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Lecture 2. Bridging flat and hyperbolic enumerative geometr y
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Frequencies of multicurves
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Theorem (M. Mirzakhani, 2008). For any rational multi-curve γ and any

hyperbolic surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).
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hyperbolic surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).

Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in Mg,n, and

any two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to

the action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=
c(γ1)

c(γ2)
.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example (M. Mirzakhani, 2008) ; confirmed experimentally in 2017 by M. Bell;

confirmed in 2017 by more implicit computer experiment of V. Delecroix and by

relating it to Masur–Veech volume.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Left picture represents a geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on a
hyperbolic surface in M0,7. Right picture represents the same multicurve this

time realized as the union of the waist curves of horizontal cylinders of a

square-tiled surface of the same genus, where cusps of the hyperbolic surface

are in the one-to-one correspondence with the conical points having cone

angle π (i.e. with the simple poles of the corresponding quadratic differential).
The weights of individual connected components γi are recorded by the

heights of the cylinders. Clearly, there are plenty of square-tiled surface

realizing this multicurve.
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2γ1

γ2

γ3

2γ4

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Zorich, 201 8). For any

topological class γ of simple closed multicurves considered up to

homeomorphisms of a surface Sg,n, the associated Mirzakhani’s asymptotic

frequency c(γ) of hyperbolic multicurves coincides with the asymptotic
frequency of simple closed flat geodesic multicurves of type γ represented by

associated square-tiled surfaces.

Remark. Francisco Arana Herrera recently found an alternative proof of this
result. His proof uses more geometric approach.

Singular layers and ribbon graphs
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Very flat surface of genus two
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Identifying the opposite sides of a regular octagon we get a flat surface of

genus two. All the vertices of the octagon are identified into a single conical

singularity. We always consider such a flat surface endowed with a
distinguished (say, vertical) direction. By construction, the holonomy of the flat

metric is trivial. Thus, the vertical direction at a single point globally defines

vertical and horizontal foliations.
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Period coordinates and Masur–Veech measure
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Vectors defining the sides of the polygonal pattern serve as coordinates in the

space of flat surfaces endowed with the distinguished vertical direction. The

Lebesgue measure in these coordinates is called the Masur–Veech measure.
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Vectors defining the sides of the polygonal pattern serve as coordinates in the

space of flat surfaces endowed with the distinguished vertical direction. The

Lebesgue measure in these coordinates is called the Masur–Veech measure.

Considered as complex numbers, they represent integrals of the holomorphic

form ω = dz along paths joining zeroes of the form ω. (In polygonal

representation the zeroes of ω are represented by vertices of the polygon.)



Period coordinates and Masur–Veech measure
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In other words, the moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is

a complex curve and ω is a holomorphic 1-form on C having zeroes of
prescribed multiplicities m1, . . . ,mn, where

∑
mi = 2g − 2, is modeled on

the vector space H1(S, {P1, . . . , Pn};C). The latter vector space contains a

natural lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of

the volume element dν in these period coordinates.



Flat area of the surface as a positive homogeneous function
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We have a natural action of R+ on any moduli space H(m1, . . . ,mn): given a

positive integer r > 0 we can rescale a flat surface by factor r. The flat area of

the surface gets rescaled by the factor r2.
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We have a natural action of R+ on any moduli space H(m1, . . . ,mn): given a

positive integer r > 0 we can rescale a flat surface by factor r. The flat area of

the surface gets rescaled by the factor r2.

Flat surfaces of area 1 form a real hypersurface H1 = H1(m1, . . . ,mn)
defined in period coordinates by equation

1 = area(S) =
i

2

∫

C
ω ∧ ω̄ =

g
∑

i=1

(AiB̄i − ĀiBi) .

Any flat surface S can be uniquely represented as S = (C, r · ω), where

r > 0 and (C, ω) ∈ H1(m1, . . . ,mn). In these “polar coordinates” the

volume element disintegrates as dν = r2d−1dr dν1 where dν1 is the induced

volume element on the hyperboloid H1 and d = dimC H(m1, . . . ,mn).



Masur–Veech volume
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Summary. Every stratum of Abelian differentials admits

• A local structure of a vector space H1(S, {P1, . . . , Pn};C);
• An integer lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ) which allows to normalize

the associated Lebesgue measure;

• A positive homogeneous function which allows to define an analog of a unit
sphere (or rather of a unit hyperboloid).

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H1(m1, . . . ,mn) or Q1(m1, . . . ,mn) of Abelian differentials or of

meromorphic quadratic differentials with at most simple poles is finite.



Integer points as square-tiled surfaces
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Integer points in period coordinates are represented by square-tiled surfaces.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point:

S ∋ P 7→
(∫ P

P1

ω mod Z ⊕ iZ

)

∈ C/(Z⊕iZ) = T, where P1 is a zero of ω .

The ramification points of the cover are exactly the zeroes of ω.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point:

S ∋ P 7→
(∫ P

P1

ω mod Z ⊕ iZ

)

∈ C/(Z⊕iZ) = T, where P1 is a zero of ω .

The ramification points of the cover are exactly the zeroes of ω.

Integer points in the strata Q(d1, . . . , dn) of quadratic differentials are

represented by analogous “pillowcase covers” over CP1 branched at four

points. Thus, counting volumes of the strata is similar to counting analogs of

Hurwitz numbers.



An example of a square-tiled surface
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Counting volume by counting integer points in a large cone
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X1 H1

To count volume of the cone C(X1) one can take a small grid and count the

number of lattice points inside it. Counting points of the 1
N -grid in the cone

C(X1) = {r · S|S ∈ X1, r ≤ 1} is the same as counting integer points in the

larger proportionally rescaled cone CN (X1) = {r · S|S ∈ X1, r ≤ N}.



Counting volume by counting integer points in a large cone
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X1 H1

Let H = H(m1, . . . ,mn); let d = dimC H(m1, . . . ,mn) = 2g + n− 1. We get:

VolH1 = 2d · lim
N→+∞

(
number of square-tiled surfaces in H
tiled with at most N identical squares

)

Nd
.



Volume of the space of flat tori
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φ

w

h

φ

The number of square-tiled tori tiled with at most N squares has asymptotics

∑

w,h∈N
w·h≤N

w =
∑

w,h∈N
w≤N

h

w ≈
∑

h∈N

1

2
·
(

N

h

)2

=
N2

2

∑

h∈N

1

h2
=
N2

2
·ζ(2) =

N2

2
·
π2

6
.

VolH1(0) = 2 · 2 · lim
N→+∞

(
number of square-tiled surfaces in H
tiled with at most N identical squares

)

N2
=
π2

3
.



Methods of evaluation of Masur–Veech volumes
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• M. Kontsevich–A. Zorich (1998). Straightforward calculation of square-tiled surfaces.

• (A. Eskin–A. Okounkov–R. Pandharipande; D. Chen–M. Moëller–D. Zagier;

E. Goujard) A. Eskin and A. Okounkov observed in 2000 that the generating

function for the count of square-tiled surfaces is a quasimodular form.

• D. Chen–M. Möeller–A. Sauvaget; M. Kazarian; Di Yang–D. Zagier–Y. Zhang
(2018–) Using recent BCGGM smooth compactification of the moduli space,

one can work with the volume element as with the cohomology class.

Intersection theory.

• V. Delecroix–E. Goujard–P. Zograf–A. Zorich (2018) (F. Arana–Herrera):

volume of the principal stratum of quadratic differentials through Kontsevich’s
count of metric ribbon graphs in terms of Witten–Kontsevich correlators.

• D. Chen–M. Möeller–A. Sauvaget–D. Zagier; A. Aggarwal (2018–) Large

genus asymptotics for any stratum of Abelian differentials (proving conjectures

of Eskin–Zorich and of Delecroix–Goujard–Zograf–Zorich).

• Andersen–Borot–Charbonnier–Delecroix–Giacchetto–Lewanski–Wheeler,

2020 (inspired by the formula of Delecroix-Goujard–Zograf–Zorich): topological
recursion.
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Intersection numbers (correlators)
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The Deligne–Mumford compactification Mg,n of the moduli space of smooth
complex curves of genus g with n labeled marked points P1, . . . , Pn ∈ C is a

complex orbifold of complex dimension 3g − 3 + n.

Choose index i in {1, . . . , n}. The family of complex lines cotangent to C at

the point Pi forms a holomorphic line bundle Li over Mg,n which extends to Mg,n.

The first Chern class of this tautological bundle is denoted by ψi = c1(Li).

Any collection of nonnegative integers satisfying d1 + · · ·+ dn = 3g − 3 + n
determines a positive rational “intersection number ” (or the “correlator ” in the

physical context):

〈τd1 . . . τdn〉g :=
∫

Mg,n

ψd1
1 . . . ψdn

n .

The famous Witten’s conjecture claims that these numbers satisfy certain

recurrence relations which are equivalent to certain differential equations on

the associated generating function (“partition function in 2-dimensional

quantum gravity ”). Witten’s conjecture was proved by M. Kontsevich; one of

alternative proofs belongs to M. Mirzakhani.
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Volume polynomials
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n



Volume polynomials

20 / 38

Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .
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Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Up to a numerical factor, the polynomial Ng,n(b1, . . . , bn) coincides with the

top homogeneous part of the Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn)
providing the Weil–Petersson volume of the moduli space of bordered Riemann

surfaces:

V top
g,n (b) = 22g−3+n ·Ng,n(b) .
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cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Define the formal operation Z on monomials as

Z :
n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extend it to symmetric polynomials in bi by linearity.



Trivalent ribbon graphs
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This trivalent ribbon graph defines an orientable surface of genus g = 2 with
n = 2 boundary components. If we assigned lengths to all edges of the core

graph, each boundary component gets induced length, namely, the sum of the

lengths of the edges which it follow.

Note, however, that in general, fixing a genus g, a number n of boundary
components and integer lengths b1, . . . , bn of boundary components, we get

plenty of trivalent integral metric ribbon graphs associated to such data. The

Theorem of Kontsevich counts them.



Kontsevich’s count of metric ribbon graphs
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Each horizontal layer containing zeroes or poles of a square-tiled surface can

be seen as a metric ribbon graph. When the associate quadratic differential has

only simple zeroes, the metric ribbon graph is trivalent.
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Each horizontal layer containing zeroes or poles of a square-tiled surface can

be seen as a metric ribbon graph. When the associate quadratic differential has

only simple zeroes, the metric ribbon graph is trivalent.

Theorem (M. Kontsevich; in this form — P. Norbury). Consider a collection

of positive integers b1, . . . , bn such that
∑n

i=1 bi is even. The weighted count

of genus g connected trivalent metric ribbon graphs Γ with integer edges and
with n labeled boundary components of lengths b1, . . . , bn is equal to

Ng,n(b1, . . . , bn) up to the lower order terms:

∑

Γ∈Rg,n

1

|Aut(Γ)| NΓ(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms ,

where Rg,n denote the set of (nonisomorphic) trivalent ribbon graphs Γ of
genus g and with n boundary components.

This Theorem is an important part of Kontsevich’s proof of Witten’s conjecture.
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b1
1
2 · 1 · b1 ·N1,2(b1, b1)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·
·N1,1(b2)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·
·N0,3(b2, b3, b3)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·
·N0,3(b1, b2, b3)
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) = 1

2 · b1
(

1
384(2b

2
1)(2b

2
1)
)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) = 1
4 · b1

(
1
48b

2
1

) (
1
48b

2
1

)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2) = 1

8 · b1b2 ·
(
1
4(2b

2
1 + 2b22)

)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·
·N1,1(b2) = 1

4 · b1b2 ·
(
1
)
·
(

1
48b

2
2

)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·
·N0,3(b2, b3, b3) = 1

16 · b1b2b3 · (1) · (1)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·
·N0,3(b1, b2, b3) = 1

24 · b1b2b3 · (1) · (1)



Volume of Q2

25 / 38

b1
1

192 · b51
Z7−→ 1

192 ·
(
5! · ζ(6)

)
= 1

1512 · π6

b1

1
9216 · b51

Z7−→ 1
9216 ·

(
5! · ζ(6)

)
= 1

72576 · π6

b1 b2
1
16(b

3
1b2+

+b1b
3
2)

Z7−→ 1
16 · 2

(
1! · ζ(2)

)
·
(
3! · ζ(4)
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720 · π6
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(
1! · ζ(2)

)
·
(
3! · ζ(4)
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b1
b2
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1
16b1b2b3

Z7−→ 1
16 ·

(
1! · ζ(2)

)3
= 1

3456 · π6

b1
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b3
1
24b1b2b3
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(
1! · ζ(2)
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VolQ2 =
128
5 ·

(
1

1512 +
1

72576 +
1

720 +
1

17280 +
1

3456 +
1

5184

)
· π6 = 1

15π
6 .

These contributions to VolQ2 are proportional to Mirzakhani’s frequencies of corresponding multicurves.
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Theorem (Delecroix, Goujard, Zograf, Zorich). The Masur–Veech volume

VolQg,n of the moduli space of meromorphic quadratic differentials with n
simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·
∑

Weighted graphs Γ
with n legs

1

2Number of vertices of Γ−1
· 1

|AutΓ| ·

· Z




∏

Edges e of Γ

be ·
∏

Vertices of Γ

Ngv,nv+pv(b
2
v, 0, . . . , 0
︸ ︷︷ ︸

pv

)



 ,

The partial sum for fixed number k of edges gives the contribution of k-cylinder

square-tiled surfaces.
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Theorem (Delecroix, Goujard, Zograf, Zorich). The Masur–Veech volume

VolQg,n of the moduli space of meromorphic quadratic differentials with n
simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!
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Weighted graphs Γ
with n legs
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2Number of vertices of Γ−1
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


∏
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∏
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pv
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

 ,

Remark. The Weil–Petersson volume of Mg,n corresponds to the constant

term of the volume polynomial Ng,n(L) when the lengths of all boundary

components are contracted to zero. To compute the Masur–Veech volume we
use the top homogeneous parts of volume polynomials; i.e. we use them in the

opposite regime when the lengths of all boundary components tend to infinity.
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What shape has a random simple closed multicurve?
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Picture from a book of Danny Calegari

Questions.

• Which simple closed geodesics are more frequent: separating or

non-separating?

Take a random (non-primitive) multicurve γ = m1γ1 + · · ·+mkγk. Consider

the associated reduced multicurve γreduced = γ1 + · · ·+ γk.

• With what probability that γreduced slices the surface into 1, ..., 2g − 2
connected components?

• With what probability γreduced has k = 1, 2, . . . , 3g − 3 primitive connected

components γ1, . . . , γk?



Separating versus non-separating simple closed curves in g = 2
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

6
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

24

after correction of a tiny bug in Mirzakhani’s calculation.
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Ratio of asymptotic frequencies (M. Mirzakhani, 2008). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

48

after further correction of another trickier bug in Mirzakhani’s calculation.
Confirmed by crosscheck with Masur–Veech volume of Q2 computed by

E. Goujard using the method of Eskin–Okounkov. Confirmed by calculation of

M. Kazarian; by independent computer experiment of V. Delecroix; by

extremely heavy and elaborate recent experiment of M. Bell. Most recently it

was independently confirmed by V. Erlandsson, K. Rafi, J. Souto and by

A. Wright by methods independent of ours.



Multicurves on a surface of genus two and their frequencies
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The picture below illustrates all topological types of primitive multicurves on a

surface of genus two without punctures; the fractions give frequencies of

non-primitive multicurves γ having a reduced multicurve γreduced of the

corresponding type.

16

63

8

15

1

9

1

189

1

45

2

27

In genus 3 there are already 41 types of multicurves, in genus 4 there are 378
types, in genus 5 there are 4554 types and this number grows faster than

exponentially when genus g grows. It becomes pointless to produce tables: we

need to extract a reasonable sub-collection of most common types which

ideally, carry all Thurston’s measure when g → +∞.
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What shape has a random simple closed multicurve on a sur-
face of large genus?
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Picture from a book of Danny Calegari

Questions.

• With what probability a random primitive multicurve on a surface of genus g
slices the surface into 1, 2, 3, . . . connected components?

• With what probability a random multicurve m1γ1 +m2γ2 + · · ·+mkγk
has k = 1, 2, . . . , 3g − 3 primitive connected components γ1, . . . , γk?

• What are the typical weights m1, . . . ,mk?
• What is the shape of a random multicurve on a surface of large genus?

Partly suggested to Leonid Monin and to Peter Pushkar Jr. about ten years ago as a 3-weeks student’s project



Random multicurves and random square-tiled surfaces
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Denote by Kg(γ) the number of components k of the multicurve γ =
∑k

i=1miγi
on a surface of genus g counted without multiplicities.

Denote by Kg(S) the number of maximal horizontal cylinders in the cylinder

decomposition of a square-tiled surface S of genus g. We will always consider

square-tiled surfaces without cone-angles π, i.e. the ones corresponding to

holomorphic quadratic differentials.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). For any genus g ≥ 2
and for any k ∈ N, the probability pg(k) that a random multicurve γ on a

surface of genus g has exactly k components counted without multiplicities

coincides with the probability that a random square-tiled surface S of genus g
has exactly k maximal horizontal cylinders:

pg(k) = P
(
Kg(γ) = k

)
= P

(
Kg(S) = k

)
.

In other words, Kg(γ) and Kg(S), considered as random variables, determine

the same probability distribution pg(k), where k = 1, 2, . . . , 3g − 3.



Shape of a random multicurve (random square-tiled surface)
on a surface of large genus in simple words
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Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). The reduced

multicurve γreduced = γ1 + · · ·+ γk associated to a random integral

multicurve m1γ1 + . . .mkγk separates the surface with probability which
tends to zero as genus g grows. For large g, γreduced has about (log g)/2
components and has one of the following topological types

0.09 log(g) components

. . . . . . . . . . . .

0.62 log(g) components

P

(

0.09 log g < Kg(γ) < 0.62 log g
)

= 1−O
(

(log g)24g−1/4
)

.

A random square-tiled surface (without conical points of angle π) of large genus
has about log(g)

2 cylinders, and all its conical points sit at the same level.



Weights of a random multicurve (heights of cylinders of a ran -
som square-tiled surface)
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Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). A random integer

multicurve m1γ1 + · · ·+mkγk with

bounded number k of primitive components is reduced (i.e., m1 = · · · = mk = 1)
with probability which tends to 1 as g → +∞. In other terms, if we consider a

random square-tiled surface with at most K cylinders, the heights of all

cylinders would very likely be equal to 1 for g ≫ 1.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). A general random

integer multicurve m1γ1 + · · ·+mkγk type is reduced (i.e.,

m1 = · · · = mk = 1) with probability which tends to
√
2
2 as genus grows.

More generally, all weights m1, . . .mk of a random multicurve are bounded

from above by an integer m with probability which tends to
√

m
m+1 as

g → +∞.

(In other words, for more 70% of square-tiled surfaces of large genus, the

heights of all cylinders are equal to 1.)



Main Theorem (informally)
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Main Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). As g grows, the

probability distribution pg rapidly becomes, basically, indistinguishable from the
distribution of the number of cycles in a (very explicitly nonuniform) random

permutation. In particular, for any k ∈ N the difference of the k-th moments of

the two distributions is of the order O(g−1).

Actually, we have an explicit asymptotic formula for all cumulants. For example

E(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2 + o(1) ,

V(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2− 3

4
ζ(2) + o(1) ,

where γ = 0.5772 . . . denotes the Euler–Mascheroni constant.

In practice, already for g = 12 the match of the graphs of the distributions is

such that they are visually indistinguishable.

Mod-Poisson convergence : the distribution of the number of cycles of a usual random

permutation of n elements is uniformly well-approximated in a neighborhood of x logn by the

Poisson distribution with parameter logn+ a(x) with an explicit correctional term a(x).
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Main Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z. ). As g grows, the

probability distribution pg rapidly becomes, basically, indistinguishable from the
distribution of the number of cycles in a (very explicitly nonuniform) random

permutation. In particular, for any k ∈ N the difference of the k-th moments of

the two distributions is of the order O(g−1).

Actually, we have an explicit asymptotic formula for all cumulants. For example

E(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2 + o(1) ,

V(Kg) =
log(6g − 6)

2
+
γ

2
+ log 2− 3

4
ζ(2) + o(1) ,

where γ = 0.5772 . . . denotes the Euler–Mascheroni constant.

Let λ3g−3 = log(6g − 6)/2. We have uniformly in 0 ≤ k ≤ 1.233 · λ3g−3

P
(
Kg(γ) = k+1

)
= e−λ3g−3 ·

λk3g−3

k!
·





√
π

2Γ
(

1 + k
2λ3g−3

) +O

(
k

(log g)2

)


 .



Keystone underlying results
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Our results are strongly based on the following conjecture which we stated in

August 2019, and which Amol Aggarwal proved in April 2020.

Theorem (Aggarwal). The Masur–Veech volume of the moduli space of

holomorphic quadratic differentials has the following large genus asymptotics:

VolQg ∼ 4

π
·
(
8

3

)4g−4

as g → +∞ .
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Our results are strongly based on the following conjecture which we stated in

August 2019, and which Amol Aggarwal proved in April 2020.

Theorem (Aggarwal). The Masur–Veech volume of the moduli space of

holomorphic quadratic differentials has the following large genus asymptotics:

VolQg ∼ 4

π
·
(
8

3

)4g−4

as g → +∞ .

Conjecture. The Masur–Veech volume of any stratum of meromorphic

quadratic differentials with at most simple poles has the following large genus

asymptotics (with the error term uniformly small for all partitions d):

VolQ(d1, . . . , dn)
?∼ 4

π
·

n∏

i=1

2di+2

di + 2
as g → +∞ ,

under assumption that the number of simple poles is bounded or grows much

slower than the genus.



Another Keystone result
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Another Conjecture which we stated in August 2019 was also proved by Amol

Aggarwal in April 2020.

Theorem (Aggarwal). The following uniform asymptotic formula is valid:

∫

Mg,n

ψd1
1 . . . ψdn

n =

=
1

24g
· (6g − 5 + 2n)!

g! (3g − 3 + n)!
· d1! . . . dn!

(2d1 + 1)! · · · (2dn + 1)!
·
(
1 + ε(d)

)
,

where ε(d) = O
(

1 + (n+log g)2

g

)

uniformly for all n = o(
√
g) and all

partitions d, d1 + · · ·+ dn = 3g − 3 + n, as g → +∞.
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