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THE MAGIC WAND THEOREM OF A. ESKIN AND

M. MIRZAKHANI

ANTON ZORICH

Courtesy of Maryam Mirzakhani

On August 13, 2014 (the openning day of ICM at Seoul) Maryam Mirzakhani
received the Fields Medal “for her outstanding contributions to the dynamics and
geometry of Riemann surfaces and their moduli spaces” becoming the first woman
to win the Fields Prize. Citing the ICM laudation [ICM],

“Maryam Mirzakhani has made stunning advances in the theory of Riemann
surfaces and their moduli spaces, and led the way to new frontiers in this area. Her
insights have integrated methods from diverse fields, such as algebraic geometry,
topology and probability theory.

In hyperbolic geometry, Mirzakhani established asymptotic formulas and statis-
tics for the number of simple closed geodesics on a Riemann surface of genus g. She
next used these results to give a new and completely unexpected proof of Witten’s
conjecture, a formula for characteristic classes for the moduli spaces of Riemann
surfaces with marked points.

In dynamics, she found a remarkable new construction that bridges the holomor-
phic and symplectic aspects of moduli space, and used it to show that Thurston’s
earthquake flow is ergodic and mixing.

Most recently, in the complex realm, Mirzakhani and her coworkers produced the
long sought-after proof of the conjecture that – while the closure of a real geodesic
in moduli space can be a fractal cobweb, defying classification – the closure of a
complex geodesic is always an algebraic subvariety.

Her work has revealed that the rigidity theory of homogeneous spaces (developed
by Margulis, Ratner and others) has a definite resonance in the highly inhomoge-
neous, but equally fundamental realm of moduli spaces, where many developments
are still unfolding.”

We start this article with a short biographical note of Maryam Mirzakhani (for
more details see excellent online article [Kl] of Erica Klarreich). Then we try to
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2 ANTON ZORICH

give an idea of her achievements focusing on one fundamental result as an example.
To put this result into context we present in section 1 several natural problems in
physics which lead to measured foliations on surfaces. In section 2 we describe the
extremely elementary and convenient language of translation surfaces used to work
with measured foliations. In section 3 we provide background material describing
how dynamics on one individual translation surface leads to dynamics in a multidi-
mensional space of translation surfaces. In section 4 we discuss why ergodic theory
is usually absolutely powerless in describing specific trajectories. And, finally, in
section 5 we present the Theorems of A. Eskin and M. Mirzakhani, and of A. Eskin,
M. Mirzakhani, A. Mohammadi, which serve as a Magic Wand for numerous appli-
cations (the choice of applications in this exposition is mostly based on simplicity
of presentation rather than on their significance).

This article is closely related to the part of the paper of P. Hubert and R. Kriko-
rian in the current issue dedicated to results of Artur Avila on dynamics in Te-
ichmüller space, see [HuKr]. The reader might find it interesting to read both
companion papers: they are intended to complement each other.

For more ample presentation of mathematical works of Maryam Mirzakhani see
the short paper [Mc2] written by C. McMullen for the ICM Proceedings.

Brief biographical note

Maryam Mirzakhani was born in 1977 in Teheran. After passing an entrance test she
was accepted for the Farzanegan middle school and then high school for girls in Teheran
administered by Irans National Organization for Development of Exceptional Talents. As
Maryam told to Erica Klarreich, journalist of Quanta Magazine (see [Kl] for details) she,
and her friend Roya Beheshti convinced the principal of their high school to organize classes
of preparation for International Mathematical Olympiad (at this time Iranian team never
contained girls). Maryam’s determination gave excellent results: she won gold medals at
International Mathematical Olympiads in 1994 and in 1995.

Maryam Mirzakhani completed undergraduate studies at Sharif University in Tehran
in 1999 and moved for graduate studies to Harvard University choosing Curtis McMullen
as scientific advisor. The Ph.D. Thesis defended in 2004 brought her international recog-
nition. In her Thesis Maryam proved that the number N(X,L) of simple closed geodesics
(i.e. of those, which do not have self-intersections) on a Riemann surface X of length at
most L grows asymptotically as

N(X,L) ∼ const(X) · L6g−6 as L → ∞ .

(It is a classical result that the number of all closed geodesics grows much faster, as eL/L:
most of closed geodesics intersect themselves.) Another extraordinary result of the same
Ph. D. Thesis was a new proof of Witten conjecture (the first proof was obtained by
M. Kontsevich in 1992).

Having defended the Ph.D. Thesis Maryam Mirzakhani got a prestigious Clay Math-
ematics Institute Research Fellowship which provides a generous salary and research ex-
penses leaving to a Fellow complete freedom of choice where to perform research1.

Maryam Mirzakhani worked for several years at Princeton University; in 2008, at the
age of 31, she became a Full Professor of Stanford University, where she has been working
ever since. Maryam is a mother of a charming 3 years old daughter.

Personally Maryam is extremely nice and friendly, and not the least bit standoffish;

meeting her at a conference you would take her at the first glance for a young postdoc

rather than for a celebrated star. All her lectures which I have attended were full of

1Note that three out of four 2014 Fields Medalists are also former Clay Research Fellows.
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sparkling and contagious enthusiasm, optimism, and appreciation of beauty of mathemat-

ics; they inspire you to attack fearlessly complicated problems and, following Maryam,

not to give up when they resist.

1. From problems of solid state physics to surface foliations

In a sense, dynamical systems concern anything which moves; usually, when the
motion has already achieved some kind of stable regime. “The thing that moves”
might be the Solar system, or a system of particles in a chamber, or a billiard ball
on a table (where the table is not necessarily a rectangular one), or currents in the
ocean, or electrons in a metal, etc. One can observe certain common phenomena in
large classes of dynamical systems; in particular, ideal billiards might be interpreted
as toy models of a gas in a chamber. Such toy models allow to elaborate tools to
study original dynamical systems of physical nature.

The language of measured foliations on surfaces (generalizing irrational winding
lines on a torus) developed by Bill Thurston proved to be very useful in working
with the class of dynamical systems including periodic billiards in the plane (like
the “windtree model” introduced by Paule and Tatiana Ehrenfest a century ago;
see the paper of P. Hubert and R. Krikorian in this issue for details) and dynamics
of an electron on a Fermi-surface in the presence of a homogeneous magnetic field
(“the S. P. Novikov Problem”; see the survey [MlNo] for details).

Figure 1. Fundamental domains of Fermi surfaces of tin, iron
and gold reproduced from [ALK]. Electron trajectories in these
metals in the presence of a homogeneous magnetic field correspond
to plane sections of the corresponding periodic surfaces.

A flow following the leaves of such measured foliation on a surface decomposes
the surface into two types of domains: periodic components filled with periodic
trajectories and minimal components in which every trajectory is dense. After ap-
plying a natural surgery, the foliation on any minimal component can be in certain
sense (described in the next section) “globally straightened”: one can choose appro-
priate flat coordinates in which the foliation is represented by a family of vertical
lines x = const. Versions of this “straightening theorem” were proved in differ-
ent contexts and in different terms by E. Calabi [Ca], A. Katok [Ka], J. Hubbard
and H. Masur [HdMa], and by other authors. These theorems imply that to study
an important class of dynamical systems it is sufficient to confine the study to a
simplified model and to study straight line foliations on “translation surfaces”.
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2. Translation surfaces

In this section we describe a very concrete construction of a vertical foliation
on a surface endowed with a rather special flat metric with isolated singularities.
The “straightening theorem” mentioned above asserts that all orientable measured
foliations on surfaces can be reduced (in the way described above) to the ones as
in the current section.

~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

C

Figure 2. Identifying corresponding pairs of sides of this poly-
gon by parallel translations we obtain a flat surface of genus two
endowed with a flat metric having a single conical singularity.

Consider a collection of vectors ~v1, . . . , ~vn in R2 and arrange these vectors into
a broken line. Construct another broken line starting at the same point as the
first one arranging the same vectors in the order ~vπ(1), . . . , ~vπ(n), where π is some
permutation of n elements. By construction the two broken lines share the same
endpoints; suppose that they bound a polygon as in Figure 2. Identifying the pairs
of sides corresponding to the same vectors ~vj , j = 1, . . . , n, by parallel translations
we obtain a closed topological surface.

By construction, the surface is endowed with a flat metric. When n = 2 and
π = (2, 1) we get a usual flat torus glued from a parallelogram. For larger number of
elements we might get a surface of higher genus, where the genus is determined by
the permutation π. It is convenient to impose from now on some simple restrictions
on the permutation π which guarantee, in particular, non degeneracy of the surface;
see [Ma1] or [Ve].

Figure 3. Cartoon movie of gluing a translation surface of genus
two from a regular octagon.

For example, a regular octagon gives rise to a surface of genus two as in Figure 3.
Indeed, identifying pairs of horizontal and vertical sides of a regular octagon we get
a usual torus with a hole in the form of a square. We slightly cheat in the next
frame, where we turn this hole by 45◦ and only then glue the next pair of sides. As
a result we get a torus with two isolated holes as on the third frame. Identifying
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the remaining pair of sides (which represent the holes) we get a torus with a handle,
or, in other words, a surface of genus two.

Similar to the torus case, the surface glued from the regular octagon or from an
octagon as in Figure 2 also inherits from the polygon a flat metric, but now the
resulting flat metric has a singularity at the point obtained from identified vertices
of the octagon.

Note that the flat metric thus constructed is very special: since we identify the
sides of the polygon only by translations, the parallel transport of any tangent
vector along a closed cycle (avoiding conical singularities) on the resulting surface
brings the vector back to itself. In other words, our flat metric has trivial holonomy.
In particular, since a parallel transport along a small loop around any conical
singularity brings the vector to itself, the cone angle at any singularity is an integer
multiple of 2π. In the most general situation the flat surface of genus g would
have several conical singularities with cone angles 2π(d1 +1), . . .2π(dm +1), where
d1 + · · ·+ dm = 2g − 2.

It is convenient to consider the vertical direction as part of the structure. A
surface endowed with a flat metric with trivial holonomy and with a choice of a
vertical direction is called a translation surface. Two polygons in the plane obtained
one from another by a parallel translation give rise to the same translation surface,
while polygons obtained one from another by a nontrivial rotation (usually) give
rise to distinct translation surfaces.

We can assume that the polygon defining our translation surface is embedded
into the complex plane C ≃ R2 with coordinate z. The translation surface obtained
by identifying the corresponding sides of the polygon inherits the complex structure.
Moreover, since the gluing rule for the sides can be expressed in local coordinates
as z = z̃ + const, the closed 1-form dz is well-defined not only in the polygon, but
on the surface. An exercise in complex analysis shows that the complex structure
extends to the points coming from the vertices of the polygon, and that the 1-form
ω = dz extends to the holomorphic 1-form on the resulting Riemann surface. This
1-form ω has zeroes of degrees d1, . . . , dm exactly at the points where the flat metric
has conical singularities of angles 2π(d1 + 1), . . . , 2π(dm + 1).

Reciprocally, given a holomorphic 1-form ω on a Riemann surface one can always
find a local coordinate z (in a simply-connected domain not containing zeroes of ω)
such that ω = dz. This coordinate is defined up to an additive constant. It defines
the translation structure on the surface. Cutting up the surface along an appropri-
ate collection of straight segments joining conical singularities we can unwrap the
Riemann surface into a polygon as above.

This construction shows that the two structures are completely equivalent; the
flat metric with trivial holonomy plus a choice of distinguished direction or a pair:
Riemann surface and a holomorphic 1-form on it.

3. Families of translation surfaces and dynamics in the moduli space

The polygon in our construction depends continuously on the vectors ~vi. This
means that the topology of the resulting translation surface (its genus g, the
number and the types of the resulting conical singularities) does not change un-
der small deformations of the vectors ~vi. For every collection of cone angles
2π(d1 + 1), . . . , 2π(dm + 1) satisfying d1 + · · · + dm = 2g − 2 with integer di
for i = 1, . . . , n, we get a family H(d1, . . . , dm) of translation surfaces. Vectors
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~v1, . . . , ~vn can be viewed as complex coordinates in this space, called period coor-
dinates. These coordinates define a structure of a complex orbifold (manifold with
moderate singularities) on each space H(d1, . . . , dm). The geometry and topology
of spaces of translation surfaces is not yet sufficiently explored.

Readers preferring algebro-geometric language may view a family of translation
surfaces with fixed conical singularities 2π(d1 + 1), . . . , 2π(dm + 1) as the stratum
H(d1, . . . , dm) in the moduli space Hg of pairs (Riemann surface C; holomorphic
1-form ω on C), where the stratum is specified by the degrees d1, . . . , dm of zeroes
of ω, where d1 + · · · + dm = 2g − 2. Note that while the moduli space Hg is a
holomorphic Cg-bundle over the moduli space Mg of Riemann surfaces, individual
strata are not. For example, the minimal stratum H(2g−2) has complex dimension
2g, while the moduli space Mg has complex dimension 3g − 3. The very existence
of a holomorphic form with a single zero of degree 2g − 2 on a Riemann surface C
is a strong condition on C.

To complete the description of the space of translation surfaces we need to present
one more very important structure: the action of the group GL(2,R) on Hg pre-
serving strata. The description of this action is particularly simple in terms of our
polygonal model Π of a translation surface S. A linear transformation g ∈ GL(2,R)
of the plane maps the polygon Π to a polygon gΠ. The new polygon again has all
sides arranged into pairs, where the two sides in each pair are parallel and have
equal length. We can glue a new translation surface and call it g · S. It is easy
to see that unwrapping the initial surface into different polygons would not affect
the construction. Note also, that we explicitly use the choice of the vertical direc-
tion: any polygon is endowed with an embedding into R

2 defined up to a parallel
translation.

The subgroup SL(2,R) ⊂ GL(2,R) preserves the flat area. This implies, that
the action of SL(2,R) preserves the real hypersurface H1(d1, . . . , dm) of translation
surfaces of area one in any stratum H(d1, . . . , dm). The codimension-one subspace
H1(d1, . . . , dm) can be compared to the unit sphere (or rather to the unit hyper-
boloid) in the ambient stratum H(d1, . . . , dm).

Recall that under appropriate assumption on the permutation π, the n vectors

~v1 =

(

v1,x
v1,y

)

. . . , ~vn =

(

vn,x
vn,y

)

as in Figure 2 define local coordinates in the embodying family H(d1, . . . , dm) of
translation surfaces. Let dν := dv1xdv1y . . . dvnxdvny be the associated volume
element in the corresponding coordinate chart U ⊂ R2n. It is easy to verify, that
dν does not depend on the choice of “coordinates” ~v1, . . . , ~vn, so it is well-defined on
H(d1, . . . , dm). Similarly to the case of Euclidian volume element, we get a natural
induced volume element dν1 on the unit hyperboloid H1(d1, . . . , dm). It is easy to
check that the action of the group SL(2,R) preserves the volume element dν1.

The following Theorem proved independently and simultaneously by H. Masur [Ma1]
and W. Veech [Ve] is the keystone of this area.

Theorem (H. Masur; W. A. Veech). The total volume of every stratumH1(d1, . . . , dm)
is finite.

The group SL(2,R) and its diagonal subgroup act ergodically on every connected
component of every stratum H1(d1, . . . , dm).
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Here “ergodically” means that any measurable subset invariant under the ac-
tion of the group has necessarily measure zero or full measure. Ergodic theorem
claims that in such situation the orbit of almost every point homogeneously fills
the ambient connected component. In plain terms, the ergodicity of the action of
the diagonal subgroup can be interpreted as follows. Having almost any polygon
as above, we can choose appropriate sequence of times ti such that contracting the
polygon horizontally with a factor eti and expanding it vertically with the same
factor eti and modifying the resulting polygonal pattern of the resulting translation
surface by an appropriate sequence of cut-and-paste transformations (see Figure 4)
we can get arbitrary close to, say, regular octagon rotated by any angle chosen in
advance.

−→ =

Figure 4. Note that expansion-contraction (action of the diag-
onal group) changes the translation surface, white cut-and-paste
transformations change only the polygonal pattern, and do not
change the flat surface.

Now everything is prepared to present the first marvel of this story. Suppose
that we want to find out some fine properties of the vertical flow on an individual
translation surface. Applying a homothety we can assume that the translation
surface has area one. Howard Masur and William Veech suggest the following
approach. Consider our translation surface (endowed with a vertical direction) as
a point S in the ambient stratum H1(d1, . . . , dm). Consider the orbit SL(2,R) · S
(or the orbit of S under the action of the diagonal subgroup

(

et 0
0 e−t

)

depending

on the initial problem). Numerous important properties of the initial vertical flow
are encoded in the geometrical properties of the closure of the corresponding orbit.
This approach placed the problem of finding the orbit closures under the action of
SL(2,R), and studying their geometry at the center of the studies in this area for
the last three decades. To give at least one example of this approach we present
Masur’s criterion of unique ergodicity of the vertical flow.

In the late 60’s and 70’s several authors (including W. Veech, M. Keane, A. Katok,
and others) discovered in different terms and in various contexts the phenomenon
which can be illustrated by the following example. Take a translation surface as
in Figure 5, where the rectangle has size 1 × 2, and the slits have any irrational
length. (We are not restricted to polygons as in Figure 2 to construct translation
surfaces; we could also glue translation surfaces from triangles imbedded into the
Eucledian plane, provided that all identifications of sides are parallel translations.)
For uncountable number of directions all trajectories of the straight line flow would
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be dense, but it would not be ergodic: some trajectories would spend most of the
time in the middle part of the translation surface, while the other ones — mostly
in the complementary part (see [Ma2] for details). Clearly, applying an appropriate
rotation to the translation surface, one can make a nonergodic direction vertical.

+ − − +

Figure 5. For appropriate directions of the straight line flow
on this translation surface all trajectories are dense, but the flow
is not ergodic: trajectories are not uniformly distributed on the
translation surface.

Having presented the phenomenon, we can state Masur’s criterion of unique
ergodicity of the vertical flow.

Theorem (H. Masur). Suppose S is a translation surface. Suppose the flow in
the vertical direction on S is not uniquely ergodic. Then for any compact set K ⊂
H(d1, ..., dm) in the ambient space of translation surfaces the trajectory gt · S of
S would never visit K for t sufficiently large, t > t0(K). In other words, the

trajectory of S under the action of the diagonal subgroup

(

et 0
0 e−t

)

eventually

leaves any compact set; it “escapes to a multidimensional cusp” of H(d1, ..., dm).
(Actually, the statement is even stronger: the projection of the trajectory gt ·S to the
moduli space Mg of Riemann surfaces eventually leaves any compact set in Mg.)

The vertical flow on the surface in Figure 5 is periodic, so extremely noner-
godic. And indeed, the action of the diagonal subgroup makes our flat torus with
slits become more and more narrow and long. In this case the family of deformed
translation surfaces leaves any compact set in a very simple way: there is a closed
flat geodesics which gets pinched. To construct minimal nonergodic examples men-
tioned above one should show that for certain angles the vertical flow applied to
rotated translation surface makes the deformed translation surface leave eventually
any compact set in the family of flat surfaces and never return back.

At the first glance, we have just reduced the study of a rather simple dynamical
system, namely, of the vertical flow on a translation surface, to a really complicated
one — to the study of the action of the group GL(2,R) on the space H(d1, . . . , dm).
Nevertheless, this approach proved to be extremely fruitful and powerful, despite
the fact that geometry and topology of spaces of translation surfaces is not suffi-
ciently explored yet.

However, as it would be explained in the next section, successful implementations
of this approach were often based on a chain of happy coincidences (like reduction
to translation surfaces of genera one or two which are very special). The Magic
Wand Theorem of A. Eskin and M. Mirzakhani and of A. Eskin, M. Mirzakhani,
A. Mohammadi transforms this approach from art to science.
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4. “Almost all” versus “all”

Even for those classes of dynamical systems which are sufficiently well under-
stood, the only kind of predictions of “what would happen to a particle after suf-
ficiently long time” always contain some version of the word “typically” usually
meaning “for a full measure set of initial data”. The trouble (which, depending on
the taste, might be considered as an advantage: do not get distracted by details) is
that even for those dynamical systems which are very well studied and understood,
and where one knows, basically, everything about “typical behavior” of trajectories,
one can say almost nothing about behavior of any concrete particular trajectory:
there is no way to tell, whether your particular starting data are “typical” or not.
If you repeat thousands of experiments with random starting data and you want to
establish some statistics, you do not care about rare nontypical fluctuations. But
if you are interested in the future of some very special asteroid B 612, and only by
this, most of the methods of dynamical systems become completely useless for you.

The difficulty is conceptual; it is neither related to lack of knowledge at the cur-
rent state of development of mathematics, nor to the presence of noise, or friction,
etc in realistic dynamical systems. Even for absolutely deterministic systems, and
even assuming all necessary mathematical abstractions like absence of any noise or
friction, the trouble persists. The reason is that for the vast majority of dynamical
systems (in particular, for very smooth and nice ones) certain individual trajec-
tories might be extremely sophisticated. For example, they can cover extremely
fractal sets on a large scale of time.

For example, the map f : x 7→ {2x} homogeneously twisting the unit circle
S1 = R/Z twice around itself has orbits filling Cantor sets of, basically, arbitrary
Hausdorff dimension between zero and one; has nonclosed orbits avoiding certain
arcs of the circle, etc. In other words, this extremely nice map, clearly, has trajec-
tories with very peculiar properties.

All these properties become much more visible using the binary representation
of a real number x ∈ [0, 1[ instead of the usual decimal one. If

x =
n1

2
+ · · ·+ nk

2k
+ · · · ,

where all binary digits nk are zeroes or ones, then the map f acts on the sequence
(n1, n2, . . . , nk, . . . ) by erasing the first digit. (This operation on the space of semi-
infinite sequences of zeroes and ones is called the Bernoulli shift).

The geodesic flow on any compact Riemann surface of constant negative curva-
ture has similar behavior. It was observed long ago by H. Furstenberg and B. Weiss
that the closures of individual trajectories might have arbitrary (or almost arbi-
trary) Hausdorff dimension in the range from 1 (closed trajectories) to 3 (typical
trajectories).

A straight-line flow on a torus Tn = Rn/Zn is an example of a (very rare)

dynamical system, where the closure of any orbit is a nice submanifold. Let ~V =
(V1, . . . , Vn) denote the direction of the flow. The closure of any trajectory in

direction ~V is a sub-torus Tk, where 1 ≤ k ≤ n is the degree of irrationality k =
dimQ{V1, . . . , Vn} of the direction. Say, in the particular case of a two-dimensional
torus, when n = 2, all trajectories of the flow in a rational direction are already
closed — they are circles S1 = T1, and the closure of any trajectory of the flow
in an irrational direction is the entire torus T2. Actually, this is not surprising at
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all: torus is a homogeneous space, and the group of automorphisms of the torus
preserving the flow acts transitively on the torus.

In a sense, up to know, there was only one known class of dynamical systems,
for which one could find the closure of any single trajectory, and for which all
possible closures were described by a short list of possible simple cases like in the
example above. It happens for very special dynamical systems in homogeneous
spaces. One of the key statements in this theory was proved by Marina Ratner;
extremely important contributions to this theory as well as fantastic applications
to the number theory, were developed by S. G. Dani, G. Margulis, and by other
great mathematicians, including A. Eskin, S. Mozes, and N. Shah. The scale of
applications of this theory to different areas of mathematics continues to extend.
Indeed, homogeneous spaces naturally appear in various domains of mathematics.
(Both the theory and the list of major contributors merit a separate paper rather
than a short paragraph.)

5. Magic Wand Theorem

And now comes the result of Alex Eskin and Maryam Mirzakhani [EMi] (incor-
porating the joint results of these authors and of Amir Mohammadi [EMiMh]).

It is known that the moduli space is not a homogeneous space. Nevertheless, the
orbit closures of GL(2,R) in the space of translation surfaces are as nice as one can
only hope: they are complex manifolds possibly with very moderate singularities
(so-called “orbifolds”). In this sense the action of the GL(2,R) and of SL(2,R) on
the space of translation surfaces described above mimics certain properties of the
dynamical systems in homogeneous spaces mentioned at the end of the previous
section.

Magic Wand Theorem. The closure of any GL(2,R)-orbit is a complex sub-
orbifold (possibly with self-intersections); in period coordinates ~v1, . . . , ~vn in the
corresponding space H(d1, . . . , dm) of translation surfaces it is locally represented
by an affine subspace.

Any ergodic SL(2,R)-invariant measure is supported on a suborbifold. In co-
ordinates ~v1, . . . , ~vn this suborbifold is represented by an affine subspace, and the
invariant measure is just a usual affine measure on this affine subspace.

As a vague conjecture (or, better say, as a very optimistic dream) this property
was discussed since long ago, and since long ago, there was not a slightest hint for
a general proof. The only exception is the case of surfaces of genus two, for which
ten years ago C. McMullen proved a very precise statement [Mc1] classifying all
possible orbit closures. He used, in particular, the hard artillery of Ratner’s results
which are applicable here. However, the theorem of McMullen is based on the very
special properties of surfaces of genus two, which do not generalize to higher genera.

The proof of Alex Eskin and Maryam Mirzakhani is a titanic work which took
many years. It absorbed numerous fundamental developments in dynamical sys-
tems which do not have any direct relation to moduli spaces. To mention only a
few, it incorporates certain ideas of low entropy method of M. Einsiedler, A.Katok,
E. Lindenstrauss; results of G. Forni and of M. Kontsevich on Lyapunov expo-
nents of the Teichmüller geodesic flow; the ideas from the works of Y. Benoit and
J.-F. Quint on stationary measures; iterative improvement of the properties of the
invariant measure inspired by the approach of G. Margulis and G. Tomanov to the
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actions of unipotent flows on homogeneous spaces; some fine ergodic results due to
Y. Guivarch and A. Raugi.

What can we do now, when this theorem is proved? For example, in certain
situations this theorem works like a Magic Wand, which allows to touch any given
billiard in certain class of billiards and in theory (and more and more often in
practice) find the corresponding orbit closure in the moduli space of translation
surfaces. The geometry of this orbit closure tells you, basically, everything you
want to know about the initial billiard.

Suppose you want to study the billiard in the plane filled periodically with the
obstacles as in Figure 6 (see the paper of P. Hubert and R. Krikorian [HuKr] in
this issue discussing such a windtree model). A trajectory might go far away, then
return relatively close back to the starting point, then make other long trips. The
diffusion rate ν describes the average rate T ν with which the trajectory expands in
the plane on a long range of time T ≫ 1. More formally,

ν := lim sup
T→∞

log(diameter of part of trajectory for interval of time [0, T ])

logT
.

For the usual random walk in the plane, or for a billiard with periodic circular
obstacles the diffusion rate is known to be 1/2: the most distant point of a piece
of trajectory corresponding to segment of time [0, T ] would be located roughly at a

distance
√
T . (We do not discuss at what time t0 ∈ [0, T ] the trajectory would be

that far.)
The Magic Wand Theorem and companion results allow to show that for any

obstacle as in Figure 6 the diffusion rate ν is one and the same for all starting
points and for almost all starting directions. Moreover, one can even compute
the diffusion rate! To perform this task one has to proceed as follows. Find the
associated translation surface S; it is really easy. Using the Magic Wand theorem
(and its development by A. Wright [W]) find the corresponding orbit closure L. By
a very recent theorem of A. Eskin and J. Chaika [ECh] almost all directions for any
translation surface are Lyapunov-generic, so it is sufficient to find the appropriate
Lyapunov exponent of the Teichmüller geodesic flow on L and you are done! (See
details on the windtree billiard and on Lyapunov exponents in the paper [HuKr] in
this issue.)

Figure 6. The diffusion rate depends only on the number of the
angles of almost any symmetric obstacle as on the picture .

Say, for almost any symmetric obstacle with 4m− 4 angles 3π/2 and 4m angles
π/2 V. Delecroix and the author showed that the diffusion rate is

(2m)!!

(2m+ 1)!!
∼

√
π

2
√
m

as m → ∞ .

(This answers a question by J.-C. Yoccoz whether for certain shapes of the obstacles
the diffusion rate can be arbitrary small and develops the original answer for m = 1
obtained in [DHL]).
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Another application of the Magic Wand Theorem which is easy to describe is the
following advance in Illumination Problem asking, whether a room with mirrored
walls can always be illuminated by a single point light source. R. Penrose designed
in 1958 a planar room with walls made from flat and elliptic mirrors that always has
dark regions no matter where you place a candle in this room. In 1995 G. Tokarsky
constructed a polygonal room with a similar property: it has one dark point if the
idealized candle is placed at the correct point. Using the Magic Wand Theorem,
S. Lelièvre, T. Monteil, and B. Weiss, proved in [LMtW] that for any translation
surface M , and any point x ∈ M , the set of points y which are not illuminated by
x is always finite.

One should not have an impression that the theory developed by A. Eskin,
M. Mirzakhani, A. Mohammadi and other researchers in this area is designed to
serve billiards. A billiard in a polygon is just a cute way to describe certain class
of dynamical systems; we have seen that same kind of dynamical systems appear
in solid state physics, in conductivity theory, and so on.

The result of A. Eskin and M. Mirzakhani opens a new way to study moduli
spaces, which in the last several decades became a central object both in mathe-
matics and in theoretical physics. We do not know yet all possible applications of
the Magic Wand Theorem which might be obtained in this direction.

The integral calculus was partly developed by Kepler (a century before Newton
and Leibniz) in order to measure the volume of wine barrels. Who could imagine at
that time that volume of a solid of revolution would be discussed in any textbook of
mathematics for beginners and that the integral calculus would become an essential
part of all contemporary engineering. The theorem proved by Alex Eskin and
Maryam Mirzakhani is so beautiful and powerfull that, personally, I have no doubt
that it would find numerous applications far beyond our current imagination.
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