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Meanders and arc systems
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A closed meander is a smooth simple closed curve in the plane transversally
intersecting the horizontal line.

According to S. Lando and A. Zvonkin the notion “meander” was suggested by

V. Arnold though meanders were studied already by H. Poincaré.

Meanders appear in various contexts, in particular in mathematics, physics and
biology.
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3 / 38

Conjecture (S. Lando and A. Zvonkin, 1993). The number of meanders with
2N crossings is asymptotic to

const ·R2N ·Nα for N → ∞ ,

where R2 ≈ 12.26 (value is due to I. Jensen) and α = −29+
√
145

12
(conjectural value due to P. Di Francesco, O. Golinelli, E. Guitter, 1997).
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A closed meander on the left. The associated pair of arc systems in the middle.

The same arc systems on the discs and the associated dual graphs on the

right. We usually erase vertices of valence 2 from dual trees.
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A closed meander on the left. The associated pair of arc systems in the middle.

The same arc systems on the discs and the associated dual graphs on the

right. We usually erase vertices of valence 2 from dual trees.

Compactifying the plane (left picture) with one point at infinity, or gluing

together arc systems on the two discs (right picture) we get an ordered pair of

smooth simple transversally intersecting closed curves on the sphere.

Combinatorial passport



Meanders versus multicurves
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It is much easier to count arc systems (for example, arc systems sharing the

same reduced dual tree). However, this does not simplify counting meanders

since identifying a pair of arc systems with the same number of arcs by the

common equator, we sometimes get a meander and sometimes — a

multicurve, i.e. a curve with several connected components.

Attaching arc systems on a pair of hemispheres along the common equator we

might get a single simple closed curve (as on the left picture) or a multicurve
with several connected components (as on the right picture).
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Fix any connected planar tree TNorth on the northern hemisphere and any

connected planar tree TSouth on the southern hemisphere, each tree having no

vertices of valence 2. Consider all possible pairs of arc systems with the same

number n ≤ N of arcs having TNorth and TSouth as reduced dual trees. There

are 2n ways to identify isometrically the two hemispheres into the sphere in
such way that the endpoints of the arcs match. Consider all possible triples

(n-arc system of type TNorth ; n-arc system of type TSouth ; identification)

as described above for all n ≤ N . Define

Pconnected(TNorth , TSouth ;N) :=
number of triples giving rise to meanders

total number of different triples
.
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Question. What is the asymptotic probability

Pconnected(TNorth , TSouth ;N) ∼ ? as N → +∞

to get a meander (i.e. a connected curve) by a random gluing of a random pair

of arc systems as above with n ≤ N arcs?
Does it behave like N−a? Like exp(−bN)? If so, describe how a

(respectively b) depend on TNorth , TSouth .
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Question. What is the asymptotic probability

Pconnected(TNorth , TSouth ;N) ∼ ? as N → +∞

to get a meander (i.e. a connected curve) by a random gluing of a random pair

of arc systems as above with n ≤ N arcs?
Does it behave like N−a? Like exp(−bN)? If so, describe how a

(respectively b) depend on TNorth , TSouth .

Theorem. For any pair of trees TNorth , TSouth the quantity

Pconnected(TNorth , TSouth ;N) admits a strictly positive limit as N → +∞.

We have an explicit formula for this limit in terms of the total number of vertices

of valence 1, 3, 4, . . . of the two trees.

I have to confess that the fact that this asymptotic frequency is nonzero was

unexpected to me.



Asymptotic frequency of meanders
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Theorem. Let pNorth , pSouth ≥ 2. Let p = pNorth + pSouth . The frequency

Pconnected(pNorth , pSouth ;N) of meanders obtained by all possible

identifications of all arc systems with at most N arcs represented by all

possible pairs of plane trees having pNorth , pSouth of leaves (vertices of
valence one) has the following limit:

lim
N→+∞

Pconnected(pNorth , pSouth ;N) =
1

2

(

2

π2

)p−3

·
(

2p− 4

p− 2

)

.

Example. lim
N→+∞

Pconnected( , , N) =

= lim
N→+∞

Pconnected( , , N) = 280
π6 ≈ 0.291245 .



Elementary estimates on the asymptotic number of meanders
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The number of the arc diagrams of order N is the N -th Catalan number

CN =
1

N + 1

(

2N

N

)

∼ 1√
π
· 4N ·N−3/2 .

Any upper arc diagram may be completed to a meander by an appropriate

lower arc diagram (up to the best o f my knowledge, this observation is due to

S. Lando and A. Zvonkin). Thus, we obtain trivial upper and lower bounds:

CN ≤ MN ≤ C2
N .

The conjectural asymptotics is in between:

Conjecture (S. Lando and A. Zvonkin, 1993). The number MN of meanders

with 2N crossings is asymptotic to

MN ∼ const ·R2N ·Nα for N → ∞ ,

where R2 ≈ 12.26 (value is due to I. Jensen) and α = −29+
√
145

12
(conjectural value due to P. Di Francesco, O. Golinelli, E. Guitter, 1997).
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The conjecture claims that MN grows much slower than C2
N . This indicates

that for a random pair of arc systems, twisting cyclically one of them we never

get a meander, whatever twist we chose.
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The conjecture claims that MN grows much slower than C2
N . This indicates

that for a random pair of arc systems, twisting cyclically one of them we never

get a meander, whatever twist we chose.

Here is a concrete example:
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The conjecture claims that MN grows much slower than C2
N . This indicates

that for a random pair of arc systems, twisting cyclically one of them we never

get a meander, whatever twist we chose.

However, if we change the setting and choose a random pair of arc systems

having a fixed total number p of minimal arcs and identify them by a random

twist, then by our result with V. Delecroix, E. Goujard and P. Zograf we get a

meander with probability

1

2

(

2

π2

)p−3

·
(

2p− 4

p− 2

)

∼ 2√
πp

·
(

8

π2

)p−3

for p ≫ 1

even without further twisting.

There is no contradiction. General pairs of random arc systems with N arcs on

each side have about N minimal arcs in total, while in our conditional setting
we have only a fixed number p of minimal arcs, while N → +∞.



Meanders in higher genera
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A pair of smooth simple closed transverse oriented multicurves is called

positively intersecting if each connected component of each multicurve is

oriented in such way that all intersections match the orientation of the surface.

A pair of transverse multicurves is called orientable if it admits an orientation

with positive intersection and non-orientable otherwise.

Exercise. Verify that the pair of transverse multicurves on the right is positively

intersecting and that the pair of multicurves on the left is non-orientable.

Definition. A meander on a surface of genus g is an ordered pair of smooth

transverse simple closed curves considered up to a diffeomorphism of the

surface. Similarly we define positive meanders.



Results: general (non-orientable) case

11 / 38

Fix the genus g of the surface. Fix a nonnegative integer p denoting the

number of bigons produced by intersections of pairs of multicurves.

Observation. The following quantities have polynomial asymptotics:

• Number of pairs of transverse multicurves with at most N intersections and

with exactly p bigons = c(g, p) ·N6g−6+2p + o(N6g−6+2p).
• Number of pairs (simple closed curve, transverse multicurve) with at most

N intersections and p bigons = c1(g, p) ·N6g−6+2p + o(N6g−6+2p).
• Number of meanders with at most N intersections and with exactly p

bigons = c1,1(g, p) ·N6g−6+2p + o(N6g−6+2p).

Theorem. The coefficients c(g, p), c1(g, p), c1,1(g, p) satisfy the following

relation:
c1(g, p)

c(g, p)
=

c1,1(g, p)

c1(g, p)
.



Asymptotic frequency of meanders
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As in genus 0, we can construct multicurves from systems of arcs on a surface

of genus g − 1 with two boundary components or on a pair of surfaces of

genera g1 and g2, where g1 + g2 = g, each with a single boundary

component. As before we fix the total number p of bigons. We assume that
there are exactly n arcs landing to each of the two boundary components, and

that n ≤ N .

Theorem. The asymptotic probability to get a meander after a random gluing
of a random system of arcs as above is c1(g,p)

c(g,p) .
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The case of positively intersecting pairs of multicurves is analogous. However,

the power of N and all the coefficients in the polynomial asymptotics do

change. Fix the genus g of the surface.

Observation. The following quantities have polynomial asymptotics:

• Number of pairs of transverse positively intersecting multicurves with at

most N intersections = c+(g) ·N4g−3 + o(N4g−3).
• Number of positively intersecting pairs (simple closed curve, transverse

multicurve) with at most N intersections = c+1 (g) ·N4g−3 + o(N4g−3).
• Number of positive meanders with at most N intersections

= c+1,1(g) ·N4g−3 + o(N4g−3).

Theorem. The coefficients c+(g), c+1 (g), c
+
1,1(g) satisfy the relation:

c+1 (g)

c+(g)
=

c+1,1(g)

c+1 (g)
.



Asymptotic frequency of positive meanders
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As before we can glue systems of arcs on a surface of genus g − 1 with two

boundary components. This time we assume that each of n arc goes from one

boundary component to the other, and that n ≤ N .

Theorem. The asymptotic probability to get a positive meander after a random

gluing of a system of arcs as above is
c+
1
(g)

c+g
. We have

c+1 (g)

c+g
=

1

4g
+ o

(

1

g

)

as g → +∞ .
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An example of a square-tiled surface
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Pairs of transverse multicurves as square-tiled surfaces
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There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.

Consider a square-tiled sphere.



Pairs of transverse multicurves as square-tiled surfaces

17 / 38

There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.
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horizontal multicurve.



Pairs of transverse multicurves as square-tiled surfaces

17 / 38

There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.
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vertical multicurve.
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There is a natural one-to-one correspondence between transverse connected

pairs of multicurves on an oriented sphere and square-tiled spheres.

Consider a square-tiled sphere. Consider the maximal collection of horizontal
lines passing through the centers of the squares. Color them in red. This is the

horizontal multicurve. Consider the maximal collection of vertical lines

passing through the centers of the squares. Color them in blue. This is the

vertical multicurve. Reciprocally, any transverse connected pair of multicurves

on a sphere defines a square-tiling given by the graph dual to the graph formed

by the pair of multicurves.
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Period coordinates, volume element, and unit hyperboloid
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The moduli space H(m1, . . . ,mn) of pairs (C, ω), where C is a complex
curve and ω is a holomorphic 1-form on C having zeroes of prescribed

multiplicities m1, . . . ,mn, where
∑

mi = 2g − 2, is modelled on the vector

space H1(S, {P1, . . . , Pn};C). The latter vector space contains a natural

lattice H1(S, {P1, . . . , Pn};Z ⊕ iZ), providing a canonical choice of the

volume element dν in these period coordinates.

Flat surfaces of area 1 form a real hypersurface H1 = H1(m1, . . . ,mn)
defined in period coordinates by equation

1 = area(S) =
i

2

∫

C
ω ∧ ω̄ =

g
∑

i=1

(AiB̄i − ĀiBi) .

Any flat surface S can be uniquely represented as S = (C, r · ω), where

r > 0 and (C, ω) ∈ H1(m1, . . . ,mn). In these “polar coordinates” the
volume element disintegrates as dν = r2d−1dr dν1 where dν1 is the induced

volume element on the hyperboloid H1 and d = dimC H(m1, . . . ,mn).

Theorem (H. Masur; W. Veech, 1982). The total volume of any stratum

H1(m1, . . . ,mn) or Q1(m1, . . . ,mn) of Abelian or quadratic differentials is finite.
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Integer points as square-tiled surfaces
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Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point:

S ∋ P 7→
(
∫ P

P1

ω mod Z ⊕ iZ

)

∈ C/(Z ⊕ iZ) = T ,

where P1 is a zero of ω. The ramification points of the cover are exactly the

zeroes of ω.



Integer points as square-tiled surfaces

20 / 38

Integer points in period coordinates are represented by square-tiled surfaces.

Indeed, if a flat surface S is defined by a holomorphic 1-form ω such that

[ω] ∈ H1(S, {P1, . . . , Pn};Z ⊕ iZ), it has a canonical structure of a ramified

cover p over the standard torus T = C/(Z ⊕ iZ) ramified over a single point:

S ∋ P 7→
(
∫ P

P1

ω mod Z ⊕ iZ

)

∈ C/(Z ⊕ iZ) = T ,

where P1 is a zero of ω. The ramification points of the cover are exactly the

zeroes of ω.

Integer points in the strata Q(d1, . . . , dn) of quadratic differentials are

represented by analogous “pillowcase covers” over CP1 branched at four
points. Thus, counting Masur–Veech volumes of strata VolH or VolQ is

equivalent to counting the coefficient c in the polynomial asymptotics c ·Nd for

the number of square-tiled surfaces in the stratum H or Q respectively, where

d is the complex dimension of the stratum.
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Density and uniform density
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Given a subset D
Z
⊂ H

Z
in the set H

Z
of all square-tiled surfaces in some

stratum H in the moduli space of Abelian (or quadratic) differentials and a

subset V ⊂ H in the stratum define the following counting function:

ND
Z
(V,N) := Card{V ∩DZ : Area(S) ≤ N} .

The Masur–Veech volume Vol(H) is defined as the leading term of the

asymptotic of NH
Z
(H, N) normalized by d = dimC(H):

NH
Z
(H, N) =

1

2d
·Vol(H) ·Nd + o(Nd) as N → +∞ .

We say that D
Z
⊂ H

Z
has a density δ(D

Z
), if the following limit exists:

δ(DZ) := lim
N→+∞

ND
Z
(H, N)

NH
Z
(H, N)

.

We say that a subset D
Z
⊂ H

Z
has a uniform density if for any open cone C

lim
N→+∞

ND
Z
(C,N)

NH
Z
(C,N)

= δ(DZ) .

Analogy. The subset N⊕ N ⊂ Z ⊕ Z has density 1/4 in Z ⊕ Z but not

uniform density. The sublattice 2Z ⊕ 2Z ⊂ Z ⊕ Z has uniform density 1/4.



Moore’s Ergodicity Theorem
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Consider the following horocyclic subgroups of the group SL(2,Z):

Uh(Z) =

{(

1 n
0 1

)

: n ∈ Z

}

and Uv(Z) =

{(

1 0
n 1

)

: n ∈ Z

}

.

By definition, the SL(2,Z) action preserves the set of square-tiled surfaces.

Let us prove that for Uh(Z) or Uv(Z)-invariant sets, a density is always

uniform.

Theorem. Any finite SL(2,R)-invariant ergodic measure ν1 on any unit

hyperboloid of a stratum of Abelian differentials is ergodic with respect to the

actions of the discrete parabolic subgroups Uh(Z) and Uv(Z).

Proof. Let G be a simple Lie group, H be a closed non-compact subgroup of G
and let G-action be ergodic with respect to a finite invariant measure. By a

particular case of Moore’s Ergodicity Theorem the H-action is also ergodic. In

our case the simple Lie group is SL(2,R) and the closed non-compact

subgroup H is Uh(Z). �



Cylinder decomposition of a square-tiled surface
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Equidistribution Theorem

25 / 38

Corollary. Let D
Z

be a density subset of square-tiled surfaces in H. If D
Z

is

invariant under at least one of Uh(Z) or Uv(Z), then D
Z

has uniform density.

Proof Use the same argument as Mirzakhani. Putting Dirac masses at all

square-tiled surfaces, and normalizing, we get the Masur–Veech measure.
Putting Dirac masses only at square-tiled surfaces from D

Z
and normalizing

we get a measure dominated by the Masur–Veech measure. This measure is

Uh(Z)-invariant and by Moore’s Ergodicity Theorem the Masur–Veech

measure is Uh(Z)-ergodic. Hence, the two measure are proportional. The

coefficient of proportionality coincides with the value of the density δ(D
Z
). �

We have proved the following equidistribution Theorem. Let ck(H) be a

contribution of k-cylinder square-tiled surfaces to the Masur–Veech volume

VolH of some stratum H of Abelian or quadratic differentials.

Theorem. The asymptotic proportion pk(H) = ck(H)
VolH of square-tiled surfaces

tiled with tiny ε× ε-squares and having exactly k maximal horizontal cylinders

among all such square-tiled surfaces living inside an open set B ⊂ H in a

stratum H of Abelian or quadratic differentials does not depend on B.



Non-correlation Theorem
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Let ck(H) be the contribution of horizontally k-cylinder square-tiled surfaces to

the Masur–Veech volume of the stratum H, so that

c1(H) + c2(H) + · · · = VolH, and pk(H) = ck(H)/Vol(H). Let ck,j(H)
be the contribution of horizontally k-cylinder and vertically j-cylinder ones.

Theorem. There is no correlation between statistics of the number of

horizontal and vertical maximal cylinders:

ck(L)
Vol(L) =

ckj(L)
cj(L)

.
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A stratum of Abelian differentials of complex dimension d is endowed with a

pair of transverse foliations of real dimension d induced from the canonical

direct sum decomposition in period coordinates

H1(S,Σ;C) = H1(S,Σ;R)⊕H1(S,Σ; iR) .

The subsets D
Z

of square-tiled surfaces having exactly k horizontal

(respectively j vertical cylinders) are Re-invariant (respectively Im-invariant):

for any point S in D
Z

all square-tiled surfaces located in the leaf of the

Re-foliation (respectively Im-foliation) in H passing through S also belong to

D
Z

. This remark combined with uniform density of both subsets immediately
implies that the intersection of the two subsets also has uniform density which

is the product of densities pk · pj . This completes the proof of the

Non-Correlation Theorem.
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Translation to the language of square-tiled surfaces
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Every square-tiled surface defines a pair of transverse simple closed multicurves.

The number of squares is the number of intersections of the two multicurves.

Reciprocal is not always true since in genera higher than 0 a pair of transverse

multicurves might chop the surface into components more complicated than

topological discs. However, it happens rarely in terms of the asymptotic count,

so for the purposes of the count we can pretend that we have a bijection.

Bigons arising from intersection of transverse multicurves correspond to simple

poles of the associated quadratic differentials. Thus, the count of pairs of
transverse multicurves on a surface of genus g with at most N intersections

and with p bigons corresponds to the count of square-tiled surfaces of genus g
with p poles tiled by at most N squares, i.e. to evaluation of the Masur–Veech

volume of the moduli space Qg,p. In this way we get the asymptotics

c(g, p) ·N6g−6+2p for the number of multicurves and the constant c(g, p).



How to count meanders
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Step 1. There is a natural one-to-one correspondence between transverse

connected pairs of multicurves on an oriented sphere and pillowcase covers,

where the square tiling is given by the graph dual to the graph formed by the

pair of multicurves.

Step 2. Pairs of arc systems glued along common equator correspond to

square-tiled surfaces having single horizontal cylinder of height 1. Meanders

correspond to square-tiled surfaces having single horizontal cylinder and single

vertical one; both of height one. So we can apply the formula c1,1(Q) =
c2
1
(Q)

Vol(Q) ,

where c1(Q) is easy to compute and Vol(Q) in genus zero is given by an

explicit formula (obtained after 15 years of work of Athreya–Eskin–Zorich).

Step 3. Fixing the number of minimal arcs (“pimples”) we fix the number of
simple poles p of the quadratic differential. All but negligible part of the

corresponding square-tiled surfaces live in the only stratum Q(1p−4,−1p) of

the maximal dimension.
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• Pairs of transverse multicurves correspond to square-tiled surfaces. Thus,

count of all pairs of transverse multicurves is equivalent to count of

Masur–Veech volumes.

• Count of arc systems, braids, ribbon graphs, pairs: simple closed curve plus

transverse multicurve, one-cylinder square-tiled surfaces is another group of

(somehow equivalent) problems, which usually admits a more efficient solution.

• Consider the following three counting problems:

1. count of all square-tiled surfaces (i.e. Masur–Veech volume Vol);
2. count of horizontally one-cylinder square-tiled surfaces (i.e. c1);

3. count of horizontally and vertically square-tiled surfaces (i.e. c1,1).

By non-correlation, c1,1 =
c21
Vol

. Count of c1 usually admits a relatively efficient

solution. Hence, as soon as we know the appropriate Masur–Veech volume,

we know c1,1, and hence we can count meanders, pairs of transverse simple
closed curves etc.



How we count meanders
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A pair of transverse multicurves associated to a square-tiled surface is

orientable if and only if the square-tiled surface is Abelian. Thus, the count of

positively intersecting pairs of transverse multicurves in genus g corresponds to

the count of Abelian square-tiled surfaces in genus g, i.e. to the evaluation of

the Masur–Veech volumes of the corresponding moduli space of Abelian
differentials. In this way we get the asymptotics c+(g) ·N4g−3 and the

constant c+1 (g) for the count of positively intersecting multicurves.

Pairs (simple closed curve, transverse multicurve) correspond to square-tiled

surfaces having single horizontal band of squares. We found a way to count
such square-tiled surfaces both in the Abelian and in the quadratic case and to

evaluate the constants c1(g, p) and c+1 (g) in the corresponding asymptotics

c1(g, p) ·N6g−6+2p and c+1 (g) ·N4g−3 respectively.

Meanders correspond to square-tiled surfaces having single horizontal and

single vertical band of squares. We apply our non-correlation theorem to get

c1,1(g, p) =
c21(g, p)

c(g, p)
and c+1,1(g) =

(

c+1 (g)
)2

c+(g)
.



Masur–Veech volume in genus zero
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics. An

idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes in genus 0.

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics. An

idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes in genus 0.

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem (J. Athreya, A. Eskin, A. Z., 2014 ; conjectured by M. Kontsevich
about 2003) The volume of any stratum Q(d1, . . . , dk) of meromorphic

quadratic differentials with at most simple poles on CP1 (i.e. when

di ∈ {−1 ; 0} ∪ N for i = 1, . . . , k, and
∑k

i=1 di = −4) is equal to

VolQ(d1, . . . , dk) = 2π ·
k
∏

i=1

v(di) .
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In genus zero Masur–Veech volumes of the strata of meromorphic quadratic

differentials admit alternative quite implicit computation through dynamics. An

idea (which initially seemed somewhat crazy) of such computation belongs to

M. Kontsevich, who stated about 2003 the conjecture on volumes in genus 0.

Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem (J. Athreya, A. Eskin, A. Z., 2014 ; conjectured by M. Kontsevich
about 2003)

VolQ0,n = 2π ·
(

π2

2

)n−4

.

Applying formula based on Kontsevich polynomials one gets ENORMOUS sum

over labeled trees, so this approach does not work. But this formula was

reproved by Chen–Möller–Sauvaget through intersection theory.
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ℓ1
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ℓ3
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ℓ5
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ℓ7

ℓ8
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ℓ0 ℓ0
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ℓ8 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7

ℓ4 ℓ3 ℓ2 ℓ5 ℓ8 ℓ7 ℓ6 ℓ1

ℓ9 ℓ91 2 3 4 5 6 7 8

πh = (1, 2, 3, 4, 5, 6, 7, 8)

πv = (1, 5) (2, 8, 6, 4) (3) (7)

πhπvπ
−1
h π−1

v = (1, 7) (2, 4) (3, 5) (6, 8)

We see 4 cycles of length 2 which corresponds to H(1, 1, 1, 1).

Note that by construction, the permutation πh of a square-tiled surface
composed from a single band of squares is a long cycle πh = (1, . . . , N).
Thus, for any πv, the permutation σ = πvπ

−1
h π−1

v is also a long cycle. For any

pair of long cycles σ, πh there are exactly N solutions πv of the equation

σ = πvπ
−1
h π−1

v (if πv is a solution, πv(πh)
k, where k = 0, 1, . . . , N − 1, is

also a solution).
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The count of 1-cylinder N -square-tiled surfaces in the stratum H(m1, . . . ,mn)
is reduced to the count of solutions of the following equation for permutations:

(N−cycle) · (N−cycle) = product of cycles of lengths m1+1, . . . ,mn+1,

completed with product of cycles of lengths 1.

Frobenius formula expresses this number in terms of characters of the exterior

powers of the standard representation Stn of the symmetric group Sn:

χj(g) := tr(g, πj) πj := ∧j(Stn) (0 ≤ j ≤ n− 1) .

Theorem. The absolute contribution c1(H(m1, . . . ,mn)) of 1-cylinder

square-tiled surfaces to the Masur–Veech volume VolH(m1, . . . ,mn) equals

c1 =
2

(d− 1)!
·
∏

k

1

(k + 1)µk
·
d−2
∑

j=0

j! (n− 1− j)!χj(ν) .

Here d = dimH(m1, . . . ,mn); ν ∈ Sn is any permutation with decomposition

into cycles of lengths (m1 + 1), . . . , (mn + 1); µi is the number of zeroes of

order i, i.e. the multiplicity of the entry i in the multiset {m1, . . . ,mn}.
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completed with product of cycles of lengths 1.

Frobenius formula expresses this number in terms of characters of the exterior

powers of the standard representation Stn of the symmetric group Sn:

χj(g) := tr(g, πj) πj := ∧j(Stn) (0 ≤ j ≤ n− 1) .

For permutations ν representing the principal and the minimal strata the

characters χj(ν) admit easier computation which leads to the following

formulae:

c1(H(12g−2)) =
1

4g − 2
· 4

22g−2
, c1(H(2g − 2)) =

1

2g
· 4

2g − 1
.
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Theorem. The contribution c1 of 1-cylinder square-tiled surfcaes to the volume

VolH1(m1, . . . ,mn) of any nohyperelliptic stratum of Abelian differentials satisfies

ζ(d)

d+ 1
· 4

(m1 + 1) . . . (mn + 1)
≤ c1 ≤

ζ(d)

d− 10
29

· 4

(m1 + 1) . . . (mn + 1)
,

where d = dimC H(m1, . . . ,mn).
(Here we used a result of Zagier.)

Theorem (analog of the Prime Number Theorem). The relative contribution

of 1-cylinder square-tiled surfaces to the volume of the stratum is of the order

1/(dimension of the stratum) when g ≫ 1:

d · c1(H(m1, . . . ,mn))

Vol(H1(m1, . . . ,mn))
→ 1 as g → +∞ ,

where convergence is uniform for all strata in genus g.

The result uses the large genus volume asymptotics (conjectured by Eskin–Zorich;

proved independently by Chen–Möller–Sauvaget–Zagier and Aggarwal).
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