A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field

A.V. Zorich

In the absence of a magnetic field an electron in a lattice Γ moves in accordance with quantum mechanics with constant quasi-momenta p_1 , p_2 , p_3 defined modulo a vector of the inverse lattice and has the dispersion law ε (p_1 , p_2 , p_3). Thus, the set of quasi-momenta ([2], [3]) is a point of the torus $T^3 = \mathbb{R}^3/\Gamma$. In a weak magnetic field physicists consider the semiclassical motion of an electron in the space of quasi-momenta given by the Hamiltonian $\varepsilon = \varepsilon$ ($p + \frac{\epsilon}{c}A$), where A is the vector potential. Let $p' = p + \frac{\epsilon}{c}A$. The motion of an electron in a uniform magnetic field H is defined in the space p' as a section of the surface $\varepsilon(p') = \text{const}$ by a plane orthogonal to the magnetic field (see [1], §6). The study of the topological properties of these trajectories is a particular case of the general problem concerning the topological structure of level surfaces of a closed 1-form on a compact manifold (the Novikov problem).

A non-singular level surface $\varepsilon(p')=\mathrm{const}$ is denoted by M^2 and is called a Fermi surface. The restriction of the form $\Omega=H_1\,dp_1'+H_2\,dp_2'+H_3\,dp_3'$ with constant coefficients to a Fermi surface is denoted by $\omega=\Omega\mid_{M^2}$. We assume that ω has only non-degenerate critical points. We define the degree of irrationality of a closed 1-form ω on a compact manifold as the number of rationally independent integrals over cycles and denote it by $r(\omega)$. In our case $r(\omega) \leq r(\Omega) \leq 3$. When $r(\omega)=1$, then there exists a smooth map $f_\omega:M^2\to S^1$ whose critical points are non-degenerate. The inverse image of a point under this map is the fibre $\omega=0$. A bordism $W\subset M^2$ with Morse function f_ω on it is the inverse image of an arc of S^1 . This means that the non-singular fibres of ω , $r(\omega)=1$, are smooth compact one-dimensional submanifolds of M^2 , that is, the fibre of ω is diffeomorphic to a finite collection of circles. On the universal cover \mathbb{R}^3 the level surfaces of ω , $r(\omega)=1$, are either closed or periodic. Note that any fibre of ω is contained in a fibre of Ω , which is a torus T^2 .

Suppose that $r(\Omega) = 1$ and that to each critical value of f_{ω} there corresponds just one critical point on M^2 .

Theorem. For any constant form Φ in \mathbb{R}^3 sufficiently close to Ω , a level surface of the form $\Phi = \Phi \mid_{\hat{M}^2}$ lies in a strip of finite width on the plane $\Phi = 0$. The cover over the Fermi surface is denoted by \hat{M}^2 .

As already remarked, the map $f_{\omega}: M^2 \to S^1$ determines a decomposition of M^2 into a composition of elementary bordisms. We now consider the connected component W of the elementary bordism with a critical point of saddle-type. The boundary of W consists of three components, each of which is a realization of a cycle in T^3 .

Lemma. At least one of the three cycles is homologous to zero in T^3 .

Suppose, for instance, that the cycles α and β lie on one level surface and that neither is homologous to zero in T^3 . Since α and β do not intersect and both are embedded in T^2 (the fibre $\Omega=0$), we see that $\alpha=\pm\beta$. Then γ is either 0 or 2α . But since γ has no self-intersections, it can be embedded in T^2 (fibre $\Omega=0$) in which we can realize the cycle α , so that the possibility $\gamma=2\alpha$ is excluded. This proves the lemma.

We now choose on each elementary bordism exactly one connected component of a level surface of ω , which realizes a cycle homologous to zero in T^3 . Then for any form φ near to ω there exist closed level surfaces close to the one chosen for ω , which also realize cycles homologous to zero in the torus. We cut the Fermi surface along such fibres of the form φ . We claim that for any connected component N the image of the map $i_*: H_1(N, \mathbf{Z}) \to H_1(T^3, \mathbf{Z})$ induced by the inclusion $i: N \to T^3$ has at most two generators. This means that for any connected components N of the "cut" Fermi surface M^2 there are two parallel planes in \mathbb{R}^3 such that the cover N over N lies between them. Since any fibre $\varphi = 0$ belongs to some connected component N, it is contained in \mathbb{R}^3 in the strip formed by the intersection of the plane $\Phi = 0$ with the chosen pair of planes.

This completes the proof of the theorem.

References

- [1] S.P. Novikov, The Hamiltonian formalism and a many-valued analogue of Morse theory, Uspekhi Mat. Nauk 37:5 (1982), 3-49. MR 84h:58032.
 - = Russian Math. Surveys 37:5 (1982), 1-56.
- [2] _____, Two-dimensional Schrödinger operators in periodic fields, Itogi Nauki, Seri Sovr. Probl. Mat. 23 (1983), 3-32.
 - = J. Soviet Math. 28 (1985), 1-20.
- [3] L.D. Landau and E.M. Lifschitz, Lehrbuch der theoretischen Physik Band V: Statistiche Physik, Akademie-Verlag, Berlin 1966. MR 36 # 2370.

Translation: Statisticheskaya fizika, Nauka, Moscow 1964. MR 32 # 921.

Moscow State University

Received by the Board of Governors 27 December 1983