Qg,n
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Theorem. (Delecroix, Goujard, Zograf, Zorich) The Masur–Veech volume

VolQg,n of the moduli space of meromorphic quadratic differentials with n
simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·
∑

Weighted graphs Γ
with n legs

1

2Number of vertices of Γ−1
·

1

|AutΓ|
·

· Z




∏

Edges e of Γ

be ·
∏

Vertices of Γ

Ngv,nv+pv(b
2
v, 0, . . . , 0
︸ ︷︷ ︸

pv

)



 ,

The partial sum for fixed number k of edges gives the contribution of k-cylinder

square-tiled surfaces.

Note that in contrast to the approach based on quasimodularity of the

generating function, the Masur–Veech volume in our formula is the sum of

simpler parts, where each individual part is geometrically meaningful. This
allows to study statistical properties of the contributions.
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v, 0, . . . , 0
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pv

)



 ,

The partial sum for fixed number k of edges gives the contribution of k-cylinder

square-tiled surfaces.

• A. Eskin conceptually understood this 20 years ago but has chosen other way.

• One can obtain this formula developing results of M. Mirzakhani.

• In May 2019 this formula was reproved by J. Andersen, G. Borot, S. Charbonnier,

V. Delecroix, A. Giacchetto, D. Lewanski, C. Wheeler through topological recursion.
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Theorem. (Delecroix, Goujard, Zograf, Zorich) The Masur–Veech volume

VolQg,n of the moduli space of meromorphic quadratic differentials with n
simple poles has the following value:
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pv
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

 ,

Remark. The Weil–Petersson volume of Mg,n corresponds to the constant

term of the volume polynomial Ng,n(L) when the lengths of all boundary

components are contracted to zero. To compute the Masur–Veech volume we

use the top homogeneous parts of volume polynomials; i.e. we use them in the

opposite regime when the lengths of all boundary components tend to infinity.
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Theorem. (Delecroix, Goujard, Zograf, Zorich) The Masur–Veech volume

VolQg,n of the moduli space of meromorphic quadratic differentials with n
simple poles has the following value:
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pv

)



 ,

When any of g, n grow, the number of graphs grows very fast. Also the

correlators are computed only inductively. Thus, the formula gives effective

answer only in a limited number of cases.

Miracles: two exceptions which admit simple closed answer: when g = 0 and n
is arbitrary (rigorous); when g ≫ 1 and n = 0 (conjectural asymptotic value).



Trivalent ribbon graphs
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This trivalent ribbon graph defines an orientable surface of genus g = 2 with
n = 2 boundary components. If we assigned lengths to all edges of the core

graph, each boundary component gets induced length, namely, the sum of the

lengths of the edges which it follow.

Note, however, that in general, fixing a genus g, a number n of boundary
components and integer lengths b1, . . . , bn of boundary components, we get

plenty of trivalent integral metric ribbon graphs associated to such data. The

Theorem of Kontsevich counts them.



Idea of the proof: Kontsevich’s count of metric ribbon graph s
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Each horizontal layer containing zeroes or poles of a square-tiled surface can

be seen as a metric ribbon graph. When the associate quadratic differential has

only simple zeroes, the metric ribbon graph is trivalent.
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Each horizontal layer containing zeroes or poles of a square-tiled surface can

be seen as a metric ribbon graph. When the associate quadratic differential has

only simple zeroes, the metric ribbon graph is trivalent.

Theorem (Kontsevich). Consider a collection of positive integers b1, . . . , bn
such that

∑n
i=1 bi is even. The weighted count of genus g connected trivalent

metric ribbon graphs Γ with integer edges and with n labeled boundary
components of lengths b1, . . . , bn is equal to Ng,n(b1, . . . , bn) up to the lower

order terms:

∑

Γ∈Rg,n

1

|Aut(Γ)|
NΓ(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms ,

where Rg,n denote the set of (nonisomorphic) trivalent ribbon graphs Γ of

genus g and with n boundary components.

This Theorem is an important part of Kontsevich’s proof of Witten’s conjecture.
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What shape has a random simple closed multicurve?
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Picture from the book of Danny Calegari

Questions.

• With what probability a random primitive multicurve on a surface of genus g
slices the surface into 1, 2, 3, . . . connected components?

• With what probability a random multicurve m1γ1 +m2γ2 + · · ·+mkγk
has k = 1, 2, . . . , 3g − 3 primitive connected components γ1, . . . , γk?

• What are the typical weights m1, . . . ,mk?
• What is the shape of a random multicurve on a surface of large genus?

Project independently started by Maryam Mirzakhani



Separating versus non-separating simple closed curves in g = 2
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

6
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

24

after correction of a tiny bug in Mirzakhani’s calculation.
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

48

after further correction of another trickier bug in Mirzakhani’s calculation.
Confirmed by crosscheck with Masur–Veech volume of Q2 computed by

E. Goujard using the method of Eskin–Okounkov. Confirmed by calculation of

M. Kazarian; by independent computer experiment of V. Delecroix; by

extremely heavy and elaborate recent experiment of M. Bell; also nailed by

C. Ball. Most recently it was independently confirmed independently by

K. Rafi–J. Souto and by A. Wright by methods independent of ours.



Random simple closed curve rarely separates
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Theorem. A random simple closed curve on a surface of large genus

separates the surface very rarely. Namely:

c(γsep)

c(γnonsep)
∼

√
2

3πg
·
1

4g
as g → +∞ ,

An integer multiple mγ of a simple closed curve γ has weight m with

probability 1
m6g−6 · 1

ζ(6g−6) . Thus, a random one-cylinder square-tiled surface

of large genus has height 1 with probability very close to 1.
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Theorem. A random simple closed curve on a surface of large genus

separates the surface very rarely. Namely:

c(γsep)

c(γnonsep)
∼

√
2

3πg
·
1

4g
as g → +∞ ,

An integer multiple mγ of a simple closed curve γ has weight m with

probability 1
m6g−6 · 1

ζ(6g−6) . Thus, a random one-cylinder square-tiled surface

of large genus has height 1 with probability very close to 1.

Idea of the proof. Frequencies of separating simple closed curves are

expressed in terms of the intersection numbers which admit closed expression:
∫

Mg,1

ψ3g−2
1 =

1

24g g!
.

Frequencies of non-separating simple closed curves are expressed in terms of
∫

Mg,2

ψk
1ψ

3g−1−k
2

for which we obtain large genus asymptotics uniform for all k in fixed genus g.
The study of large genus asymptotics of correlators was initiated by M. Mirzakhani and P. Zograf.



Conjectural shape of a random multicurve (random square-
tiled surface) on a surface of large genus
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Conditional Theorem. The reduced multicurve γreduced = γ1 + · · ·+ γk
associated to a random integral multicurve m1γ1 + . . .mkγk separates the

surface with probability which tends to zero as genus g grows. Moreover, for g ≫ 1,
γreduced has one of the following topological types with probability exceeding 0.99:

log(g)
2 − 3

√
log(g)

2 components

. . . . . .

log(g)
2 + 3

√
log(g)

2 components

More precisely: the distribution of probability that a random multicurve γ has k
components tends to the Poisson distribution 1

eλ
λk−1

(k−1)! with parameter

λ = log(6g−6)+γ
2 + log(2)− 1.

A random square-tiled surface (without conical points of angle π) of large genus

has about log(g)
2 cylinders, and all its conical points sit at the same level.



Weights of a random multicurve (heights of cylinders of a ran -
som square-tiled surface)
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Conditional Theorem. A random integer multicurve m1γ1 + · · ·+mkγk with

bounded number k of primitive components is reduced (i.e., m1 = · · · = mk = 1)

with probability which tends to 1 as g → +∞.

In other terms, if we consider a random square-tiled surface with at most K
cylinders, the heights of all cylinders would very likely be equal to 1 for g ≫ 1.

Remark. This generalizes the observation that when k = 1 the probability that

a random integer multiple m1γ1 of a simple closed curve γ1 is primitive (i.e.

m1 = 1) is exactly 1
ζ(6g−6) .

Conditional Theorem. A general random integer multicurve

m1γ1 + · · ·+mkγk type is reduced (i.e., m1 = · · · = mk = 1) with

probability which tends to
√
2
2 as genus grows.

In other words, for about 70% of square-tiled surfaces of large genus, the
heights of all cylinders are equal to 1.



Two basic conjectures
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These and other conjectures follow from the following two basic ones.

Basic Conjecture 1. The Masur–Veech volume of the moduli space of

holomorphic quadratic differentials has the following large genus asymptotics:

VolQg
?
∼

4

π
·

(
8

3

)4g−4

as g → +∞ .

Basic Conjecture 2. The following uniform asymptotic formula is valid:

∫

Mg,n

ψd1
1 . . . ψdn

n =

=
1

24g
·
(6g − 5 + 2n)!

g! (3g − 3 + n)!
·

d1! . . . dn!

(2d1 + 1)! · · · (2dn + 1)!
·
(
1 + ε(d)

)
,

where ε(d) becomes uniformly small for all n ≤ 2 log(g) and all partitions d,

d1 + · · ·+ dn = 3g − 3 + n, as g → +∞.
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