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Volume element

Note that the vector space H'(S,{Py, ..., P,}; C) contains a natural
integer lattice H'(S,{P1,...,P,}; Z ®+\/—17Z). Consider a linear volume
element dv normalized in such a way that the volume of the fundamental
domain in this lattice equals one. Consider now the real hypersurface
Hi(dy,...,dy) C H(dy,...,d,) defined by the equation area(S) = 1. The
volume element dv can be naturally restricted to the hypersurface defining the
volume element dvy on Hi(dy, ..., d,).

Theorem (H. Masur; W. A. Veech) The total volume Vol(H(d1,...,d,)) of
every stratum is finite.

The Masur—Veech volumes of the first several low-dimensional strata were
computed by M. Kontsevich and A. Zorich about 2000. The first efficient
algorithm for evaluation of the Masur—Veech volume was found by A. Eskin and
A. Okounkov. In particular, they proved that the Masur—Veech volume of any
stratum always has the form (p/q)m29 where p/q is a rational number. By
2003 A. Eskin computed these rational numbers up for all strata to genus 10.
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Volume element

Note that the vector space H'(S,{Py, ..., P,}; C) contains a natural
integer lattice H'(S,{P1,...,P,}; Z ®+\/—17Z). Consider a linear volume
element dv normalized in such a way that the volume of the fundamental
domain in this lattice equals one. Consider now the real hypersurface
Hi(dy,...,dy) C H(dy,...,d,) defined by the equation area(S) = 1. The
volume element dv can be naturally restricted to the hypersurface defining the
volume element dvy on Hi(dy, ..., d,).

Theorem (H. Masur; W. A. Veech) The total volume Vol(H(d1,...,d,)) of
every stratum is finite.

By now there are further more efficient algorithms and high genus asymptotic
results due to A. Eskin—A. Okounkov—R. Pandharipande (through
guasimodularity and representation thery), J. Athreya—A. Eskin—A. Zorich
(through dynamics), E. Goujard, D. Chen—M. Moller—A. Sauvaget-D. Zagier
(mostly — algebraic geometry), A. Aggarwal (combinatorics),

V. Delecroix—E. Goujard—P. Zograf-A. Zorich (combinatorics and
Witten—Kontsevich correlators).
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Ergodic transformations

Let 14 be a finite measure on a topological space M (for example, a volume
element on a manifold M, with a finite total volume). Amap 1" : M — M

preserves measure [ (corresp. is volume preserving) if for any measurable
subset A C M one has (T H(A)) = u(A).

A subset A C M is called T-invariant if T~ (A) = A.

The map 1 is called ergodic with respect to the measure s if any invariant set
has measure 0, or the full measure (M ).

Examples.
e Rotations of a circle are measure preserving. lrrational rotations are ergodic;
rational ones are not.

e The map z — 2% where z € C, |z| = 1 is not invertible but it preserves the
measure and is ergodic.

e A (pseudo)Anosov diffeomorphism preserves the area form and and is
ergodic.
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Ergodic Theorem

Consider the orbit z, T(x), T(T(z)), . .., T 1 (z) of a point z € M. By
time average of a y-measurable function f on M we call the average

1 n—1

1=0

i.e. the mean value of f along first n points of the orbit of . By space average

we call
1
) Jy 7O

Ergodic Theorem. Let I’ be an ergodic map preserving finite measure (. For
p-almost any point x of M the time averages converge to space averages:

o LS5 50— L [ e
nL—FOO’n,;f(T (2)) (M) /Mf< ) dp .
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Group action /
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The subgroup SL(2,R) of area preserving linear transformations acts on the
“unit hyperboloid” H1(d1, . .., d,). The diagonal subgroup

Eo
(eo e_t> C SL(2,R) induces a natural flow on the stratum, which is called

the Teichmdller geodesic flow.

Key Theorem (H. Masur; W. A. Veech) The action of the groups SL(2,R)

t
e 0 . o
and (O e_t> preserves the measure dv;. Both actions are ergodic with
respect to this measure on each connected component of every stratum

Hi(dy,. .., dy).
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Masur—Veech Theorem

Theorem of Masur and Veech claims that taking almost any octagon as below
we can contract it horizontally and expand vertically by the same factor el to get
arbitrary close to, say, regular octagon. Moreover, the corresponding trajectory
would spend the time in a neighborhood {/ of the regular octagon proportional
to the measure of I/ (on a long scale of time).
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Masur—Veech Theorem

Theorem of Masur and Veech claims that taking almost any octagon as below
we can contract it horizontally and expand vertically by the same factor e’ to get
arbitrary close to, say, regular octagon. Moreover, the corresponding trajectory
would spend the time in a neighborhood {/ of the regular octagon proportional
to the measure of I/ (on a long scale of time).

There is no paradox since we are allowed to cut-and-paste!
T
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Masur—Veech Theorem

Theorem of Masur and Veech claims that taking almost any octagon as below
we can contract it horizontally and expand vertically by the same factor e’ to get
arbitrary close to, say, regular octagon. Moreover, the corresponding trajectory
would spend the time in a neighborhood {/ of the regular octagon proportional
to the measure of I/ (on a long scale of time).

T

\- Qi

The first modification of the polygon changes the flat structure while the second
one just changes the way in which we unwrap the flat surface
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Moduli spaces of Abelian differentials

We have seen that any stratum H(myq, ..., m,,) of all pairs

(Riemann surface S, holomorphic 1-form with n zeroes of degrees m1, ..., my)
is locally modeled on H! (.S, {n points}; C). The action of the group GL(2, R)
can be seen as the action on the second term in the product

H' (S, {n points}; R @ iR) ~ H'(S, {n points}; R) @ R*.
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(Riemann surface S, holomorphic 1-form with n zeroes of degrees m1, ..., my)
is locally modeled on H! (.S, {n points}; C). The action of the group GL(2, R)
can be seen as the action on the second term in the product

H' (S, {n points}; R @ iR) ~ H'(S, {n points}; R) @ R*.

A projectivized stratum

PH(my,...,my) =~ Hi(my,...,my)/SO(2,R) =~ H(mq,...,my)/C*
is foliated by hyperbolic planes H? = SL(2,R)/SO(2, R) called Teichmiiller
discs. A natural projection of such a disc to M, is an isometric immersion with
respect to Teichuller metric on M, so Teichmdller discs can be seen as
complex geodesics in the Teichmiller metric on M.
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can be seen as the action on the second term in the product

H' (S, {n points}; R @ iR) ~ H'(S, {n points}; R) @ R*.

A projectivized stratum

PH(my,...,my) =~ Hi(my,...,my)/SO(2,R) =~ H(mq,...,my)/C*
is foliated by hyperbolic planes H? = SL(2,R)/SO(2, R) called Teichmiiller
discs. A natural projection of such a disc to M, is an isometric immersion with
respect to Teichuller metric on M, so Teichmdller discs can be seen as
complex geodesics in the Teichmiller metric on M.

Similarly, any stratum of meromorphic quadratic differentials with at most
simple poles is locally modeled on the anti-invariant subspace of

H'(S, {n points}; C), where p : S — S is the canonical double cover such
that p*q = w? becomes a global square of a holomorhic form w.
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Moduli spaces of Abelian differentials

We have seen that any stratum H(myq, ..., m,,) of all pairs

(Riemann surface S, holomorphic 1-form with n zeroes of degrees m1, ..., my)
is locally modeled on H! (.S, {n points}; C). The action of the group GL(2, R)
can be seen as the action on the second term in the product

H' (S, {n points}; R @ iR) ~ H'(S, {n points}; R) @ R*.

A projectivized stratum

PH(my,...,my) =~ Hi(my,...,my)/SO(2,R) =~ H(mq,...,my)/C*
is foliated by hyperbolic planes H? = SL(2,R)/SO(2, R) called Teichmiiller
discs. A natural projection of such a disc to M, is an isometric immersion with
respect to Teichuller metric on M, so Teichmdller discs can be seen as
complex geodesics in the Teichmiller metric on M.

Excercise *. Verify by an explicit computation in coordiantes that disintegrating

the Masur—Veech volume element on 7 (0) one gets the standard hyperbolic
volume element on P (0) = H?2.
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Invariant measures and orbit closures

Magic Wand Theorem (A. Eskin—M. Mirzakhani—A. Mohammadi, 2 014).
The closure of any SL.(2, R)-orbit is a suborbifold. In period coordinates any
GL(2, R)-orbit closure is represented by a complexification of an R-linear
subspace.

Any ergodic SL(2, R)-invariant measure is supported on a suborbifold. In
period coordinates this suborbifold is represented by an affine subspace, and
the invariant measure is just a usual affine measure on this affine subspace.

Theorem (S. Filip, 2014)  Any GL(2, R)-invariant orbifold is, actually, an
algebraic variety characterized by special arithmetic conditions.

Theorem (A. Avila, A. Eskin. M. M ¢ller, 2017) Let L be a linear subspace
representing a GL(2, R)-orbit closure in period coordinates. The restriction of
the natural symplectic form in H!(C, C) to the image of L under the projection

HY(C, {zeroes}; C) — H!'(C, C) is non-degenerate.
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“But still, my homeward way has proved too long.
While we were wasting time there, old Poseidon,
it almost seems, stretched and extended space.”

J. Brodsky
U sce-maxu sedyuias domoti

dopoza 0KaA3aAACH CAUUKOM OAUHHOU,
xax 6yomo Ilocetidon, noka mwv. mam
MEPANU BPEMSA, PACTAHYNA NPOCMPAHCNEO.

l[dea of Renormalization

. Bpodcxruii
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Asymptotic cycle for a torus

Consider a leaf of a measured foliation on a surface. Choose a short
transversal segment X . Each time when the leaf crosses X we join the
crossing point with the point g along X obtaining a closed loop. Consecutive
return points x1, xo, ... define a sequence of cycles ¢, co, . . ..

c
The asymptotic cycle is defined as lim,, = Hl(TQ; R).
n

Theorem (S. Kerckhoff, H. Masur, J. Smillie, 1986.) For any flat surface
directional flow in almost any direction is uniquely ergodic.

This implies that for almost any direction the asymptotic cycle exists and is the
same for all points of the surface.
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Asymptotic cycle in the pseudo-Anosov case

Consider a model case of the foliation in direction of the expanding eigenvector

77, of the Anosov map ¢ : T? — T? with Dg = A = (

Aoo/o

/
® o o o
¢ o/ o o
/

/

, Direction of the expanding
, eigenvector v, of A = Dg

I 1
I 2

)
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Asymptotic cycle in the pseudo-Anosov case

Consider a model case of the foliation in direction of the expanding eigenvector

I 2
(k)

closed curve v and apply to it k iterations of g. The images g, ' (c) of the
corresponding cycle ¢ = || get almost collinear to the expanding eigenvector
v, of A, and the corresponding curve ¢(*) (7) closely follows our foliation.

v7,, of the Anosov map ¢ : T? — T? with Dg = A = ( ) Take a

/
, Direction of the expanding

eigenvector v,, of A = Dy
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Asymptotic cycle in the pseudo-Anosov case

Consider a model case of the foliation in direction of the expanding eigenvector

I 2

closed curve v and apply t4 it k iterations of g. The images gik) (c) of the

corresponding cycle ¢ =/|7y| get almost collinear to the expanding eigenvector
#, of A, and the corregponding curve g(*) () closely follows our foliation.

v7,, of the Anosov map ¢ : T? — T? with Dg = A = ( ) Take a

irection of the expanding
eigenvector v,, of A = Dy
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Asymptotic cycle in the pseudo-Anosov case

Consider a model case of the foliation in direction of the expanding eigenvector

I 2

closed curve v and apply to it k iterations of g. The images gik) (c) of the
corresponding cycle ¢ = || get almost collinear to the expanding eigenvector
U, of A, and the corresponding curve g(k) (7) closely follows our foliation.

v7,, of the Anosov map ¢ : T? — T? with Dg = A = ( ) Take a

The first return cycles to a short subinterval exhibit exactly the same behavior
by a simple reason that they are images of the first return cycles to a longer
subinterval under a high iteration of g. [7 [7

/
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Zippered rectangles

For a general flat surface .S the first return map of the vertical flow to a

horizontal segment X also induces an interval exchange transformation
T: X — X.
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Zippered rectangles

We get a decomposition of S
into zippered rectangles.
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First return cycles

Launch the vertical trajectory from a point x € X. When the trajectory
intersects X for the first time join the corresponding point 7'(x) to the original
point  along X to obtain a closed loop ¢(x). (In the picture this “first return

cycle” is smoothed.)

e
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First return cycles

Launch the vertical trajectory from a point x € X. When the trajectory
intersects X for the first time join the corresponding point 7'(x) to the original
point  along X to obtain a closed loop ¢(x). (In the picture this “first return

cycle” is smoothed.)

The cycle ¢y (x) obtained after IV returns of the vertical trajectory to X can be

computed as:

en (@) = c(z) +e(T(x)) + -+ + c(TV " (2))

e
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First return cycles

The “first return cycle” ¢ IS constant
on every subinterval X ;; denote it by c

16/37



One step of renormalization

Consider a subinterval X’ C X. Choose it in such way that that the first return
map to X’ induces an interval exchange transformation 7”7 : X’ — X’ of the
same number 1 of subintervals.

New first return cycles ¢’(X}.) to the interval X' are expressed in terms of the
initial first return cycles ¢(X;) by linear relations; the lengths | X | of
subintervals of the new partition X’ = X/ U --- L X/ are expressed in terms
of the lengths | X ;| of subintervals of the initial partition by dual linear relations:

d(Xp) =) Aji - o(X)) X5l =) A 1XG],
=1 k=1

Here a nonnegative integer matrix Ajk IS completely determined by the initial
interval exchange transformation 7" : X — X and by the choice of X’ C X.
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Idea of renormalization

Unwrap the flat surface into “zippered
rectangles”. Shorten the base.

18/37
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Idea of a renormalization

Lemma (Veech). If a translation surface S admits a pseudo-Anosov
diffeomorphism f = g, contracting the vertical and expanding the
horizontal directions, (i.e. if g;,(S) = .S for some tg), then we will
detect it (possibly as a power f "“) In our discrete procedure of short-
ening the base X. The corresponding matrix Ajk represents the

induced map f¥ : H{(S;Z) — H,(S;7Z).

0 e to
—

Q)
~
o

-
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Idea of a renormalization

By the theorem of Masur and Veech, the homogeneous expansion-
contraction in vertical-horizontal directions regularly brings almost
any flat surface, basically, back to itself. Multiplicative ergodic theo-
rem states that, in a sense, there a matrix (one and the same for al-
most all flat surfaces) which mimics a matrix of a “universal” pseudo-
N Anosov diffeomorphism as if the Teichnmduller flow would be periodic.

Q)
~
(@)

-
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Time acceleration machine

To construct the cycle ¢ representing a long piece of trajectory of the vertical
flow we follow the trajectory x, T'(z), ..., T™ =1 (z) of the corresponding
Interval exchange transformation and compute the corresponding ergodic sum
en(z) = c(z) + -+ + c(TV ().

Passing to a subinterval X’ C X we can follow the trajectory
z,T'(x),...,(T")N' ~1(z) of the new interval exchange transformation

T": X" — X'. Since X' is shorter than X we cover the initial piece of
trajectory of the vertical flow in a smaller number N’ of steps.

Passing from 1" to 1" we accelerate the time: that the trajectory
z, T'(x),...,(T")N ~1(z) follows the trajectory z, T'(z), ..., TN ~1(z) but
jumps over several iterations of 7" at a time.

Our renormalization consists in considering first return cycles to a special
shorter subinterval. Formally, it can be seen as a map on the space of interval
exchange transformations, combined with rescaling the interval to keep unit
length. Applying several iterations of the renormalization map we obtain
exponentially long trajectory of the initial first return map.
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Spectrum of “mean monodromy”

Consider a vector bundle endowed with a flat connection over a manifold X ".
Having a flow on the base we can take a fiber of the vector bundle and
transport it along a trajectory of the flow. When the trajectory comes close to
the starting point we identify the fibers using the connection and we get a linear
transformation A (x, 1) of the fiber; the next time we get a matrix A(x, 2), etc.

Renormalization 22 /37 I



Spectrum of “mean monodromy”

The multiplicative ergodic theorem says that when the flow is ergodic a “matrix
of mean monodromy” along the flow

Amean = lim (A*(z, N) - A(z, N))2~

N —00
Is well-defined and constant for almost every starting point.

Lyapunov exponents correspond to logarithms of eigenvalues of this “matrix of
mean monodromy”. They measure the average growth rate of the norm of
vectors of the bundle when we pull them along the flow using the connection.
Lyapunov exponents are dynamical analogs of characteristic numbers of the
bundle. It is known that they are responsible for the diffusion rate.

Renormalization 22 /37 I



Hodge bundle and Gauss—Manin connection

Consider a natural vector bundle over the stratum with a fiber H'(.S;R) over a
“point” (S, w), called the Hodge bundle. It carries a canonical flat connection
called Gauss—Manin connection: we have a lattice H'(S;Z) in each fiber,
which tells us how we can locally identify the fibers. Thus, Teichmdller flow on
Hi(dq,...,d,) defines Lyapunov exponents.
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Hodge bundle and Gauss—Manin connection

Consider a natural vector bundle over the stratum with a fiber H'(.S;R) over a
“point” (S, w), called the Hodge bundle. It carries a canonical flat connection
called Gauss—Manin connection: we have a lattice H'(S;Z) in each fiber,
which tells us how we can locally identify the fibers. Thus, Teichmdller flow on
Hi(dq,...,d,) defines Lyapunov exponents.

Theorem (A. Eskin, M. Kontsevich, A. Z., 2014). The Lyapunov exponents
A\; of the Hodge bundle HI}& along the Teichmuller flow restricted to an
SL(2, R)-invariant suborbifold £ C H;(d1, . .., dy) satisfy:

1 i dz(dz—l—Q)
MDAy = 50 ot
i=1 ‘

k

i=1 Vol H (adjacent simpler strata)

VOlHl(dl, 5 ,dn)

Z (explicit combinatorial factor)-

Combinatorial types
of flat analogs
of stable curves
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Renormalization applied to the wind-tree problem

We have reformulated the model problem of windtree billiard in terms of
intersection indices ¢('T") o h and ¢('T") o v of a cycle ¢(7") obtained by closing
up a very long piece of vertical trajectory with two given cycles 2 and v on a
given translation surface S.

Idea: apply the Teichmiiller geodesic flow to S for an appropriate time ¢ to get a
flat surface g;.S' located very close to the original surface S. Close up the
corresponding segment of the Teichmdller geodesic to get an associated
pseudo-Anosov diffeomorphism f : S — S.

Note that g; exponentially contracts the vertical direction. Choosing ¢ >~ log T’
we can transform the very long cycle ¢(7") to an ordinary integer cycle f.c(T)
of length comparable to 1.

Conclusion: to compute ¢(1") o h = f.c(T) o fih we have to figure out how
the pseudo-Anosov diffeomorphism f corresponding to a very long piece of a
Teichmuiller geodesic twists the distinguished cycles i and v. In other words,
we have to compute the Lyapunov exponents for the cycles cycles i and v.

How to compute the Lyapunov exponents 24 [ 37 :
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Solution of the windtree problem

Theorem (J. Chaika—A. Eskin, 2014).  For any flat surface .S almost all vertical
directions define a Lyapunov-generic point in the orbit closure SL(2,R) - S.
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Solution of the windtree problem

Theorem (J. Chaika—A. Eskin, 2014).  For any flat surface .S almost all vertical
directions define a Lyapunov-generic point in the orbit closure SL(2,R) - S.

Schematic solution of a generalized windtree problem

1. Find the family of flat surfaces BB associated to the original family of rational
billiards;

2. Find the orbit closure £ = SL(2,R) - B of B inside the ambient moduli
space (stratum).

3. Compute or estimate the relevant Lyapunov exponents of the Hodge bundle
along the Teichmtiller geodesic flow on L.
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Solution of the windtree problem

Theorem (J. Chaika—A. Eskin, 2014).  For any flat surface .S almost all vertical
directions define a Lyapunov-generic point in the orbit closure SL(2,R) - S.

Schematic solution of a generalized windtree problem

1. Find the family of flat surfaces BB associated to the original family of rational
billiards;

2. Find the orbit closure £ = SL(2,R) - B of B inside the ambient moduli
space (stratum).

3. Compute or estimate the relevant Lyapunov exponents of the Hodge bundle
along the Teichmtiller geodesic flow on L.

Currently we do not have a slightest idea on how to approach the problem
when the periodic obstacles are irrational.
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Solution of the windtree problem

Theorem (J. Chaika—A. Eskin, 2014).  For any flat surface .S almost all vertical
directions define a Lyapunov-generic point in the orbit closure SL(2,R) - S.

Schematic solution of a generalized windtree problem

1. Find the family of flat surfaces BB associated to the original family of rational
billiards;

2. Find the orbit closure £ = SL(2,R) - B of B inside the ambient moduli
space (stratum).

3. Compute or estimate the relevant Lyapunov exponents of the Hodge bundle
along the Teichmtiller geodesic flow on L.

Currently we do not have a slightest idea on how to approach the problem
when the periodic obstacles are irrational.

Question. What diffusion rate has a windtree billiard with “generic” (in any

reasonable sense) irrational polygonal obstacles? Is it, by any chance, %?
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Changing the shape of the obstacle

Theorem (V. Delecroix, A. Z., 2015). Changing the shape of the obstacle we
get a different diffusion rate. Say, for a symmetric obstacle with 4m — 4 angles
37 /2 and 4m angles 7 /2 the diffusion rate is

(2m)!! N VT

as m — 0.

(2m + 1)!! 2y/m

Note that once again the diffusion rate depends only on the number of the
corners, but not on the (almost all) lengths of the sides, or other details of the
shape of the obstacle.

27/37 "



Changing the shape of the obstacle

Theorem (V. Delecroix, A. Z., 2015).

Changing the shape of the obstacle we

get a different diffusion rate. Say, for a symmetric obstacle with 4m — 4 angles
37 /2 and 4m angles 7 /2 the diffusion rate is
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Note that once again the diffusion rate depends only on the number of the
corners, but not on the (almost all) lengths of the sides, or other details of the
shape of the obstacle.
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Removing part of the obstacles

How would change the diffusion rate if we remove periodically one out of four
obstacles in every 2 X 2 group of squares?




Removing part of the obstacles

How would change the diffusion rate if we remove periodically one out of four
obstacles in every 2 X 2 group of squares?

Lemma (V. Delecroix, A. Z., 2015). Diffusion rate =

491
1053
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Removing part of the obstacles

And what about removing periodically two obstacles in every 2 X 2 group?
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Removing part of the obstacles

And what about removing periodically two obstacles in every 2 X 2 group?

2
Lemma (V. Delecroix, A. Z., 2015). Diffusion rate = 3

28/37 '



Generic windtree model of high complexity

Theorem (Fougeron’20). The diffusion rate of a periodic billiard with n. > 2
random rectangular obstacles placed as in the picture equals the top Lyapunov
exponent )\]L(Qnﬂ) of the Kontsevich—Zorich cocycle over the moduli space
of holomorphic quadratic differentials of genus g = n + 1.
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Conjectures (Zorich’98, Delecroix’15, Fougeron’'19).
1 1

Xo(H(m,...,my)) — 5 A (Q(dy, ..., dy)) — 5 39—+
uniformly forallm; +---+m, =29 —2anddy +---+d, = 4g — 4.
The conjecture is confirmed by extensive computer experiments. Conceptually,
it indicates that parabolic dynamical systems of large complexity in certain

aspects mimic hyperbolic dynamical systems. For hyperelliptic strata we have
A2 (?—[Zyp ) — 1 (Eskin—Kontsevich—Moller—Zorich + Fei Yu'18).

29/37 '



Computation of diffusion rate

1. Find a surface S endowed with a flat metric with conical singularities
associated to the original rational periodic polygonal billiard. (Straightforward).

2. The surface S represents a point in the moduli space. Find an orbit closure
L = GL(2,R) - S of S inside an ambient stratum in the moduli space.
Uses very recent highly elaborated technology based on Eskin—Mirzakhani
Magic Wand rigidity theorem. (Difficult, but in many cases doable due to
works of P. Apisa, J. Chaika, C. McMullen, M. Mirzakhani, R. Mukamel,

A. Wright, ..., and due to a computer assisted tool currently developped by
V. Delecroix—A. Eskin—-J. Ruth—A. Wright incorporating all known tools.)

3. Compute or estimate the relevant Lyapunov exponent of the Hodge bundle
along the Teichmiiller geodesic flow on L (i.e. compute mean monodromy
of the Hodge bundle along Teichmduller geodesics). ( Currently can be done
only in very special cases admitting extra symmetries leading to an
equivariant splitting of the Hodge bundle. In these cases
Eskin—Kontsevich—Zorich formula for the sum of the Lyapunov exponents is
applicable to subbundles.)

We aim to advance in the last point in large genus beyond symmetric cases.
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Exercise

e Check that the following two flat surfaces belong to the stratum 7 (4).

e Compute a matrix of intersection numbers between cycles representing the
sides of the left polygon. Prove that these cycles form a basis in homology.

e Determine which of the two surfaces is hyperelliptic.

e Find the hyperelliptic involution of this surface in geometric terms. Find the
Weierstrass points (the fixed points of the hyperelliptic involution). Check that
there are 2g + 2 such points.
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e Proof that the following flat surface belongs to the stratum H (4
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e Proof that the followmg flat surface belongs to the stratum 7 (4
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e Proof that the following flat surface belongs to the stratum 7 (4).
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e Proof that the following flat surface belongs to the stratum 7 (4).
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e Proof that the followmg flat surface belongs to the stratum 7 (4
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e Proof that the followmg flat surface belongs to the stratum 7 (4
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e Proof that the following flat surface belongs to the stratum 7 (4).

33/37 '



e Proof that the following flat surface belongs to the stratum 7 (4).
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e Proof that the following flat surface belongs to the stratum 7 (4).
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e Proof that the following flat surface belongs to the stratum 7 (4).
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e Proof that the following flat surface belongs to the stratum 7 (4).
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e Proof that the following flat surface belongs to the stratum 7 (4).
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Computation of intersection numbers

\ oV =20

34/37 "



Computation of intersection numbers
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Computation of intersection numbers
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Computation of intersection numbers

\ oWy =20
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Computation of intersection numbers
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Computation of intersection numbers

\ VooV =0
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Computation of intersection numbers
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Computation of intersection numbers
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Computation of intersection numbers
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Computation of intersection numbers
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Computation of intersection numbers

\ V3oWsy =0
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Computation of intersection numbers
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Computation of intersection numbers
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Computation of intersection numbers
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Computation of intersection numbers
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Computation of intersection numbers

Collecting our calculations we get the following matrix of intersection numbers:

Vi Vo V3 Wy Wy Wi
Vi x 0 1 -1 0 —1
Vo x % 0 -1 1 0
V3 x ok % 1 0 1
Wil *  *x % * 0 —1
Wo | * % % * * 0
W3 | *x % % * * *

Since it is skew-symmetric, we can reconstruct the missing values.

Excercise. Itis easy to check that this matrix is nondegenerate. Why this
implies that the cycles form a basis? Verify that the cycles

a1 =V1+Vs+Ws, b0 =Vs+ W7+ Wy — Ws,a9 = Vs, by = W,
a3 = V3, bg = W3 form a canonical basis of cycles, that is

aioaj:biobj:O; aiobj:&;j.
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Computation of intersection numbers

Collecting our calculations we get the following matrix of intersection numbers:

Vi Vo V3 Wy Wy Wi
Vi 0 0 1 -1 0 —1
V5 0 0 0 —1 1 0
.11 0o o 1 0 1
Wi 1 1 -1 0 0 —1
Wl 0 —1 0 0 0 0
W 1 0 —1 1 0 0

Since it is skew-symmetric, we can reconstruct the missing values.

Excercise. Itis easy to check that this matrix is nondegenerate. Why this
implies that the cycles form a basis? Verify that the cycles

a1 =Vi+V3+Ws, b0 =Vs+ Wi+ Wy —Ws, a9 = Vo, by = W,
az = V3, bg = W3 form a canonical basis of cycles, that is

aioaj:biobj:O; aiobj:&;j.
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Canonical basis of cycles

as
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Excercise. Find an involution of the surface below in geometric terms. Check
that there are 2g + 2 = 2 - 3 + 2 = 8 such points. Determine the genus of the
guotient. Recognize a hyperelliptic involution. Find the Weierstrass points.
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Excercise. Find an involution of the surface below in geometric terms. Check
that there are 2g + 2 = 2 - 3 + 2 = 8 such points. Determine the genus of the
guotient. Recognize a hyperelliptic involution. Find the Weierstrass points.
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Excercise. Find an involution of the surface below in geometric terms. Check
that there are 2g + 2 = 2 - 3 + 2 = 8 such points. Determine the genus of the
guotient. Recognize a hyperelliptic involution. Find the Weierstrass points.
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Excercise. Find an involution of the surface below in geometric terms. Check
that there are 2g + 2 = 2 - 3 + 2 = 8 such points. Determine the genus of the
guotient. Recognize a hyperelliptic involution. Find the Weierstrass points.
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