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Very flat surface of genus two
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Identifying the opposite sides of a regular octagon we get a flat surface of

genus two. All the vertices of the octagon are identified into a single conical

singularity. We always consider such a flat surface endowed with a
distinguished (say, vertical) direction. By construction, the holonomy of the flat

metric is trivial. Thus, the vertical direction at a single point globally defines

vertical and horizontal foliations.
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Vectors defining the sides of the polygonal pattern serve as coordinates in the

space of flat surfaces endowed with the distinguished vertical direction. The

Lebesgue measure in these coordinates is called the Masur–Veech measure.
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Vectors defining the sides of the polygonal pattern serve as coordinates in the

space of flat surfaces endowed with the distinguished vertical direction. The

Lebesgue measure in these coordinates is called the Masur–Veech measure.

Considered as complex numbers, they represent integrals of the holomorphic

form ω = dz along paths joining zeroes of the form ω. (In polygonal

representation the zeroes of ω are represented by vertices of the polygon.)



Period coordinates and Masur–Veech measure
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In other words, the moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is

a complex curve and ω is a holomorphic 1-form on C having zeroes of
prescribed multiplicities m1, . . . ,mn, where

∑

mi = 2g − 2, is modeled on

the vector space H1(S, {P1, . . . , Pn};C). The latter vector space contains a

natural lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of

the volume element dν in these period coordinates.



Flat area of the surface as a positive homogeneous function

6 / 37

We have a natural action of R+ on any moduli space H(m1, . . . ,mn): given a

positive integer r > 0 we can rescale a flat surface by factor r. The flat area of

the surface gets rescaled by the factor r2.
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We have a natural action of R+ on any moduli space H(m1, . . . ,mn): given a

positive integer r > 0 we can rescale a flat surface by factor r. The flat area of

the surface gets rescaled by the factor r2.

Flat surfaces of area 1 form a real hypersurface H1 = H1(m1, . . . ,mn)
defined in period coordinates by equation

1 = area(S) =
i

2

∫

C
ω ∧ ω̄ =

g
∑

i=1

(AiB̄i − ĀiBi) .

Any flat surface S can be uniquely represented as S = (C, r · ω), where

r > 0 and (C, ω) ∈ H1(m1, . . . ,mn). In these “polar coordinates” the

volume element disintegrates as dν = r2d−1dr dν1 where dν1 is the induced

volume element on the hyperboloid H1 and d = dimC H(m1, . . . ,mn).
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector

space H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural

lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of the

volume element dν in these period coordinates.

The area function defined on every stratum H(m1, . . . ,mn)

area(C, ω) =
i

2

∫

C
ω ∧ ω̄ =

i

2

g
∑

i=1

(AiB̄i − ĀiBi) .

allows to define an analog of a “unit ball” H≤1 in any stratum as a subset of

those (C, ω) in H(m1, . . . ,mn), where area(C, ω) ≤ 1. (Note that in period

coordinates the “unit ball” is rather the interior of a “unit hyperboloid”.)

Definition.

VolH(m1, . . . ,mn) := 2d ·

∫

H≤1

dν ,

where d = dimC H(m1, . . . ,mn) is just a conventional factor.



Masur–Veech volume
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Summary. Every stratum of Abelian differentials admits

• A local structure of a vector space H1(S, {P1, . . . , Pn};C);
• An integer lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ) which allows to normalize

the associated Lebesgue measure;

• A positive homogeneous function which allows to define an analog of a unit
sphere (or rather of a unit hyperboloid).

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H1(m1, . . . ,mn) or Q1(m1, . . . ,mn) of Abelian differentials or of

meromorphic quadratic differentials with at most simple poles is finite.
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X≤1

To count volume of the cone X≤1 one can take an ε-grid and count the number
of lattice points inside it.
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X≤1

To count volume of the cone X≤1 one can take an ε-grid and count the number
of lattice points inside it.

Counting points of the ε-grid in the cone X≤1 is the same as counting integer

points in the proportionally rescaled cone X≤1/ε.
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Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

10 / 37

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

10 / 37

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

10 / 37

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

10 / 37

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

10 / 37

Integer points in period coordinates are represented by square-tiled surfaces.



Integer points as square-tiled surfaces

11 / 37

Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point.
Let P1 be a zero of ω and P ∈ C any point of the Riemann surface C . Define

p : P 7→
∫ P
P1

ω (mod Z ⊕ iZ)

p : C → T = C/(Z ⊕ iZ)

The ramification points of the cover p are exactly the zeroes of ω.
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point.
Let P1 be a zero of ω and P ∈ C any point of the Riemann surface C . Define

p : P 7→
∫ P
P1

ω (mod Z ⊕ iZ)

p : C → T = C/(Z ⊕ iZ)

The ramification points of the cover p are exactly the zeroes of ω.

Choosing the standard unit square pattern for T we get induced tiling of (C, ω)
by unit squares which form horizontal and vertical cylinders. The square-tiled

surface of genus two in the picture has 2 maximal horizontal cylinders filled with

periodic geodesics.



Count of square-tiled surfaces
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Picture created by Jian Jiang

We reduced evaluation of the Masur–Veech volumes VolH(m1, . . . ,mn) to a

combination of the following two related problems:

• Describe all combinatorial types of square-tiled surfaces in any given stratum

H(m1, . . . ,mn).
• Count the leading term in the asymptotics of the number of square-tiled

surfaces of any given combinatorial type tiled with at most N squares when

N → +∞.



Count of square-tiled surfaces
through separatrix diagrams
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Multiple zeta-values
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Define

ζ(s1, s2, . . . , sk) =
∑

n1,...,nk≥1

1

ns1
1 (n1 + n2)s2 . . . (n1 + · · ·+ nk)sk

.

Multiple zeta-values (MZV) are values of ζ(s1, s2, . . . , sk) at positive integers

sj ∈ N, where sk ≥ 2. For example

ζ(2) =
π2

6
(Euler); ζ(4) =

π4

90
; . . . ζ(2n) =

p

q
π2n, where p, q ∈ N .

Conjecturally π, ζ(3), ζ(5), . . . are algebraically independent over Q.

Multiple zeta values satisfy numerous relations. For example

ζ(1, 3) =
1

4
ζ(4); ζ(2, 2) =

3

4
ζ(4) (Euler) .



Baby case: decomposition of a square-tiled torus
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Let us count the number of square-tiled tori tiled by at most N ≫ 1 squares.

Cutting our flat torus by a horizontal waist curve we get a cylinder with a waist

curve of length w ∈ N and a height h ∈ N. The number of squares in the tiling

equals w · h.

t

w

h
t



Baby case: counting square-tiled tori
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We can glue a torus from a cylinder with some integer twist t. Making an

appropriate Dehn twist along the waist curve we can reduce the value of the

twist t to one of the values 0, 1, . . . , w − 1. Fixing the integer perimeter w and

height h of a cylinder we get w square-tiled tori.

t

w

h

h

wt

Number of square-tiled tori constructed with at most N squares =

=
∑

w,h∈N
w·h≤N

w =
∑

w,h∈N
w≤N

h

w ≈
∑

h∈N

1

2
·

(

N

h

)2

=
N2

2

∑

h∈N

1

h2
=

N2

2
·ζ(2) =

N2

2
·
π2

6
.



Critical graphs (separatrix diagrams)
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Note that all leaves of the horizontal (vertical) foliation on a square-tiled surface

are closed. The critical graph Γ (separatrix diagram) is the union of all

horizontal critical leaves. Vertices of Γ are represented by the conical points;

the edges of Γ are formed by horizontal saddle connections.
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Note that all leaves of the horizontal (vertical) foliation on a square-tiled surface

are closed. The critical graph Γ (separatrix diagram) is the union of all

horizontal critical leaves. Vertices of Γ are represented by the conical points;

the edges of Γ are formed by horizontal saddle connections.

A critical graph Γ is an oriented ribbon graph endowed with the following structure:
1. The orientation of edges at any vertex is alternated with respect to the cyclic

order of edges at this vertex.

2. The complement S − Γ is a finite disjoint union of flat cylinders foliated by

oriented circles. Thus, the set of boundary components of the ribbon graph is

decomposed into pairs: to each pair of boundary components we glue a
cylinder, and there is one positively oriented and one negatively oriented

boundary component in each pair.



Realizable separatrix diagrams
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Note, however, that not all ribbon graphs as above correspond to actual flat

surfaces. A flat metric endows saddle connections with positive lengths ℓi. The

left graph is realizable for any lengths ℓ1, ℓ2, ℓ3. The middle one — only when

ℓ1 = ℓ3. The rightmost one is never realizable: pairs of boundary components

bounding the same cylinder have to have equal length, and we cannot find a
pair for the component of length ℓ1 + ℓ2 + ℓ3.

ℓ1

ℓ2ℓ3

ℓ1
ℓ2

ℓ3

ℓ1

ℓ2ℓ3

Lemma. The set of all square-tiled surfaces (respectively pillowcase covers)
sharing the same realizable separatrix diagram provides a nontrivial

contribution to the volume of the corresponding stratum.



Volume computation for H(2): the 1-cylinder diagram
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ℓ1

ℓ2ℓ3

Single cylinder

1

3

∑

ℓ1,ℓ2,ℓ3,h∈N
(ℓ1+ℓ2+ℓ3)h≤N

(ℓ1 + ℓ2 + ℓ3) ≈
1

3

∑

w,h∈N
w·h≤N

w ·
w2

2
=

1

6

∑

w,h∈N
w≤N

h

w3

≈
1

6

∑

h∈N

1

4
·

(

N

h

)4

=
N4

24
·
∑

h∈N

1

h4

=
N4

24
· ζ(4) =

N4

24
·
π4

90
.



Volume computation for H(2): the 2-cylinders diagram
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ℓ1
ℓ2

ℓ1

∑

ℓ1,ℓ2,h1,h2∈N
ℓ1h1+(ℓ1+ℓ2)h2≤N

ℓ1(ℓ1 + ℓ2) =
∑

ℓ1,ℓ2,h1,h2∈N
ℓ1(h1+h2)+ℓ2h2≤N

(ℓ21 + ℓ1ℓ2) =

=
∑

h1,h2∈N

∑

ℓ1,ℓ2∈N
ℓ1(h1+h2)

N +
ℓ2h2

N ≤1

(ℓ21 + ℓ1ℓ2) .



Volume computation for H(2): the 2-cylinders diagram
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For any fixed h1, h2 we can replace the sum with respect to ℓ1, ℓ2 by the

integral. Let x1 := ℓ1 ·
h1 + h2

N
and x2 := ℓ2 ·

h2

N
be the new variables,

where h1, h2 are considered as parameters. After this change of variables our
sums with respect to ℓ1, ℓ2 become the integral with respect to x1, x2, where

we integrate over the simplex ∆ = {x1 + x2 ≤ 1 : x1 ≥ 0;x2 ≥ 0}:

∑

ℓ1,ℓ2∈N
ℓ1(h1+h2)

N +
ℓ2h2

N ≤1

(ℓ21 + ℓ1ℓ2) ≈

≈

∫

∆





(

x1N

h1 + h2

)2

+

(

x1N

h1 + h2

)(

x2N

h2

)





(

N

h1 + h2
dx1

)(

N

h2
dx2

)

.
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∑

h1,h2

∫

∆





(

x1N

h1 + h2

)2

+

(

x1N

h1 + h2

)(

x2N

h2

)





(

N

h1 + h2
dx1

)(

N

h2
dx2

)

= N4





∫

∆
x21 dx1dx2 ·

∑

h1,h2∈N

1

h2(h1 + h2)3

+

∫

∆
x1x2 dx1dx2 ·

∑

h1,h2∈N

1

h22(h1 + h2)2





=
N4

24

[

2 · ζ(1, 3) + ζ(2, 2)
]

=
N4

24

[

2 ·
ζ(4)

4
+

3ζ(4)

4

]

=
N4

24
·
5

4
·
π4

90
.

where we used the identities ζ(1, 3) = 1
4 ζ(4), ζ(2, 2) = 3

4 ζ(4) and the

values
∫

∆ x21 dx1dx2 = 2
∫

∆ x1x2 dx1dx2 = 2 · 1
4! .
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1

3

∑

ℓ1,ℓ2,ℓ3,h∈N
(ℓ1+ℓ2+ℓ3)h≤N

(ℓ1 + ℓ2 + ℓ3) ≈
N4

24
· ζ(4)

ℓ1

ℓ2ℓ3

ℓ1
ℓ2

ℓ1

∑

ℓ1,ℓ2,h1,h2

ℓ1h1+(ℓ1+ℓ2)h2≤N

ℓ1(ℓ1 + ℓ2)

=
N4

24

[

2 · ζ(1, 3) + ζ(2, 2)
]

=
N4

24
·
5

4
· ζ(4)

Vol(H1(2)) = lim
N→∞

2 · 4

N4
· (Number of surfaces) =

π4

120



Contributions Volk H(3, 1) of k-cylinder surfaces to VolH(3, 1)
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Vol1H(3, 1) =
ζ(7)

15

Vol2H(3, 1) =
55 ζ(1, 6) + 29 ζ(2, 5) + 15 ζ(3, 4) + 8 ζ(4, 3) + 4 ζ(5, 2)

45

Vol3H(3, 1) =
1

90

(

12 ζ(6)− 12 ζ(7) + 48 ζ(4) ζ(1, 2) + 48 ζ(3) ζ(1, 3)

+ 24 ζ(2) ζ(1, 4) + 6 ζ(1, 5)− 250 ζ(1, 6)− 6 ζ(3) ζ(2, 2)

− 5 ζ(2) ζ(2, 3) + 6 ζ(2, 4)− 52 ζ(2, 5) + 6 ζ(3, 3)− 82 ζ(3, 4)

+ 6 ζ(4, 2)− 54 ζ(4, 3) + 6 ζ(5, 2) + 120 ζ(1, 1, 5)− 30 ζ(1, 2, 4)

− 120 ζ(1, 3, 3)− 120 ζ(1, 4, 2)− 54 ζ(2, 1, 4)− 34 ζ(2, 2, 3)

− 29 ζ(2, 3, 2)− 88 ζ(3, 1, 3)− 34 ζ(3, 2, 2)− 48 ζ(4, 1, 2)

)

Vol4H(3, 1) =
2ζ(2)

45

(

ζ(4)− ζ(5) + ζ(1, 3) + ζ(2, 2)− ζ(2, 3)− ζ(3, 2)

)

.



After simplification
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Multiple zeta values satisfy numerous relations. After simplification (which is

now accessible through a SAGE package) we get

Vol1H(3, 1) = 1/15 · ζ(7)

Vol2H(3, 1) = –7/135 · ζ(1, 6) + 1/135 · ζ(2, 5) + 23/135 · ζ(7)

Vol3H(3, 1) = –2/15 · ζ(1, 6)− 2/45 · ζ(2, 5) + 1/5 · ζ(6)− 4/45 · ζ(7)

Vol4(H(3, 1) = 5/27 · ζ(1, 6) + 1/27 · ζ(2, 5) + 7/45 · ζ(6)− 4/27 · ζ(7)

Conjecturally, multiple zeta values involved in these simplified expressions are

linearly independent over rational numbers. However, the total contribution is a
rational multiple of π2g in accordance with the general result by A. Eskin and

A. Okounkov, 2001:

VolH(3, 1) = Vol1H(3, 1) + · · ·+Vol4 H(3, 1) =
16

42525
π6



Volumes of some low-dimensional strata
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Vol(H1(∅)) = 2 · ζ(2) =
1

3
· π2

Vol(H1(2)) =
2

3!
·
9

4
· ζ(4) =

1

120
· π4

Vol(H1(1, 1)) =
1

4!
· 4 · ζ(4) =

1

135
· π4

Vol(Hhyp
1 (4)) =

2

5!
·
135

16
· ζ(6) =

1

6720
· π6

Vol(Hodd
1 (4)) =

2

5!
·
70

3
· ζ(6) =

1

2430
· π6

Vol(H1(1, 3)) =
2

6!
· 128 · ζ(6) =

16

42525
· π6

Vol(Hhyp
1 (6)) =

2

7!
·
2625

64
· ζ(8) =

1

580608
· π8



Volumes through multiple zeta values
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Conjecture. Prove that for any connected component of any stratum the

contribution to the Masur–Veech volume coming from square-tiled having exatly

k horizontal cylinders is a linear combination with rational coefficients of
multiple zeta values.

Stronger Conjecture. Prove the that contribution to the Masur–Veech volume

coming from square-tiled corresponding to any fixed separatrix diagram is a
linear combination with rational coefficients of multiple zeta values.

The latter statement is elementary for 1-cylinder separatrix diagrams, simple for

2-cylinder diagrams. It is already a nontrivial theorem (proved by B. Allombert

and V. Delecroix) for 3-cylinder diagrams.



Approach of Eskin and Okounkov
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Encoding square-tiled surfaces by pairs of permutations
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1 2

3

Consider a square-tiled surface S ∈ H(d1, . . . , dn). Enumerate the squares in

some way. For the square number j let πh(j) be the number of its neighbor to
the right and let πv(j) be the number of the square atop the square number j.

Example. Our favorite L-shaped surface tiled with 3 squares can be encoded
by the following two permutations decomposed into cycles:

πh = (1, 2)(3) πv = (1, 3)(2)

Note that there is no canonical enumeration of squares, so the permutations

πh, πv are defined up to a simultaneous conjugation.



Almost commuting permutations
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Consider the commutator πhπvπ
−1
h π−1

v The resulting permutation corresponds

to the following path: we start from a square number j, then we move one step

right, one step up, one step left, one step down, and we arrive to π′(j).

When the total number of squares is large, then for majority of the squares such

path brings us back to the initial square; for such squares j we get π′(j) = j.

For squares having a singularity at the top right corner the path

right-up-left-down does not bring us back to the initial square. The commutator
πhπvπ

−1
h π−1

v decomposes into a product of n cycles of lengths

(d1 + 1), . . . , (dn + 1) correspondingly completed with cycles of length 1.

For example, for any square-tiled surface in H(2) the commutator is a single

3-cycle completed with plenty of fixed points.



Encoding square-tiled surfaces by pairs of permutations
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1 2

3 4

5 6 7 8 9

10 11 12 13 14

πh = (1, 2) (3, 4) (5, 6, 7, 8, 9) (10, 11, 12, 13, 14)

πv = (1, 14, 9, 13, 8, 12, 7, 11, 6, 4, 2, 10, 5, 3)

πhπvπ
−1
h π−1

v = (2, 9, 6) (1) (3) (4) (5) (7) (8) (10) (11) (12) (13) (14)

The commutator πhπvπ
−1
h π−1

v decomposes into a single cycle of length 3
completed with cycles of length 1. The cycle of length 3 corresponds to 3
squares, for which the top right corner is located at the conical singularity.

There are 4 times more corners of squares at the same singularity, so the cone

angle is 3 · 2π, where 3 is the length of the cycle. Our surface lives in H(2).
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1 2

3 4

5 6 7 8 9

10 11 12 13 14

πh = (1, 2) (3, 4) (5, 6, 7, 8, 9) (10, 11, 12, 13, 14)

πv = (1, 14, 9, 13, 8, 12, 7, 11, 6, 4, 2, 10, 5, 3)

πhπvπ
−1
h π−1

v = (2, 9, 6) (1) (3) (4) (5) (7) (8) (10) (11) (12) (13) (14)

We conclude that a square-tiled surface S ∈ H(d1, . . . , dn) tiled with N
squares can be encoded by a pair of permutations πh, πr (defined up to a

common conjugation) such that the commutator πhπvπ
−1
h π−1

v decomposes

into given number n of cycles of given lengths (d1 + 1), . . . , (dn + 1) and

πh, πr do not have common nontrivial invariant subsets in 1, 2, . . . , N .



Count by A. Eskin, A. Okounkov, R. Pandharipande
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Using a version of the description of square-tiled surfaces by pairs of almost

commuting permutations and using results of S. Bloch and A. Okounkov,

A. Eskin, A. Okounkov and R. Pandharipande proved the following assertion.

Theorem (A. Eskin, A. Okounkov, R. Pandharipande) For every connected

component of every stratum the generating function

∞
∑

N=1

qN
∑

N-square-tiled
surfaces S

1

|Aut(S)|

is a quasimodular form: it is a polynomial in Eisenstein series G2(q), G4(q),
G6(q) of controllable complexity.

Corollary (A. Eskin, A. Okounkov, R. Pandharipande) The Masur–Veech

volume VolHcomp
1 (d1, . . . , dn) of every connected component of every

stratum is a rational multiple of π2g, where 2g − 2 = d1 + · · ·+ dn.



Masur–Veech volumes of strata of Abeliand differentials:
a historical retrospective
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• Around 1998. Masur–Veech volumes of several low-dimensional strata of

Abelian differentials were evaluated by M. Kontsevich and A. Zorich through

straightforward count of square-tiled surfaces.

• Around 2001. A. Eskin and A. Okounkov found a much more efficient
approach based on quasimodularity of the relevant generating function.

A. Eskin wrote a computer code giving volumes of all strata in genera at most

10 and of some strata in genera up to 200.

• 2020. D. Chen, M. Möller, A. Sauvaget and D. Zagier obtained very important

advances based on recent BCGGM smooth compactification of the moduli

space of Abelian differentials. They developed intersection theory of relevant

moduli spaces and found a recursive formula for volumes.

• 2018–2020. D. Chen–M. Möller–A. Sauvaget–D. Zagier and independently

A. Aggarwal obtained spectacular results on large genus asymptotics of

Masur–Veech volumes uniform for all strata stratum of Abelian differentials

proving a conjecture by A. Eskin and of A. Zorich based on their numerical

experiments from 2003.



Masur–Veech volumes of strata of quadratic differentials:
a brief historical retrospective

34 / 37

The knowledge of Masur–Veech volumes VolQ1(d1, . . . , dk) of strata of

quadratic differentials is still limited.

• Around 1998-2000. Masur–Veech volumes of several low-dimensional strata
of quadratic differentials were evaluated by A. Zorich through straightforward

count of square-tiled surfaces.

• 2001. A. Eskin and A. Okounkov found a much more efficient approach

based on quasimodularity of the generating function counting pillowcase
covers. However, the resulting expressions contain huge tables of characters of

the symmetric group, which makes the computation inefficient. The algorithm is

more involved than for Abelian differentials.

• 2016. The algorithm of A. Eskin and A. Okounkov was implemented by

E. Goujard. She wrote a code and computed volumes of all strata up to

dimension 12.



Masur–Veech volumes of strata of quadratic differentials:
a brief historical retrospective
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• 2016. J. Athreya–A. Eskin–A. Zorich obtained a close expression (conjectured

by M. Kontsevich) for the Masur–Veech volume of any stratum in genus zero

through the formula of A. Eskin–M. Kontsevich–A. Zorich for the sum of

Lyapunov exponents combined with some combinatorial considerations.

• 2019. V. Delecroix–E. Goujard–P. Zograf–A. Zorich computed volumes of the

principal strata (the ones containing only simple zeroes and poles) in terms of

Witten–Kontsevich correlators.

• 2019. D. Chen–M. Möller–A. Sauvaget expressed volumes of the principal

strata in terms of certain Hodge integrals.

• 2019. J. Andersen–G. Borot–S. Charbonnier–V. Delecroix–A. Giacchetto–

D. Lewanski–C. Wheeler used the DGZZ-formula to compute volumes through

topological recursion.

• 2020. M. Kazarian and independently Di Yang–D. Zagier–Y. Zhang developed

efficient recursion for the Hodge integrals involved in the CMS-formula.

• 2021. A. Aggarwal derived the large genus asymptotics for the volumes of
principal strata conjectured by V. Delecroix–E. Goujard–P. Zograf–A. Zorich.



Open problem: volumes of strata of quadratic differentials
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Let d = (d1, . . . , dn) be an unordered partition of a positive integer number

4g − 4 divisible by 4 into a sum |d| = d1 + · · ·+ dn = 4g − 4, where

di ∈ {−1, 0, 1, 2, . . . } for i = 1, . . . , n. Denote by Π̂4g−4 the set of those

partitions as above, which satisfy the additional requirement that the number of

entries di = −1 in d is at most log(g).

Open problem. Find the Masur–Veech volume of strata Q(d1, . . . , dn) of

meromorphic quadratic differentials with at most simple poles when at least

one od di is even. Prove the following conjectural asymptotic formula (currently

proved by A. Aggarwal only for the principal stratum): for any d ∈ Π̂4g−4 one

has

VolQ(d1, . . . , dn) =
4

π
·

n
∏

i=1

2di+2

di + 2
·
(

1 + ε1(d)
)

,

where

lim
g→∞

max
d∈Π̂4g−4

|ε1(d)| = 0 .

For strata of dimension up to 12 the volumes are found by E. Goujard using

Eskin–Okounkov algorithm.
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