INTEGRATION ON VECTOR BUNDLES
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1. Introduction

In this paper we study the connection between different objects of integration on vector
bundles and smooth supermanifolds. Certain integral transforms of Radon and Fourier type
arise here naturally. The authors have been partially successful in removing the shroud of
mystery from "odd" integration, connecting it with natural operations over exterior forms on
bundles. Nevertheless, the authors have not made the elimination of supermathematics their
goal. On the contrary, the apparatus of superanalysis affects the description of different
integral transforms so well that many purely classical problems of integral geometry should
be described in precisely this language. But we have intentionally not touched here on ques-
tions of integral geometry proper, so as not to make the theory of integration recounted here
more complicated. These questions will be considered separately. Orientability conditions,
cf. [6], are not discussed for the same reason.

The authors are siﬁcerely grateful to S. P. Novikov for constant guidance and interest
in the work. We thank A. S. Shvarts for communicating to wus the way he and M. A. Baranov
used the classical Fourier transform in calculating the cohomology of pseudodifferential forms
in Rmin,

2. Bundles and Supermanifolds

We consider a supermanifold Mo m 1th local coordinates 2% &, a=1,...,n, n=1, ) T
Change of coordinates looks like this: 2" = 2% (z/, &) = 2% (¢, 0) + ..., & = E”(x g) = ?LTu'
(') + ... . The support of the supermanifold Mnlm, a smooth manifold MR, is imbedded in Mn |m
and is singled out in local coordinates by the equations EH =0, p=1,...,m. As usual, by

the normal bundle of the manifold M, imbedded in MM is meant the quotient of the tangent
bundle of MRIM restricted to MR by the tangent bundle of M. We shall denote the space of the
normal bundle by NII. The fiber of this bundle is the purely odd vector supermanifold Ro™,

On NIl change of local coordinates has the form z° = z°(z’, 0), & = BV T} (2').

THEOREM 0. The supermanifolds MR |m and NI are (noncanonically) isomorphic. In other
words, on any supermanifold MM one can introduce the structure of a vector bundle with even
base M and odd fiber. :

In this formulation we shall use the familiar result that one can always choose an atlas
in which changes of coordinates are linear in the odd variables [1]. Thus, the classifica-
tion of supermanifolds reduces to the classification of vector bundles, however the corre-
sponding categories are not equivalent: there are more morphisms in the category of super-
manifolds [8]. But where homotopy questions arise, in bordism theory [7], in cchomology
theory [6], everything reduces in a certain sense to the category of bundles (cf. below).

Actually in this whole paper we shall deal only with vector bundles with even or odd
fiber and even base. Many constructions carry over easily to the general case of heteropar-
ity, but this was not exactly our goal.

3. Basic Concepts and Notation

Throughout the paper we consider the following category: the objects are smooth vector
bundles over even bases with even or odd fibers, the morphisms are fiberwise linear, fiber-
wise injective smooth maps. The naturality of the requirement of f1berw1se injectivity can
be seen at many points (cf. [6] and below).

Let N > M be a bundle over an n-dimensional manifold M = M1 with fiber R™. We shall de-
note by N' - M the conjugate bundle, and by NI the same bundle but with the opposite parity

M. V. Lomonosov Moscow State University. Translated from Funkt51onal'ny1 Analiz i Ego
Prilozheniya, Vol. 22, No. 2, pp. 14-25, April-June, 1988. Original article submitted Octo-
ber 14, 1986.

94 ' 0016-2663/88/2202-0094512.50 o 1988 Plenum Publishing Corporation



in the fiber.. For convenience we shall call N or NI the normal bundle (with even or odd

fiber) and N', N'Il the conormal one. We introduce local coordinates in the bundle N and

corresponding coordinates in NI, N', and N'II: in N — (% ), z = U < R",v=R™ in NI — (z*
&), E=RY™, in N', (2% pu), p = R™ in N'II — (2% m,), my = R, A change of coordinates has
the form

{ 2 =2*(z'), [ xt=az"(z'),
w=owTh (@), |8 =Tk (),
{x“:x“ (=), =z (z'),
=T @) pur L= (T (o)

Any morphism f: N;— N, defines a morphism fII: N,IT — N,II and conversely. In coordinates the
morphisms f and fIl are given by the same matrix Ul (z,): f¥a% = (fll)*r% = 2% (z,), fFovk = vl x
(z,), (fI)*¥&= = BT} (z;).. Henceforth the morphisms f and £l will be identified.

We consider the manifolds Gg(N > M) of all s-dimensional planes in the fibers of the
bundle N, 0 {s<(m and Gus(NIl - M) of 0|s-dimensional planes in the fibers of NI. Both
manifolds are even and naturally isomorphic: Gy(N — M) = Gys (NII >~ M) = G,. We shall call
Gg the Grassmanian. There are two canonical bundles over the manifold Gg: an s-dimensional
one Eg and an (m — s)-dimensional one E‘é‘ Eg is a subbundle of w*N, the bundle induced over
the Grassmanian from the bundle N over M, by means of the projection m:G;— M. A point of
the Grassmanian Gg is an s-plane in the fiber of the bundle N. A fiber of the bundle Eg con-

sists of all vectors which lie in this plane. ES is a subbundle of m*N'., The fiber of the
bundle Ef is the annihilator of the fiber of Eg.
Let N =(Ng), e =1,...,s, p=1,...,m be a matrixt of rank s, u = (@W) =R’ p = (pu) =

R™, © = (1) =R, g = (ga) &£ GL (). 1In describing Gg and the spaces connected with it it is
convenient to use homogeneous coordinates: in G, — (z°, N%), where (x, N) and (x, gN) are iden-
tified, in E, — (z% u% N& with (x, u, N) and (z, ug™ gN) identified, in EJI — (2% 7%, Ng)

with (x, T, N) and (x, tg~!, gN) identified. The space E‘é‘ is defined as a surface in Tr"N'

the conormal bundle induced on Gg: in 7*N', the homogeneous coordinates (2% Nz, pu), and E

is defined by the equation Napu = 0.

The construction of the Grassmanian is functorial with respect to morphisms f: N, > N,.

In particular, we shall denote by Gg(f) the induced map of Grassmanians Gf): GS(N1—>M1)—+
Gs(Ny = M), Gs ()* a3* = a5 (z),  Gs (N*N& = Ng'Uy; (z)), if f*a3* = a5’ (z)), f* (v%) = vulUhi (zy)..  If
P » Q is an s-dimensional bundle, then we identify Gg(P » Q) = Q and for a morphism f: P > N
of a "singular s-bundle in N," f*¥z* = 2° (8), f*v* = u®N% (f) by Gg(f) we denote the induced Gauss
map Q - G, (N - M), G (H* 2® = 2° (), G ()* Ng = Ne () (cf. [71).

For a supermanifold MRIM we shall denote by Q (M™™) the algebra of pseudodifferential
forms# (cf. [3]), which looks locally like the algebra of functions of x, £, dx, df (dx being
odd, df even). Pseudodifferential forms on even manifolds coincide with ordinary exterior
forms. Compare [4, 5] for the definition of the space of r|s-forms QflS. Locally an r|s-form

z %
LEQ”S(NH) is a function = L(K 11:74) = (K’l,a)‘l M = (M;L)y A = (Agb)y N = (Nz)v i = 1’ eI, =
A

1,...,s which satisfies a collection of conditions [4, 5]. & and Q’|S are contravariant
functors on the category of supermanifolds with morphisms of full rank in the odd variables.

We shall bravely use the symbols dx, df, etc. as competent variables, differentiate and
integrate with respect to them, for example, Sl)(g,d&) will denote the Berezin integral with
respect to the collection of variables £ and dg.

A delta-function of the odd variables is defined word for word like an ordinary Dirac

function: for any function f(£) one has S(S(E,)f(&)D(E) = f(0). Incidentally, it is regular
6 (E) =88 ...E"

tDon't confuse the matrix N with the space of the bundle N!
fUnfortunately it is customary to call the subalgebra Qpol © @ of functions which are poly-
nomial in df, simply differential forms on the supermanifold MRID,
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4. Integral Transform-Iaig(nr)“’g((;ﬁ of Forms on the Normal Bundle

to Forms on the Grassmanian

The space Eg = Eg (N » M) has a natural structure of double bundle over N and Gg = Gg X
(N > M) '
E
P:/ P
N G,.

A point of Eg is a pair consisting of a plane in the fiber of the bundle N and a vector lying
in it. The projection p, associates to a point of Eg this vector and the projection p,, this
plane. 1In coordinates: py: (z, u, N)~ (z, ulN), py: (z, u, N) = (z, N).

We consider the integral transform which corresponds to the given double bundle, I, =
Pax o pf: Q (N) > Q (Gs). In local coordinates the map o (z, v, dz, dv) = (Iw) (z, N, dz, dN) is de-
fined by the formula

Rsls

(Io) (@, N, dz, dNy=§ D (u,du) o (z,uN, dz, duN -+ u.dN). ~ (1)

(Here and below we consider exteriér forms as pseudonorms: as functions of the coordinates
and differentials.) It is easy to verify that the form I w is defined in homogeneous coor-
dinates, is GL(s)-invariant and horizontal, i.e., is really-a form on Gg.

In our case, horizontality of a form ¢ = o(x, N, dx, dN) is expressed by the equation
N¥oo/odNy, = 0 . We verify directly: -
' 6Is(o 5
odNY T adnNY

\ D, du)o (2, uN, dz, duN +u dN)

a psis
)
= S D (u, du)—= (ubNg + ub dN}) 2 (2, uN, da, dul -+ udN) = S D, du)u® —22_ (z,uN, dulN + udN).
Rols a 8y | 3 PP .

From this,
N”M£==SDdeWM‘mf@m&ﬂa@N+u%&=SDdew 0 (o (z, uN, dz, duN + udN))=0

B 5ane s ’ B 5 ot o e 8 dub .

R .

by definition of the Berezin integrél.

THEOREM 1. 1; The transform‘IS’is functorial: for any morphism f: N; - N, one has
Gs(f)*"Is:Is"f*' ) : ’

- 2. The degree of Ig is equal to —s; Is QF (V) — Q"2 (G).

3. The transform Ig commutes with the differential: I;od=do I,

4. For any "singular s-dimensional bundle" f: P » N one has p, o f* = G, (f)* o I;, where
p: P > Q is the projection; in particular,
{ o= S [N
(B, H (@ G )

The assertions of the theorem follow from the properties of the direct and inverse
image. ‘ :

5. Dual Integral Transform I :Q(N')—>Q(G,) of Forms on thée Conormal

Bundle to Forms on the Grassmanian

The double bundle

whéré the fiber of the bundle Eé over Gg consists of covectors which annihilate vectors of
the fiber Eg, defines an integral transform Ii: Q (N') > Q (G) , which is dual to (1), by
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(I o) (z, N, dz, dN) = S D(p, dp) 8 (N¥pu) 8 (d (V¥py)) o (z, p, dz, dp). (2)

Rm[m

Before formulating the properties of the transformation (2), we discuss the functorial

behavior of forms on N'. Any morphism f: N> N, decomposes into a composition Nl—if*Ng—’LN”
where f*N, is the bundle induced on M; by means of f, h is the canonical fiberwise isomor-
phism, and g is a fiberwise injective morphism of bundles over M,. Passage to conjugate

bundles induces a diagram N, g—f*Aé-l;]V;, where g' is fiberwise surjective over M;; hence a
submersion. One can lift a form from N, to f*N, by means of h, and then integrate along the
fibers of g' (we note that this is impossible on the other side because h is generally not a
submersion). Thus there is defined the inverse image f*: Q (N, — Q (V). In coordinates

(f*0) (21, Py, A2y, dpy) = S D(py dps) 8 (py — U (1) py) 8 (4 (py — U () p,)) (:J(Jc2 (%1). P dxlgg-f, dpz).

RrMa M

We note that f* has degree —(m, — m,), where m; { m; are the dimensions of the fibers in
N, and N,, respectively, and commutes with the differential.

THEOREM 2, 1. The transform Ié is functorial: for any morphism f: N; - N, one has
Gs (fy* o I+ = It o f*.

2. The degree of I‘é‘ is equal to (m — ), I;i: QF (N') — Qk-m—9 (q,).
3. The transform Ié commutes with the differential: I o d =doIt.

4. TFor any "singular s-dimensional bundle" f: P—> N one has i*of* = G, (f)* o I}, where
i: Q> P' is the zero section.

The assertions of the theorem follow from the properties of the direct and inverse
image.

We want to turn the reader's attention to the difference between the formulas in point

4 of this theorem and the preceding one. The formula p, o f* = G, (f)* o I, has the following
geometric meaning: in order to integrate the form w on the bundie N over the singular s-
bundle (P, f), it is necessary to transform it into the form Igw on the s-th Grassmanian
Gg(N » M) and to integrate the form obtained over the singular manifold [Q, Gs(f)] in the
Grassmanian. In order to give analogous meaning to the formula i* o f* = G, ()* o I+, it is
necessary to agree to properly understand the integral of a form on the conjugate bundle.
In particular, the integral over the space N itself looks like this: we take a form on N',
restrict it to the base, and integrate.

6. Integral Transform J,:Q(NII)—>Q (&) of Pseudoforms to Forms on
the Grassmanian and the Dual Transform J5 : Q(N'M) —Q(G,)

The normal bundle NI with even fiber is indistinguishable from the bundle N from the
point of view of transition functions. The difference becomes perceptible in considering
functions and forms on the total space. We recall that a pseudodifferential form on a super-
manifold with coordinates %, § is a function of the variables x, &, dx, d& [3]. Since dg¥
in contrast with dvM is an even variable and the dependence on it is not generally poly-
nomial, the algebra R(NI) does not carry any natural grading by the degrees of dx and df,
analogous to the grading of exterior forms on N. However, the bundle structure on NI lets
us introduce a rather unexpected grading on Q(NI):

Definition 1. A pseudodifferential form w = w(x, £, dx, df) on the space NI has degree
k, ifd4fdr +m — $#E =k in its decomposition with respect to &M and dx2, where m is the di-
mension of the fiber, and # & etc. denotes the total degree in the given variable.

Proposition 1. The degree of a pseudodifferential form is well-defined (independent of
the choice of coordinates in the bundle NII). Thus, the space Q(NI) decomposes into a direct

n+m
sum: Q (NII) = ,{6:)__09" (NI} , where dimNI = n|m. The differential d::dx"al??—}—dgu;zr

+1, d: Q¥ (WII) - Q¥+ (NII), and multiplication has degree —m, Qf (NII) ® Q! (NII) — Q#+-m (NTI); the
parity of the form w differs from its grading by m mod 2.

has degree

In passing from the bundle NI to an arbitrary supermanifold Moim the grading we have
introduced is not preserved, but becomes the associated increasing filtration.
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The operator of fiberwise integration (direct image) of pseudodifferential forms is de-

fined analogously to the purely even case and is given by the formula Sl)(w,dw), where wh

are the coordinates in the fiber of the submersion. Its degree (when it makes sense) is
equal to the even part of the dimension of the fiber, taken with a minus sign. We note,
incidentally, that the inverse image f* for pseudodifferential forms has nonzero degree
generally, and equal to the difference of the odd dimensions of the domain of values and

the domain of definition of f.
We consider the double bundle

E QI
¢ N
Nl Gy

and in complete analogy with the purely even situation we define the integral transform
Jge Q(NTI) > Q (Gy). - In coordinates o (z, &, dz, d&)— (Js@) (z, N, dz, dN):
(J o) (# N, dz,dN)= § D(x, dv)o (@, ©N, dz, dii — v dn).
RSls

THEOREM 3, 1. The transform Jg is functorial: for any morphism f: N, —> N, one has
Cf)* o Jo=J. o f*.

2. The degree of Jg is equal to — (m — ), Jg QF (NTI) — Q-9 (G,).

3. The transform Jg commutes with the differential: Jyod =do J,.

4. For any "singular O|s-dimensional bundle" f: PIl > NII the formula p, o f* = G, (fi* o J,,
where p: PIl - Q is the projection, is true; whence, for any @ = Q (NII) one has

W= S J 0.
(et 1 @ G

The assertions of the theorem follows from the properties of the direct and inverse
image of pseudodifferential forms.

In complete analogy with the way the transform Ié, dual to Ig was constructed, one can
construct the transform

JH Q (N'IT) - Q (Gy), (3)
dual to the transform Jg. It corresponds to the double bundle
EfTL
Y N
_ N'II G,
and in coordinates (z%, m,) on N'I, is given by the formula o (z, &, dz, dn) — (Jiw) (z, N, dz, dN):

(Ji o) (z, N, dz, dN) = g Dz, dn) 8 (Nzn) 6 (d (Vn)) o (z, , dz, dm).

rmlm

The transform J -has degree —s, while the rest of its properties are parallel to the proper-
ties of I descrlbed in Theorem 2.

We note that the Grassmanian Gg the canonical bundle Eg, and all its neighbors——.Es, EJII,
EiTl , can be considered in two representations: the Grassmanian G5 is canonically isomorphic
to the Grassmanian of (m — s)-dimensional coplanes Gp-g3 the space Eg is canonically isomor-
phic to the space E& ¢ of the bundle with base Gy-g and fiber the annihilator of a coplane
from Gm gs etc. Each of the transforms described can be wrltten in two versions, depending
on whether we want to get the image in coordinates on Gg or Gy-g for example Ig, after iden-
tification of Gg and G_., coincides with In-s
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This explaiEs the difference in the notation for I, J and Il, Jl. If we write the images

of I and J= in coordinates on Gp_g then all the formulas become identical. It is remarkable
that there exist integral transforms of Fourier type, cross-woven with transforms with the
opposite parity in the fibers: Ig with Jé and Ié with Jq. More about them below.

7. Baranov-—Shvarts Transform A'!*:Q(NI)—Q1*(N1I) of pseudonorms to

» is-Forms

In [1] an integral transform was introduced, which associates with a pseudodifferential
form on a supermanifold, an r|s-density; it turned out [5] that as a result of the transform
one actually gets an r|s-form.

‘ ) (z §
The Baranov—Shvarts transform m(x,E,dw,dg)P+x“%o(K' M) is given by the formula
. ’ A N
(Wlse) (j{ El)_—.g D(dt, dv) o (2, &, dt-K - dv-A, dt-M + d- N). (4)
A N s

The transform has natural geometric meaning: when the pseudoform is integrated over an r|s-
surface, it is first turned into an r|s-form by (4), and then integrated; this is a literal
deciphering of the definition of the integral of a pseudoform. By Theorem 3 the transform
Ats: QF (NIT) — Qrls (NIT) for k # r + m — s leads to r|s-forms, all of whose integrals over linear
r|s-surfaces are equal to zero. Hence it is reasonable to consider the Baranov—Shvarts
transform AT!S only on Qs (NII). From this point of view the transform A'® = ¥ A" has de-
gree —(m — s), where the degree of an r|r-form is considered to be r.

It is worth noting that one and the same pseudoform o & Q¥ (NII) can make a contribution
to integrals over r|s-surfaces with different r and s provided r — s = k — m. For example,
the only nonzero cohomology class of pseudoforms in ROm, ¢ = [exp (—(dE})? — . .. —(dE™)?)], has
degree m, and for any s < m/2 there exists a 2s|2s-dimensional cycle I in RO™ such that

gc;EO (ef. [5]).

r
We collect the information on A into a theorem (cf. Theorem 2 of [5]).

THEOREM 4. 1. The transform A'B is functorial: for any morphism f: N; - N, one has
* o Als = A o f*.

2. The Baranov—Shvarts transform has degree —(m — s):
Atm=ols ; QF (NTT) — QE~m-sits (NTI).
3. The transform A'" commutes with the differential: A¥od —=do Al

4. TFor any "singular 0|s-dimensional bundle j: PIT - NII one has the equation S 0=
p L) (@11, 1)
(o1i,

8. Integral Transform K.:QVF(NI)—Q(G,) of -|s-Forms to Forms

on the Grassmanian

The direct image of r|s-forms, defined on a 0|s-bundle with coordinates (y, {) is given
by the formula

'y T y L
p*=L(K M)»SL(K 0)D(¢)=(p*b><y,1<>,
A N, 0 E

where (p:L)(y, K) is a differential form on the base of the bundle.

We consider the double bundle of Sec. 6 and we define the integral transform k,: Q¢ x
(NII) - Q (G,), which corresponds to this double bundle.t In coordinates it looks like this:

(ksL)("‘ N): 5 D(r)-L(a} :IV{) (5)

K R RO s 0 N

+The special case of kg for NI = R%™ was used in the study of the analog of the cohomology
of a point in [6].
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where K = (K7), = (RY%), i=1, ..., r, TN = (1%N}), tR = (1*RY); it is convenient here for us
to represent an r-form on the Grassmanian as a function on the vectors (Ki, Ry), where K4 cor-
responds to 3x/3tl and Ry to aN/3tl. One can verify that it is well-defined: 1ndependent of
the choice of coordinates in the bundle N, kgL will be GL(s) invariant and horizontal, i.e.,

a real r-form on Gg

THEOREM 5. 1. The transform kg is functorial: for any morphism f: N, N, one has
kg o f* = Gs (f)* o ks

2. The degree of kg is equal to zero: kg Q™ (NII) - Q" (G,).
3. The transform kg commutes with the differential: k;0d =d o k..

4, TFor any "singular 0|s-dimensional bundle" f: PIl - NIl with base @, one has S L=
’ (P11, )
kL.

CRIO)

9. TFourier Transform ¥ between Pseudodifferential Forms of Q(NH)

and Forms on the Conormal Bundle Q(N')

The general definition of the Fourier transform extends naturally to Lie supergroups.
For an Abelian supergroup R®” the dual group will be the conjugate space(BﬁWO .and the
Fourier transform is given by the formula «

Fhe M= { D ye=% sy,

rom

where (%, §) are coordinates in Rem , (k, A) in (R®=)’, and measures on R#m are identified
with functions with the help of the coordinate volume element D(x, £). The properties of the
Fourier transform on R™™ are determined by the properties of the usual Fourier integral and
the properties of the transform F in the purely odd case Ro™,

Proposition 2. On the purely odd supergroup Ro™ the Fourier transform F has the follow-
ing properties:

1. The transform F is invertible, and the inverse transform has the form
m(m+1)

Fg) @ =i"(—1) *  § DM

) (Rolm)/
2. One has the formulas
[ . . 4a
F(P(5)i@)=P@FEN®.  FPEFE)=P(—ig)FHO),
PP )1 M) =P FN®. F*(PMWIMW)=P(— iz )FNE
3. Up to factors, the Fourier transform F coincides with the Hodge operators =:/\ x

(R™Y— A (R™), if one identifies functions on RY™ with elements of the exterior
algebra A ((R™)), and the volume element D(£) with the basis A,,...,x; in A™ R™).

4, The transform F can be calculated by the formula

m(m+1)

(Ff)(h) = i™(— 1) 2 f(—i—a—x—)l -

The hodge operator can be normalized so that it coincides exactly with the Fourier trans-
form. Then the familiar properties of the operator * will follow from the formulas in peoint 2.

It is known that the Fourier transform carries multiplication into convolution and con-
versely. For the group RO™ the operatlon of convolution has degree —m in the natural grading
by powers of £&:

AF(R™) Q@ AL (R™))— A (R™Y),
it is associative and commutative in the graded sense.

We pass to the bundles N, N', Nf, and N'Il. For the conormal bundle N' each fiber has
the structure of a vector space with coordinates p,. We consider the space R"™ with coordi-
nates p,, dp,. It is clear from the change of coordinate formulas in N' that R™™ is endowed
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with a canonical structure of supermanifold with distinguished volume element D(p, dp). We
endow the conjugate space (R™™)’ with coordinates which we shall denote by d&¥ (even) and gM
(odd). It is clear from the change of coordinate formulas that EH can be identified with
the coordinates in the fiber of NI and dtH with their differentials!

Conclusion: the fiberwise Fourier transform is well-defined and turns forms on the co-
normal bundle into pseudoforms on the normal bundle with odd fiber. Using the Leibniz for-
mula we get

(Fo) (2,5, dz,de) = § D(p,dp)e "o (e, p,dz, dp). (6)
rmim
THEOREM 6. 1. The Fourier transform F is functorial: for any morphism f:N; > N, one
has f* o F = F o f*.
2. The degree of the Fourier transform is equal to zero: F:QF (N')— QF (NII).
3. The transform F commutes with the differential: Fod=do F.

4. The Fourier transform F is an interlacing operator for the integral transforms I
and Js: Jso F = I. Thus one has connected integration of pseudodifferential forms and forms
on the conormal bundle.

Proof. Functoriality. We verify the commutativity of the diagram: let o & Q (N’); then

Rmy|m,

(F1*o) (21, &, dzy, dE;) = S D (p,, dp,)e —id(gulp"")f *o (zy, p,, day, dp,)

= { Dudp) ™™ ) D(p,dp)8(p,~ U (z;) py)

R™Mim, RMa{m:
X8(d (P~ U () pa)) @ (53 (), Py Ay o, dpy) =

g
= S D (p,. dp,)e A0 0Pu) © (xz (1), Pgs dy _g% ’ dp2)
1

== (Fw) (, (21), ;U (2,), dz, ’Z‘:‘:‘ , 48U (z,) — &, diry ‘Z_Z‘ ) =(f*FC0) (21, &, dxy, dgy).

One can consider the transformation F as the composition of the ordinary Fourier inte-
gral with respect to p and the "odd Fourier integral" with respect to dp; since the latter
turns monomials with 3 dp =k into monomials with #+§ =m — k, it is obvious that the degree
of F is equal to O — recall the definition of the grading of pseudoforms.

We verify the commutativity with the differential.

7]
az"

az”

o 00 o \ , 0 , __2,a 0 a
de=F(da: TiiI_L,+azpu_aa)_dma (Fm)—l—(—zw) (idg) o ds® — (Fo) + d&* - (Fo) =dFo.

Finally, we prove assertion 4. Let @ = Q (N'); then

(J Fo)(x,N,dz, dN)= S D (v, d) S D (p, dp) e *N*?wy (1, p, dz, dp)
. RSls RMim

— S D (v,dv) S D (p, dp)e @ N PN 2N (1 b dz, dp)
Rrsls rim
=™ § D(p.dp) § D(x,dn)e Vo 4B (5, b, dr, dp)
Rmim RSls o
$(s+1)

=(— ™0 (—1) ¢ § D(p.dp)8(Np)d(d(Np)o(x, p, dz, dp)

rmim

s(s+1)

=(—1)™Q2n)i*(—1) 2 (Iie)(z,N,dz,dN).

The factor which arises depends on the normalization of the Fourier transform. An anal-
ogous Fourier transform F' exists between forms on N and N'I. For the transform F' all the
assertions analogous to the assertions of Theorem 6 are valid. It interlaces the integral
transforms Ig and Jé: the diagram
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Q(G,)

Q(N) '
F'l &‘

is commutative. Thus we have connected integration of differential forms and pseudodiffer-
ential forms on the conormal bundle with odd fiber.

o (¥1)

The fact that the Fourier transforms connect forms on conjugate bundles with opposite
parity in the fiber is remarkable! (It is easy to see from the change of coordinate formulas
that there exist in all two bilinear combinations of coordinates and differentials which lead
to an invariant even kernel.)

In the algebras Q(N') and Q(NI) there are two associative commutative operations: ordi-
nary multiplication [which has degree 0 for Q(N') and —m for Q(NI)] and multiplication on
the base in combination with fiberwise convolution [of degree —m for Q(N') and 0 for Q(NI)].
The Fourier transform is an isomorphism of algebras with respect to the multiplications of
different names. If one considers @ as algebra of functions on certain supermanifolds, it
is clear that the Fourier transform is not generated by any map of these supermanifolds: it
is necessary that multiplication go into multiplication.

It turns out that the connection introduced in the bundle N now lets us construct an
isomorphism of supermanifolds with algebras of functions Q(NI) and Q(N).

Definition 2 (cf. [3]). Let MBIm be a supermanifold with coordinates x, &. Then Mo m
is a supermanifold of dimension n + min + m with coordinates x, £, dx, df.

The "roof" ~ is the covariant functor which is isomorphic to the functor TH {(tangent
bundle with reversed parity, cf. [8]). We have already used it implicitly in the construc-
tion of the fiberwise Fourier transform.

We define a connection in the bundle N with the help of the local gl (s) -valued 1-forms
A = A (x,dz) = (dz®AY,) - Under change of coordinates
' A = T1A'T — T74T.

We set
Vol = dpppvda®AY,,
VEn: = dis — Evda®Al,.

We note that Vv is odd and V¢ even. One can consider the variables (x, v, dx, Vv) and (x, £,
dx, V£) as new local coordinates in N and NI. The supermanifolds N and NI have identical
dimension.

THEOREM 7. The equation of coordinates vh —>V§" g = Vi defines an isomorphism of super-
manifolds N and 'NI. This isomorphism identifies the volume elements

D (z, t, dz, d§) and D (z, v, dx, dv).
The degree of the induced iSOmofphism of algebras Q(N) and Q(NI) is equal to #m

Unfortunately, the isomorphism described between pseudodifferential forms and forms on
the normal bundle does not preserve the differential. Thus, it turns out to be much less
useful than the Fourier transform.

10. Basic Diagram

We gather the results found together. We consider a singular bundle f: PII — NII with
odd 0|s-dimensional fiber and r~dimensional base Q. Which objects can be integrated over it?
They are tr|s-forms and pseudoforms (of degree r + m — s). Moreover, over the corresponding
singular manifold in the Grassmanian one can integrate differential r-forms on Gg. We showed
above that differential forms on the conormal bundle N' are a distinctive obJect of integra-
tion

The objects of integration'descfibed are connected with one another.
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THEOREM 8. The diagram

f+m 5

(NH)Q_%QI'*”IS l)

7 N

rIS(NH) ﬁ___)g G)

which consists of functorial transforms which commute with the differential and integral, is
commutative.

Thus, integration of pseudodifferential forms is the same as integration of forms on the
conormal bundle according to the following rule: the lift to P' and the integral over the
zero section Q » P'. The isomorphism here is given by the Fourier transform F. The Baranov-—
Shvarts transform A reduces integration of pseudoforms to integration of the corresponding
rls forms. Finally, the transformations kg, Jg, and I let us consider, instead of integrals
of r|s-forms, pseudodifferential forms, and forms on N', integrals of differential forms on
the Grassmanian Gg over the Gaussian singular manifold [Q, Gg(f£)].

One formulates the dual problem naturally. We note that the subcomplexes of forms on
the Grassmanian Gg, which arise as images of the integral transforms are essentially different
in the direct and dual diagram.

o ot ot
w w w

In comparison with ordinary spaces, vector bundles have a rich supplementary structure,
thanks to which several different integration theories arise for them. It turns out that all
these integration theories split into two classes, which one can conditionally call Cartan—
de Rham integration and Berezin integration; both "even'" and "odd" theories belong to each
class. A close connection is established here between the objects of integration belonging
to one class, which is preserved under maps and which preserves the differential and inte-
gral.
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