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Abstract. — We compute explicitly the absolute contribution of square-tiled surfaces
having a single horizontal cylinder to the Masur-Veech volume of any ambient stra-
tum of Abelian differentials. The resulting count is particularly simple and efficient
in the large genus asymptotics. Using the recent results of Aggarwal and of Chen-
Möller-Zagier on the long-standing conjecture about the large genus asymptotics of
Masur-Veech volumes, we derive that the relative contribution is asymptotically of
the order 1/d, where d is the dimension of the stratum.

Similarly, we evaluate the contribution of one-cylinder square-tiled surfaces to
Masur-Veech volumes of low-dimensional strata in the moduli space of quadratic
differentials. We combine this count with our recent result on equidistribution of one-
cylinder square-tiled surfaces translated to the language of interval exchange trans-
formations to compute empirically approximate values of the Masur-Veech volumes
of strata of quadratic differentials of all small dimensions.

Résumé (Contribution des surfaces à petits carreaux à un cylindre aux volumes de Masur-
Veech)

Nous établissons une formule pour la contribution des surface à petits carreaux
formées d’un seul cylindre horizontal au volume de Masur-Veech des strates de
différentielles abéliennes. Nous en déduisons le comportement asymptotique lorsque
le genre des surfaces grandit. À la lumière des résultats récents de Aggarwal et Chen-
Möller-Zagier sur l’asymptotique des volumes de Masur-Veech, nous en déduisons
que la contribution relative est de l’ordre de 1/d où d est la dimension de la strate.
De manière similaire, nous donnons une formule pour la contribution des surfaces à
petits carreaux formées d’un seul cylindre horizontal au volume de Masur-Veech des
strates de différentielles quadratiques. En combinant cette formule avec nos résultats
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récents sur l’équidistribution des surface à un cylindre horizontal, nous proposons
une méthode empirique pour le calcul des volumes de Masur-Veech des strates de
différentielles quadratiques. Cette dernière s’avère être efficace en petites dimensions.

Introduction

Siegel-Veech constants and Masur-Veech volumes. — One of the most powerful tools
in the study of billiards in rational polygons (including “wind-tree” billiards with pe-
riodic obstacles in the plane), of interval exchange transformations and of measured
foliations on surfaces is renormalization. More precisely, to describe fine geometric
and dynamical properties of the initial billiard, interval exchange transformation or
measured foliation, one has to find the GL+(2,R)-orbit closure of the associated trans-
lation surface in the moduli space of Abelian (or quadratic) differentials, and study
its geometry. This approach, initiated by H. Masur and W. Veech four decades ago
became particularly powerful recently due to the breakthrough theorems of Eskin-
Mirzakhani-Mohammadi [17] and [18] that ensure that such GL+(2,R)-orbit closure
is linear.

The moduli space of Abelian (or quadratic) differentials is stratified by the degrees
of zeroes of the Abelian (or quadratic) differential. Each stratum is endowed with a
natural measure, the Masur-Veech measure, that is preserved by the SL(2,R)-action
(the action by scalar matrices rescales the volumes and only preserves the projective
class of the measure).

The Masur-Veech measure of each connected component of a stratum is infinite.
However, passing to a level hypersurface of the function i

2

∫
C
ω ∧ ω̄, where ω is an

Abelian differential, and C is the undelying complex curve (respectively to the level hy-
persurface of the function

∫
C
|q|, where q is a quadratic differential), the Masur-Veech

measure induces an SL(2,R)-invariant measure which by the results of Masur [32]
and [36] is finite and ergodic.

In many important situations the GL+(2,R)-orbit closure of a translation surface
is an entire connected component of a stratum. In order to count the growth rate for
the number of closed geodesics on a translation surface as in [15], or to describe the
deviation spectrum of a measured foliation as in [23], [41], or to count the diffusion
rate of a wind-tree as in [12], [13], one has to compute the corresponding Siegel-Veech
constants, see [37], and the Lyapunov exponents of the Hodge bundle over the con-
nected component of stratum. Both quantities are expressed by explicit combinatorial
formulas in terms of the Masur-Veech volumes of the strata, see [16], [14], [3], [26].

Equidistribution of square-tiled surfaces. — The Masur-Veech volumes of strata of
Abelian differentials and of meromorphic quadratic differentials with at most simple
poles were computed in [19], [20], and [21]. The underlying idea (see also [42]) was a
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ONE-CYLINDER SQUARE-TILED SURFACES 225

computation of the asymptotic number of “integer points” (the ones having coordi-
nates in Z⊕iZ in period coordinates) in appropriate bounded domains exhausting the
stratum. Such integer points are represented by square-tiled surfaces. In the case of
Abelian (respectively quadratic differentials), a square-tiled is a surface tiled by 1× 1

unit squares (resp. 1/2×1/2 unit squares). In the Abelian case, such surface can equiv-
alently be viewed as a ramified cover over the square torus ramified only over {0} and
the degree of the cover correponds to the number of squares. In the quadratic case,
a square tiled surface is a covering of the pillowcase in CP1 ramified over four points
but the degree does not coincide with the number of squares in general (there might
be a factor 1, 2 or 4). Rescaling square-tiled surfaes by ε we get a sequence of grids
that equidistribute towards the Masur-Veech measure.

Each square-tiled surface carries interesting combinatorial geometry, for example,
the decomposition into maximal flat horizontal cylinders. We recall in Theorem 1.1
of Section 1 our recent result from [11] telling that square-tiled surfaces having fixed
combinatorics of horizontal cylinder decomposition and tiled with squares of size ε
become asymptotically equidistributed in the ambient stratum as ε tends to zero.
This result gives sense to the notion of (asymptotic) probability Pk for a “random”
square-tiled surface in a given stratum to have a fixed number k ∈ {1, 2, . . . , g+r−1}
of maximal cylinders in its horizontal decomposition, where g is the genus of the
surface and r is the number of conical singularities.

An interval exchange transformation (or linear involution) is called rational if all
its intervals under exchange have rational lengths. All orbits of such interval exchange
transformation are periodic. We state in Theorem 1.2 an analogous equidistribution
statement for rational interval exchange transformations (see [11] for the proof) and
the proportions that appear in this context are the same as the ones for square-tiled
surfaces. The (asymptotic) probability that a “random” rational interval exchange
transformation with a given permutation has k maximal bands of fellow-traveling
closed trajectories is Pk.

Contribution of 1-cylinder square-tiled surfaces and large genus asymptotics of Masur-
Veech volumes. — The only currently known computation of Masur-Veech volumes
of strata of Abelian differentials is based on counting square-tiled surfaces. In Sec-
tion 2 we compute the absolute contribution c1(L ) of 1-cylinder square-tiled surfaces
to the Masur-Veech volume of a stratum L , where c1(L ) := P1(L ) · Vol L . We define
ck(L ) similarly for the absolute contribution of k-cylinders square-tiled surfaces. By
definition, Vol L = c1(L ) + c2(L ) + · · · + cg+r−1(L ). We give simple close exact for-
mulas for the contribution c1(L ) to the volumes Vol H (2g − 2) and Vol H (1, . . . , 1)

of minimal and principal strata of Abelian differentials. We also provide sharp upper
and lower bounds for contributions of 1-cylinder square-tiled surfaces to the Masur-
Veech volumes of any stratum of Abelian differential. The ratio of the upper and lower
bounds tends to 1 as g → +∞ uniformly for all strata in genus g, so the bounds are
particularly efficient in large genus asymptotics.
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Using the result [7] of Chen-Möller-Zagier and more general result [1] of Aggarwal
on the Masur-Veech volume asymptotics conjectured in [22] we prove that the corre-
sponding relative contribution P1(L ) of 1-cylinder square-tiled surfaces to the Masur-
Veech volume Vol L of any stratum L of Abelian differentials is asymptotically of the
order 1/d as g (equivalently d) tends to infinity. Here d is the dimension d = dimC(L )

of the stratum L .

Siegel-Veech constants and Masur-Veech volumes of strata of meromorphic quadratic
differentials. — The Masur-Veech volumes of any connected component of stratum
of Abelian differentials in genus g has the form s · π2g, where s is some rational num-
ber [19]. The generating functions in [19] were translated by A. Eskin into computer
code, which allowed to evaluate explicitly volumes of all connected components of all
strata of Abelian differentials in genera up to g = 10 (that is, to compute explicitly
the corresponding rational numbers s), and for some strata up to g = 60. The recent
results of D. Chen, M. Möller and D. Zagier [7] allows to compute s for the principal
stratum up to genus g = 2000 and higher.

In the quadratic case, the Masur-Veech volume still has the same arithmetic
form s · π2ĝ where ĝ is the so-called effective genus [20], [21]. The computation of s in
the quadratic case had to wait for a decade to be translated into tables of numbers.
One of the reasons for such a delay is a more involved combinatorics and multitude
of various conventions and normalizations required in volume computations (which is
a common source of mistakes in normalization factors like powers of 2). This is why
it is necessary to test theoretical predictions on some table of volumes obtained by
an independent method. In the case of Abelian differentials, the volumes of several
low-dimensional strata were computed by a direct combinatorial method elaborated
by A. Eskin, M. Kontsevich and A. Zorich; this approach is described in [42]. Another,
even more reliable test was provided by computer simulations of Lyapunov exponents
and their ties with volumes through Siegel-Veech constants. In the case of quadratic
differentials, explicit values of volumes of the strata in genus zero were conjectured
by M. Kontsevich about fifteen years ago. The conjecture was proved in recent
papers [2] and [3]. Further explicit values of volumes of all low-dimensional strata up
to dimension 11 were obtained in [26].

Our counting results combined with the equidistribution Theorems 1.1 and 1.2
allow to compute approximate values of volumes of the strata. The idea is to evaluate
experimentally the approximate value of the probability P1(L ) to get a 1-cylinder
square-tiled surface taking a “random” square-tiled surface in a given stratum L of
quadratic differentials. Then we compute rigorously the absolute contribution c1(L )

of 1-cylinder square-tiled surfaces to the Masur-Veech volume Vol L of the stratum.
The relation c1(L ) = P1(L ) ·Vol L now provides the approximate value of the Masur-
Veech volume Vol L of the stratum L of quadratic differentials.

This approach is completely independent of the one of A. Eskin and A. Okounkov
based on the representation theory of the symmetric group. The approximate data
based on this approach were used for “debugging” rigorous formulas in [25] and [26].
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The fact that our experimental results match theoretical ones in [2], [3], and in [26],
and that the theoretical values of Siegel-Veech constants obtained in [25] match in-
dependent computer experiments evaluating the Lyapunov exponents of the Hodge
bundle along the Teichmüller geodesic flow, as well as the exact values of the sums of
such Lyapunov exponents computed in [6] for the non-varying strata provides some
reliable evidence that the nightmare of various combinatorial conventions leads, nev-
ertheless, to correct and coherent general formulas presented in [25] and in [26].

Structure of the paper. — In Section 1, we recall necessary equidistribution results
from [11]. Then, in Section 2, we study the contribution of 1-cylinder square-tiled
surfaces to the Masur-Veech volumes of the strata.

Section 3 is independent of the first two: it presents two alternative approaches
to counting 1-cylinder square-tiled surfaces based on recursive relations (Section 3.1)
and on construction of the Rauzy diagrams (Section 3.2).

The content of Appendix A was isolated to avoid overloading the main body of
the paper. It describes certain subtlety related to normalization of the Masur-Veech
volumes which is not visible in quantitative considerations, but which is relevant and
non-trivial in the context of the current paper.

Appendix B written by Philip Engel provides alternative proofs of results in Sec-
tion 2 based on character theory of the symmetric group. In particular, it provides
alternative approach to the count of P1(L ) in large genus asymptotics.

Acknowledgements. — We thank A. Eskin, C. Matheus, L. Monin and P. Pushkar Jr.
for numerous valuable conversations and MPIM in Bonn for stimulating atmosphere.
We are grateful to J. Athreya for helpful suggestions which allowed to improve the
presentation.

1. Equidistribution

In this section we recall the recent equidistribution results from [11] essential for
the sequel. We present them here not in the most general form, but in the way which
is better adapted to the context of the current paper.

1.1. Strata of Abelian differentials. — We now introduce strata of Abelian differen-
tials. For a more detailed introduction, the reader might want to consult the refer-
ences [24] and [43].

Given a collection of non-negative integers (m1, . . . ,mr) so that m1 + · · ·+mr =

2g − 2 we consider the stratum of Abelian differentials H (m1, . . . ,mr). We fix a
topological surface S of genus g and r distinct points P1,. . . , Pr on S. An element
in H (m1, . . . ,mr) is a triple (X,ω, φ : S → X) where X is a Riemann surface, ω is a
non-zero Abelian differential, φ is a homeomorphism such that ω has a zero of ordermi

at the point φ(Pi) and does not vanish on the complement of the set {P1, . . . , Pr}.
Two triples (X, (P1, . . . , Pr), φ) and (X ′, (P ′1, . . . , P

′
r), φ

′) are considered as equivalent

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



228 V. DELECROIX, É. GOUJARD, P. G. ZOGRAF & A. ZORICH

if there is a homeomorphism f : S → S such that φ′ ◦ f ◦ φ−1 : X → X ′ is an
isomorphism of Riemann surfaces that maps ω to ω′.

The stratum H (m1, . . . ,mr) is locally modeled on the relative cohomology space
H1(S, {P1, . . . , Pr};C) (via the period map). Each stratum is a PL complex orbifold
of dimension 2g + r − 1; it has at most three connected components that have been
classified in [31].

Let L = H comp(m1, . . . ,mr) be a connected component of a stratum of Abelian
differentials; denote by d its complex dimension. Let LZ ⊂ L be the square-tiled sur-
faces in L , that is translation surfaces represented in period coordinates by integer
points, i.e., by points in H1(S, {P1, . . . , Pr};Z⊕ iZ). A square-tiled surface is equiva-
lently defined as a translation surface tiled with unit squares. Let LZ(N) ⊂ LZ be the
subset of square-tiled surfaces tiled with at most N unit squares. The Masur-Veech
volume Vol L of L can be defined as the following limit:

(1.1) Vol L := 2d · lim
N→+∞

card LZ(N)

Nd
.

The existence of a finite limit was proved by H. Masur [32] and W. Veech [36].

Remark. — Consider a “unit ball” in H comp(m1, . . . ,mr) defined as the subset of
translation surfaces of area at most 1. Geometrically, the above limit represents the
volume of this unit ball computed with respect to the Masur-Veech volume form.
The dimensional factor 2d is responsible for passing from the “volume of the unit
ball” to the “area of the unit sphere”. The quantity Vol L defined in Equation (1.1) is
denoted in most of the papers by Vol H comp

1 (m1, . . . ,mr) to insist that one passes to
a hypersurface in the ambient stratum; the total Masur-Veech volume of any stratum
is, obviously, infinite.

Every square-tiled surface in a stratum H (m1, . . . ,mr) of Abelian differentials
admits the decomposition into maximal cylinders filled with closed horizontal trajec-
tories. By the result of J. Smillie the number of cylinders varies from 1 to g + r − 1

(see [33]). The set LZ can be decomposed into disjoint union of subsets LZ,k

LZ =

g+r−1⊔
k=1

LZ,k

of respectively k = 1, 2, . . . , (g + r − 1)-cylinder square-tiled surfaces. Corollary 1.12
in [11] implies that the following limits are well-defined for any k:

ck(L ) := 2d · lim
N→+∞

card LZ,k(N)

Nd
.

Thus,

Vol L =

g+r−1∑
k=1

ck(L ).
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We also introduce relative analogs of the above quantities, namely,

(1.2) Pk(L ) :=
ck(L )

Vol L
= lim
N→+∞

card LZ,k(N)

card LZ(N)
.

The quantity Pk(L ) can be interpreted as the asymptotic frequency of k-cylinder
square-tiled surfaces among all square-tiled surfaces of large bounded area in a given
connected component L of the stratum.

Any stratum of Abelian differentials admits the natural action of R+. For any T > 0

and any subset U of the stratum we denote by T ·U the subset obtained by proportional
rescaling of all translation surfaces in U by the linear factor T , or, equivalently, by
multiplying the corresponding holomorphic 1-form by T . The following results states
that each LZ,k equidistribute with respect to the Masur-Veech measure.

Theorem 1.1 ([11]). — For any non-empty relatively compact open domain U in any
connected component L of any stratum of Abelian differentials the following limit
exists

(1.3) lim
T→+∞

card
(
(T · U) ∩ LZ,k

)
card

(
(T · U) ∩ LZ

) = Pk(L )

and is independent of the choice of U ⊂ L .

We now turn to an analog of Theorem 1.1 for interval exchange transformations.
We say that a permutation π on {1, 2, . . . , d} is irreducible if it does not admit any
π-invariant subset of the form {1, 2, · · · , k} where 1 ≤ k < d. Given any interval
exchange transformation associated to an irreducible permutation π one can realize a
suspension over it as a vertical flow on an appropriate translation surface S. Though
the translation surface S itself is not uniquely defined, the connected component L

of the ambient stratum of Abelian differentials is uniquely determined by the initial
irreducible permutation. Note that in general such stratum might have marked points
in addition to zeroes.

The space of all interval exchange transformations corresponding to a fixed irre-
ducible permutation π of d elements is naturally parameterized by the lengths of d
intervals under exchange, so the set of all possible interval exchange transformations
with a given permutation π is in the natural bijective correspondence with the points
of Rd+.

If the lengths of all subintervals are integer, that is in Nk, then all orbits of the
correspondent interval exchange transformation are periodic. Equivalently, all leaves
of the vertical foliation on any suspension surface S are closed. Denote by k the number
of maximal cylinders filled with such closed vertical trajectories on S. This number
is same for all suspension surfaces over a given interval exchange transformation; it
can be seen as the number of bands of isomorphic fellow-traveling closed trajectories
passing through half-integer points. Denote by Ik(π) ⊂ Nd the subset of integer
lengths of subintervals for which the interval exchange transformation with given
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irreducible permutation π has exactly k maximal bands of trajectories. By definition,

Nd =
⊔
k

Ik(π).

We have the natural action of R+ on the space of interval exchanges: given a strictly
positive number T we can rescale the lengths of all subintervals by the same factor T .

Theorem 1.2. — Given any irreducible permutation π, let L be the associated con-
nected component of the stratum of Abelian differentials ambient for suspensions over
interval exchange transformations with permutation π. Consider any non-empty rel-
atively compact open domain V in Rd+. Then the following limit exists

(1.4) lim
T→+∞

card
(
(T · V ) ∩ Ik(π)

)
card

(
(T · V ) ∩ Nd

) = lim
T→+∞

card
(
(T · V ) ∩ Ik(π)

)
VolEucl(V ) · T d

= Pk(L ),

and is independent of the choice of V ⊂ Rd+. Here VolEucl(V ) is the Euclidian volume
of V ⊂ Rd+.

1.2. Strata of quadratic differentials. — The situation with the strata in the moduli
space of meromorphic quadratic differentials with at most simple poles is analogous
(and, can more generally be extended to any GL+(2,R)-invariant suborbifolds defined
over Q, see [38] for the definition). We describe here the necessary adjustments.

Recall that applying the canonical double cover p : Ŝ → S to every half-translation
surface S in a stratum of meromorphic quadratic differentials with at most simple
poles we obtain a linear GL+(2,R)-invariant suborbifold L̂ located already in the
stratum of Abelian differentials ambient for Ŝ. Here p is the double cover such
that the induced quadratic differential p∗q is a square of globally defined holo-
morphic 1-form. The stratum of quadratic differentials is modeled on the subspace
H1
−(Ŝ, {P̂1, . . . , P̂r};C) antiinvariant under the canonical involution of Ŝ.
The first adjustment is the convention on the normalization of the Masur-Veech

volume element in period coordinates.

Convention 1.3. — We chose as a distinguished lattice in H1
−(Ŝ, {P̂1, . . . , P̂r};C) the

subset of those linear forms which take values in Z⊕ iZ on H−1 (Ŝ, {P̂1, . . . , P̂r};Z).

Let L = Qcomp(d1, . . . , dk) be a connected component of a stratum of meromorphic
quadratic differentials with at most simple poles; denote by d its complex dimension.
Let LZ ⊂ L be the subset of half-translation surfaces represented in period coordinates
by lattice points in the sense of the above Convention. Geometrically they correspond
to square-tiles surfaces tiled with squares with side 1

2 . Let LZ(N) ⊂ LZ be the subset
of square-tiled surfaces tiled with at most N such squares. The Masur-Veech volume
Vol L of L can be defined as the following limit:

(1.5) Vol L := 2d · 2d · lim
N→+∞

card LZ(N)

Nd
= 2d · lim

N→+∞

card LZ(2N)

Nd
.
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Remark. — The extra factor 2d in (1.5) compared to (1.1) has the following origin.
The cover Ŝ belongs to the “unit ball” in L̂ if and only if the initial half-translation
surface S has area at most 1/2. On the other hand, now the squares of tiling have
area 1

4 and not unit area as before.

Now in complete analogy with the case of Abelian differentials we define the subset
LZ,k ⊂ LZ of square-tiled surfaces having exactly k maximal horizontal cylinders and
the subset LZ,k(N) ⊂ LZ,k of those of them which are tiled with at most N squares
(with side 1/2). Results from [11] imply that for any L and any k there are well defined
contributions of k-cylinder square-tiled surfaces to the Masur-Veech volume of L :

ck(L ) := 2d · 2d · lim
N→+∞

card LZ,k(N)

Nd
.

As before,

Vol L =

ĝ+r−1∑
k=1

ck(L ).

A complete analog of Theorem 1.1 holds for the asymptotic proportions

(1.6) Pk(L ) :=
ck(L )

Vol L
= lim
N→+∞

card LZ,k(N)

card LZ(N)
.

The second adjustment concerns interval exchange transformations. An irreducible
permutation is replaced now by by an irreducible generalized permutation π of d+ 1

elements, where d = dimC L ; see combinatorial Definition 3.1 in [4] of irreducibility.
The lengths λi of subintervals of the corresponding irreducible generalized interval

exchange transformation (called linear involution in the original paper [8] introducing
these objects) satisfy a nontrivial linear relation of the form

(1.7) λi1 + · · ·+ λir = λj1 + · · ·+ λjs ,

depending on π, where every index from the set {1, . . . , d+ 1} appears at most once,
and there is at least one term on each side of the equation. Choose any parameter
involved into relation (1.7), say, λjs for definitiveness. The remaining d lengths of in-
tervals under exchange in our generalized interval exchange transformation provide co-
ordinates in the space of generalized interval exchange transformations corresponding
to the irreducible generalized permutation π. The positivity condition on the remain-
ing length λjs implies that the set of parameters is the polyhedral cone Cd+(π) ⊂ Rd+
obtained as the intersection of Rd+ with the half-space defined by the equation

λi1 + · · ·+ λir − (λj1 + · · ·+ λjs−1
) > 0.

Denote by Ik(π) ⊂ Cd+(π) ∩ (N/2)d the subset of half-integer lengths of subintervals
for which the interval exchange transformation with the given irreducible generalized
permutation π has exactly k maximal bands of trajectories in the same sense as above.

Theorem 1.4. — Given any irreducible generalized permutation π, let L be the associ-
ated connected component of the stratum of meromorphic quadratic differentials with
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at most simple poles corresponding to any suspensions over π. Consider any open
relatively compact domain V in Cd+(π). Then, the following limit exists

(1.8) lim
T→+∞

card
(
(T · V ) ∩ Ik(π)

)
card

(
(T · V ) ∩ (N/2)d

) = lim
T→+∞

card
(
(T · V ) ∩ Ik(π)

)
2d ·VolEucl(V ) · T d

= Pk(L ),

and is independent of the choice of V ⊂ Cd+(π). Here VolEucl(V ) is the Euclidian
volume of V ⊂ Rd+.

Remark. — An alternative natural choice of the lattice (in other words, an alternative
definition of “square-tiled surface”) and its effect on the quantities Pk(L ) is discussed
in Appendix A.

2. Contribution of 1-cylinder square-tiled surfaces to Masur-Veech volumes

In this section we consider square-tiled surfaces represented by a single maximal flat
cylinder filled by closed horizontal leaves and their contributions to the Masur-Veech
volumes of strata of Abelian differentials and of meromorphic quadratic differentials
with at most simple poles.

In Section 2.2 we state the main results. Their proofs are postponed to Sections 2.5
and 2.6. In Section 2.3 we apply our results to strata of Abelian differentials in large
genus and discuss how they compare with the asymptotic behavior of Masur-Veech
volumes. In Section 2.4 we describe the experimental approach to the computation of
Masur-Veech volumes unifying our equidistribution and counting results.

We proceed in Section 2.5 with a detailed discussion of relevant combinatorial
aspects and with a computation of the contribution of a single 1-cylinder separatrix
diagram to the Masur-Veech volume of the ambient stratum proving Propositions 2.2
and 2.3.

In Section 2.6 we count the number of 1-cylinder diagrams for strata of Abelian
differentials. Combining our count with the result of Section 2.5 we derive very sharp
bounds (2.7) for the absolute contribution of 1-cylinder square-tiled surfaces to the
Masur-Veech volume claimed in Theorem 2.10. We also obtain exact closed formulas
for the absolute contributions of 1-cylinder square-tiled surfaces to the Masur-Veech
volumes of the minimal and principal strata stated in Corollary 2.6.

2.1. Jenkins-Strebel differentials. Critical graphs (separatrix diagrams). — Assume
that all leaves of the horizontal foliation of an Abelian or quadratic differential are
either closed or connect critical points (a leaf joining two critical points is called a
saddle connection or a separatrix ). Later we will be saying simply that the horizontal
foliation has only closed leaves. The square of an Abelian differential, or a quadratic
differential having this property is called a Jenkins-Strebel quadratic differential,
see [35]. For example, square-tiled surfaces provide particular cases of Jenkins-Strebel
differentials.
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Following [31] we will associate with each Abelian or quadratic differential whose
horizontal foliation has only closed leaves a combinatorial data called separatrix dia-
gram (also known as the critical graph of a Jenkins-Strebel differential).

We start with an informal explanation. Consider the union of all saddle connections
for the horizontal foliation, and add all critical points. We obtain a finite graph Γ.
In the case of an Abelian differential it is oriented, where the orientation on the
edges comes from the canonical orientation of the horizontal foliation. In both cases
of an Abelian or quadratic differential, the graph Γ is drawn on an oriented surface,
therefore it carries a ribbon structure, i.e., on the star of each vertex v a cyclic order
is given, namely the counterclockwise order in which half-edges are attached to v.
In the case of an Abelian differential, the direction of edges attached to v alternates
(between directions toward v and from v) as we follow the cyclic order.

It is well known that any finite ribbon graph Γ defines canonically (up to an isotopy)
an oriented surface S(Γ) with boundary. To obtain this surface we replace each edge
of Γ by a thin oriented strip (rectangle) and glue these strips together using the
cyclic order in each vertex of Γ. In our case surface S(Γ) can be realized as a tubular
ε-neighborhood (in the sense of the transversal measure) of the union of all saddle
connections for sufficiently small ε > 0.

In the case of an Abelian differential, the orientation of edges of Γ gives rise to
the orientation of the boundary of S(Γ). Notice that this orientation is not the same
as the canonical orientation of the boundary of an oriented surface. Thus, connected
components of the boundary of S(Γ) are decomposed into two classes: positively and
negatively oriented (positively when two orientations of the boundary components
coincide and negatively, when they are opposite). We shall also refer to them as the
top and bottom components of the corresponding cylinder, with respect to the positive
orientation of the vertical foliation. The complement to the tubular ε-neighborhood
of Γ is a finite disjoint union of open flat cylinders foliated by circles. It gives a
decomposition of the set of boundary circles π0(∂S(Γ)) into pairs of components
having opposite orientation.

Now we are ready to give a formal definition (see §4 in [31] for more details on
separatrix diagrams):

Definition 2.1. — A separatrix diagram is a (not necessarily connected) oriented rib-
bon graph Γ, and a decomposition of the set of boundary components of S(Γ) into
pairs and so that identifying these boundary components we get a connected surface.

An orientable separatrix diagram satisfies the following additional properties:

1. the orientation of the half-edges at any vertex alternates with respect to the
cyclic order of edges at this vertex;

2. there is one positively oriented and one negatively oriented boundary component
in each pair.

Any separatrix diagram represents a measured foliation with only closed leaves on
a compact oriented surface without boundary. We say that a diagram is realizable if,
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moreover, this measured foliation can be chosen as the horizontal foliation of some
Abelian or quadratic differential (depending on orientability of the foliation).

Assign to each saddle connection a real variable standing for its “length”. Now any
boundary component is also naturally endowed with a “length”. If we want to glue flat
cylinders to the boundary components, the lengths of the components in every pair
should match each other. Thus, for every two boundary components paired together
we get a linear relation on the lengths of saddle connections. Clearly, a diagram is
realizable if and only if the corresponding system of linear equations on lengths of
saddle connections admits a strictly positive solution.

As an example, consider all possible separatrix diagrams which might appear in
the stratum H (2) (see § 5 in [42] for more details). The single conical singularity of
a flat surface in H (2) has cone angle 6π, so every separatrix diagram has a single
vertex with six prongs. Since it corresponds to the stratum of Abelian differentials, it
should be oriented. All such diagrams are presented in Figure 1. We see, that the left
diagram D1 defines a translation surface with a single pair of boundary components
(i.e., with a single cylinder filled with closed horizontal leaves); it is realizable for all
positive values `1, `2, `3 of length parameters. The middle diagram defines a surface
with two pairs of boundary components (i.e., with two cylinders filled with closed
horizontal leaves); it is realizable when `1 = `3. The right diagram would correspond to
a surface with a single “top” boundary component, and with three “bottom” boundary
components. Since each “top” boundary component must be attached to a “bottom”
boundary component by a cylinder, this diagram is not realizable by a translation
surface.

in every pair should match each other. Thus, for every two boundary components
paired together we get a linear relation on the lengths of saddle connections. Clearly,
a diagram is realizable if and only if the corresponding system of linear equations
on lengths of saddle connections admits a strictly positive solution.

As an example, consider all possible separatrix diagrams which might appear in
the stratum H(2) (see § 5 in [Zor2] for more details). The single conical singularity
of a flat surface in H(2) has cone angle 6π, so every separatrix diagram has a single
vertex with six prongs. Since it corresponds to the stratum of Abelian differentials,
it should be oriented. All such diagrams are presented in Figure 1. We see, that
the left diagram D1 defines a translation surface with a single pair of boundary
components (i.e. with a single cylinder filled with closed horizontal leaves); it is
realizable for all positive values ℓ1, ℓ2, ℓ3 of length parameters. The middle diagram
defines a surface with two pairs of boundary components (i.e. with two cylinders
filled with closed horizontal leaves); it is realizable when ℓ1 = ℓ3. The right diagram
would correspond to a surface with a single “top” boundary component, and with
three “bottom” boundary components. Since each “top” boundary component must
be attached to a “bottom” boundary component by a cylinder, this diagram is not
realizable by a translation surface.

ℓ1

ℓ2ℓ3

ℓ1

ℓ2

ℓ3

D1 D2 D3

Figure 1. The separatrix diagrams represent from left to right a square-
tiled surface glued from: D1 (one cylinder); D2 (two cylinders); D3 (not
realizable by a square-tiled surface).

2.2. Contribution of 1-cylinder diagrams. — Recall from Section 1 that the volume of
a stratum of Abelian differential L = H (m1, . . . ,mr) defined by (1.1) can be written
as a sum of contributions of 1-cylinder surfaces, 2-cylinder surfaces, etc.

Vol L = c1(L ) + c2(L ) + · · ·+ cg+r−1(L )

ASTÉRISQUE 415



ONE-CYLINDER SQUARE-TILED SURFACES 235

Moreover, it follows also from [11] that each ck(L ) decomposes itself as a sum of
contribution of each diagram

ck(L ) =
∑

realizable D in L with k cylinders

c(D),

where c(D) = c(DZ) is the contribution of a realizable separatrix diagram D. The
same decomposition holds for the strata of quadratic differentials.

Proposition 2.2. — The contribution of any 1-cylinder orientable separatrix dia-
gram D to the volume Vol H (m1, . . . ,mr) of a stratum of Abelian differentials
equals

(2.1) c(D) =
2

|Aut(D)|
· µ1! · µ2! · · ·

(d− 2)!
· ζ(d).

Here |Aut(D)| is the order of the symmetry group of the separatrix diagram D;
µi is the number of zeroes of order i, i.e., the multiplicity of the entry i in the set
{m1, . . . ,mr}; and d = dimC H (m1, . . . ,mr) = 2g + r − 1. Speaking of the volume
of the stratum we assume that the zeroes P1, . . . , Pr of the Abelian differentials are
numbered (labeled).

For the case of quadratic differentials, consider a non-orientable measured folia-
tion on a closed surface such that all its regular leaves are closed and fill a single
flat cylinder. We refer the reader to Figure 2 in Section 2.5 for an illustration. Cut
the surface along all saddle connections to unwrap it into a cylinder. Every saddle
connection is presented exactly two times on the boundary of the resulting cylin-
der. Call any of the two boundary components of the cylinder the “top” one and the
complementary component — the “bottom” one.Denote by l the number of saddle
connections which are presented once on top and once on the bottom; by m the num-
ber of saddle connections which are presented twice on the top, and by n the number
of saddle connections which are presented twice on the bottom. It is immediate to
see that if the original flat surface belongs to some stratum Q(d1, . . . , dk) of mero-
morphic quadratic differentials with at most simple poles, then l+m+ n = d, where
d = dimC Q(d1, . . . , dk) = 2g + k − 2. Since the measured foliation is non orientable,
both m and n are strictly positive.

Proposition 2.3. — The contribution of any 1-cylinder separatrix diagram D to the
volume Vol Q(d1, . . . , dk) of a stratum of meromorphic quadratic differentials with at
most simple poles equals

(2.2) c(D) =
2l+2

|Aut(D)|
· (m+ n− 2)!

(m− 1)!(n− 1)!
· µ−1! · µ1! · µ2! · · ·

(d− 2)!
· ζ(d).

Here |Aut(D)| is the order of the symmetry group of the separatrix diagram (ribbon
graph) D; µ−1 is the number of simple poles; µi is the number of zeroes of order i;
d = dimC Q(d1, . . . , dk) = 2g + k − 2; m and n are the numbers of saddle connections
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which are presented only on top (respectively, on bottom) boundary components of the
cylinder.

Defining the symmetry group Aut(D) we assume that none of the vertices, edges,
or boundary components of the ribbon graph D is labeled; however, we assume that
the orientation of the ribbons is fixed. Defining the volume of Q(d1, . . . , dk) we assume
that the zeroes and poles are numbered (labeled).

Propositions 2.2 and 2.3 are proved in Section 2.5.

We now use the Frobenius formula in the theory of representations of the symmet-
ric group to count the number of 1-cylinder diagrams in a given stratum of Abelian
differentials. As remarked in [9] the 1-cylinder diagrams can be seen as pairs of n-cy-
cles whose product belongs to a given conjugacy class determined by the stratum.
Frobenius theorem allows to interpret our count as a sum over irreducible characters
of the symmetric group. We follow the notations of §A.2 in [40] and refer the reader
to this reference for all the relevant background.

Recall that a representation ρ of the symmetric group Sn is a homomorphism
ρ : Sn → GL(V ) where V is a finite dimensional complex vector space. The sim-
plest example is given by the permutation action of Sn on coordinates in Cn.
This action leaves invariant the 1-dimensional subspace generated by the sum
e1 + e2 + · · ·+ en of the vectors of the basis and the (n − 1)-dimensional subspace
Wn := {

∑
xiei :

∑
xi = 0}, where ei denotes the elements of the standard basis

of Cn. The representation Stn induced on Wn is irreducible (i.e., it does not contain
non-trivial invariant subspaces).

Now define the characters of the exterior powers of the representation Stn

χj(g) := tr(g, πj) πj :=

j∧
(Stn) (0 ≤ j ≤ n− 1).

Theorem 2.4. — The absolute contribution c1(L ) of all 1-cylinder orientable separatrix
diagrams Dα to the volume Vol L of the stratum L = H (m1, . . . ,mr) of Abelian
differentials equals

(2.3) c1(L ) =
2

n!
·
∏
k

1

(k + 1)µk
·
n−1∑
j=0

j!(n− 1− j)!χj(ν) · ζ(n+ 1).

Here n = (m1+1)+· · ·+(mr+1) = dimC H (m1, . . . ,mr)−1; ν ∈ Sn is any permu-
tation which decomposes into cycles of lengths (m1 +1), . . . , (mr+1); µi is the number
of zeroes of order i, i.e., the multiplicity of the entry i in the multiset {m1, . . . ,mr}.
Speaking of the volume of the stratum we assume that the zeroes P1, . . . , Pr of the
Abelian differentials are numbered (labeled).

Remark 2.5. — Considering 1-cylinder square-tiled surfaces we never restricted the
height of the cylinder. In certain context (for example, for count of meanders as
in [10]), one needs to consider only 1-cylinder square-tiled surfaces represented by a
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single horizontal band of squares. Denote by cyl1(L ) the contribution to the Masur-
Veech volume Vol L of a stratum L of Abelian or quadratic differentials coming from
such more specific 1-cylinder square-tiled surfaces. It would be clear from the proofs
of Propositions 2.2 and 2.3 that the corresponding contributions cyl(D) and c(D) of
an individual 1-cylinder diagram D to Vol L respectively with and without this extra
restriction on the height of the cylinder, and hence, the contributions cyl1(L ) and
c1(L ) to the volume of the stratum, differ by the factor ζ(d), where d = dimC L .

c1(L ) = ζ(d) · cyl1(L ),

c1(D) = ζ(d) · cyl1(D).

Applying Theorem 2.4 to two particular strata, namely to the principal stratum
and to the minimal one, we get a close expression given by Corollary 2.6. For other
strata Theorem 2.10 below provides a very good estimate (2.7) for c1(L ).

Corollary 2.6. — The absolute contribution of all 1-cylinder orientable separatrix di-
agrams to the volume Vol H (12g−2) = Vol H (1, . . . , 1︸ ︷︷ ︸

2g−2

) of the principal stratum and to

the volume Vol H (2g − 2) of the minimal stratum of Abelian differentials equals

c1(H (12g−2)) =
ζ(4g − 3)

4g − 2
· 4

22g−2
,(2.4)

c1(H (2g − 2)) =
ζ(2g)

2g
· 4

2g − 1
.(2.5)

Theorem 2.4 and Corollary 2.6 are proved in Section 2.6. See also Appendix B for
alternative proofs.

Example 2.7. — A square-tiled surface in the stratum H (2) may have one of the two
separatrix diagrams D1,D2 shown in Figure 1. Square-tiled surfaces corresponding
to separatrix diagrams D1,D2 have one and two maximal cylinders filled with closed
regular horizontal geodesics respectively. Direct computations in [42] show that the
constants c(Di) have values

(2.6) c(D1) =
2

3!
· ζ(4) c(D2) =

2

3!
· 5

4
· ζ(4).

Note that the separatrix diagram D1 has symmetry of order 3, so |Aut(D1)| = 3!,
and the value c(D1) matches (2.1). We have:

Vol H (2) = c(D1) + c(D2) =
3

4
ζ(4) =

π4

120
.

Morally, Theorem 1.1 implies that a “random” Abelian differential with rational
periods in any open subset in H (2) would have single maximal horizontal cylinder
filling the entire surface with probability 4/9 and two horizontal cylinders of different
perimeters filling together the entire surface with probability 5/9.
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The next example shows that the values of similar proportions for more complicated
strata become much more elaborate.

Example 2.8. — A square-tiled surface in the stratum H (3, 1) might have from 1

to 4 cylinders. Taking the sums of c(Dα) for 4 one-cylinder diagrams in the stratum
H (3, 1), 30 two-cylinder diagrams, 44 three-cylinder diagrams, and 10 four-cylinder
diagrams (here the numbers of oriented separatrix diagrams are given without any
weights), and computing the proportions, or probabilities

Pi(H (3, 1)) =
ci(3, 1)

Vol H (3, 1)

we get (see [42]):

P1(H (3, 1)) =
3ζ(7)

16ζ(6)
≈ 0.19,

P2(H (3, 1)) =
55ζ(1, 6) + 29ζ(2, 5) + 15ζ(3, 4) + 8ζ(4, 3) + 4ζ(5, 2)

16ζ(6)
≈ 0.47,

P3(H (3, 1)) =
1

32ζ(6)

(
12ζ(6)− 12ζ(7) + 48ζ(4)ζ(1, 2) + 48ζ(3)ζ(1, 3)

+ 24ζ(2)ζ(1, 4) + 6ζ(1, 5)− 250ζ(1, 6)− 6ζ(3)ζ(2, 2)

− 5ζ(2)ζ(2, 3) + 6ζ(2, 4)− 52ζ(2, 5) + 6ζ(3, 3)− 82ζ(3, 4)

+ 6ζ(4, 2)− 54ζ(4, 3) + 6ζ(5, 2) + 120ζ(1, 1, 5)− 30ζ(1, 2, 4)

− 120ζ(1, 3, 3)− 120ζ(1, 4, 2)− 54ζ(2, 1, 4)− 34ζ(2, 2, 3)

− 29ζ(2, 3, 2)− 88ζ(3, 1, 3)− 34ζ(3, 2, 2)− 48ζ(4, 1, 2)

)
≈ 0.30,

P4(H (3, 1)) =
ζ(2)

8ζ(6)

(
ζ(4)− ζ(5) + ζ(1, 3) + ζ(2, 2)− ζ(2, 3)− ζ(3, 2)

)
≈ 0.04.

Note that for separatrix diagrams Dα with k > 1 cylinders, the contribution c(Dα)

of the diagram varies from diagram to diagram, and even in the example above the
contribution of an individual diagram is not necessarily reduced to a polynomial in
multiple zeta values with rational coefficients.

Question 2.9. — Is it true that the total contribution of all k-cylinder separatrix dia-
grams to the volume of any stratum of Abelian differentials is a polynomial in multiple
zeta values with rational (or even integer) coefficients?

2.3. Asymptotics in large genera. — Theorem 2.4 combined with Theorem 2 in [39]
provides the following result which is proved in Section 2.6.

Theorem 2.10. — The absolute contribution c1(L ) of all 1-cylinder orientable sepa-
ratrix diagrams to the volume Vol L of any stratum L = H (m1, . . . ,mr) of Abelian
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differentials satisfies the following bounds

(2.7)
ζ(d)

d+ 1
· 4

(m1 + 1) · · · (mr + 1)
≤ c1(L ) ≤ ζ(d)

d− 10
29

· 4

(m1 + 1) · · · (mr + 1)
,

where d = dimC H (m1, . . . ,mr).

To discuss the asymptotic behavior of the relative contribution P1(L ) for the strata
of large genera we use recent result of A. Aggarwal [1] on the Masur-Veech volume
asymtptotics. Let Π2g−2 be the set of integer partitions m = (m1, . . . ,mr) of 2g − 2

into (unordered) positive numbers.

Theorem 2.11 ([1]). — For any m ∈ Π2g−2 one has

(2.8) Vol H (m1, . . . ,mr) =
4

(m1 + 1) · · · · · (mr + 1)
· (1 + ε1(m)),

where
lim
g→∞

max
m∈Π2g−2

ε1(m) = 0.

The above result was a long standing conjecture of A. Eskin and A. Zorich [22].
It was first proved in the case of the principal stratum H (1, . . . , 1) by D. Chen,
M. Möller and D. Zagier [7] and in the case of the minimal stratum H (2g − 2) by
A. Sauvaget [34].

As a consequence for the volume asymptotics, we obtain the asymptotics P1(L )

of the contribution of 1-cylinder square tiled surfaces to the Masur-Veech volume of
strata.

Corollary 2.12. — Let P1(L ) be the relative contribution of 1-cylinder separatrix dia-
grams to the volume of the stratum L . Then:

(2.9) dimC(L ) · P1(L )→ 1 as g → +∞,

where the convergence is uniform for all strata in genus g and where dimC L = 2g + r − 1

is the dimension of the stratum L .

Proof. — Recall that P1(L ) = c1(L)
Vol H(L)

. Applying expressions (2.7) and (2.8) for the
numerator and the denominator of the latter ratio respectively and multiplying the
result by d = dimC L we get

ζ(d) · d

d+ 1
· 1

1 + ε(L )
≤ d · P1(L ) ≤ ζ(d) · d

d− 10
29

· 1

1 + ε(L )
,

where ε(L ) := ε(m) for L = H (m). Note that ζ(d) tends to 1 when d → +∞. Note
also that dimensions d of strata in genus g vary from 2g to 4g − 3, so it follows from
Theorem 2.11 that ε(L ) tends to 0 uniformly for all strata L of dimension d when
d→ +∞.
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Note that the statement in Corollary 2.12 is equivalent to Aggarwal Theorem 2.11.
It would be very interesting to find an argument proving the asymptotics of relative
contribution of 1-cylinder square-tiled surfaces to the Masur-Veech volume directly.

Recall that some strata are not connected. However, all the above results can be
easily generalized to connected components. We start with the hyperelliptic connected
components Hhyp(2g − 2) and Hhyp(g − 1, g − 1), which are always very special and
do not fit the general picture. The situation is particularly simple with them. The
results in [3] provide a simple closed formula for the volume of these components.
These volumes are completely negligible with respect to conjectural volume (2.8) of
the entire strata. On the other hand, each hyperelliptic component has a unique
1-cylinder separatrix diagram D, which has the cyclic symmetry group Aut(D) of
order d − 1 (see Proposition 5 in [44]). Thus, the contribution c1 of all 1-cylinder
diagrams is basically given by Proposition 2.2.

Proposition 2.13. — The relative contribution of 1-cylinder separatrix diagrams to the
volumes of the hyperelliptic components is given by the following expressions:

P1(Hhyp
1 (2g − 2)) =

ζ(2g)

π2g
· 2g(2g + 1) · (2g − 2)!!

(2g − 3)!!
∼ 4 · g5/2

π2g−1/2
.

P1(Hhyp
1 (g − 1, g − 1)) =

ζ(2g + 1)

2π2g
· (2g + 1)(2g + 2) · (2g − 1)!!

(2g − 2)!!
∼ 4 · g5/2

π2g+1/2
.

Proposition 2.13 shows that the resulting relative contribution P1 of 1-cylinder
separatrix diagrams to the volumes of the hyperelliptic components is completely
negligible with respect to (2.9). It is proved in the end of Section 2.6.

It remains to consider nonhyperelliptic components H even(2m1, . . . , 2mr) and
H odd(2m1, . . . , 2mr). Recall another conjecture from [22]:

Conjecture 2.14 ([22, Conjecture 2]). — The ratio of volumes of even and odd
components of strata H (2m1, . . . , 2mr) tends to 1 uniformly for all partitions
m1 + · · ·+mr = g − 1 as genus g tends to infinity, i. e.

lim
g→+∞

Vol H even(2m1, . . . , 2mr)

Vol H odd(2m1, . . . , 2mr)
= 1

uniformly in m1, . . . ,mr. (1)

By the result in [9, Theorem 4.19], the ratio of the weighted numbers of 1-cylin-
der separatrix diagrams in the connected components H even

1 (2m1, . . . , 2mr) and
H odd

1 (2m1, . . . , 2mr) also tends to 1 uniformly for all partitions m1 + · · ·+mr = g−1

as genus g tends to infinity. Thus, we obtain the following statement.

Conditional Corollary 2.15. — Conjecture 2.14 and Theorem 2.11 restricted to the
strata with zeroes of even degrees are together equivalent to the following statement:

(1) The conjecture was recently proved in [5].
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for any partition (m1, . . . ,mr) of g − 1 into a sum of strictly positive integers
m1 + · · ·+mr = g − 1 one has

d · P1(H even(2m1, . . . , 2mr))→ 1 as g → +∞

d · P1(H odd(2m1, . . . , 2mr))→ 1 as g → +∞,

where d = 2m1 + · · ·+ 2mr + r + 1 and convergence is uniform for all strata in genus g.

Since we do not want to overload the current paper, the questions concerning the
asymptotic proportions Pk(L ) of k-cylinder diagrams for k = 2, 3, . . . for strata of
high genera will be addressed in a separate paper. In this forthcoming paper we will
treat, in particular, the question of the dependence of Pk(L ) on the genus and the
dimension of the stratum, and the question of the limit distribution of Pk(L ) with
respect to all possible k for strata of large genera.

2.4. Application: experimental evaluation of the Masur-Veech volumes. — Let L be
a component of a stratum of Abelian differentials or of meromorphic quadratic dif-
ferentials with at most simple poles. We first present a Monte-Carlo method (2) to
approximate P1(L ) via Theorem 1.2 (Abelian case) or Theorem 1.4 (quadratic case).
Pick a permutation or generalized permutation π whose suspensions belong to L . Take
a relatively compact box V in Rd+ or Cd+(π). Then fix a large number N and for a sam-
ple of lengths λ in V ∩ 1

NN compute the proportion of one cylinder interval exchanges
among the (π, λ). This gives an approximation of the relative contribution P1(L )

of 1-cylinder diagrams to the volume of the chosen component of stratum L .
Now, one can perform an exact count of the weighted number of 1-cylinder separa-

trix diagrams (where the weight is reciprocal to the order of the symmetry group of
the diagram). Applying Proposition 2.2 (respectively, Proposition 2.3) we obtain the
exact value c1(L ) of the contribution of 1-cylinder diagrams to the volume. Since, we
already know approximately, what part of the total value makes the resulting volume,
we obtain an approximate value of the volume of the ambient stratum. The experi-
mental and theoretical values of the volumes of low dimensional strata of quadratic
differentials are compared in Appendix C in the initial longer arXiv version [11] of
the current paper.

2.5. Contribution of a single 1-cylinder separatrix diagram: computation. — Consider
Jenkins-Strebel differentials represented by a single flat cylinder C filled by closed
horizontal leaves. Note that all zeroes and poles (critical points of the horizontal
foliation) of such differential are located on the boundary of this cylinder.

Each of the two boundary components ∂C+ and ∂C− of the cylinder is subdivided
into a collection of horizontal saddle connections ∂C+ = Xα1 t · · · tXαr and ∂C− =

Xαr+1
t · · · tXαs . The subintervals are naturally organized in pairs of equal length;

(2) The term Monte-Carlo refers to the fact that the output of our algorithm is a random approx-
imation of the volume. The quality of approximation depends on the randomly chosen sample of
integer points.
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X1

X1

X3
X0

X2 X3
X2

X1 X1

X2 X3 X2 X3

X0 X0

X1

X2

X3

Figure 2. A Jenkins-Strebel differential with a single cylinder, one of
its parallelogram patterns, and its ribbon graph representation. We have
l = 0, m = 1, n = 2. The stratum is Q(2,−12)

subintervals in every pair are identified by a natural isometry which preserves the
orientation of the surface. Denoting both subintervals in the pair representing the same
saddle connection by the same symbol, we encode the combinatorics of identification
of the boundaries of the cylinder by two lines of symbols,

(2.10)
-�� ��
-�� ��

α1 · · · αr

αr+1 · · · · · · αs

where the symbols in each line are organized in a cyclic order.

Choice of cyclic ordering. — There are two alternative conventions on the choice of
this cyclic order. Note that our surface is oriented (and not only orientable). Hence,
this orientation induces a natural orientation of each of ∂C+ and of ∂C− which defines
a cyclic order on the symbols labeling the segments.

Note also that if we have an Abelian differential, its horizontal foliation is oriented.
The corresponding orientation of leaves defines the same cyclic order as the previous
one on one boundary component of the cylinder and the opposite cyclic order on the
other boundary component of the cylinder.

For quadratic differentials the foliation is nonorientable. However, for a Jenkins-
Strebel differential we can coherently choose the orientation of all regular leaves in the
interior of each maximal cylinder, and it induces the cyclic order of symbols labeling
the segments on ∂C+ and ∂C−. Similarly to the case of Abelian differentials, this
cyclic ordering coincides with the one induced by the orientation of the surface on
one of the two components ∂C+, ∂C− and provides the opposite cyclic ordering on
the other component.

In (2.10) we use the cyclic ordering coming from the orientation of the foliation
and not from the orientation of the surface.

Abelian versus quadratic differentials. — By construction, every symbol appears ex-
actly twice in two lines (2.10). If all the symbols in each line are distinct, the resulting
flat surface has trivial linear holonomy and corresponds to an Abelian differential. In
this case every interval on one side of the cylinder is identified with and interval on
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the other side and vice versa, so there are no relations between the lengths of the in-
tervals. In other words, any orientable separatrix diagram having only two boundary
components is realizable.

Otherwise, a flat metric of the resulting closed surface has holonomy group Z/2Z;
in the latter case it corresponds to a meromorphic quadratic differential with at most
simple poles. In this case there is a linear relation between the lengths of the intervals:
the sum of lengths of all intervals on one side of the cylinder is equal to the sum of
lengths of all intervals on the other side. This implies the following combinatorial
restriction: the set of symbols in one line cannot be a proper subset of the set of sym-
bols on the complimentary line. This condition is a necessary and sufficient condition
of realizability for a non-orientable separatrix diagram. For example, the following
combinatorial data

-�� ��
-�� ��

1 2 3

3 4 1 2 4

do not admit any strictly positive solution for the lengths of subintervals, while
-�� ��
-�� ��

5 1 2 3 5

3 4 1 2 4

admits strictly positive solutions satisfying the relation λ4 = λ5.

Contribution of each individual 1-cylinder separatrix diagram. — Now everthing is
ready for the proofs of Propositions 2.2 and 2.3.

Proof of Proposition 2.2. — An orientable 1-cylinder separatrix diagram D repre-
senting a stratum of Abelian differentials of complex dimension d has d − 1 separa-
trices (horizontal saddle connections). Denote the length of the i-th separatrix by λi.
The perimeter w of the cylinder is equal to the sum of the lengths of all separatrices,
namely w = λ1 + λ2 + · · · + λd−1. Denote by h the height of the cylinder. Finally,
denote by φ the “twist”, where 0 ≤ φ < w. The number of square-tiled surfaces tiled
with at most N unit squares and having D as the separatrix diagram equals

1

|Aut(D)|
∑

λ1,...,λd−1,h∈N
w=λ1+···+λd−1

w·h≤N

w ≈
1

|Aut(D)|
∑
w,h∈N
w·h≤N

w ·
wd−2

(d− 2)!
=

=
1

|Aut(D)|
1

(d− 2)!

∑
w,h∈N
w≤Nh

wd−1 ≈
1

|Aut(D)|
1

(d− 2)!

∑
h∈N

1

d
·

(
N

h

)d

=
1

|Aut(D)|
Nd

(d− 2)!

1

d
·
∑
h∈N

1

hd
=

1

|Aut(D)|
1

d
·

Nd

(d− 2)!
· ζ(d) .

The above expression gives the asymptotic number of square-tiled surfaces corre-
sponding to the diagram D tiled with at most N unit squares. By Equation (1.1)
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the contribution of any such term to the Masur-Veech volume Vol Lunnumbered of the
stratum with unnumbered zeroes is computed by multimplying by 2d

Nd
and by pass-

ing to the limit when N → +∞. Thus, the contribution of the 1-cylinder separatrix
diagram D to the volume of the ambiant stratum with unnumbered zeroes is

1

|Aut(D)|
· 2

(d− 2)!
· ζ(d).

Representing the set {m1, . . . ,mr} as {1µ1 , 2µ2 , . . .} we get the following formula
for the contribution of an individual rooted diagram to the Masur-Veech volume
Vol H (m1, . . . ,mr) of the stratum with numbered zeroes:

2

|Aut(D)|
· µ1! · µ2! · · ·

(d− 2)!
· ζ(d).

which completes the proof of Proposition 2.2.

Proof of Proposition 2.3. — The evaluation of the contribution of an 1-cylinder di-
agram to the volume of a stratum of quadratic differentials is analogous. The only
difference is that it gets an extra weight depending on the additional discrete param-
eters l,m, n of the diagram.

Consider a nonorientable 1-cylinder separatrix diagram. Each separatrix (i.e., each
horizontal saddle connection) is represented by two intervals on the boundary of the
cylinder. One may have one interval on each of the two boundary components, both
intervals on the “top” boundary component of the cylinder, or both on the “bottom”
boundary component. Recall that we denote the number of corresponding saddle
connections by l,m, n correspondingly.

We start with a more general situation when l > 0. Introduce the following nota-
tion:

w1 := λi1 + · · ·+ λil

w2 := 2(λj1 + · · ·+ λjm) = 2(λk1 + · · ·+ λkn),

where by λis , s = 1, . . . , l we denote the lengths of the segments which are present
on the both sides of the cylinder, by λjs , s = 1, . . . ,m we denote the lengths of the
segments which are present only on top of the cylinder, and by λks , k = 1, . . . , n

we denote the lengths of the segments which are present only on the bottom of the
cylinder. For example, on Figure 2 the segment X1 is present only on the top, the
segments X2, X3—only on the bottom, and there are no other segments, so we have
l = 0,m = 1, n = 2.

In this notation the length w of the waist curve (perimeter) of the cylinder is
equal to w = w1 + w2. When l > 0 (that is when the boundary components of the
cylinder share at least one common interval) the waist curve γ of the cylinder is not
homologous to zero. Under our assumptions on the normalization (see Convention 1.3
for details) the lengths λs of all subintervals are half-integers, w1 is a half-integer,
w2 is automatically an integer, and w is a half-integer.
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The number of compositions of an integer n into exactly k parts is given by the
binomial coefficient

(
n−1
k−1

)
. Thus, the leading term in the number of ways to represent

w1 � l as a sum of l half-integers

w1 = λi1 + · · ·+ λil

is

2l−1 wl−1
1

(l − 1)!
.

The leading term in the number of ways to represent w2 as a sum ofm (respectively n)
integers

w2 = 2λj1 + · · ·+ 2λjm = 2λk1 + · · ·+ 2λkn

is
wm−1

2

(m− 1)!

(
respectively

wn−1
2

(n− 1)!

)
.

Denote by h the half-integer height of our single cylinder and introduce the integer
parameter H = 2h. The condition w · h ≤ N/2 on the area of the surface translates
as w ·H ≤ N in terms of the parameter H. Thus, introducing the notation W := 2w,
we can represent the leading term in the corresponding sum as∑
w∈ 1

2N
H∈N

w·H≤N

∑
w2∈N
w2<w

2w · 2l−1 (w − w2)l−1

(l − 1)!
· wm−1

2

(m− 1)!
· wn−1

2

(n− 1)!

=
2l−1

(l − 1)!(m− 1)!(n− 1)!

∑
W,H∈N
W ·H≤2N

W

bW/2c∑
w2=1

(W/2− w2)l−1wm+n−2
2 ∼

∼ 2l−1

(l − 1)!(m− 1)!(n− 1)!
·
∑
H∈N

b2N/Hc∑
W=1

W

(
W

2

)l+m+n−2∫ 1

0

(1− u)l−1um+n−2du

∼ 2l−1

(l − 1)!(m− 1)!(n− 1)!
· (l − 1)!(m+ n− 2)!

(l +m+ n− 2)!

· 1

2l+m+n−2
·
∑
H∈N

1

l +m+ n
·
(

2N

H

)l+m+n

=
2l+1(m+ n− 2)!

(m− 1)!(n− 1)!(l +m+ n− 2)!
· N

l+m+n

l +m+ n
· ζ(l +m+ n),

where we used the relation∫ 1

0

ua(1− u)bdu =
a!b!

(a+ b+ 1)!
.

The above expression gives the asymptotic number of square-tiled surfaces correspond-
ing to the diagram D tiled with at most 2N squares of the size 1

2×
1
2 . By Equation (1.5)

the contribution of any such term to the Masur-Veech volume Vol Lunnumbered of the
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stratum with unnumbered zeroes is computed by multimplying the latter expres-
sion by 2d

Nd
and by passing to the limit when N → +∞. It remains to note that

d = l + m + n to obtain the contribution of D to the volume of the corresponding
stratum with anonymous (non-numbered) zeroes and poles:

2l+2(m+ n− 2)!

(m− 1)!(n− 1)!(l +m+ n− 2)!
· ζ(l +m+ n).

Multiplying the result by the product of factorials responsible for numbering the
zeroes and poles, we get the desired Formula (2.2).

In the remaining particular case when l = 0 (that is, when the boundary com-
ponents of the cylinder do not share a single common saddle connection) the waist
curve γ of the cylinder is homologous to zero, while γ̂ is not. Under our assumptions
on the normalization, the lengths λs of all subintervals are half-integers, and w = w2

is automatically an integer, as it should be. Performing a completely analogous com-
putation we get a particular case of Formula (2.2) where l = 0.

2.6. Counting 1-cylinder diagrams for strata of Abelian differentials based on Frobenius
formula and Zagier bounds. — Enumeration of orientable 1-cylinder separatrix dia-
grams through Frobenius formula was elaborated in [9]. Consider some stratum of
Abelian differentials H (m1, . . . ,mr). Let

(2.11) n =

r∑
i=1

(mi + 1) = 2g − 2 + r = dimC H (m1, . . . ,mr)− 1.

Denote by C(ψ) the conjugacy class of a permutation ψ in the symmetric group Sn;
denote by C(σ) the conjugacy class of the cyclic permutation σ = (1, 2, . . . , n) in Sn.
Finally, denote by C(ν) the conjugacy class of the product of r cycles of lengths
(m1 + 1, . . . ,mr + 1).

Following [40] denote by N (Sn;C(σ), C(σ), C(ν)) the number of solutions of the
equation c1c2c3 = 1, where the permutations c1 and c2 belong to the conjugacy
class C(σ) and the permutation c3 belongs to the conjugacy class C(ν):

(2.12) N (Sn;C(σ), C(σ), C(ν)) = #{(c1, c2, c3) ∈ C(σ)×C(σ)×C(ν)|c1c2c3 = 1}.

Every such solution defines a 1-cylinder separatrix diagram corresponding to the
stratum H (m1, . . . ,mr). Indeed, consider a horizontal cylinder S1 × [0; 1] such that
each of its boundary components is subdivided into n segments. Choose the orienta-
tion of the boundary components induced by the orientation of the circle S1 (on one
of the two components it differs from the orientation induced from the orientation
on the cylinder) and assign labels from 1 to n to the subintervals of one boundary
component in such a way that they appear in the cyclic order c1, and assign labels
to the remaining boundary component in such a way that they appear in the cyclic
order c−1

2 . Cut the cylinder along the horizontal waist curve and identify pairs of
subintervals on the boundary components carrying the same labels respecting the ori-
entation induced from S1. Consider the 1-cylinder separatrix diagram D represented
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by the resulting ribbon graph. The relation c1 · c2 = c−1
3 , where c3 ∈ C(ν), guarantees

that D corresponds to the stratum H (m1, . . . ,mr).

Example 2.16 (See [44] for details). — Consider the pair of cyclic permutations
c1 = (1, 2, 3, 4, 5, 6, 7, 8) and c2 = (4, 3, 2, 5, 8, 7, 6, 1) in S8. The two boundary
components of the corresponding horizontal cylinder get the following labeling:

(2.13)
-�� ��
-�� ��

1→ 2→ 3→ 4→ 5→ 6→ 7→ 8

4→ 3→ 2→ 5→ 8→ 7→ 6→ 1

The corresponding translation surface is represented in Figure 3 in two different
ways: as a cylinder (rather a parallelogram) with pairs of corresponding sides identified
by parallel translations and as a ribbon graph (separatrix diagram). The core of the
corresponding ribbon graph has four vertices of valence four representing four conical
singularities of angles 4π, or, equivalently, four simple zeroes of the resulting Abelian
differential. Each edge of the ribbon graph represents a horizontal saddle connection
(separatrix). Turning around zeroes in a counterclockwise direction, see Figure 3, we
see the incoming horizontal separatrix rays appear in the cyclic orders given by the
cyclic decomposition of c1 · c−1

2 , namely

c1 · c−1
2 = (1, 3)(2, 4)(5, 7)(6, 8)

X1

X2

X3

X4

X5

X6

X7

X8

X1

1 2 3 4 5 6 7 8

4 3 2 5 8 7 6 1

0 0

Figure 3. The ribbon graph representation of a Jenkins-Strebel differen-
tial with a single cylinder (top picture) versus the cylinder representation
(bottom picture). All vertices marked with the same symbols are identified
to a single conical singularity.

It is clear that a simultaneous conjugation of permutations c1, c2, c3 by the
same permutation does not change the 1-cylinder diagram. In particular, we can
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choose c1 = σ. Note also, that our diagrams do not have any distinguished (marked)
intervals. We have |C(σ)| = (n − 1)! for cardinality of C(σ), and we have n ways to
attribute index 1 to one of the intervals at the bottom. Thus, we have proved the
following lemma from [9]:

Lemma 2.17. — The weighted number N1(m1, . . . ,mr) of 1-cylinder diagrams D for
a given stratum H (m1, . . . ,mr), where the weight is the inverse of the order of the
group of symmetries, is expressed as

(2.14) N1(m1, . . . ,mr) =
∑

One-cylinder
diagrams D

in the stratum
H(m1,...,mr)

1

|Aut(D)|
=

1

n!
·N (Sn;C(σ), C(σ), C(ν)).

Now we are ready to prove Theorem 2.10.

Proof of Theorem 2.10. — Following [39] denote by R(ψ) the number of ways to rep-
resent an even permutation ψ in Sn as a product of two n-cycles. Clearly,

(2.15) N (Sn;C(σ), C(σ), C(ψ) = R(π) · |C(ψ)|.

From now on choose any ψ ∈ C(ν), where C(ν) is the conjugacy class of the product
of r cycles of lengths m1 + 1, . . . ,mr + 1 respectively. The cardinality of C(ψ) is given
by

(2.16) |C(ψ)| = |C(ν)| = n! ·
∏
k

1

µk!(k + 1)µk
,

where µk is the multiplicity of the entry k = 1, 2, . . . in (m1, . . . ,mr).
Denote by c(m1, . . . ,mr) the absolute contribution of all 1-cylinder diagrams to

the volume Vol H (m1, . . . ,mr) as in Equation (2.7) from Theorem 2.10. Recall that
d = dim H (m1, . . . ,mr) = n+ 1.

Nesting (2.16) in (2.15) in (2.14) and combining it with the Formula (2.1) from
Proposition 2.2 for the contribution of an individual 1-cylinder diagram to the volume
we get

c(m1, . . . ,mr) =
1

n!
·

(
n! ·

∏
k

1

µk!(k + 1)µk

)
·R(ψ) · µ1! · µ2! · · ·

(n− 1)!
· 2ζ(n+ 1)

=
R(ψ)

(n− 1)!
· 2ζ(n+ 1)

(m1 + 1) · · · · · (mr + 1)
.

By Theorem 2 in [39] the following universal bounds are valid:

2(n− 1)!

n+ 2
≤ R(ψ) ≤ 2(n− 1)!

n+ 19
29

.

Plugging these bounds in the latter expression for c(m1, . . . ,mr) in terms of R(ψ) and
returning to notation d = n+ 1 we obtain the bounds (2.7) from Theorem 2.10.
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Frobenius formula. — We now apply the Frobenius formula to prove Theorem 2.4
and then we evaluate explicitly the contribution of all 1-cylinder diagrams to the
volume of the ambient stratum for the minimal stratum H (2g − 2) and for the prin-
cipal stratum H (1, . . . , 1), and thus prove Corollary 2.6. Note that for g > 3 the
stratum H (2g− 2) contains three connected components. Contribution of all 1-cylin-
der diagrams to individual components is described in Proposition 2.13 and in the
Conditional Corollary 2.15.

Proof of Theorem 2.4. — Applying Frobenius formula in the notation of (A.8) in [40],
we express the quantity (2.12) as a sum over characters χ of the symmetric group Sn:
(2.17)

N (Sn;C(σ), C(σ), C(ν)) =
|C(σ)| · |C(σ)| · |C(ν)|

|Sn|
∑
χ

χ(C(σ))χ(C(σ))χ(C(ν))

χ(1)3−2
.

In our particular case the cardinality of the conjugacy class of the long cycle σ is
|C(σ)| = (n− 1)! and |Sn| = n!.

Following the notation of §A.2 in [40], denote by Stn = Cn/C the standard irre-
ducible representation of dimension n− 1 of the group Sn and put

χj(g) := tr(g, πj) πj :=

j∧
(Stn) (0 ≤ j ≤ n− 1),

where g ∈ Sn is any permutation. It is known that the representations πj are irre-
ducible and pairwise distinct for 0 ≤ j ≤ n− 1 (Lemma A.2.1 in [40]). Moreover, by
Lemma A.2.2 in [40] for any irreducible representation π one has

χπ(σ) =

{
(−1)j , if π ' πj for some j, 0 ≤ j ≤ n− 1,

0 otherwise,

where σ = (1, 2, . . . , n) is the maximal cycle in Sn.
Finally, χj(1) = dimπj =

(
n−1
j

)
.

Substituting all these values in the Frobenius formula we can rewrite (2.17) as

N (Sn;C(σ), C(σ), C(ν)) =
(n− 1)! · (n− 1)! · |C(ν)|

n!
(2.18)

·
n−1∑
j=0

(−1)j · (−1)j · χj(C(ν)) · j!(n− 1− j)!
(n− 1)!

=
|C(ν)|
n
·
n−1∑
j=0

j!(n− 1− j)! · χj(C(ν)).

Plugging the expression (2.18) into (2.14) with |C(ν)| replaced by its value (2.16) and
applying (2.1) we complete the proof of Theorem 2.4.

The latter formula becomes particularly simple in the case of the minimal stratum
H (2g − 2) when C(ν) = C(σ) and in the case of the principal stratum H (1, . . . , 1)

when the cyclic decomposition of ν is composed of 2g − 2 cycles of length 2.
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Proof of Corollary 2.6 for the minimal stratum H (2g − 2).. — In the case of the
minimal stratum we get

(2.19) N (Sn;C(σ), C(σ), C(σ)) =
(n− 1)!

n
·
n−1∑
j=0

(−1)jj!(n− 1− j)!.

Using the combinatorial identity

m∑
k=0

(−1)k(
x
k

) =
x+ 1

x+ 2

(
1 +

(−1)m(
x+1
m+1

) )

(see (2.1) in [27]) we can simplify (2.19) as

(2.20) N (Sn;C(σ), C(σ), C(σ)) =

2 ·
(

(n−1)!
)2

n+1 for odd n,
0 for even n.

Plugging the expression (2.20) into (2.14) and applying (2.1) we complete the proof
of Formula (2.5).

The lemma below will be used in the proof of Corollary 2.6.

Lemma 2.18. — The following identity is valid

(2.21)
m∑
k=0

(−1)k

( (
m
k

)(
2m+1

2k

) − (
m
k

)(
2m+1
2k+1

)) =

{
0 when m is even,
2 · m+1

m+2 when m is odd.

Proof. — We use the following combinatorial identities (see (4.22) and (4.23): in [27])

S(m) :=

m∑
k=0

(−1)k
(
m
k

)(
2m
2k

) =
1 + (−1)m

2
· 2m+ 1

m+ 1

T (m) :=

m∑
k=0

(−1)k
(
m
k

)(
2m+1
2k+1

) =
1− (−1)m

2
· 1

m+ 2
+ (−1)m =

=

{
1

m+2 − 1 if m odd,
1 if m even.
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The second term in the sum (2.21) is exactly T (m), while the first one can be expressed
in terms of S(m) and T (m) as follows:

m∑
k=0

(−1)k
(
m
k

)(
2m+1

2k

) =

m∑
k=0

(−1)k
(
m
k

)(
2m
2k

) · 2m+ 1− 2k

2m+ 1

=

m∑
k=0

(−1)k
(
m
k

)(
2m
2k

) · (2m+ 2

2m+ 1
− 2k + 1

2m+ 1

)

=
2m+ 2

2m+ 1
·
m∑
k=0

(−1)k
(
m
k

)(
2m
2k

) − m∑
k=0

(−1)k
(
m
k

)(
2m+1
2k+1

)
=

2m+ 2

2m+ 1
· S(m)− T (m).

Plugging the values of S(m) and of T (m) into the above expression we complete the
proof of the combinatorial identity (2.21).

Proof of Corollary 2.6 for the principal stratum H (1, . . . , 1)

In the case of the principal stratum we have C(ν) = C(τ), where

τ = (1, 2)(3, 4) · · · (n− 1, n) and n = 4g − 4

(see Equation (2.11) for the formula for n). One has

χj(τ) = (−1)[(j+1)/2]

(
n/2− 1

[j/2]

)
(see the formula below (A.26) in [40]). Finally, it is easy to see directly that
|C(τ)| = (n− 1)!!. Thus, we can rewrite (2.18) in this particular case as

N (Sn;C(σ), C(σ), C(τ)) =
(n− 1)!!

n
·
n−1∑
j=0

j!(n− 1− j)! · (−1)[
j+1
2 ]

(
n
2 − 1[
j
2

] )

=
(n− 1)!!

n
· (n− 1)!

n−1∑
j=0

(−1)[
j+1
2 ] ·

(
n
2 − 1[
j
2

] )(
n−1
j

) .

Denoting m = n
2 − 1, we rewrite the above sum as

n−1∑
j=0

(−1)[
j+1
2 ] ·

(
n
2 − 1[
j
2

] )(
n−1
j

) =

m∑
k=0

(−1)k

( (
m
k

)(
2m+1

2k

) − (
m
k

)(
2m+1
2k+1

)) .
Recall that n = 4g − 4, so m = 2g − 3 is odd. Applying Formula (2.21) we obtain

N (Sn;C(σ), C(σ), C(τ)) =
(n− 1)!!

n
· (n− 1)! ·

(
2 · m+ 1

m+ 2

)
.
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Thus, the weighted number N (1, . . . , 1) of 1-cylinder diagrams (see (2.14)) for the
principal stratum H (1, . . . , 1) in genus g, when n = 4g − 4 equals

N (1, . . . , 1) =
1

n!
·N (Sn;C(σ), C(σ), C(τ))

=
1

(4g − 4)!
· (4g − 5)!!

(4g − 4)
· (4g − 5)!

(
2 · 2g − 2

2g − 1

)
=

(4g − 5)!!

(4g − 4)(2g − 1)
=

(4g − 5)!

(2g − 1)!
· 2−(2g−2).

Applying (2.1) we complete the proof of Formula (2.4).

We complete this section with the proof of Proposition 2.13.

Proof of Proposition 2.13. — The results in [3] provide the exact values for the hyper-
elliptic connected components (and, more generally, for all hyperelliptic loci), namely:

Vol Hhyp(2g − 2) =
2π2g

(2g + 1)!
· (2g − 3)!!

(2g − 2)!!
∼ 1

π2g

(
πe

2g + 1

)2g+1

,(2.22)

Vol Hhyp(g − 1, g − 1) =
4π2g

(2g + 2)!
· (2g − 2)!!

(2g − 1)!!
∼ 1

π2g

(
πe

2g + 2

)2g+2

.(2.23)

There is a single 1-cylinder separatrix diagram for any hyperelliptic connected com-
ponent Hhyp(2g− 2) or Hhyp(g− 1, g− 1). Proposition 2.2 provides the contribution
of this diagram to the volume. Taking the ratio of the resulting expressions (2.1)
and (2.22) we obtain the expressions claimed in Proposition 2.13.

3. Alternative counting of 1-cylinder separatrix diagrams

In this section we suggest two alternative methods of counting 1-cylinder separatrix
diagrams. The first one, elaborated in Section 3.1, is based on recursive relations for
the numbers of such diagrams. The second method, presented in Section 3.2, uses
Rauzy diagrams and admits simple computer realization for low-dimensional strata.

3.1. Approach based on recursive relations. — Here we explicitly enumerate 1-cylin-
der separatrix diagrams that give rise to Abelian differentials (orientable case) or to
quadratic differentials (nonorientable case) with 0, 1 or 2 saddle connections shared
between the two boundary components of the cylinder.

Strata of Abelian differentials. — We start with the case of orientable separatrix di-
agrams; they represent strata of Abelian differentials. Take a cylinder whose bound-
ary components are two identical copies of an n-gon with a marked side. Choose an
orientation of the cylinder and consider the induced orientation on its boundary com-
ponents. Consider a gluing that identifies the sides of one boundary polygon with
the sides of the other reversing their orientation and respecting the marked sides. We
get a closed orientable surface with a connected graph Γ (the image of the cylinder
boundary components) embedded into it. All vertices of Γ have even degree, and we
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denote by vi the number of vertices of Γ of degree 2i. Clearly, n =
∑
i≥1 ivi, and we

call [1v12v2 · · · ] the type of the cylinder gluing. The associated 1-cylinder separatrix
diagram corresponds to the stratum H (0v1 , 1v2 , 2v3 , . . .), and the complex dimension
of this stratum is n + 1. We warn the reader that the degrees of zeros and the in-
dexation of their multiplicities is shifted by one: there are vj+1 zeroes of degree j.
Such indexation of the entries of the partition ν is more natural for combinatorial
operations with the associated graphs extensively performed in this section.

Let us now fix a partition ν = [1v12v2 · · · ] of n and denote by Nn(ν) the number
of cylinder gluings of type ν described above. Consider the generating functions

Fn(t1, t2, . . .) =
∑
ν`n

Nn(ν)tv11 t
v2
2 · · · ,

F (s; t1, t2, . . .) =
∑
n≥1

sn−1Fn(t1, t2, . . .).

Theorem 3.1. — Put

M1 =

∞∑
i=2

i−1∑
j=1

(i− 1)tjti−j
∂

∂ti−1
+ j(i− j)ti+1

∂2

∂tj∂ti−j
.(3.1)

Then the generating function F = F (s; t1, t2, . . .) satisfies the linear PDE
∂F

∂s
= M1F(3.2)

and is uniquely determined by the initial condition F |s=0
= t1. Equivalently, the

generating function F is explicitly given by the formula

F (s; t1, t2, . . .) = esM1t1.(3.3)

Proof. — First, rewrite (3.2) as a recursion for the numbers Nn(ν). Denote by ei the
sequence with 1 at the i-th place and 0 elsewhere. Then (3.2) is equivalent to

(n− 1)Nn(ν) =

∞∑
i=2

i−1∑
j=1

(i− 1)(vi−1 + 1− δj,1 − δi−j,1)Nn(ν − ej − ei−j + ei−1)+

+

∞∑
i=2

i−1∑
j=1

j(i− j)(vj + 1)(vi−j + 1 + δj,i−j)Nn(ν + ej + ei−j − ei−1).(3.4)

We prove it by establishing a direct bijection between cylinder gluings counted in the
left and right hand sides of (3.4). Consider the ribbon graph Γ∗ dual to Γ. It has 2
vertices (each of degree n) and n edges connecting these two vertices (one of these
edges is marked). Let us pick a non-marked edge in Γ∗, this can be done in (n − 1)

ways giving the l.h.s. in (3.4). Deletion of this edge results in one of the following two
possibilities:

(i) The edge belongs to two different boundary cycles of Γ∗ of lengths 2j and
2(i− j). The edge deletion gives rise to one boundary cycle of length 2(i− 1)

and the graph type changes to ν − ej − ei−j + ei−1.
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(ii) One boundary cycle of length 2(i+ 1) traverses the edge twice (once in each
direction). After the edge deletion the boundary cycle splits into two ones of
lengths 2i and 2(i− j) and the graph type changes to ν + ej + ei−j − ei+1.

Counting the number of ways that each case can occur we get the first and the second
sums in (3.4) respectively.

To show that the generating function F is uniquely determined by the initial con-
dition F |s=0

= t1, we first notice that F1 = t1 (for n = 1 there is only one 1-cylinder
configuration). The equation (3.2) recursively expresses Fn in terms of Fn−1 as follows:

(n− 1)Fn = M1Fn−1.(3.5)

The formula F = esM1t1 is just another way of writing the same thing.

Remark 3.2. — The numbers Nn(ν) giving the rooted count of 1-cylinder configu-
rations and the numbers N (0v1 , 1v2 , 2v3 , . . .), see (2.14), giving the weighted count
of 1-cylinder diagrams in H (0v1 , 1v2 , 2v3 , . . .) with weights 1/|Aut(Γ)| are related by
the simple formula

(3.6) N (0v1 , 1v2 , 2v3 , . . .) =
1

n
·Nn(ν).

Recall that by definition of the polynomial Fn the coefficient of the monomial
tv11 t

v2
2 · · · equals Nn(ν), where n =

∑
i≥1 ivi = dimC H (0v1 , 1v2 , 2v3 , . . .)− 1.

Corollary 3.3. — The absolute contribution c1(L ) of all 1-cylinder square-tiled sur-
faces to the volume Vol L of the stratum L = H (1v2 , 2v3 , . . .) of Abelian differentials
equals

(3.7) c1(L ) =
2

n!
· v2! · v3! · · · · ζ(n+ 1) ·Nn(ν).

Proof. — The contribution of a single 1-cylinder diagram Γ is given by Formula (2.1),
which in notations of the corollary gives

c(Γ) =
2

|Aut(Γ)|
· v2! · v3! · · ·

(n− 1)!
· ζ(n+ 1).

Combining this result with the weighted count (3.6) of 1-cylinder diagrams we ob-
tain (3.7).

Example 3.4. — Consider the generating functions for small values of n:

F1 = t1,

F2 = t21,

F3 = t31 + t3,

F4 = t41 + 4t1t3 + t22,

F5 = t51 + 10t3t
2
1 + 5t1t

2
2 + 8t5,

F6 = t61 + 20t31t3 + 15t21t
2
2 + 48t1t5 + 24t2t4 + 12t23.
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We know that there is a single 1-cylinder diagram in the stratum H (2) which has
symmetry of order 3, see Figure 1 in Section 2.1. For this stratum we have ν = [31]

so we can read the weighted number of 1-cylinder diagrams from the coefficient in
front of t3 in F3 normalizing it as in (3.6). This gives c1(H (2)) = 1

3ζ(4) as expected,
see (2.6).

Consider now the stratum H (3, 1) = H (11, 31). It has dimension dimC H (3, 1) = 7,
so n = 6. The number of associated rooted diagrams is given by the coefficient of the
monomial 24t2t4 in the polynomial F6. Applying (3.7) we get the following impact of
all 1-cylinder square-tiled surfaces to the volume of this stratum:

c1(H (3, 1)) =
2

6!
· 1! · 1! · ζ(7) · 24 =

1

15
· ζ(7).

By [16] we have

Vol H (3, 1) =
16

42525
π6 =

16

45
ζ(6).

Thus, the relative impact P1(H (3, 1)) of 1-cylinder diagrams is equal to(
1

15
ζ(7)

)
:

(
16

45
ζ(6)

)
=

3ζ(7)

16ζ(6)
,

which matches the value given in Example 2.8.

Strata of quadratic differentials. — Now we proceed with with the case of nonori-
entable separatrix diagrams; they represent strata of meromorphic quadratic differen-
tials with at most simple poles. Take a cylinder bounded by two polygons, one with
l + 2m sides and the other with l + 2n sides and consider its orientable gluings that
identify m pairs of sides of the first polygon, n pairs of sides of the second polygon,
and l sides of the first one with l sides of the second one.

We warn the reader that we have two polygons with a priori different number of
sides, and that from now on the symbol n does not denote the total number of sides
anymore. Contrary to the previous section we do not mark any side on either of the
two polygons anymore.

We get a closed orientable surface, and the image of the boundary polygons is
a graph Γ (not necessarily connected) embedded into it. Suppose that Γ has the
vertex degree set v1, v2, . . ., where ν = [1v12v2 · · · ] is a partition of 2(l+m+ n) (this
means that Γ has v1 vertices of degree 1, v2 vertices of degree 2, etc.). The associated
1-cylinder separatrix diagram corresponds to the stratum Q(−1v1 , 0v2 , 1v3 , . . .), and
the complex dimension of this stratum is l +m+ n. Note that this time the degrees
of zeros and the indexation of their multiplicities is shifted by two: meromorphic
quadratic differentials under consideration have vj+2 zeroes of degree j, where “zero
of degree −1” is a simple pole, and “zero of degree 0” is a marked point.
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Denote by Nl,m,n(v1, v2, . . .) the weighted count of such gluings. It coincides with
the number Nl,m,n(−1v1 , 0v2 , 1v3 , . . .) giving the weighted count of 1-cylinder dia-
grams of type (l,m,m) in Q(−1v1 , 0v2 , 1v3 , . . .) with weights 1/|Aut(Γ)| up to a cor-
rection in the symmetric case when m = n:

(3.8) Nl,m,n(−1v1 , 0v2 , 1v3 , . . .) =

{
Nl,m,n(v1, v2, . . .) when m 6= n,
1
2 ·Nl,m,n(v1, v2, . . .) when m = n.

Consider the generating series

Fl,m,n =
∑

ν`2(l+m+n)

Nl,m,n(v1, v2, . . .)p
v1
1 p

v2
2 · · · .(3.9)

To explicitly compute Fl,m,n with l = 0, 1, 2 we introduce an auxiliary generat-
ing series G(s, p1, p2, . . .). The coefficient of G at the monomial s2bpv11 p

v2
2 · · · is the

number of orientable gluings of a 2b-gon with fixed vertex degree set given by the
partition [1v12v2 · · · ] of 2b. In other words, each gluing produces a closed orientable
surface of genus g = 1

2 (1 + b−
∑
i vi) together with a graph embedded into it with

v1 vertices of degree 1, v2 vertices of degree 2, etc. As usual, the gluings are counted
with weights reciprocal to the orders of the automorphism groups.

The generating series G(s, p1, p2, . . .) was extensively studied in [29]. In particular,
as it follows from Theorem 3 (ii) in [29], the series G is uniquely determined by the
equation

1

s

∂G

∂s
= M2G+ p2

1(3.10)

modulo the initial condition G|s=0
= 0, where

M2 =

∞∑
i=2

i−1∑
j=1

(i− 2)pjpi−j
∂

∂pi−2
+ j(i− j)pi+2

∂2

∂pj∂pi−j
.(3.11)

It will be convenient to write G as a power series in s:

G(s, p1, p2, . . .) =

∞∑
b=1

s2bGb(p1, p2, . . .).(3.12)

Then we have
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Theorem 3.5. — The following formulas hold:

F0,m,n = GmGn,(3.13)

F1,m,n =

∞∑
i=1

∞∑
j=1

ijpi+j+2
∂Gm
∂pi

∂Gn
∂pj

,(3.14)

F2,m,n =
1

2

∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
`=1

ijki+k+2pj+`+2
∂2Gm
∂pi∂pj

∂2Gn
∂pk∂p`

(3.15)

+

∞∑
i=1

∞∑
j=1

∞∑
k=1

ijk(k + 1)pi+j+k+4

(
∂2Gm
∂pi∂pj

∂Gn
∂pk

+
∂Gm
∂pk

∂2Gn
∂pj∂pk

)

+

∞∑
i=1

∞∑
j=1

ij

(
i∑

k=0

j∑
`=0

pk+`+2pi+j+2−k−`

)
∂Gm
∂pi

∂Gn
∂pj

.

Proof. — Instead of the graph Γ (the image of cylinder’s boundary) it is handier to
consider its dual graph Γ∗. The graph Γ∗ has two vertices, m loops incident to the
first vertex, n loops incident to the second vertex and l edges connecting the first
vertex with the second one. We also assume that the vertices are labeled.

Formula (3.13) of Theorem 3.5 is obvious.
To prove (3.14), let us take two ribbon graphs with one vertex each, the first one

with m loops and the second one with n loops. Let us count the number of ways to
connect the two vertices with a single edge. For any boundary component of length i
of the first graph and any boundary component of length j of the second graph there
are ij possibilities to connect them with an edge. Instead of two disjoint boundary
components of lengths i and j we get a single boundary component of length i+j+2.
This simple observation is precisely described by Formula (3.14).

The proof of Formula (3.15) is similar to that of (3.14). Again, we start with two
ribbon graphs with one vertex each, the first one with m loops and the second one
with n loops. Now we count the number of different ways to connect the two vertices
with a double edge. Four possibilities can occur:

(i) Two different boundary components of the first graph of lengths i and j are
connected by two edges with two boundary components of the second graph
of lengths k and ` respectively. There are ijk` ways to do that. The boundary
components of lengths i and k are replaced by a single boundary component
of length i+ k + 2, and the components of lengths j and ` are replaced by a
single component of length j + `+ 2. This possibility is described by the first
line in the right hand side of (3.15).

(ii) Two different boundary components of the first graph of lengths i and j

are connected by two edges with one boundary components of the second
graph of lengths k. This can be done in ijk(k+ 1) ways. The three boundary
components of lengths i, j and k are replaced by a single boundary component
of length i+ j + k + 4.
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(iii) A boundary component of the first graph of length k is connected by two
edges with two boundary components of the second graph of lengths i and j.
Similar to the previous case, this can be done in ijk(k + 1) ways. The three
boundary components of lengths i, j and k are replaced by a single boundary
component of length i + j + k + 4. The cases (ii) and (iii) can be united to
produce the second line in the right hand side of (3.15).

(iv) A boundary component of the first graph of length i is connected by two
edges with a boundary component of the second graph of length j. There
are ij ways to connect the two boundary components with one edge. If the
endpoints of the second edge at the distances k and ` from the endpoints of
the first one, the components of lengths i and j get replaced by the boundary
components of lengths k + `+ 2 and i+ j + 2− k − `. This last possibility is
described by the third line in the right hand side of (3.15).

Example 3.6. — To find the contribution of 1-cylinder separatrix diagrams to the
volume of the stratum Q(13,−13) we have to find the weighted number of ribbon
graphs as above with 3 vertices of valence 1 (corresponding to 3 simple poles) and
with 3 vertices of valence 3 (corresponding to 3 simple zeroes). So the type of the
cylinder gluing representing the stratum Q(13,−13) is [13, 33] and we are interested
in monomials corresponding to p3

1p
3
3 in polynomials Fl,m,n with l + m + n = 6. We

present some of them to compare the result with the diagram-by-diagram calculation
presented in the next section.

F0,1,5 = 4p3
1p4p2p3 + p5

1p
2
2p3 + 3p3

1p5p
2
2 +

1

2
p6

1p2p4 + 5p4
1p6p2(3.16)

+
7

2
p4

1p5p3 +
1

10
p7

1p5 +
5

2
p5

1p7 +
21

2
p9p

3
1 +

21

4
p8p

2
1p2

+
7

2
p2

1p7p3 +
13

4
p2

1p4p6 +
33

20
p2

1p
2
5 +

1

4
p4

1p
4
2 +

1

4
p6

1p
2
3

+
1

2
p3
1p3

3 +
1

2
p2

1p4p
3
2 +

1

2
p2

1p
2
2p

2
3 +

3

2
p4

1p
2
4,
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F0,3,3 =
1

3
p4p

3
1p2p3 + p4p1p2p5 +

1

36
p4

3 +
1

3
p5

1p
2
2p3 +

1

6
p2

1p
2
2p

2
3(3.17)

+
1

6
p2

3p4p2 +
1

3
p1p5p

2
3 +

1

4
p4

1p
4
2 +

1

9
p6

1p
2
3 +

1

9
p3
1p3

3

+
1

4
p2

2p
2
4 + p2

5p
2
1 + p5p

3
1p

2
2 +

1

2
p4p

2
1p

3
2 +

2

3
p5p

4
1p3,

F2,1,3 = 10p4p5p2p1 + 16p8p
2
1p2 + 4p7p

2
2p1 + 13p4p6p

2
1 + 7p2

5p
2
1(3.18)

+ 12p9p
3
1 + 5p10p2 + 36p11p1 +

1

2
p2

4p
2
2 + 5p3

1p2p3p4

+ 5p1p2p3p6 + p3
3p3

1 + 3p1p5p
2
3 + 4p1p3p

2
4 + 2p3p9

+
13

2
p4p8 + 5p5p7 +

3

2
p2

6 + p4
1p

2
4 + p2

1p
3
2p4

+ p2
1p

2
2p

2
3 + 2p3

1p
2
2p5 + p4

1p2p6 + 2p4
1p3p5 + 13p2

1p3p7.

By (3.16) the term p3
1p

3
3 in F0,1,5 has coefficient 1

2 , so the weighted number
∑

D
1

Aut(D)

of 1-cylinder diagrams representing the stratum Q(13,−13) with l = 0,m = 1, n = 5 is
equal to 1

2 . Table 1 in Section 3.2 shows that such diagram is, actually, unique, and
that its symmetry group Aut(D) indeed has order 2.

By (3.17) the term p3
1p

3
3 in F0,3,3 has coefficient 1

9 , so the weighted num-
ber

∑
D

1
Aut(D)

of 1-cylinder diagrams representing the stratum Q(13,−13) with
l = 0,m = 3, n = 3 is equal to 1

18 (recall that when m = n we have to divide the
corresponding coefficient by 2 to get the weighted number of diagrams; see (3.8)).
Table 1 in Section 3.2 shows that there is a unique such diagram, and that its
symmetry group Aut(D) has order 18.

By (3.18) the term p3
1p

3
3 in F2,1,3 has coefficient 1. Table 1 in Section 3.2 shows

that there is a unique 1-cylinder diagram with l = 2,m = 1, n = 3 in the stratum
Q(13,−13), and that this diagram does not have any symmetries.

3.2. Approach based on Rauzy diagrams. — As can be seen from Theorem 3.5, the
generating functions of one-cylinder diagrams in quadratic strata of Abelian differ-
entials are complicated. In this section we consider an alternative approach to list
all 1-cylinder separatrix diagrams in a given component stratum of meromorphic
quadratic differentials Q(d1, . . . , dk) with at most simple poles. The method is mostly
suited for computational purposes when the stratum has relatively small dimension.

As before, we denote by µ−1, µ1, µ2, . . . the multiplicities µj of entries j ∈ {−1, 1, 2, . . .}
in the set {d1, . . . , dk}, where

∑
di = 4g − 4, and g ∈ Z+. In the notation of

Section 3.1 we have µi = vi+2.
Rauzy diagrams are strongly connected oriented graphs whose vertices are gener-

alized permutations already considered in Section 2.4. There is a bijection between
Rauzy diagrams of generalized permutations and connected components of strata,
see [4] and [36]. Moreover, any 1-cylinder diagram in the corresponding component is
represented by a certain subcollection of generalized permutations whose top first and
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bottom last symbols are identical; such (generalized) permutations are called standard
permutations in the context of Rauzy diagrams.

Figure 2 at the beginning of Section 2.5 illustrates how the standard generalized
permutation (

0 1 1

2 3 2 3 0

)
represents a nonorientable 1-cylinder separatrix diagram. The bottom picture in Fig-
ure 3 from Section 2.6 illustrates how the standard permutation(

0 1 2 3 4 5 6 7 8

4 3 2 5 8 7 6 1 0

)

represents the orientable 1-cylinder diagram on top of Figure 3.
It is very easy to generate all permutations in a Rauzy diagram associated to

any low-dimensional stratum. Given a stratum of meromorphic quadratic differen-
tials with at most simple poles, say, Q(13,−13), we first use the method [44] of one
of the authors to construct some generalized permutation representing the desired
(connected component of) the stratum. Next, one just has to apply two simple trans-
formation rules to generate the whole Rauzy diagram from any element. Using the
surface_dynamics package of the software SageMath it is a five line program to get
the list of the 158 standard permutations in Q(13,−13):

sage: from surface_dynamics.all import *
sage: Q = QuadraticStratum({1:3, -1:3})
sage: p = Q.permutation_representative()
sage: R = p.rauzy_diagram(right_induction=True, left_induction=True)
sage: R
Rauzy diagram with 2010 permutations
sage: std_perms = [q for q in R if q[0][0] == q[1][-1]]
sage: len(std_perms)
158

Note that the same 1-cylinder separatrix diagram might be (and usually is) repre-
sented by several standard generalized permutations. For example, the following four
standard generalized permutations represent the same 1-cylinder separatrix diagram:

(3.19)

(
0123123

4455660

) (
0123123

4556640

) (
0112233

4564560

) (
0122331

4564560

)
.

We can put standard permutations into the one-to-one correspondence with 1-cylinder
separatrix diagrams endowing the latter with the following extra structure. Choose
one of the two possible choices of a top and a bottom boundary component of the
cylinder, and mark a saddle connection on each boundary component.
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This multiplicity is directly related to the cardinality of the automorphism
group |Aut(D)| that we discuss now. All standard generalized permutations rep-
resenting any given separatrix diagram D, can be obtained from any standard
generalized permutations representing D by the following two operations.

Remove distinguished symbols (denoted by “0” in the examples above); rotate cycli-
cally the top line by any rotation; rotate cyclically the bottom line by any rotation;
insert the distinguished element on the left of the upper line and on the right of the
bottom one; renumber the entries. We get a collection D1 of standard generalized
permutations.

For example, the second generalized permutation in (3.19) is obtained from the
first one by cyclically shifting by one position to the left the elements 445566 of the
bottom line keeping the symbol 0 fixed. Applying the same operation one more time
and renumbering the elements we return to the first permutation in (3.19). Finally,
the analogous operation applied to the top line of the first permutation does not
change the permutation (up to renumbering the entries). Hence, in this example,
D1 is composed of the first two permutations in (3.19).

Apply to every standard generalized permutations in D1 the following operation.
Remove distinguished symbols (denoted by “0” in the examples above); interchange
the top and the bottom line; insert the distinguished element on the left of the upper
line and on the right of the bottom one and renumber the entries. We get one more
collection D2 of standard generalized permutations. In the Example (3.19) the set D2

is composed of the third and forth permutations.
Take the union of D1 and D2. It is easy to see that we have constructed all standard

generalized permutations representing the initial separatrix diagram D. We suggest to
the reader to check that the collection (3.19) can be constructed by the two operations
as above from any of its elements.

Since the top boundary component is composed from l + 2m separatrices and the
bottom component from l+2n ones, the cardinality of the set of nontrivial operations
as above is 2× (l + 2m)× (l + 2n). The factor 2 here stands for the inversion of the
top and bottom lines of the generalized permutation. Thus, the order |Aut(D)| of
the symmetry group Aut(D) of the associated separatrix diagram D is

|Aut(D)| :=
(

2× (l + 2m)× (l + 2n)
)
/ card(D1 ∪D2).

In Example (3.19) we get

|Aut(D)| =
(

2× (0 + 2 · 3)× (0 + 2 · 3)
)
/4 = 18

as indicated in the second line in Table 1 where l = 0, m = 3, n = 3.

3.3. The example of Q(13,−13). — To give an idea of an approximate calculation of
the volume based on our method we compute Vol Q(13,−13) (the stratum is chosen
by random). We present a list of all ribbon graphs D satisfying the above condi-
tions, which are realizable in Q(13,−13). For each such ribbon graph we give the
order |Aut | = |Aut(D)| of its symmetry group, we present l,m, n and we apply
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Formula (2.2) to compute its contribution to the volume of the stratum. Recall the
convention used in (2.2): defining the symmetry group Aut(D) we assume that none
of the vertices, edges, or boundary components of the ribbon graph D is labeled;
however, we assume that the orientation of the ribbons is fixed.

The stratum Q(13,−13) corresponds to genus g = 1. It is connected and d =

dimC Q(13,−13) = 6. We have µ−1 = 3, µ1 = 3, and there are no other entries µk.
This means that every such ribbon graph has 3 vertices of valence one, and 3 vertices
of valence 3.

Table 1. Contribution of 1-cylinder square-tiled surfaces to the Masur-
Veech volume Vol Q(13,−13)

Ribbon graph D |Aut(D)| l,m, n Contribution to VolQ(13,−13)

l = 0

2 m = 5
20+2

2
·

(5 + 1− 2)!

(5− 1)!(1− 1)!
·

3! · 3!
(6− 2)!

ζ(6) = 3ζ(6)

n = 1

l = 0

18 m = 3
20+2

18
·

(3 + 3− 2)!

(3− 1)!(3− 1)!
·

3! · 3!
(6− 2)!

ζ(6) = 2ζ(6)

n = 3

l = 2

1 m = 3
22+2

1
·

(3 + 1− 2)!

(3− 1)! · (1− 1)!
·

3! · 3!
(6− 2)!

ζ(6) = 24ζ(6)

n = 1

l = 3

1 m = 2
23+2

1
·

(2 + 1− 2)!

(2− 1)!(1− 1)!
·

3! · 3!
(6− 2)!

ζ(6) = 48ζ(6)

n = 1

Table 1 above shows that the total contribution of 1-cylinder separatrix diagrams
to the volume Vol Q(13,−13) is 77ζ(6). The statistics of frequencies of 1 : 2 : 3-cylin-
der square-tiled surfaces in Vol Q(13,−13) collected experimentally gives proportions
0.4366 : 0.4000 : 0.1634 which results in

Vol Q(13,−13) ≈ 77ζ(6)

0.4366
≈ 0.1866π6.

as an approximate value of the volume. The exact value of the volume found by
E. Goujard in [26] gives

Vol Q(13,−13) =
11

60
· π6 ≈ 0.1837π6.
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The types of separatrix diagrams and orders of their symmetry groups presented in
the table above matches the calculation by means of recursive relation considered in
Example 3.6.

Appendix A

Impact of the choice of the integer lattice on diagram-by-diagram
counting of Masur-Veech volumes

Recall the following two natural choices of the integer lattice in period coordinates
of a stratum of quadratic differentials.

1. The subset of H1
−(Ŝ, {P̂1, . . . , P̂r};C) consisting of those linear forms which take

values in Z⊕ iZ on H−1 (Ŝ, {P̂1, . . . , P̂r};Z),

2. H1
−(Ŝ, {P̂1, . . . , P̂r};C) ∩H1(Ŝ, {P̂1, . . . , P̂r};Z⊕ iZ).

Here we do not mark the preimages of simple poles, i.e., P̂1, . . . , P̂r are preimages
of zeroes of the quadratic differential under the double cover (see appendix in [10]
for details on various conventions). The difference between the two choices affects
the linear holonomy along saddle connections joining two distinct zeroes. Under the
first convention the linear holonomy along such saddle connections belongs to the half
integer lattice 1

2Z ⊕
i
2Z while under the second convention it belongs to the integer

lattice Z⊕ iZ. This implies that in genus 0 the first lattice in the period coordinates
is a proper sublattice of index 4s−1 of the second one, where s is the number of zeroes
of the quadratic differential.

X1

X2

X3

X4

X5

X6

X7

X8

X1

1 2 3 4 5 6 7 8

4 3 2 5 8 7 6 1

0 0

Figure 4. A separatrix diagram for Q(12,−16)

Thus, in the case of the stratum Q(12,−16), it is a sublattice of index 4. Note, how-
ever, that the contributions of individual separatrix diagrams change by the factors,
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which are, in general, different from the index of one lattice in the other. Consider, for
example the separatrix diagram as in Figure 4 representing the stratum Q(12,−16).
The absolute contribution of this separatrix diagram is twice bigger under the first
choice of the lattice than under the second one. Indeed, under the first choice of
the lattice in period coordinates, the parameter `1 is half-integer, as well as all the
other parameters `2, . . . , `6, h, φ, (where h, φ are the height and the twist of the sin-
gle cylinder) whereas `1 is integer under the second choice of the lattice, and the
other parameters are half-integers. Hence, the number of partitions of a given natural
number w (representing the length of the waist curve of the single cylinder) into the
sum

w = 2(`1 + `2 + `3 + `4 + `5)

is asymptotically twice bigger under the first choice of the lattice.
Now let us perform the computation for this diagram under the first convention

of the choice of the lattice. When the zeroes and poles are not labeled, the diagram
has symmetry of order 4. Since the twist φ is half-integer, there are 2w choices of φ.
Recall also, that the the squares of the tiling have side 1/2. Thus, under the first
choice of the lattice in period coordinates, the number of square-tiled surfaces tiled
with at most 2N squares corresponding to this separatrix diagram has the following
asymptotics as N → +∞:

1

4

∑
`1,`2,`3,`4,`5,h∈N/2

(2(`1+`2+`3+`4+`5))·h≤N/2

2(2(`1 + `2 + `3 + `4 + `5)) ∼ 1

4

∑
w,H∈N
w·H≤N

2w · w
4

4!

=
1

2 · 4!

∑
w,H∈N
w≤NH

w5 ∼ 1

2 · 4!

∑
H∈N

1

6
·
(
N

H

)6

=
N6

12 · 4!
·
∑
H∈N

1

H6
=

N6

12 · 4!
· ζ(6).

Here in the first equivalence we passed from the half-integer parameter h to the
integer parameter H = 2h replacing the condition wh ≤ N/2 by the equivalent
condition wH ≤ N . Multiplying by 2·6

N6 as in (1.1) and multiplying by the factor 6! ·2!

responsible for numbering of zeroes and poles, we get the total contribution 60ζ(6) to
the volume Vol(1) Qnumbered

1 (12,−16) defined under the first convention on the choice
of the lattice.

Similar computations for each separatrix diagram in this stratum are cumbersome,
so, following [2], we distribute the diagrams into groups organized in the following
way.

Each connected component of the separatrix diagram is encoded by a vertex of a
graph decorated with an ordered pair of natural numbers indicating the number of
zeroes and poles living at the corresponding component. A flat cylinder joining two
connected components of a separatrix diagram is encoded by an edge of the graph. For
example, the separatrix diagram from Figure 4 contains two connected components
joined by a single cylinder. The corresponding graph contains two vertices joined by
a single edge; one vertex is decorated with the pair (2, 4) (standing for 2 zeroes and
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4 poles) and the other vertex is decorated with the pair (0, 2) (standing for 0 zeroes
and 2 poles). This graph is the top entry of the left column in Table 2.

Table 2. Table of diagram contributions to the Masur-Veech volume
Vol Q(12,−16) in normalizations (1) and (2)

Tree Contribution to Vol(1)
Contribution to Vol(1)

Contribution to Vol(2)

c2,4 c0,2 60ζ(6) 2

c1,3 c1,3 80ζ(6) 27

c0,2 c2,2 c0,2 72ζ(2)ζ(4) 2

c1,3 c1,1 c0,2 48ζ(2)ζ(4) 25

c0,2 c1,1 c1,1 c0,2 24ζ3(2) 23

c0,2 c2,0���
c0,2

HHH c0,2 4ζ3(2) 2

Note that the stratum Q(12,−16) corresponds to genus zero, so the underlying
topological surface is a sphere. This implies that the graph defined by a separatrix
diagram representing the stratum Q(12,−16) is a tree. The first column of Table 2 pro-
vides the list of all possible decorated trees which appear for the stratum Q(12,−16).
It is easy to verify that the ratio of contributions of a given separatrix diagram to
the volume of the stratum Q(1r,−1r+4) computed under the two conventions on the
choice of the integer lattice depends only on the corresponding decorated tree. We
group together all the diagrams corresponding to each decorated tree and indicated
in the second column the corresponding contribution to the volume under the first
choice of the lattice (using [2, §3.8] as the source). In the third column we give the
ratio of the contributions represented by the corresponding tree. For example, the tree
in the first line represents the unique diagram shown in Figure 4; as it was computed
above its contribution to the volume under the first choice of the lattice is 60ζ(6) and
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the contribution to the volume under the second choice of the lattice is half as small.
These data constitute the first line of Table 2.

Recall that the normalization factor between the two lattices in the period coordi-
nates of the stratum Q(12,−16) is 4. However, observing Table 2 the reader can see
that the individual contributions of diagrams differ by factors 2, 23, 25, 27.

Note that the trees with the same number of edges provide contributions of the
same “arithmetic” nature, namely the total contribution of 1, 2, 3-cylinder diagrams
are

140ζ(6) + 120ζ(2)ζ(4) + 28ζ3(2) =
π6

2
= Vol(1) Q(12,−16)

respectively under the first choice of the lattice and

245

8
ζ(6) +

75

2
ζ(2)ζ(4) + 5ζ3(2) =

π6

8
= Vol(2) Q(12,−16)

respectively under the second choice. The volumes Vol(1) and Vol(2) differ by the
factor 4 as expected.

We get a polynomial identity

140ζ(6) + 120ζ(2)ζ(4) + 28ζ3(2) =
π6

2
= 4
(245

8
ζ(6) +

75

2
ζ(2)ζ(4) + 5ζ3(2)

)
in zeta values at even integers. Considering other strata Q(1r,−1r+4) we get an infinite
series of analogous identities in zeta values at even integers.

We did not study the identities resulting from different choices of the lattice in
period coordinates for more general strata of meromorphic quadratic differentials with
at most simple poles in genus zero. Considering zeroes of even order might produce
identities of much more elaborate arithmetic nature.

If our guess that the contribution of k-cylinder square-tiled surfaces to a given
stratum of Abelian differentials is a polynomial in multiple zeta values with rational
(or even integer) coefficients is true, then playing with different choices of an integer
lattice we will get infinite series of mysterious polynomial identities in multiple zeta
values.

Another challenge is to see whether one can obtain some information about volume
asymptotics for large genera playing with the choice of an integer lattice. We leave
both questions as a problem, which might be interesting to study.

Problem. — Describe and study polynomial identities on multiple zeta values arising
from k-cylinder contributions to the Masur-Veech volumes under different choices of
integer lattices in period coordinates. Study these identities in asymptotic regimes
when the genus of the surface or the number of simple poles tends to infinity.
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Appendix B

(by Philip Engel)

Square-tiled surfaces with one horizontal cylinder

We compute the absolute contribution c1(H (m1, . . . ,mn)) of the one-cylinder sur-
faces to the Masur-Veech volume of a stratum, using some representation theory of the
symmetric group, see [28] for a general reference. Let νi = 1 +mi so that ν := {νi} is
a partition of 2g − 2 + n. In this section, we assume the zeroes are unlabeled, unless
otherwise specified.

Let Nν(d) denote the weighted number of square-tiled surfaces in the stratum
H (m1, . . . ,mn) with d squares, such that there is one horizontal cylinder of width d
and height 1. Any such surface is a degree d branched cover of a torus, ramified
only over the origin, whose horizontal monodromy is a full cycle in Sd and whose
monodromy around the origin is of cycle type ν. Write Cν for the conjugacy class
in Sd with cycle type ν and Ccycle for the conjugacy class of a d-cycle. Then Nν(d) is
given by the formula

Nν(d) =
1

d!
#{(x, y, z) ∈ Sd × Ccycle × Cν : [x, y]z = 1}.

Here x and y are the monodromies of the fiber over a base point on the torus, with
respect to vertical and horizontal loops, and z denotes the monodromy of a simple
loop enclosing the origin of the torus.

The irreducible representations ρλ : Sd → GL(V λ) of the symmetric group are
indexed by partitions λ ` d. Define dimλ := dimV λ. Let χλ(g) denote the associated
character, that is the trace of ρλ(g). Then χλ depends only on the conjugacy class
of g, uniquely determined by its cycle type. We identify λ with its Young diagram.
We say the Young diagram of λ is L-shaped if at most one part λi is not equal to 1.

Lemma B.1. — Define an element of the group algebra

A :=
∑
x∈Sd

y∈Ccycle

[x, y] ∈ C[Sd].

Then A acts on V λ by the scalar

fA(λ) =

{
d!(d−1)!
(dimλ)2 if λ is L-shaped,

0 otherwise.
.

Proof. — From the definition, A is central in the group algebra. Thus by Schur’s
lemma, the extension of ρλ to a homomorphism C[Sd] → End(V λ) sends A to a
scalar. Similarly, the element

Ay :=
∑
x∈Sd

xyx−1
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is central in C[Sd]. Taking the trace, it must act by

|Sd|χλ(y)

dimλ
idV λ .

Hence A =
∑
y∈Ccycle

Ayy
−1 acts by∑

y∈Ccycle

|Sd|χλ(y)

dimλ
ρλ(y−1).

Taking traces again, we see that A acts by the scalar

|Sd||Ccycle|χλ(y)χλ(y−1)

(dimλ)2
,

where y lies in the conjugacy class of a length d cycle. Noting that y and y−1 lie in
the same conjugacy class, we conclude that A acts by the scalar

d!(d− 1)!χλ(y)2

(dimλ)2

on V λ. Finally, by the Murnaghan-Nakayama rule ([28], 21.1)

χλ(y) =

{
±1 if λ is L-shaped,
0 otherwise.

The lemma follows.

Definition B.2. — Let fν(λ) denote the central character—that is the scalar that the
central element

Cν :=
∑
g∈Cν

g ∈ C[Sd]

acts by on V λ. Explicitly, fν(λ) = |Cν |χ
λ(g)

dimλ for any g ∈ Cν .

Proposition B.3. — The generating function for the weighted number of square-tiled
surfaces in H (m1, . . . ,mn) with d tiles and one horizontal cylinder of width d and
height 1 is given by the formula

hν(q) =
∑

λ L-shaped

fν(λ)

|λ|
q|λ|.

Proof. — The proof is a standard argument in Hurwitz theory. Note that

Nν(d) =
1

d!
[id]A · Cν ,

where [id] denotes the coefficient of the identity in the group algebra. We may extract
this coefficient by taking the trace in the regular representation V reg, because the
identity is the only element acting with non-zero trace:

Nν(d) =
1

(d!)2
χreg(A · Cν).
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Since A and Cν act by scalars on V λ, the action of A ·Cν respects the decomposition
into isotopic components

V reg =
⊕
λ`d

(V λ)⊕ dimλ.

We conclude that

Nν(d) =
∑
λ`d

(
dimλ

d!

)2

fA(λ)fν(λ).

The proposition then follows immediately from Lemma B.1.

The L-shaped partitions λa,b are indexed by pairs of positive half-integers
a, b ∈ 1

2 + Z≥0 where a + 1
2 and b + 1

2 are the largest parts of λ and λt respectively.
Here λt denotes the transpose, gotten by reflecting the Young diagram along the
line x = y. Note that |λ| = a+ b. We conclude that

hν(q) =
∑

a,b∈ 1
2 +Z≥0

fν(λa,b)

a+ b
qa+b.

A result of Kerov-Olshanski [30] states that fν(λ) is a shifted-symmetric polynomial.
That is, if one orders the parts λ = {λ1 ≥ λ2 ≥ λ3 ≥ · · · }, then fν a polynomial
symmetric in the variables λi − i. The algebra of shifted symmetric polynomials is
denoted Λ∗ and is freely generated by shifted power-sums

pk(λ) :=

∞∑
i=1

(λi − i+ 1
2 )k − (−i+ 1

2 )k.

Define the degree grading by declaring deg pk = k and extend this to a grading on Λ∗.
Note that this grading on Λ∗ differs from the weight grading defined in [19], which
declares wtpk = k + 1. Then Theorem 5 of [30] implies that

LT (fν) =
1

|Aut(ν)|

`(ν)∏
i=1

pνi
νi
,

where LT denotes the leading term of fν with respect to our degree grading. We have
a telescoping sum

pk(λa,b) = ak − (−b)k.

Thus, we conclude that

hν(q) =
1

|Aut(ν)|
∏
νi

∑
d≥1

qd

d

∑
a+b=d

a,b∈ 1
2 +Z≥0

`(ν)∏
i=1

(aνi − (−b)νi) + (lower order terms),
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where the lower order terms are various homogenous polynomials in a and b of degree
less than

∑
νi. Next, observe that

1

d

∑
a+b=d

a,b∈ 1
2 +Z≥0

`(ν)∏
i=1

((a
d

)νi
−
(
− b
d

)νi)

is a Riemann sum of mesh width 1/d approximating the integral

I(ν) :=

∫ 1

0

`(ν)∏
i=1

(xνi − (x− 1)νi)dx,

whereas the lower order terms are similarly Riemann sums of mesh width 1/d ap-
proximating integrals of lower degree. Asymptotically as d → ∞, the Riemann sum
converges to the integral. We conclude that as q → 1,

hν(q) ∼ I(ν)

|Aut(ν)|
∏
νi

∑
d≥1

qdd2g−2+n,

assuming that the integral I(ν) is positive, as otherwise lower order terms would
become relevant. The integral is in fact positive, because the integrand is. The number
of i for which νi is even must itself be even.

Let Hν(q) denote the generating function for all square-tiled surfaces with one
horizontal cylinder in the stratum H (m1, . . . ,mn), regardless of the height of the
cylinder. The width is a divisor of the total number of squares, and we may rescale
the height to produce a square-tiled surface with one horizontal cylinder and height 1.
We conclude that

Hν(q) ∼ I(ν)

|Aut(ν)|
∏
νi

∑
d≥1

qdσ2g−2+n(d),

where σk(d) is the divisor power sum. Thus, we have

Theorem B.4. — The absolute 1-cylinder contribution to the Masur-Veech volume
of H := H (m1, . . . ,mn), with the zeroes ordered, is

c1(H ) = 2
I(ν)∏
νi
ζ(dim(H )).

Note that we multiply by a factor of |Aut(ν)| to order the zeroes. We now compute
two examples, to verify agreement with Corollary 2.6.

Example B.5. — Consider the principal stratum H (1, . . . , 1). That is νi = 2 for all
i = 1, . . . , 2g − 2. Then

I(ν)∏
νi

=

∫ 1

0

(
x2 − (1− x)2

2

)2g−2

dx =

∫ 1

0

(x− 1
2 )2g−2dx =

22−2g

2g − 1
.
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Thus the 1-cylinder contribution to the volume is

23−2g

2g − 1
ζ(4g − 3).

For the minimal stratum H (2g − 2), we have

I(ν)∏
νi

=
1

2g − 1

∫ 1

0

x2g−1 + (1− x)2g−1dx =
1

g(2g − 1)

and thus the 1-cylinder contribution is

2ζ(2g)

g(2g − 1)
.

Proposition B.6. — Asymptotically as the genus grows,

I(ν) ∼ 2∑
νi
.

Proof. — Let d =
∑
νi. First, observe that the integrand of I(ν) is even about 1/2,

and thus, we may write

I(ν) = 2

∫ 1

1/2

xd
`(ν)∏
i=1

(1− (1− x−1)νi)dx.

Observe that xνi − (x − 1)νi , and thus the whole integrand, is non-negative and
monotonically increasing between 1

2 and 1. We show that the integral concentrates in
a small neighborhood of 1. Define

Rν(x) :=

`(ν)∏
i=1

(1− (1− x−1)νi).

Let u(α) = αd
αd+1 . For some fixed d, the quantity Rν(u(α)) is either maximized or min-

imized when all νi are minimal and of the same parity, the parity condition ensuring
that all terms are less than or greater than one. Since νi ≥ 2, we have the bounds

e−1/(2α2d) ≤ (1− 1/(αd)2)d/2 ≤ Rν(u(α)) ≤ (1 + 1/(αd)2)d/2 ≤ e1/(2α2d).

These bounds rapidly approach 1 as d→∞. On the other hand, we have

u(α)d = (1− 1/(αd+ 1))d ≈ e−1/α

and thus the value of the integrand of I(ν) at u(α) decays as α approaches zero. For
instance, setting α = 1

N log(d) gives the bound d−N . The monotonicity of the integrand
then implies

lim
d→∞

P (d)

∫ u(α)

1/2

xdRν(x)dx = 0

for any polynomial P (d) of degree less thanN . Now we compute the remaining integral
from u(α) to 1. The bounds on Rν(u(α)) only get better as α increases, and thus,
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we conclude that the integrand of I(ν) is very nearly equal to xd when x ∈ (u(α), 1).
Therefore as d→∞, we have

I(ν) ∼ 2

∫ 1

u(α)

xddx,

so long as this integral has only inverse polynomial decay in d of degree less than
N (otherwise the integral from 1/2 to u(α) would be relevant in the asymptotic).
Integrating, we find that it does whenever N > 1:

I(ν) ∼ 2

d+ 1
∼ 2∑

νi
.

The proposition follows.

From Theorem B.4 and Proposition B.6, we have

c1(H (m1, . . . ,mn)) ∼ 4∑
(mi + 1)

∏
(mi + 1)

,

providing an alternative proof of Corollary 2.12.

References

[1] A. Aggarwal – “Large genus asymptotics for volumes of strata of abelian differentials”,
preprint arXiv:1804.05431, to appear in J. Amer. Math., DOI: https://doi.org/10.
1090/jams/947.

[2] J. S. Athreya, A. Eskin & A. Zorich – “Counting generalized Jenkins-Strebel dif-
ferentials”, Geom. Dedicata 170 (2014), p. 195–217.

[3] , “Right-angled billiards and volumes of moduli spaces of quadratic differentials
on CP1”, Ann. Sci. Éc. Norm. Supér. 49 (2016), p. 1311–1386.

[4] C. Boissy & E. Lanneau – “Dynamics and geometry of the Rauzy-Veech induction
for quadratic differentials”, Ergodic Theory Dynam. Systems 29 (2009), p. 767–816.

[5] D. Chen, M. Möller, A. Sauvaget & D. Zagier – “Masur-Veech volumes and
intersection theory on moduli spaces of abelian differentials”, preprint arXiv:1901.01785.

[6] D. Chen & M. Möller – “Quadratic differentials in low genus: exceptional and non-
varying strata”, Ann. Sci. Éc. Norm. Supér. 47 (2014), p. 309–369.

[7] D. Chen, M. Möller & D. Zagier – “Quasimodularity and large genus limits of
Siegel-Veech constants”, J. Amer. Math. Soc. 31 (2018), p. 1059–1163.

[8] C. Danthony & A. Nogueira – “Involutions linéaires et feuilletages mesurés”,
C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), p. 409–412.

[9] V. Delecroix – “Cardinality of Rauzy classes”, Ann. Inst. Fourier 63 (2013), p. 1651–
1715.

[10] V. Delecroix, E. Goujard, P. Zograf & A. Zorich – “Enumeration of meanders
and Masur-Veech volumes”, preprint arXiv:1705.05190, to appear in Forum of Mathe-
matics, Pi (2020).

[11] , “Square-tiled surfaces of fixed combinatorial type: equidistribution, counting,
volumes of the ambient strata”, preprint arXiv:1612.08374.

ASTÉRISQUE 415

http://arxiv.org/abs/1804.05431
https://doi.org/10.1090/jams/947
https://doi.org/10.1090/jams/947
http://arxiv.org/abs/1901.01785
http://arxiv.org/abs/1705.05190
http://arxiv.org/abs/1612.08374


ONE-CYLINDER SQUARE-TILED SURFACES 273

[12] V. Delecroix, P. Hubert & S. Lelièvre – “Diffusion for the periodic wind-tree
model”, Ann. Sci. Éc. Norm. Supér. 47 (2014), p. 1085–1110.

[13] V. Delecroix & A. Zorich – “Cries and whispers in wind-tree forests”, in What’s
Next? The Mathematical Legacy of William P. Thurston (D. P. Thurston, ed.), Annales
of Mathematics Studies, vol. 205, Princeton Univ. Press, 2020, p. 83–115.

[14] A. Eskin, M. Kontsevich & A. Zorich – “Sum of Lyapunov exponents of the Hodge
bundle with respect to the Teichmüller geodesic flow”, Publ. Math. Inst. Hautes Études
Sci. 120 (2014), p. 207–333.

[15] A. Eskin & H. Masur – “Asymptotic formulas on flat surfaces”, Ergodic Theory
Dynam. Systems 21 (2001), p. 443–478.

[16] A. Eskin, H. Masur & A. Zorich – “Moduli spaces of abelian differentials: the
principal boundary, counting problems, and the Siegel-Veech constants”, Publ. Math.
Inst. Hautes Études Sci. 97 (2003), p. 61–179.

[17] A. Eskin & M. Mirzakhani – “Invariant and stationary measures for the SL(2,R)

action on moduli space”, Publ. Math. Inst. Hautes Études Sci. 127 (2018), p. 95–324.

[18] A. Eskin, M. Mirzakhani & A. Mohammadi – “Isolation, equidistribution, and orbit
closures for the SL(2,R) action on moduli space”, Ann. of Math. 182 (2015), p. 673–721.

[19] A. Eskin & A. Okounkov – “Asymptotics of numbers of branched coverings of a torus
and volumes of moduli spaces of holomorphic differentials”, Invent. math. 145 (2001),
p. 59–103.

[20] , “Pillowcases and quasimodular forms”, in Algebraic geometry and number
theory, Progr. Math., vol. 253, Birkhäuser, 2006, p. 1–25.

[21] A. Eskin, A. Okounkov & R. Pandharipande – “The theta characteristic of a
branched covering”, Adv. Math. 217 (2008), p. 873–888.

[22] A. Eskin & A. Zorich – “Volumes of strata of Abelian differentials and Siegel-Veech
constants in large genera”, Arnold Math. J. 1 (2015), p. 481–488.

[23] G. Forni – “Deviation of ergodic averages for area-preserving flows on surfaces of higher
genus”, Ann. of Math. 155 (2002), p. 1–103.

[24] G. Forni & C. Matheus – “Introduction to Teichmüller theory and its applications to
dynamics of interval exchange transformations, flows on surfaces and billiards”, J. Mod.
Dyn. 8 (2014), p. 271–436.

[25] E. Goujard – “Siegel-Veech constants for strata of moduli spaces of quadratic differ-
entials”, Geom. Funct. Anal. 25 (2015), p. 1440–1492.

[26] , “Volumes of strata of moduli spaces of quadratic differentials: getting explicit
values”, Ann. Inst. Fourier 66 (2016), p. 2203–2251.

[27] H. W. Gould – Combinatorial identities, Henry W. Gould, Morgantown, W.Va., 1972.

[28] G. D. James – The representation theory of the symmetric groups, Lecture Notes in
Math., vol. 682, Springer, 1978.

[29] M. Kazarian & P. Zograf – “Virasoro constraints and topological recursion for
Grothendieck’s dessin counting”, Lett. Math. Phys. 105 (2015), p. 1057–1084.

[30] S. Kerov & G. Olshanski – “Polynomial functions on the set of Young diagrams”,
C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), p. 121–126.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



274 V. DELECROIX, É. GOUJARD, P. G. ZOGRAF & A. ZORICH

[31] M. Kontsevich & A. Zorich – “Connected components of the moduli spaces of
Abelian differentials with prescribed singularities”, Invent. math. 153 (2003), p. 631–
678.

[32] H. Masur – “Interval exchange transformations and measured foliations”, Ann. of
Math. 115 (1982), p. 169–200.

[33] Y. Naveh – “Tight upper bounds on the number of invariant components on translation
surfaces”, Israel J. Math. 165 (2008), p. 211–231.

[34] A. Sauvaget – “Volumes and Siegel-Veech constants of H(2g−2) and Hodge integrals”,
Geom. Funct. Anal. 28 (2018), p. 1756–1779.

[35] K. Strebel – Quadratic differentials, Ergebn. Math. Grenzg., vol. 5, Springer, 1984.

[36] W. A. Veech – “Gauss measures for transformations on the space of interval exchange
maps”, Ann. of Math. 115 (1982), p. 201–242.

[37] , “Siegel measures”, Ann. of Math. 148 (1998), p. 895–944.

[38] A. Wright – “The field of definition of affine invariant submanifolds of the moduli
space of abelian differentials”, Geom. Topol. 18 (2014), p. 1323–1341.

[39] D. Zagier – “On the distribution of the number of cycles of elements in symmetric
groups”, Nieuw Arch. Wisk. 13 (1995), p. 489–495.

[40] , Applications of representation theory of finite groups, Appendix to: S. K.
Lando & A. K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of
Math. Sciences, vol. 141, Springer, 2004.

[41] A. Zorich – “How do the leaves of a closed 1-form wind around a surface?”, in Pseu-
doperiodic topology, Amer. Math. Soc. Transl. Ser. 2, vol. 197, Amer. Math. Soc., 1999,
p. 135–178.

[42] , “Square tiled surfaces and Teichmüller volumes of the moduli spaces of abelian
differentials”, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, 2002,
p. 459–471.

[43] , “Flat surfaces”, in Frontiers in number theory, physics, and geometry. I,
Springer, 2006, p. 437–583.

[44] , “Explicit Jenkins-Strebel representatives of all strata of abelian and quadratic
differentials”, J. Mod. Dyn. 2 (2008), p. 139–185.

V. Delecroix, LaBRI, Domaine universitaire, 351 cours de la Libération, 33405 Talence, France
E-mail : 20100.delecroix@gmail.com

É. Goujard, Institut de Mathématique de Bordeaux, Domaine universitaire, 351 Cours de la
Libération, 33400 Talence, France • E-mail : elise.goujard@gmail.com

P. G. Zograf, St. Petersburg Department, Steklov Math. Institute, Fontanka 27, St. Petersburg
191023, and Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O. 29B, St.
Petersburg 199178, Russia • E-mail : zograf@pdmi.ras.ru

A. Zorich, Center for Advanced Studies, Skoltech; Institut de Mathématiques de Jussieu –
Paris Rive Gauche, Case 7012, 8 Place Aurélie Nemours, 75205 Paris Cedex 13, France
E-mail : anton.zorich@gmail.com

P. Engel, Department of Mathematics, University of Georgia, Athens, GA 30602, USA
E-mail : philip.engel@uga.edu

ASTÉRISQUE 415


	title
	Introduction
	1. Equidistribution
	2. Contribution of 1-cylinder square-tiled surfaces to Masur-Veech volumes
	3. Alternative counting of 1-cylinder separatrix diagrams
	Appendix A. Impact of the choice of the integer lattice on diagram-by-diagram counting of Masur-Veech volumes
	Appendix B. (by Philip Engel)[6pt]Square-tiled surfaces with one horizontal cylinder
	References


