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Abstract. We study the Lyapunov spectrum of the Kontsevich–Zorich cocycle on
SL(2, R)-invariant subbundles of the Hodge bundle over the support of SL(2, R)-invariant
probability measures on the moduli space of Abelian differentials. In particular, we prove
formulas for partial sums of Lyapunov exponents in terms of the second fundamental
form (the Kodaira–Spencer map) of the Hodge bundle with respect to the Gauss–Manin
connection and investigate the relations between the central Oseledets subbundle and the
kernel of the second fundamental form. We illustrate our conclusions in two special cases.
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1. Introduction

Consider a billiard on the plane with Z
2-periodic rectangular obstacles as in Figure 1.

In [DHL], it is shown that for almost all parameters (a, b) of the obstacle (i.e. lengths
0 < a, b < 1 of the sides of the rectangular obstacles), for almost all initial directions θ ,
and for any starting point x the billiard trajectory {ϕθ

t (x)}t∈R escapes to infinity with a rate
t2/3 (unless it hits the corner):

lim sup
t→+∞

log(distance between x and ϕθ
t (x))

log t
= 2

3
.

Note that changing the height and the width of the obstacle (see Figure 2) we get quite
different billiards, but this does not change the diffusion rate.

The number ‘ 23 ’ here is the Lyapunov exponent of a certain renormalizing dynamical
system associated with the initial one. More precisely, it is the Lyapunov exponent of a
certain subbundle of the Hodge bundle under the Kontsevich–Zorich cocycle.

The Lyapunov exponents of the Hodge bundle also govern the deviation spectrum
for the asymptotic cycle of an orientable measured foliation, as well as the rate of
convergence of ergodic averages for interval exchange transformations and for certain
area-preserving flows on surfaces, see [F2, Z0, Z1]. The range of phenomena where the
Lyapunov exponents of the Hodge bundle are extremely helpful keeps growing: nowadays,
it includes, in particular, the evaluation of volumes of the moduli spaces of quadratic
differentials on CP1, see [AEZ], and the classification of commensurability classes of all
presently known non-arithmetic ball quotients [KM].
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FIGURE 1. Billiard in the plane with periodic rectangular obstacles.

FIGURE 2. The escape rate does not depend on the size of the obstacles.

In this paper we develop the study of the Lyapunov spectrum of invariant subbundles of
the Hodge bundle under the Kontsevich–Zorich cocycle (with respect to general SL(2, R)-
invariant measures). We revisit variational formulas of Forni from [F2] for the Hodge
norm interpreting them in more geometric terms and we generalize them to invariant
subbundles. We generalize Forni’s formulas for partial sums of the Lyapunov exponents of
the Kontsevich–Zorich cocycle in terms of geometric characteristics of the Hodge bundle
(Theorem 1 in §3.2). We establish the reducibility of the second fundamental form with
respect to any decomposition into Hodge star-invariant, Hodge-orthogonal subbundles and
generalize the Kontsevich formula for the sum of all non-negative exponents (Corollary 3.5
in §3.3). We investigate the occurrence of zero exponents with a particular emphasis
on the relation between the central Oseledets subbundle and the kernel of the second
fundamental form. Our main theorem in this direction (Theorem 3 in §4.3) establishes
sufficient conditions for the inclusion of one into the other, hence for their equality.

We illustrate our conclusions with two examples. The first model case,
inspired by recent work [EKZ2], is given by arithmetic Teichmüller curves of
square-tiled cyclic covers (introduced in [FMZ]); the second model case is a certain
SL(2, R)-invariant locus Z (inspired by a paper of McMullen [Mc]) supporting an
SL(2, R)-invariant ergodic probability measure with some zero exponents.

The study of square-tiled cyclic covers was motivated by the discovery of two arithmetic
Teichmüller curves of square-tiled cyclic covers with maximally degenerate Kontsevich–
Zorich spectrum (see [F3, FMt, FMZ]). Conjecturally there are no other SL(2, R)-
invariant probability measures with maximally degenerate spectrum. Progress on this
conjecture has been made by Möller [Mo] in the case of Teichmüller curves and, recently,
by Aulicino [Au] in the general case. An alternative proof of the conjecture in sufficiently
high genera can also be derived from a quite explicit formula for the sum of all non-negative
exponents (see [EKZ1]).
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The case of square-tiled cyclic covers is especially rigid. In this case, the central
Oseledets subbundle is always SL(2, R)-invariant, smooth and in fact coincides with the
kernel of the second fundamental form. This pictures does not hold in general. In fact, in
our second model case the central Oseledets subbundle does not coincide with the kernel
of the second fundamental form even though it has the same rank. We emphasize that
the rank of the kernel of the second fundamental form at generic points can be explained
in all examples by symmetries (automorphisms) of the underlying surfaces. Indeed, the
discovery of the two above-mentioned maximally degenerate examples was based on a
symmetry criterion for the vanishing of the second fundamental form on the complement
of the tautological subbundle (see [F3, FMt] and §4.2 of the current paper).

This article is organized as follows. In §2, we introduce the Kontsevich–Zorich cocycle
on the Hodge bundle over the moduli space of Abelian differentials and we compute the
relevant geometric tensors of the bundle, endowed with the Hodge Hermitian product,
namely, the second fundamental form and the curvature of the Hermitian connection
with respect to the Gauss–Manin connection. We then prove first and second variational
formulas for the Hodge norm in terms of the second fundamental form and of the curvature.
In §3, we derive formulas for partial sums of the Lyapunov exponents of the restriction of
the Kontsevich–Zorich cocycle to any SL(2, R)-invariant subbundle of the Hodge bundle.
In §4 we investigate the presence of zero exponents and we prove results on the relation
between the central Oseledets subbundle of the cocycle and the kernel of the second
fundamental form. In Appendix A we describe the case of (arithmetic) Teichmüller curves
of square-tiled cyclic covers. Finally, in Appendix B, we present our second model case.
Conjecturally, this second example is representative of the general features related to the
presence of zero exponents on invariant subbundles of the Hodge bundle.

2. The Hodge bundle

2.1. The Kontsevich–Zorich cocycle. The moduli space of Abelian differentials Hg has
the structure of a complex vector bundle over the moduli space Mg of Riemann surfaces
of genus g. The fiber over a point of Mg represented by a Riemann surface S corresponds
to the complex g-dimensional vector space of all holomorphic 1-forms ω on S.

The space Hg admits a natural action of the group GL(2, R) (see, for instance, [MT]
or [Z2] for an elementary description of this action). It is well known that the orbits of the

diagonal subgroup
(
et 0
0 e−t

)
of GL(2, R) project on Mg to the geodesics with respect to the

Teichmüller metric. For this reason the flow on Hg defined by the action of the diagonal
subgroup is called the Teichmüller geodesic flow.

The real (respectively, complex) Hodge bundle H1
R
(respectively, H1

C
) over the moduli

space Mg is the vector bundle having the first cohomology H1(S, R) (respectively,
H1(S, C)) as its fiber over a point represented by the Riemann surface S. By identifying
the lattices H1(S, Z) (respectively, H1(S, Z⊕ iZ)) in the fibers of these vector bundles it
is possible to canonically identify fibers over nearby Riemann surfaces. This identification
is called the Gauss–Manin connection.

Let us consider now the pullback of the Hodge bundle to Hg with respect to the natural
projection Hg →Mg . We can lift the Teichmüller geodesic flow to the Hodge bundle by
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parallel transport of cohomology classes with respect to the Gauss–Manin connection, thus
getting a cocycle GK Z

t called the Kontsevich–Zorich cocycle.
The Lyapunov exponents of this cocycle were proved to be responsible for some

fine dynamical properties of flows on individual Riemann surfaces, see [F2, Z1], which
motivated the study of these exponents for all known Teichmüller flow-invariant (and
especially SL(2, R)-invariant) ergodic measures on Hg .

In order to analyze the Lyapunov spectrum (i.e. collection of Lyapunov exponents) of
GK Z

t , we need to understand the evolution of cohomology classes [c] ∈ H1(S, R) under
GK Z

t . A particularly useful tool for this task is the Hodge norm, the main object of the
next subsection.

2.2. The Hodge product. The natural pseudo-Hermitian intersection form on the
complex cohomology H1(S, C) of a Riemann surface S can be defined on any pair
(ω1, ω2) of complex-valued closed 1-forms on S representing cohomology classes in
H1(S, C) as

(ω1, ω2) :=
i

2

∫

S

ω1 ∧ ω̄2. (2.1)

Restricted to the subspace H1,0(S) of holomorphic 1-forms, the intersection form induces
a positive-definite Hermitian form; restricted to the subspace H0,1(S) of anti-holomorphic
1-forms, it induces a negative-definite Hermitian form, so on the entire complex
cohomology space the pseudo-Hermitian form (2.1) has signature (g, g).

For later use, we define (with the aid of the Hodge norm)

H
(1)
g := {ω ∈Hg : ‖ω‖2 = (ω, ω)= 1}, (2.2)

that is, H(1)
g is the moduli space of unit area Abelian differentials on Riemann surfaces of

genus g.
The Hodge representation theorem affirms that for any cohomology class c in

the real cohomology space H1(S, R) of a Riemann surface S there exists a unique
holomorphic form h(c) such that c is the cohomology class of the closed 1-form Re h(c)

in H1
de Rham(S, R)≃ H1(S, R).

By the Hodge representation theorem, the positive-definite Hermitian form (2.1) on
H1,0 induces a positive-definite bilinear form on the cohomology H1(S, R): for any c1,
c2 ∈ H1(S, R),

(c1, c2) := Re(h(c1), h(c2)).

The Hodge bundle H1
R
is thus endowed with an inner product, called the Hodge inner

product and a norm, called the Hodge norm.
Given a cohomology class c ∈ H1(S, R), let h(c) be the unique holomorphic 1-form

such that c = [Re h(c)]. Define ∗c to be the real cohomology class [Im h(c)]. The Hodge
norm ‖c‖ satisfies

‖c‖2 = i

2

∫

S

h(c) ∧ h(c)=
∫

S

Re h(c) ∧ Im h(c),

or, in other words, ‖c‖2 is the value of c · ∗c on the fundamental cycle. The operator
c 7→ ∗c on the real cohomology H1(S, R) of a Riemann surface S is called the Hodge star
operator.
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We will denote the Hodge inner product of cycles c1, c2 ∈ H1(S, R) by parentheses,
(c1, c2)= (c2, c1), and their symplectic product by angular brackets, 〈c1, c2〉 = −〈c2, c1〉.
By definition (2.1), the spaces H1,0(S) and H0,1(S) are Hodge-orthogonal, hence the
following relations hold:

∗(∗c)=−c, (2.3)

〈c1, ∗c2〉 = −〈∗c1, c2〉, (2.4)

(c1, c2)= 〈c1, ∗c2〉, (2.5)

(h(c1), h(c2))= (c1, c2)+ i〈c1, c2〉. (2.6)

2.3. Second fundamental form. Consider the complex Hodge bundle H1
C

over the
moduli space Mg of complex structures having the complex cohomology space H1(S, C)

as a fiber over the point of Mg represented by a Riemann surface S. This complex
2g-dimensional vector bundle is endowed with the flat Gauss–Manin connection DH1

C

which preserves the Hermitian form (2.1) of signature (g, g).
The bundle H1

C
admits a decomposition into a direct sum of two orthogonal subbundles

H1
C
= H1,0 ⊕ H0,1 with respect to the Hermitian form (2.1). This decomposition is not

invariant with respect to either the flat connection on H1
C
or with respect to the Teichmüller

flow. The decomposition defines an orthogonal projection map π1 of the vector bundles
π1 : H1

C
→ H1,0.

The subbundle H1,0 is a Hermitian vector bundle with respect to the Hermitian
form (2.1) restricted to H1,0. Consider the unique connection DH1,0 on H1,0 compatible
with the Hermitian metric in the fiber and with the complex structure on the base of the
bundle. This (non-flat) connection coincides with the connection defined as a composition
of the restriction of DH1

C

to the subbundle H1,0 composed with the projection π1:

DH1,0 = π1 ◦ DH1
C

|H1,0 ,

(see, for example, [GH, p. 73]).
The second fundamental form AH1,0 defined as

AH1,0 := DH1
C

|H1,0 − DH1,0 = (I − π1) ◦ DH1
C

|H1,0 (2.7)

is a differential form of type (1, 0) with values in the bundle of complex-linear maps
from H1,0 to H0,1, hence AH1,0 can be written as a matrix-valued differential form of
type (1, 0) (see, for example, [GH, p. 78]). In the literature, AH1,0 is also known as the
Kodaira–Spencer map.

Note that we work with the pullbacks of the vector bundles H1
C
, H1,0 and H0,1 to the

moduli spaces Hg or Qg of Abelian (correspondingly quadratic) differentials with respect
to the natural projections Hg →Mg (correspondingly Qg →Mg).

We recall that there is a canonical identification between the tangent bundle of the
moduli space of Riemann surfaces, which can be naturally described as the bundle Bg of
equivalence classes of Beltrami differentials, and its cotangent bundle, which is naturally
identified to the bundle Qg of holomorphic quadratic differentials. This identification
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follows from the existence of a canonical pairing between the bundle Qg of quadratic
differentials and the bundle of Beltrami differentials given by integration. For any quadratic
differential q and any Beltrami differential µ on a Riemann surface S, the pairing is given
by the formula:

〈q, µ〉 :=
∫

S

q · µ.

In fact, quadratic differentials are tensors of type (2, 0) while Beltrami differentials are
tensors of type (−1, 1), hence the product of a Beltrami and a quadratic differential is
a tensor of type (1, 1) which can be integrated. Beltrami differentials corresponding to
trivial deformations of the complex structure are exactly those which are orthogonal to all
quadratic differentials [Na], hence the pairing between Beltrami and quadratic differentials
induces a non-degenerate pairing between the tangent bundle to the moduli space Mg of
Riemann surfaces and the bundle of holomorphic quadratic differentials. The bundle
of quadratic differentials is thus identified to the cotangent bundle of the moduli space of
Riemann surfaces. There exists a natural map I : Qg →Bg defined by

I(q) :=
[ |q|
q

]
∈Bg for all q ∈ Qg,

which yields a canonical identification between the bundles of quadratic and Beltrami
differentials, that is, between the cotangent and the tangent bundles to the moduli space
Mg of Riemann surfaces. Taking this canonical identification into account, the differential
form AH1,0 with values in the bundle of complex-linear maps from H1,0 to H0,1 defines a
vector bundle map H1,0→ H0,1 over the moduli space of quadratic differentials. In other
terms, for any (S, q) ∈ Qg by evaluating the form AH1,0 at the tangent vector v = q under
the identification between the tangent bundle and the bundle of quadratic differentials, we
get a complex-linear map

Aq : H1,0(S)→ H0,1(S). (2.8)

For any Abelian differential ω ∈Hg , let Aω := Aq be the complex-linear map
corresponding to the quadratic differential q = ω2 ∈ Qg .

2.4. Curvature. The curvature tensors of the metric connections of the holomorphic
Hermitian bundles H1,0, H1,0 are differential forms 2H1,0 , 2H0,1 of type (1, 1) with
values in the bundle of complex-linear endomorphisms of H1,0, H0,1, respectively, hence
they can be written, with respect to pseudo-unitary frames, as skew-Hermitian matrices of
differentials forms of type (1, 1) on the moduli space Mg (see [GH, p. 73]).

Let {e1, . . . , e2g} ⊂ H1
C

be a pseudo-unitary frame with respect to the pseudo-
Hermitian intersection form (2.1), that is, a frame which verifies the pseudo-orthonormality
conditions

(ei , e j ) = 0 for i 6= j,

(ei , ei ) = 1 for 1≤ i ≤ g,

(e j , e j ) = −1 for g + 1≤ j ≤ 2g.
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Let us consider the connection matrix θ := θH1
C

associated to the Gauss–Manin connection
DH1

C

. By the identities

0 = d(ei , e j )= (Dei , e j )+ (ei , De j )

=
(∑

k

θikek, e j

)
+
(
ei ,
∑

k

θ jkek

)

= θi j (e j , e j )+ θ̄ j i (ei , ei )

it follows that θ has a block structure

θ =
(

θ1 B

A θ2

)

with g × g blocks θ1, θ2, A and B that verify the relations

θ1 =−θ1
t
, θ2 =−θ2

t
, B = A

t
.

Observe that for any unitary frame {ω1, . . . , ωg} ⊂ H1,0, there is an associated pseudo-
unitary frame {e1, . . . , e2g} ⊂ H1

C
, with respect to the intersection form (2.1), defined as

ei = ωi for 1≤ i ≤ g,

e j = ω̄ j−g for g + 1≤ j ≤ 2g,

and, with respect to the above pseudo-unitary frame, the blocks θ1, θ2 are equal to the
connection matrices θH1,0 , θH0,1 of the connections DH1,0 and DH0,1 , respectively, that is,
θ1 = θH1,0 and θ2 = θH0,1 , and A = AH1,0 is the matrix of the second fundamental form
(see [GH, p. 76]).

Let us now consider the curvatures 2H1
C

, 2H1,0 and 2H0,1 of the connections DH1
C

,

DH1,0 and DH0,1 on the vector bundles H1
C
, H1,0 and H0,1, respectively. It follows from

the above relations that

θH1
C

∧ θH1
C

=
(

θH1,0 ∧ θH1,0 + A
t ∧ A ∗

∗ θH0,1 ∧ θH0,1 + A ∧ A
t

)
.

By Cartan’s structure equation (see, for instance, [GH, p. 75]) we have the identity
2H1

C

= dθH1
C

− θH1
C

∧ θH1
C

, hence we conclude that

2H1
C

=
(

2H1,0 − A
t

H1,0 ∧ AH1,0 ∗
∗ 2H0,1 − AH1,0 ∧ A

t

H1,0

)
.

It follows that (compare with [GH, p. 78])

2H1,0 =2H1
C

|H1,0 + A∗
H1,0 ∧ AH1,0 .

Note that 2H1
C

is the curvature of the Gauss–Manin connection, which is flat. So 2H1
C

is
null, and the curvature 2H1,0 can be written as

2H1,0 = A∗
H1,0 ∧ AH1,0 . (2.9)

Similarly to the case of the second fundamental form, we pull back the bundle H1,0 to a
point (S, q) of Qg and take the value of the curvature form on the tangent vectors v, v̄,
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where the tangent vector v = q under the identification discussed above between the
tangent bundle of the moduli space and the bundle of quadratic differentials. Thus,
instead of a differential form of type (1, 1) with values in the bundle of complex
endomorphisms of the bundle H1,0, we get a section of that bundle over Qg , that is,
we get a complex endomorphism 2q of the space H1,0(S) for any pair (S, q) ∈ Qg .
For any Abelian differential ω ∈Hg , let 2ω :=2q denote the complex endomorphism
corresponding to the quadratic differential q = ω2 ∈ Qg . For any Riemann surface S

and any orthonormal basis � := {ω1, . . . , ωg} of the space H1,0(S), the system �̄=
{ω̄1, . . . , ω̄g} is a pseudo-orthonormal basis of the space H0,1(S). Let 2 be the matrix
of the complex endomorphism 2ω with respect to the basis � and A be the matrix of the
second fundamental form operator Aω with respect to the bases � and �̄. Formula (2.9)
can be written in matrix form as follows:

2=−A∗ · A. (2.10)

It is immediate from the above formulas that the matrix 2 of the curvature of the Hodge
bundle is a negative-semidefinite Hermitian matrix.

2.5. Evaluation of the second fundamental form. A formula for the second fundamental
form AH1,0 was implicitly computed in [F2, §2]. We state such a formula below. We
remark that all formulas in [F2] are written with different notational conventions, which
we now explain for the convenience of the reader. Any Abelian differential ω on a
Riemann surface S induces an isomorphism between the space H1,0(S) of all Abelian
differentials on S, endowed with the Hodge norm, and the subspace of all square integrable
meromorphic functions (with respect to the area form of the Abelian differential ω on S).
In [F2, F3] variational formulas are written in the language of meromorphic functions. In
this paper we will adopt the language of Abelian differentials.

Let (S, ω) be a pair (Riemann surface S, holomorphic 1-form ω on S). Following
[F2, §2], for any α, β ∈ H1,0(S) we define

Bω(α, β) := i

2

∫

S

αβ

ω
ω̄. (2.11)

The complex bilinear form Bω depends continuously, actually (real) analytically, on the
Abelian differential ω ∈Hg .

LEMMA 2.1. For any ω ∈Hg , the second fundamental form Aω can be written in terms

of the complex bilinear form Bω, namely

(Aω(α), β̄)=−Bω(α, β) for all α, β ∈ H1,0(S).

In particular, for any orthonormal basis {ω1, . . . , ωg} of holomorphic forms in H1,0(S)

and any α ∈ H1,0(S),

Aω(α)=
g∑

j=1
Bω(α, ω j )ω̄ j .

Proof. The argument is a simplified version of [F2, proof of Lemma 2.1] rewritten in
the language of holomorphic differentials. As everywhere in this paper we use the
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same notation for holomorphic (anti-holomorphic) forms and their cohomology classes,
while for other closed 1-forms we use square brackets to denote the cohomology class.
Let {(St , ωt )} denote a Teichmüller deformation, that is, a trajectory of the Teichmüller
flow. Let α be any given holomorphic differential on the Riemann surface S0. There
exists ε > 0 such that there is a natural identification H1(St , C)≃ H1(S0, C) by parallel
transport for all |t |< ε, so that locally constant sections are parallel for the Gauss–Manin
connection.

Let {αt } be a smooth one-parameter family of closed 1-forms such that α(0)= α and
αt is holomorphic on St for all |t |< ε, that is, {αt } is a smooth local section of the bundle
H1,0. Let π1 : H1

C
→ H1,0 denote the natural projection (see formula (2.7)). By definition,

Aω(α)= (I − π1) ◦ DH1
C

|H1,0(α)= (I − π1)

([
dα

dt
(0)

])
. (2.12)

Thus, for any 1-form β ∈ H1,0, in order to compute the pseudo-Hermitian intersection
(Aω(α), β̄), it is sufficient to compute the derivative dα/dt (0) up to exact 1-forms and
up to 1-forms of type (1, 0). In fact, it follows from formula (2.12) that the cohomology
class Aω(α)− [dα/dt (0)] ∈ H1(S, C) is holomorphic. Hence, by the definition of the
pseudo-Hermitian intersection form, it is orthogonal to β̄ for any holomorphic form β,

(
Aω(α)−

[
dα

dt
(0)

]
, β̄

)
= 0,

which implies

(Aω(α), β̄)=
([

dα

dt
(0)

]
, β̄

)
= i

2

∫

S

dα

dt
(0) ∧ β. (2.13)

It is immediate from the definition of the Teichmüller deformation that

dω

dt
(0)= ω̄. (2.14)

By writing αt = (αt/ωt )ωt and differentiating, taking (2.14) into account, we derive the
following formula:

dα

dt
(0)=

(
d

dt

αt

ωt

(0)

)
· ω + α

ω
ω̄. (2.15)

By formula (2.15), the 1-form dα/dt (0)− (α/ω)ω̄ is of type (1, 0), hence (taking into
account that β is holomorphic) we have

i

2

∫

S

dα

dt
(0) ∧ β = i

2

∫

S

α

ω
ω̄ ∧ β =−Bω(α, β). (2.16)

The first formula in the statement follows from formulas (2.13) and (2.16).
Finally, let {ω1, . . . , ωg} ⊂ H1,0(S) be any orthonormal basis (in the sense that

(ωi , ω j )= δi j ). The system {ω̄1, . . . , ω̄g} ⊂ H0,1(S) is pseudo-orthonormal (in the sense
that (ω̄i , ω̄ j )=−δi j ), hence

Aω(α)=−
g∑

j=1
(Aω(α), ω̄ j )ω̄ j =

g∑

j=1
Bω(α, ω j )ω̄ j . (2.17)

Thus, the second formula in the statement is proved. ✷
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Remark 2.1. We warn the reader that in general (unless α ∈ C · ω)

Aω(α) 6= α

ω
ω̄.

In fact, the 1-form Aω(α) is closed by definition, while the 1-form (α/ω)ω̄ is in general
not closed. In order to compute Aω(α) directly, it is necessary to consider the appropriate
projection of the 1-form (α/ω)ω̄ onto the subspace of closed 1-forms. We carry out such
a direct calculation below, following [F2, Lemma 2.1]. We stress that this calculation,
although not needed for first variation formulas, is important for the correct derivation of
second variation formulas along the Teichmüller flow.

Let ∂ and ∂̄ denote respectively the type (1, 0) and the type (0, 1) exterior differentials
on the Riemann surface S, defined as the projections of the (total) exterior differential
d on the subspaces of 1-forms of type (1, 0) and (0, 1), respectively. By definition, for
all v ∈ C∞(S), the 1-form ∂v is of type (1, 0), the 1-form ∂̄v is of type (0, 1) and the
following formula holds

dv = ∂v + ∂̄v.

Note that the 1-form (α/ω)ω̄ is ∂̄-closed (but not d-closed, unless α ∈ C · ω), hence its
∂̄-cohomology class has a unique anti-holomorphic representative pω(α) ∈ H0,1(S). In
other words, there exist a unique anti-holomorphic form pω(α) ∈ H0,1(S) and a complex-
valued function v ∈ C∞(S) (unique up to additive constants) such that

α

ω
ω̄ = pω(α)+ ∂̄v (2.18)

(the linear operator pω : H1,0(S)→ H0,1(S) is equivalent to the restriction to the subspace
of meromorphic functions of the orthogonal projection from the space of square-integrable
functions on S onto the subspace of anti-meromorphic functions, which appears in the
formulas of [F1, F2]).

Since dα/dt (0) and pω(α) are closed forms and any closed form of type (1, 0) is
holomorphic, by formulas (2.15) and (2.18) it follows that

dα

dt
(0)− (pω(α)+ dv) ∈ H1,0(S), (2.19)

hence, by formulas (2.12) and (2.19), we conclude that the second fundamental form has
the following expression:

Aω(α)= pω(α) for all α ∈ H1,0(S). (2.20)

In conclusion, the form Aω(α) is equal to (α/ω)ω̄ only up to a ∂̄-exact correction term. If
such a correction term were identically zero, the theory of the Kontsevich–Zorich cocycle
would be much simpler.

The second fundamental form of the Hodge bundle is related to the derivative of the
period matrix along the Teichmüller flow. We recall the definition of the period matrix.
Let {a1, . . . , ag, b1, . . . , bg} be a canonical basis of the first homology group H1(S, R)

of a Riemann surface S and let {θ1, . . . , θg} ⊂ H1,0(S) be the dual basis of holomorphic
1-forms, that is, the unique basis with the property that

θi (a j )= δi j for all i, j ∈ {1, . . . , g}.
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The period matrix 5i j (S) is the g × g complex symmetric matrix with positive-definite
imaginary part defined as follows:

5i j (S) := θi (b j ) for all i, j ∈ {1, . . . , g}. (2.21)

LEMMA 2.2. Let L denote the Lie derivative along the Teichmüller flow on the space of

Abelian differentials. The following formula holds:

L5i j (S, ω)= Bω(θi , θ j ) for all i, j ∈ {1, . . . , g}.

Proof. By Rauch’s formula (see, for instance, [IT, Proposition A.3]), for any Beltrami
differential µ on S, we have

d5i j

dµ
(S)= i

2

∫

S

θiθ jµ for all i, j ∈ {1, . . . , g}. (2.22)

By definition, at any holomorphic quadratic differential q = ω2 on S the Teichmüller flow
is tangent to the equivalence class of Beltrami differentials represented by the Beltrami
differential

µ= |q|
q
= ω̄

ω
.

The statement then follows immediately from Rauch’s formula. ✷

For any ω ∈H
(1)
g (that is, for any Abelian differential ω ∈Hg of unit total area, see

formula (2.2)) , the second fundamental form Bω satisfies a uniform upper bound and a
spectral gap bound, proved below.

LEMMA 2.3. For any Abelian differential ω ∈H
(1)
g on a Riemann surface S, the following

uniform bound holds:

‖Bω‖ :=max

{ |Bω(α, β)|
‖α‖‖β‖ : α, β ∈ H1,0(S)\{0}

}
= 1, (2.23)

and the maximum is achieved at (α, β)= (ω, ω), in fact we have

Bω(ω, ω)= ‖ω‖2 = 1. (2.24)

Let 〈ω〉⊥ ⊂ H1,0(S) be Hodge-orthogonal complement of the complex line 〈ω〉 = C · ω.
The following spectral gap bound holds:

max

{ |Bω(α, β)|
‖α‖‖β‖ : α, β ∈ H1,0(S)\{0} and α ∈ 〈ω〉⊥

}
< 1. (2.25)

Proof. By the Cauchy–Schwarz inequality in the space L2(S, (i/2) ω ∧ ω̄), it follows that,
for all α, β ∈ H1,0(S),

|Bω(α, β)| =
∣∣∣∣
i

2

∫

S

α

ω

β

ω
ω ∧ ω̄

∣∣∣∣

≤
(
i

2

∫

S

∣∣∣∣
α

ω

∣∣∣∣
2

ω ∧ ω̄

)1/2(
i

2

∫

S

∣∣∣∣
β

ω

∣∣∣∣
2

ω ∧ ω̄

)1/2

=
(
i

2

∫

S

α ∧ ᾱ

)1/2(
i

2

∫

S

β ∧ β̄

)1/2

= ‖α‖‖β‖. (2.26)
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The uniform upper bound in formula (2.23) is therefore proved. The bound is achieved
at (ω, ω) since it is immediate by the definition that

Bω(ω, ω)= ‖ω‖2.
In fact, ‖ω‖2 is by definition equal to the area of the surface S with respect to the flat
metric associated with the Abelian differential ω ∈H

(1)
g , which, by definition of H

(1)
g , is

normalized (equal to one).
The spectral gap bound in formula (2.25) is proved as follows. By a fundamental

property of the Cauchy–Schwarz inequality, equality holds in formula (2.26) if and only if
there exists a constant const ∈ C such that

α

ω
= const ·β

ω
.

The functions α/ω and β/ω are meromorphic on the Riemann surface S, hence β̄/ω̄ is anti-
meromorphic. Since the only meromorphic functions which are also anti-meromorphic are
the constant functions, it follows that equality holds in the Cauchy–Schwarz inequality if
and only if α and β belong to the complex line 〈ω〉 ⊂ H1,0(S). Thus, if α ∈ 〈ω〉⊥\{0}, the
Cauchy–Schwarz inequality is strict and the spectral gap bound stated above on the second
fundamental form Bω is proved. ✷

The curvature form of the Hodge bundle appears in the second variation formulas for
the Hodge norm computed in [F2, §§2–5], which we will recall in the next section. For
consistency with the notation of that paper, we adopt below a sign convention for the
curvature matrix which is opposite to that of formula (2.10). For any Abelian differential
ω ∈Hg , let Hω be the Hermitian curvature form defined as follows: for all α, β ∈ H1,0(S),

Hω(α, β)=−(Aω(α), Aω(β))= (A∗ωAω(α), β). (2.27)

It follows from Lemma 2.3 that, for any Abelian differential ω ∈H
(1)
g on a Riemann

surface S, the second fundamental form operator (the Kodaira–Spencer map) Aω :
H1,0(S)→ H0,1(S) is a contraction with respect to the Hodge norm and, as a consequence,
the Hermitian positive semi-definite curvature form Hω is uniformly bounded. In fact, the
following result holds.

LEMMA 2.4. For any Abelian differential ω ∈H
(1)
g on a Riemann surface S, the following

bounds hold:

‖Aω‖ :=max

{‖Aω(α)‖
‖α‖ : α ∈ H1,0(S)\{0}

}
= 1;

‖Hω‖ :=max

{ |Hω(α, β)|
‖α‖‖β‖ : α, β ∈ H1,0(S)\{0}

}
= 1;

(2.28)

and the maximum is achieved at (α, β)= (ω, ω); in fact we have

Aω(ω)= ω̄ and Hω(ω, ω)= ‖ω‖2 = 1. (2.29)

The following spectral gap result holds:

max

{‖Aω(α)‖
‖α‖ : α ∈ 〈ω〉⊥\{0} ⊂ H1,0(S)

}
< 1;

max

{ |Hω(α, β)|
‖α‖‖β‖ : α, β ∈ H1,0(S)\{0} and α ∈ 〈ω〉⊥

}
< 1.

(2.30)



http://journals.cambridge.org Downloaded: 06 Dec 2012 IP address: 71.194.162.113

14 G. Forni et al

Proof. By Lemma 2.1, it follows that, for all α ∈ H1,0(S), we have

‖Aω(α)‖ =max
β 6=0

|(Aω(α), β̄)|
‖β‖ =max

β 6=0

|Bω(α, β)|
‖β‖ ,

and by the definition of the curvature form Hω = A∗ω · Aω, we also have

|Hω(α, β)| = |(Aω(α), Aω(β))| ≤ ‖Aω(α)‖‖Aω(β)‖.

The upper bounds in formulas (2.28) and (2.30) therefore follow from the corresponding
results for the form Bω established in Lemma 2.3.

The identities (2.29) follow from formula (2.24) in Lemma 2.3, which states that
Bω(ω, ω)= 1. In fact, by Lemma 2.1 we have

Aω(ω)= Bω(ω, ω)ω̄ = ω̄.

Finally, by the definition of the curvature form it follows that

Hω(ω, ω)=−(Aω(ω), Aω(ω))=−(ω̄, ω̄)= ‖ω‖2 = 1.

The argument is complete. ✷

For any Abelian differential ω ∈Hg on a Riemann surface S the matrix H of
the Hermitian curvature form Hω with respect to any Hodge-orthonormal basis � :=
{ω1, . . . , ωg} can be written as follows.

Let B be the matrix of the bilinear form Bω on H1,0(S) with respect to the basis �,
that is,

B jk :=
i

2

∫

S

ω jωk

ω
ω̄.

By formula (2.10) and Lemma 2.1, the matrix H of the Hermitian curvature form Hω of
the vector bundle H1,0 over ω ∈Hg in the orthonormal basis � can be written as follows:

H = B · B∗. (2.31)

(The above formula is the corrected version of the formula H = B∗B which appears as
[F2, formula (4.3)] and as [F3, formula (44)]; the mistake in the previous versions is of no
consequence.) In particular, since the form Bω is symmetric, the forms Hω and Bω have
the same rank and their eigenvalues are related. Let EV(Hω) and EV(Bω) denote the set
of eigenvalues of the forms Hω and Bω, respectively. The following identity holds:

EV(Hω)= {|λ|2 | λ ∈ EV(Bω)}.

For every Abelian differential ω ∈H
(1)
g , the eigenvalues of the positive-semidefinite form

Hω on H1,0(S) will be denoted as follows:

31(ω)≡ 1 > 32(ω)≥ · · · ≥3g(ω)≥ 0. (2.32)

We remark that the top eigenvalue 31(ω) is equal to one and the second eigenvalue
32(ω) < 1 for any Abelian differentials ω ∈H

(1)
g as a consequence of Lemma 2.4,

in particular all of the above eigenvalues give well-defined, continuous, non-negative,
bounded functions on the moduli space H

(1)
g of all (normalized) Abelian differentials.
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By the Hodge representation theorem for Riemann surfaces, the forms Hω and Bω

induce complex-valued bilinear forms HR
ω and BR

ω on the real cohomology H1(S, R): for
all c1, c2 ∈ H1(S, R),

HR
ω (c1, c2) := Hω(h(c1), h(c2)),

BR
ω (c1, c2) := Bω(h(c1), h(c2)).

(2.33)

The forms HR
ω and BR

ω on H1(S, R) have the same rank, which is equal to twice the
common rank of the forms Hω and Bω on H1,0(S). The bilinear form HR

ω induces a
real-valued, positive semi-definite quadratic form, while the quadratic form induced by the
bilinear form BR

ω is complex-valued.

2.6. Variational formulas for the Hodge norm. We recall below some basic variational
formulas from [F2, §§2, 3 and 5], reformulated in geometric terms. Such formulas
generalize the fundamental Kontsevich formula for the sum of all non-negative Lyapunov
exponents of the Hodge bundle [K].

2.6.1. First variation. The second fundamental form of the Hodge bundle measures
the first variation of the Hodge norm along a parallel (locally constant) section for the
Gauss–Manin connection. In fact, the formula given below (implicit in the computations of
[F2, §2]) holds. Let (S, ω) be a pair (Riemann surface S, holomorphic 1-form ω on S).
For any cohomology class c ∈ H1(S, R), let hω(c) be the unique holomorphic 1-form such
that c is the cohomology class of the closed 1-form Re hω(c) in the de Rham cohomology
H1
de Rham(S, R). We remark that for any given c ∈ H1(S, R) the holomorphic 1-form hω(c)

only depends on the Riemann surface S. However, the Riemann surface S underlying
a given holomorphic 1-form ω is unique and it will be convenient to write below the
harmonic representative as a function of the holomorphic 1-form ω on S.

LEMMA 2.5. The Lie derivativeL of the Hodge inner product (c1, c2)ω of parallel (locally

constant) sections c1, c2 ∈ H1(S, R) in the direction of the Teichmüller flow can be written

as follows:

L(c1, c2)ω = 2 Re(Aω(hω(c1)), hω(c2)). (2.34)

Proof. The argument is just a rephrasing of the proof of [F2, Lemma 2.1′] in the language
of differential geometry. Let us recall that by definition, for any pair c1, c2 ∈ H1(S, R),
the Hodge inner product is defined as

(c1, c2)ω = Re(hω(c1), hω(c2)).

Since the Gauss–Manin connection is compatible with the Hermitian intersection form, we
can compute

L(c1, c2)ω = Re(DH1
C

hω(c1), hω(c2))+ Re(hω(c1), DH1
C

hω(c2)), (2.35)

and, since (hω(c1), hω(c2))= 0, we also have

(DH1
C

hω(c1), hω(c2))+ (hω(c1), DH1
C

hω(c2))= 0. (2.36)

Any cohomology class c ∈ H1(S, R) can be interpreted as a parallel (constant) local
section of the bundle H1

C
. Since by definition of the differential hω(c) ∈ H1,0(S) we
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have c = [hω(c)+ hω(c)]/2 and since the Gauss–Manin connection is real (on real tangent
vectors of the moduli space it commutes with the complex conjugation), it follows that

DH1
C

hω(c)=−DH1
C

hω(c)=−DH1
C

hω(c). (2.37)

From formulas (2.36) and (2.37) we can derive the identities

(DH1
C

hω(c1), hω(c2))=−(DH1
C

hω(c1), hω(c2))= (DH1
C

hω(c1), hω(c2));

(hω(c1), DH1
C

hω(c2))=−(hω(c1), DH1
C

hω(c2))= (DH1
C

hω(c1), hω(c2)).

In conclusion, from formula (2.35), by the above identities and by the definition (2.7) of
the second fundamental form, it follows that

L(c1, c2)ω = 2 Re(DH1
C

hω(c1), hω(c2))

= 2 Re((I − π1)DH1
C

hω(c1), hω(c2))

= 2 Re(Aω(hω(c1)), hω(c2)). (2.38)

The stated first variation formula is therefore proved. ✷

The fundamental variational formula, computed in [F2, Lemma 2.1′], for the Lie
derivative of the Hodge norm of a parallel (locally constant) section c ∈ H1(S, R) in the
direction of the Teichmüller flow can now be derived from Lemmas 2.5 and 2.1.

LEMMA 2.6. The following variational formula holds:

L(c1, c2)ω =−2 Re Bω(hω(c1), hω(c2))=−2 Re BR
ω (c1, c2). (2.39)

Remark 2.2. Lemma 2.1 can also be derived from the variational formulas of Lemma 2.5
(proved above) and Lemma 2.6 (proved as part of [F2, Lemma 2.1′]). In fact, by
comparison of the variational formulas of Lemmas 2.5 and 2.6, for any cohomology classes
c1, c2 ∈ H1(S, R),

Re(Aω(hω(c1)), hω(c2))=− Re Bω(hω(c1), hω(c2)),

which implies the main identity of Lemma 2.1 since the operator Aω is complex linear, the
intersection form is Hermitian by definition and the form Bω is complex bilinear.

The variational formula of Lemma 2.6 implies a uniform bound and a spectral gap result
on the exponential growth of Hodge norms based on the uniform bound and on the spectral
gap estimate of Lemma 2.3 (see [F2, Lemma 2.1′ and Corollary 2.2]).

Let 3 :H(1)
g → R

+ be the function defined as follows: for all ω ∈H
(1)
g ,

3(ω) :=max

{ |Bω(α, α)|
‖α‖2 : α ∈ 〈ω〉⊥\{0} ⊂ H1,0(S)

}
. (2.40)

By definition 3 is a continuous function on the moduli space of normalized (unit area)
Abelian differentials and by Lemma 2.3 it is everywhere strictly less than one, hence it
achieves its maximum (strictly less than one) on every compact subset. It is proved in [F2]
that 3 has supremum equal to one on every connected component of every stratum of the
moduli space.

For any Abelian differential ω ∈Hg on a Riemann surface S, let ‖c‖ω denote the Hodge
norm of a real cohomology class c ∈ H1(S, R), that is, the Hodge norm of the holomorphic
1-form hω(c) ∈ H1,0(S).
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COROLLARY 2.1. The Lie derivative of the Hodge norm along the Teichmüller flow

admits the following bounds: for any Abelian differential ω ∈H
(1)
g on a Riemann surface

S and for any cohomology class c ∈ H1(S, R),

|L log ‖c‖ω| ≤ 1; (2.41)

for any cohomology class c ∈ 〈[Re(ω)], [Im(ω)]〉⊥,

|L log ‖c‖ω| ≤3(ω) < 1. (2.42)

Proof. By Lemma 2.6, for any Abelian differential ω ∈Hg on a Riemann surface S and
for any cohomology class c ∈ H1(S, R) we have

L log ‖c‖ω =−
Re BR

ω (c, c)

‖c‖2ω
;

hence, the statement follows from Lemma 2.3. In fact, for any cohomology class
c ∈ H1(S, R), the Abelian differential hω(c) belongs to the Hodge-orthogonal complement
〈ω〉⊥ ⊂ H1,0(S) if and only if c belongs to the Hodge-orthogonal complement
〈[Re(ω)], [Im(ω)]〉⊥ ⊂ H1(S, R). ✷

The above universal bound and spectral gap estimate immediately extend to all exterior
powers of the Hodge bundle. For every Abelian differential ω ∈Hg on a Riemann surface
S and for every k ∈ {1, . . . , 2g}, the Hodge norm ‖ · ‖ω on H1(S, R) induces a natural
norm (also called the Hodge norm) ‖c1 ∧ · · · ∧ ck‖ω on polyvectors c1 ∧ · · · ∧ ck ∈
3k(H1(S, R)).

COROLLARY 2.2. The Lie derivative of the Hodge norm along the Teichmüller flow

admits the following bounds: for any Abelian differential ω ∈H
(1)
g on a Riemann surface

S, for any k ∈ {1, . . . , g} and for any polyvector c1 ∧ · · · ∧ ck ∈3k(H1(S, R)) such that

the span 〈c1, . . . , ck〉 ⊂ H1(S, R) is an isotropic subspace, we have

|L log ‖c1 ∧ · · · ∧ ck‖ω| ≤ k; (2.43)

for any k ≥ 2 the following stronger bound holds:

|L log ‖c1 ∧ · · · ∧ ck‖ω| ≤ 1+ (k − 1)3(ω) < k. (2.44)

2.6.2. Second variation. The SL(2, R)-orbit of any holomorphic Abelian differential
ω0 ∈Hg is isomorphic to the unit tangent bundle of a hyperbolic surface (generically a
copy of the Poincaré disk). Thus, the left quotient SO(2, R)\(SL(2, R) ω0) is a hyperbolic

surface, called a Teichmüller disk.

There is a natural action of C
∗ on the spaceHg by multiplication of Abelian differentials

by non-zero complex numbers. The corresponding projectivization PHg :=Hg/C
∗ is

foliated by Teichmüller disks endowed with the hyperbolic metric. We remark that for

consistency with a standard normalization for the Teichmüller geodesic flow adopted in the

literature the hyperbolic metric is normalized to have curvature equal to −4. We have the

following basic variational formula for the leafwise hyperbolic Laplacian △ of the Hodge

norm ‖c‖ω at a ‘point’ ω of the projectivized moduli space PHg (see [F2, Lemmas 2.1′

and 3.2] and [F3, Lemma 4.3]).
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LEMMA 2.7. The following variational formula for the Hodge norm holds:

△ log ‖c‖ω = 4
HR

ω (c, c)

‖c‖2ω
− 2

|BR
ω (c, c)|2
‖c‖4ω

≥ 0. (2.45)

Remark 2.3. In fact, given a cohomology class c in H1(S, R), the Hodge norm ‖c‖ω at a
point (S, ω) of Hg is completely determined by the complex structure of the underlying
Riemann surface S. Thus, for any holomorphic form ω′ = const ·ω one has ‖c‖ω = ‖c‖ω′ .
Whenever in addition const= exp(i x) with real x , then Hω = Hω′ and |Bω| = |Bω′ |. Thus,
all of the quantities in the above formula are SO(2, R)-invariant, which makes it legitimate
to consider them defined on a Teichmüller disk in the projectivized moduli space PHg .
It will often be convenient to pull back to Hg the functions defined on the projectivized
moduli space PHg . When operating with the leafwise hyperbolic Laplacian △, we will
always tacitly verify the SO(2, R)-invariance of the functions involved.

2.7. Variational formulas for exterior powers. The above variational formulas can be
generalized to all of the exterior powers of the Kontsevich–Zorich cocycle. For any
k ∈ {1, . . . , g}, let us denote by Gk(H

1
R
) the total space of the Grassmannian bundle of

isotropic k-dimensional subspaces of the Hodge bundle. By definition, the fiber Gk(H
1
R
)ω

of the bundle Gk(H
1
R
) at any Abelian differential ω ∈Hg on a Riemann surface S is the

Grassmannian manifold of all k-dimensional isotropic subspaces of the symplectic vector
space H1(S, R).

Let 8k denote the function on the Grassmannian bundle Gk(H
1
R
) defined as follows

(see [F2, §5]). Let ω ∈Hg be an Abelian differential on a Riemann surface S and let Ik ⊂
H1(S, R) be any isotropic subspace of dimension k ∈ {1, . . . , g}. Let {c1, . . . , ck} ⊂ Ik

be any Hodge-orthonormal basis and let {c1, . . . , ck, ck+1, . . . , cg} ⊂ H1(S, R) be any
Hodge-orthonormal Lagrangian completion. Let

8k(ω, Ik) := 2
k∑

i=1
HR

ω (ci , ci )−
k∑

i, j=1
|BR

ω (ci , c j )|2. (2.46)

LEMMA 2.8. [F2, Lemma 5.2′] The function 8k(ω, Ik) depends only on ω ∈Hg

and on the isotropic subspace Ik ⊂ H1(S, R) and is independent of the choice of

the orthonormal basis {c1, . . . , ck} ⊂ Ik and of its Hodge-orthonormal Lagrangian

completion {c1, . . . , ck, ck+1, . . . , cg}. It can be also expressed as

8k(ω, Ik)=
g∑

i=1
3i (ω)−

g∑

i, j=k+1
|BR

ω (ci , c j )|2 (2.47)

(for k = g the second sum on the right-hand side (RHS) is defined to be null). For

any normalized (unit area) Abelian differential ω ∈H
(1)
g on a surface S and for any

k-dimensional isotropic subspace Ik ⊂ H1(S, R), the following bound holds:

|8k(ω, Ik)| ≤min(2k, g) and the inequality is strict for k ≥ 2. (2.48)

Proof. We reproduce here the proof of equivalence of definitions (2.46) and (2.47) since
the same kind of calculations will be repeatedly used in the following. Let {ω1, . . . , ωg} ⊂
H1,0(S) be an orthonormal basis of Abelian differentials representing the orthonormal
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basis {c1, . . . , cg} ⊂ H1(S, R). By the definition of HR
ω and BR

ω we have that
HR

ω (ci , c j ) := Hω(ωi , ω j ) and BR
ω (ci , c j ) := Bω(ωi , ω j ). By formula (2.31) we also have

the relation Hω = Bω · B∗ω, which implies that

Hω(ωi , ωi )=
g∑

j=1
Bω(ωi , ω j )Bω(ωi , ω j )=

g∑

j=1
|Bω(ωi , ω j )|2. (2.49)

By definition (2.32) one has

31(ω)+ · · · +3g(ω)= Tr Hω =
g∑

i=1

g∑

j=1
|Bω(ωi , ω j )|2. (2.50)

By formulas (2.49) and (2.50) and by taking into account that B is symmetric, we transform
formula (2.46) as follows:

8k(ω, Ik) := 2
k∑

i=1
Hω(ωi , ωi )−

k∑

i, j=1
|Bω(ωi , ω j )|2

= 2
k∑

i=1

g∑

j=1
|Bω(ωi , ω j )|2 −

k∑

i, j=1
|Bω(ωi , ω j )|2

=
k∑

i=1

g∑

j=1
|Bω(ωi , ω j )|2 +

k∑

i=1

g∑

j=k+1
|Bω(ωi , ω j )|2

=
g∑

i, j=1
|Bω(ωi , ω j )|2 −

g∑

i, j=k+1
|Bω(ωi , ω j )|2

=
g∑

i=1
3i (ω)−

g∑

i, j=k+1
|Bω(ωi , ω j )|2. (2.51)

Formula (2.47) is therefore established. Note that formula (2.46) does not depend on the
choice of the system {ck+1, . . . , cg} in the orthonormal Lagrangian completion, while
formula (2.47) does not depend on the choice of the orthonormal basis {c1, . . . , ck}.
Hence, the equality between formulas (2.46) and (2.47) proves that neither formula
depends on the choice of the orthonormal basis of Ik and of its orthonormal Lagrangian
completion.

The bound in formula (2.48) follows from formulas (2.46) and (2.47), by taking into
account that Hω(ωi , ωi )≤ ‖ωi‖2 = 1 and 3i (ω)≤ 1, for all i ∈ {1, . . . , g}, according
to the upper bounds in formulas (2.28) and (2.32), respectively. Finally, by the spectral
gap bound in Lemma 2.4 and by the consequent strict bound for the second curvature
eigenvalue in formula (2.32), for k ≥ 2 the inequality in formula (2.48) is strict. ✷

The formulas below, computed in [F2, Lemmas 5.2 and 5.2′], extend the formula in
Lemma 2.7 to all exterior powers of the Hodge bundle. Let {c1, . . . , ck} ⊂ Ik be any
Hodge-orthonormal basis of an isotropic subspace Ik ⊂ H1(S, R) on a Riemann surface S.
Recall that the Euclidean structure defined by the Hodge scalar product on H1(S, R)

defines the natural norm ‖c1 ∧ · · · ∧ ck‖ω of any polyvector which we also call the Hodge
norm. Similarly to the case of the Hodge norm, it is defined only by the complex structure
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of the underlying Riemann surface. It follows from the definition (2.46) of 8k(ω, Ik) that
this function is SO(2, R)-invariant (compare with Remark 2.3). Thus, for any (S0, ω0)

in Hg the Hodge norm ‖c1 ∧ · · · ∧ ck‖ω defines a smooth function on the hyperbolic
surface obtained as a left quotient SO(2, R)\ SL(2, R) · ω0 of the orbit of ω0.

LEMMA 2.9. For all k ∈ {1, . . . , g} the following formula holds:

△ log ‖c1 ∧ · · · ∧ ck‖ω = 28k(ω, Ik)≥ 0.

Proof. See [F2, Lemmas 5.2 and 5.2′]. ✷

Recall that our hyperbolic Laplacian △ is written in the hyperbolic metric of constant
curvature −4. Any different choice of the constant negative curvature would change the
RHS in the above formula by a constant factor.

For k = 1 the formula of Lemma 2.9 reduces to that of Lemma 2.7.

Remark 2.4. Note that for k = g the Lagrangian subspace Ig is not present in the RHS of
definition (2.46) of 8g(ω, Ig):

8g(ω, Ik) :=
g∑

i=1
3i (ω).

Thus, the function 8g is the pull-back to the Grassmannian bundle of Lagrangian
subspaces of a function on the moduli space Hg . Moreover, by definition (2.32) the above
sum is the trace of the Hermitian form Hω, hence it is by definition the curvature of the
Hermitian bundle H1,0. This fundamental fact discovered in [K] is crucial for the validity
of the Kontsevich formula for the sum of exponents. A version of this formula is stated in
Corollary 3.3 below.

3. The Kontsevich–Zorich exponents

In this section we derive formulas for the Lyapunov exponents of the Kontsevich–Zorich
cocycle on the Hodge bundle in terms of the second fundamental form and curvature of the
Hodge bundle.

3.1. Lyapunov exponents. Let (Tt )t∈R : X → X be a flow preserving a Borel ergodic
probability measure µ on a locally compact topological space X . Let π : M→ X be a
real or complex d-dimensional vector bundle. In other words, the fiber Mx := π−1(x)
of the vector bundle above any x ∈ X is a real or complex vector space isomorphic to
R
d or C

d respectively. A real or complex linear cocycle (Ft )t∈R : M→ M over the flow
(Tt ) is a flow on the total space M of the vector bundle such that, for all (x, t) ∈ X × R,
the map Ft : Mx → MTt (x) is well defined and linear over R or C, respectively. Suppose
that there exists a family of norms {| · |x }x∈X on the fibers of the vector bundle and, for
all (x, t) ∈ X × R, let ‖Ft‖x denote the operator norm of the linear map Ft with respect
to the norm | · |x on Mx and | · |Tt (x) on MTt (x). Under the condition of log-integrability of
the cocycle (Ft ), that is, under the condition that

∫

X

log ‖F±1‖x dµ(x) <+∞,
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the so-called Oseledets theorem states that there exists a collection of real numbers
λ1 > · · ·> λk , 1≤ k ≤ d , such that, for µ-almost every x ∈ X , one has a splitting

Mx = E
µ
λ1

(x)⊕ · · · ⊕ E
µ
λk

(x)

with

lim
t→±∞

1

n
log |Ft (vi )|Tt (x) = λi

for every vi ∈ E
µ
λi

(x)− {0}. Moreover, the subspaces E
µ
λi

(x) depend measurably on
x ∈ X . In the literature, the numbers λi are called Lyapunov exponents and the subspaces
E

µ
λi

(x) are called Oseledets subspaces.
For the sake of convenience, one may write the list of Lyapunov exponents as λ1 ≥

· · · ≥ λd (where d is the dimension of the fibers of the vector bundle) by repeating

each exponent λi a number of times equal to the real or complex dimension of the
corresponding Oseledets space E

µ
λi

(x)⊂ Mx (which by ergodicity is constant almost
everywhere). We will loosely refer to both the list λ1 > · · ·> λk and λ1 ≥ · · · ≥ λd as the
Lyapunov spectrum of the linear cocycle (Ft )t∈R, although the second list also contains the
information about the real or complex multiplicities of Lyapunov exponents (that is, about
the real or complex dimensions of the Oseledets subspaces).

The following general facts will be relevant in this paper:
• the natural complexification of any real linear cocycle has the same Lyapunov

spectrum as the original real linear cocycle; in particular, the complexified cocycle
has complex multiplicities equal to the real multiplicities of the original real cocycle;

• the Lyapunov spectrum of a real symplectic cocycle, that is, a real cocycle preserving
a family of symplectic forms on the fibers Mx ≃ R

d , d = 2n, of the vector bundle
π : M→ X , has the form

λ1 ≥ · · · ≥ λn ≥−λn ≥ · · · ≥ −λ1;

in other words, the Lyapunov spectrum of a symplectic cocycle is symmetric with
respect to the origin 0 ∈ R.

For more details on the Oseledets theorem and the general theory of Lyapunov
exponents, see the books [BDV, HK] (and references therein).

Coming back to the Kontsevich–Zorich cocycle, let us recall that, by Corollary 2.1, for
any (Teichmüller) flow-invariant Borel probability ergodic measure µ on H

(1)
g , the cocycle

is log-integrable with respect to the Hodge norm, hence it has well-defined Lyapunov
spectrum, with top exponent λ1 = 1; since the cocycle on H1

R
preserves the symplectic

intersection form on the (2g-dimensional) fibers H1(S, R) of H1
R
, its Lyapunov spectrum

is symmetric. Thus, the Lyapunov spectrum of the Kontsevich–Zorich cocycle with respect
to any (Teichmüller) flow-invariant Borel probability ergodic measure µ on H

(1)
g has the

following form:

λ
µ

1 = 1≥ λ
µ

2 ≥ · · · ≥ λµ
g ≥−λµ

g ≥ · · · ≥ −λ
µ

2 ≥−λ
µ

1 =−1.

In particular, the Kontsevich–Zorich spectrum always has g non-negative and g non-
positive exponents. Let

λ
µ

(1) > · · ·> λ
µ

(n)
>−λ

µ

(n)
> · · ·>−λ

µ

(1) (3.1)
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be the Kontsevich–Zorich spectrum of all distinct non-zero Lyapunov exponents of the
Hodge bundle H1

R
. Applying the Teichmüller flow both in forward and backward directions

we get the corresponding Oseledets decomposition

E
µ

λ
µ

(1)
⊕ · · · ⊕ E

µ

λ
µ

(n)

⊕ E
µ

(0) ⊕ E
µ

−λ
µ

(n)

⊕ · · · ⊕ E
µ

−λ
µ

(1)
(3.2)

at µ-almost every point (S, ω) of H
(1)
g , where E

µ

(0) is omitted if the Lyapunov spectrum of

µ does not contain zero. By definition all non-zero vectors of each subspace E
µ

λ
µ

(k)

or Eµ

(0)

share the same Lyapunov exponent λ
µ

(k) (correspondingly zero) which changes sign under
the time reversing.

Remark 3.1. By convention, when saying that a measure (function, line subbundle, etc.)
is ‘invariant’ we mean that it is ‘invariant with respect to the Teichmüller flow’. If the
corresponding object is ‘invariant with respect to the SL(2, R)-action’, we explicitly
indicate that it is ‘SL(2, R)-invariant’. In particular, decomposition (3.2) is defined by
any probability measure invariant and ergodic with respect to the Teichmüller flow.

LEMMA 3.1. Every subspace E
µ

λ
µ

(i)

of the Oseledets direct sum decomposition (3.2) except

E
µ

(0) is isotropic. Any pair of subspaces E
µ

λ
µ

(i)

, E
µ

λ
µ

( j)

such that λ
µ

( j) 6= −λ
µ

(i) is symplectic-

orthogonal. The restriction of the symplectic form to each subspace E
µ

λ
µ

(i)

⊕ E
µ

−λ
µ

(i)

, where

i 6= 0, and to E
µ

(0) is non-degenerate.

Proof. The absolute value of the symplectic product of any two cocycles c1, c2 in
H1(S, R) is uniformly bounded on any compact part K of H

(1)
g by the product of their

Hodge norms,

|〈c1, c2〉| ≤ const(K) · ‖c1‖ω·‖c2‖ω for any ω ∈K.

By ergodicity of the flow, it returns infinitely often to the compact part K.
Consider a pair of cocycles ci , c j such that ci ∈ Eλ

µ

(i)
, c j ∈ Eλ

µ

( j)
and such that λ

µ

(i) 6=
−λ

µ

( j). By definition of Eλ
µ

(i)
, we have

‖GK Z
t (c1)‖ω · ‖GK Z

t (c2)‖ω ∼ exp((λµ

(i) + λ
µ

( j))t).

When λ
µ

(i) + λ
µ

( j) < 0 the latter expression tends to zero when t→+∞; when λ
µ

(i) +
λ

µ

( j) > 0 the latter expression tends to zero when t→−∞. In both cases, we conclude
that for a subsequence of positive or negative times tk (chosen when the trajectory visits
the compact set K) the symplectic product 〈GK Z

tk
(c1), G

K Z
tk

(c2)〉 tends to zero. Since the
symplectic product is preserved by the flow this implies that it is equal to zero, in particular
〈c1, c2〉 = 0. Thus, we have proved that every subspace E

µ

λ
µ

(i)

except Eµ

(0) is isotropic, and

that any pair of subspaces E
µ

λ
µ

(i)

, Eµ

λ
µ

( j)

such that λ
µ

( j) 6= −λ
µ

(i) is symplectic-orthogonal.

Hence, the cohomology space decomposes into a direct sum of pairwise symplectic-
orthogonal subspaces Eµ

(0), E
µ

λ
µ

(1)
⊕ E

µ

−λ
µ

(1)
, etc., where we couple all pairs Eµ

λ
µ

(i)

and E
µ

−λ
µ

(i)

.

Since the symplectic form is non-degenerate and the summands are symplectic-orthogonal,
it is non-degenerate on every summand. ✷
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For any k ∈ {1, . . . , g} such that λ
µ
k > λ

µ

k+1 ≥ 0, let i(k) be the index of the exponent
λ

µ
k in the ordering without multiplicities (3.1), λµ

(i(k)) = λ
µ
k . Let us define the kth unstable

Oseledets subbundle as
E+k := E

µ

λ
µ

(1)
⊕ · · · ⊕ E

µ

λ
µ

(i(k))

.

3.2. Formulas for the Kontsevich–Zorich exponents. Let V ⊆ H1
R
be any r -dimensional

flow-invariant measurable subbundle of the Hodge bundle, almost everywhere defined with
respect to a flow-invariant ergodic probability measure µ on the moduli space H

(1)
g . Let us

denote
λ
V,µ

1 ≥ · · · ≥ λV,µ
r

the Lyapunov spectrum of the restriction of the Kontsevich–Zorich cocycle to the
subbundle V ⊂ H1

R
with respect to the Teichmüller geodesic flow and the invariant measure

µ on H
(1)
g . Let us also denote

λ
V,µ

(1) > · · ·> λ
V,µ

(s) (3.3)

the Lyapunov spectrum of all distinct Lyapunov exponents and let

V = V
µ

1 ⊕ · · · ⊕ Vµ
s (3.4)

be the corresponding Oseledets decomposition. It follows from Oseledets theorem that the
Lyapunov exponents on V form a subset of the Lyapunov spectrum (3.1) of the cocycle on
the Hodge bundle, that is,

{λV,µ

(1) , . . . , λ
V,µ

(s) } ⊂ {λ
µ

(1), . . . , λ
µ

(n)
,−λ

µ

(1), . . . ,−λ
µ

(n)
} ∪ {0},

and the Oseledets subspaces V
µ

1 , . . . , V
µ
s are the non-trivial intersections of Oseledets

spaces for the cocycle on the full Hodge bundle H1
R
, as in (3.2), and the subbundle V ⊂ H1

R
,

that is,

{Vµ

1 , . . . , Vµ
s } =

n⋃

i=1
{Eµ

λ
µ

(i)

∩ V, E
µ

−λ
µ

(i)

∩ V } ∪ {Eµ

(0) ∩ V }\{{0}},

where E
µ

(0) is omitted if the Lyapunov spectrum of µ does not contain zero.

For any k ∈ {1, . . . , g} denote by Gk(H
1
R
) the total space of the Grassmannian bundle

of isotropic k-dimensional subspaces of the real Hodge bundle H1
R
. Let us denote byNk(µ)

the space of all Borel probability measures on Gk(H
1
R
) which project onto any probability

measure, absolutely continuous with respect to the flow-invariant ergodic probability
measure µ on H

(1)
g under the canonical projection.

The Kontsevich–Zorich cocycle on the Hodge bundle H1
R
preserves the symplectic form

in the fibers. Hence, it defines a natural action on the Grassmannian bundle Gk(H
1
R
).

Since the subbundle V is flow-invariant, the measurable Grassmannian subbundle Gk(V )

is also flow-invariant. Let Ik(µ)⊂Nk(µ) be the subset of those measures in Nk(µ) that
are invariant with respect to the Kontsevich–Zorich cocycle {GK Z

t } on Gk(H
1
R
). Note that

all measures ν ∈ Ik(µ) project onto the flow-invariant ergodic probability measure µ on
H

(1)
g under the canonical projection. It follows that the set Ik(µ) is a compact subset of the

set of all Borel probability measures on the locally compact space Gk(H
1
R
) endowed with

the weak-star topology.
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Consider a subbundle V of the Hodge bundle satisfying the properties stated at the
beginning of §3.2. Ergodicity of the measure and invariance of the intersection form with
respect to the flow implies that the restrictions of the symplectic form to µ-almost any
fiber of V have the same rank. We do not exclude the situation when the resulting form is
degenerate. Denote by 2p the rank of the restriction of the symplectic form to V ; denote by
l the difference l = r − p between the dimension of the fiber of V and p. The restriction
of the symplectic form to µ-almost any fiber of V is non-degenerate if and only if l = p,
otherwise the form is degenerate and p < l. Note also that l is the maximal dimension of
an isotropic subspace in the fiber of V .

Let Gk(V ) denote the total space of the Grassmannian bundle of all k-dimensional
isotropic subspaces contained in the fibers of V . By definition, for µ-almost all ω ∈H

(1)
g ,

the fiber Gk(V )ω of the bundle Gk(V ) is equal to the space of all k-dimensional isotropic
subspaces of Vω. Clearly, for each individual fiber, one has Gk(V )ω ⊆ Gk(H

1
R
)ω, so the

Grassmannian bundle Gk(V ) is a measurable subbundle of Gk(H
1
R
).

Let N
V
k (µ)⊂Nk(µ) be the subset of all Borel probability measures on Gk(H

1
R
)

essentially supported on a subset of the measurable Grassmannian bundle Gk(V )⊂
Gk(H

1
R
). Note that there is no flow-invariance assumption in the definition of the sets

Nk(µ) and N
V
k (µ). In fact, we will prove the existence of flow-invariant probability

measures essentially supported on the Grassmannian Gk(V )⊂ Gk(H
1
R
), which project to

any given flow-invariant ergodic probability measure µ on H
(1)
g , in Lemma 3.3 below.

We start with an elementary preparatory lemma.

LEMMA 3.2. Let µ̄ be any Borel probability measure absolutely continuous with respect

to µ on H
(1)
g . Let V ⊂ H1

R
be a measurable subbundle defined µ̄-almost everywhere. For

any k such that Gk(V ) is non-empty (i.e. for any k ≤ l), there exist measures on Gk(V )

which project onto µ̄ on H
(1)
g , under the canonical projection. In particular, the space

N
V
k (µ) is also non-empty.

Proof. Any Borel measurable bundle can be trivialized on the complement of a subset of
measure zero with respect to any given Borel measure. So, there exists a set Eg ⊂H

(1)
g

of full µ̄-measure such that the restriction V |Eg
is measurably isomorphic to the product

bundle Eg × R
r . It follows that the restriction Gk(V )|Eg

of the Grassmannian bundle of
isotropic subspaces is isomorphic to the product bundle Eg × Gk(R

r ). By definition, for
any Borel probability measure η on Gk(R

r ), the product measure µ̄× η on the space
Eg × Gk(R

r ) induces (by push-forward under the bundle isomorphism) a Borel probability

measure ν on Gk(V ), which projects onto µ̄ on H
(1)
g under the canonical projection. ✷

Note that we do not assume that the measure ν ∈N
V
k (µ) constructed above is flow-

invariant. Let IVk (µ)= Ik(µ) ∩N
V
k (µ) be the subset of those measures in N

V
k (µ) that are

invariant with respect to the restriction of the Kontsevich–Zorich cocycle {GK Z
t } to V . We

are going to show that the set IVk (µ) is non-empty whenever the set NV
k (µ) is non-empty.

For any ν ∈Nk(µ), let I (ν)⊆Nk(µ) be the set of all weak limits of the family of
probability measures

{
νT :=

1

T

∫ T

0
(GK Z

t )∗(ν) dt

∣∣∣∣ T > 0

}
(3.5)
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in the space of all Borel probability measures on the locally compact space Gk(H
1
R
). Here

by a ‘weak limit’ we mean any limit in the weak-star topology along some diverging
sequence of positive times T1, T2, . . . , Tn, . . . . Of course, in general distinct sequences
may lead to different weak limits.

LEMMA 3.3. For any ν ∈N
V
k (µ), the set I (ν) is a non-empty compact subset of the

set I
V
k (µ) of probability measures in N

V
k (µ) which are invariant under the Kontsevich–

Zorich cocycle.

Proof. The fiber of the Grassmannian bundle Gk(H
1
R
) is the space Gk(R

2g) of all isotropic
subspaces of dimension k in a symplectic space of dimension 2g, so that the fiber is a
compact manifold. Also, the full Grassmannian bundle Gk(H

1
R
) is a continuous bundle.

Thus, the space of all Borel measures on Gk(H
1
R
) of finite total mass is a Montel space

(in the sense that all closed bounded sets are compact) with respect to the weak-star
topology. Hence, for any diverging sequence of (positive) times (Tn) we can extract from
the sequence {νTn } of measures in Nk(µ) a converging subsequence. The limit measure
is a probability measure since, by the Birkhoff ergodic theorem, the projection of the
sequence {νTn } under the canonical projection converges weakly to the flow-invariant
ergodic probability measure µ on H

(1)
g . It follows that the subset I (ν) of Ik(µ) is

non-empty. Since the set of all accumulation points of any given set in a topological space
is closed and the set Ik(µ) is compact, we get that I (ν) is a non-empty compact subset of
Ik(µ). As the flow {GK Z

t } is continuous on Gk(H
1
R
), by the usual (relative) Bogolyubov–

Krylov argument (see, e.g., [HK, p. 135]), one has that any measure ν̂ ∈ I (ν) is
GK Z

t -invariant. We reproduce the argument below for the convenience of the reader. For
any (fixed) s ∈ R and for all T > 0, we have

(GK Z
s )∗(νT )− νT =

1

T

(∫ T

0
(GK Z

t+s)∗(ν) dt −
∫ T

0
(GK Z

t )∗(ν) dt

)

= 1

T

(∫ T+s

s

(GK Z
t )∗(ν) dt −

∫ T

0
(GK Z

t )∗(ν) dt

)

= 1

T

(∫ T+s

T

(GK Z
t )∗(ν) dt −

∫ s

0
(GK Z

t )∗(ν) dt

)
.

It follows that (for fixed s ∈ R) the total mass ‖(GK Z
s )∗(νT )− νT ‖ of the signed measure

(GK Z
s )∗(νT )− νT converges to zero as T →∞. In fact,

‖(GK Z
s )∗(νT )− νT ‖ ≤

2s

T
→ 0.

Let then {νTn } be a sequence converging weakly to a measure ν̂ ∈ I (ν). Since the mapGK Z
s

is continuous on Gk(H
1
R
), the sequence {(GK Z

s )∗(νTn )} converges weakly to (GK Z
s )∗(ν̂),

hence, for all s ∈ R, we have

(GK Z
s )∗(ν̂)− ν̂ = lim

n→+∞
(GK Z

s )∗(νTn )− νTn = 0.

We conclude that any measure ν̂ ∈ I (ν) is {GK Z
t }-invariant as stated.

It remains only to show that I (ν)⊂N
V
k (µ), that is, any measure ν̂ ∈ I (ν) is essentially

supported on Gk(V ), in the sense that ν̂(Gk(V ))= 1.
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Let µ̄ denote the projection of ν ∈Nk(µ) on H
(1)
g . By definition, µ̄ is absolutely

continuous with respect to µ: in particular, given ε > 0, we can choose δ(ε) > 0 such that
µ(A) < δ(ε) implies µ̄(A) < ε for all measurable A ⊂Hg . On the other hand, by Luzin’s

theorem (see, e.g., [M, p. 2]), given ε > 0, we can fix Kε ⊂H
(1)
g a compact subset such

that µ(Kε) > 1− δ(ε) and V |Kε is a continuous subbundle of the measurable bundle V . In
particular, Gk(V )|Kε is a compact subset of Gk(H

1
R
). Let ϕ be any real-valued continuous

function on Gk(H
1
R
) such that 0≤ ϕ ≤ 1 and ϕ is identically equal to one on Gk(V )|Kε .

Since, by definition, ν ∈N
V
k (µ) means that ν is supported on Gk(V ) and it projects to

µ̄≪ µ on H
(1)
g , it follows from our choice of δ(ε) > 0 above that, for any T > 0,

∫

Gk (H
1
R
)

ϕ dνT ≥ 1− ε.

Hence, for any weak limit ν̂ ∈ I (ν), one has
∫

Gk (H
1
R
)

ϕ d ν̂ ≥ 1− ε.

Because this holds for every ϕ as above, we conclude that

ν̂(Gk(V )|Kε )≥ 1− ε

and hence ν̂(Gk(V ))= 1, as claimed. ✷

For any measure ν ∈N
V
k (µ) we define below the average Lyapunov exponent 3(k)(ν)

over the Grassmannian bundle Gk(V ). Let us consider an isotropic subspace I in the fiber
of the Hodge bundle over some point ω ∈H

(1)
g . Let {c1, . . . , ck} and {c′1, . . . , c′k} be a

pair of bases in it. Let us consider the parallel transport of these vectors to a neighborhood
of ω. Clearly, at any point of the neighborhood of ω the polyvectors c1 ∧ · · · ∧ ck and
c′1 ∧ · · · ∧ c′k remain proportional with the same constant coefficient. Hence, the Hodge
norms of these polyvectors are proportional with the same constant coefficient. This
implies, in particular, that the logarithmic derivative of the Hodge norm of a polyvector
along the Teichmüller geodesic flow, depends only on the isotropic subspace I ,

L log ‖c1 ∧ · · · ∧ ck‖ω = L log ‖c′1 ∧ · · · ∧ c′k‖ω.

Thus, slightly abusing notation, in the following we shall sometimes denote the logarithmic
derivative as above by

d log ‖GK Z
t (ω, I )‖
dt

∣∣∣∣
t=0
:= L log ‖I‖ω := L log ‖c1 ∧ · · · ∧ ck‖ω.

The Oseledets theorem establishes that, for µ-almost every Abelian differential ω ∈H
(1)
g

on a Riemann surface S and for every polyvector c1 ∧ · · · ∧ ck in 3k(H1(S, R)), the
Lyapunov exponent

λµ
ω(c1, . . . , ck) := lim

T→+∞
1

T
log ‖GK Z

T (c1 ∧ · · · ∧ ck)‖

is well defined. Let us assume that the vectors c1, . . . , ck form a basis of an isotropic
subspace Ik ⊂ Vω, and that the norm is the Hodge norm. Then, according to the above
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discussion about the logarithmic derivative of the Hodge norm of an isotropic subspace,
for µ-almost all ω ∈H

(1)
g , the Lyapunov exponent λ

µ
ω(c1, . . . , ck) depends only on the

isotropic subspace Ik ⊂ V and can be written as follows:

lim
T→+∞

1

T
log ‖GK Z

T (c1 ∧ · · · ∧ ck)‖ = lim
T→+∞

1

T

∫ T

0

d

dt
log ‖GK Z

t (c1 ∧ · · · ∧ ck)‖ dt

= lim
T→+∞

1

T

∫ T

0

d

dt
log ‖GK Z

t (ω, Ik)‖ dt.

By Corollary 2.2 the function |(d/dt) log ‖GK Z
t (ω, Ik)‖| is bounded above by k ∈ N for

any point (ω, Ik) of the Grassmannian Gk(H
1
R
). Hence, for any (ω, Ik) ∈ Gk(H

1
R
) and any

T > 0, we get the following uniform estimate:

−k ≤ 1

T

∫ T

0

d

dt
log ‖GK Z

t (ω, Ik)‖ dt ≤ k. (3.6)

By averaging the Lyapunov exponent λ
µ
ω(c1, . . . , ck) over Gk(V ) with respect to the

measure ν ∈N
V
k (µ), we define the average Lyapunov exponent:

3(k)(ν) :=
∫

Gk (V )

lim
T→+∞

(
1

T

∫ T

0

d

dt
log ‖GK Z

t (ω, Ik)‖ dt
)
dν

= lim
T→+∞

∫

Gk (V )

(
1

T

∫ T

0

d

dt
log ‖GK Z

t (ω, Ik)‖ dt
)
dν

= lim
T→+∞

1

T

∫ T

0

∫

Gk (V )

d

dt
log ‖GK Z

t (ω, Ik)‖ dν dt. (3.7)

Note that the interchange of the limit with the integral and the change in the order of
integration (Fubini theorem) in formula (3.7) are justified by the uniform upper bound
established above in formula (3.6). Also, note that the definition of 3(k)(ν) does not
assume the flow-invariance of ν ∈N

V
k (µ).

Suppose now that µ is an ergodic SL(2, R)-invariant probability measure on H
(1)
g (and

not just flow-invariant as above). Let V ⊂ H1
R

be any SO(2, R)-invariant measurable
subbundle defined µ-almost everywhere. A measure ν ∈N

V
k (µ) will be called SO(2, R)-

invariant if it is invariant under the natural lift of the action of the group SO(2, R) to
the Grassmannian bundle Gk(V ). The subset O

V
k (µ)⊂N

V
k (µ) consisting of SO(2, R)-

invariant probability measures is non-empty whenever N
V
k (µ) is. In fact, since by

assumption the measure µ is SL(2, R)-invariant and the bundle V is SO(2, R)-invariant,
and since SO(2, R) is an amenable (compact) group, the SO(2, R)-average of any
probability measure in N

V
k (µ) is a well-defined probability measure in O

V
k (µ).

THEOREM 1. Let µ be any SL(2, R)-invariant Borel probability ergodic measure on the

moduli space H
(1)
g of normalized Abelian differentials. Let V ⊂ H1

R
be any SL(2, R)-

invariant measurable subbundle definedµ-almost everywhere. For any SO(2, R)-invariant

probability measure ν ∈ O
V
k (µ), the following formula holds:

3(k)(ν)=
∫

Gk (V )

8k(ω, Ik) d ν̂ for any ν̂ ∈ I (ν). (3.8)
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Proof. Let D denote the Poincaré disk and let (t, θ) ∈ D denote the geodesic polar

coordinates on the Teichmüller disk SO(2, R)\ SL(2, R) · ω centered at an Abelian

differential ω ∈H
(1)
g on a Riemann surface S, defined as follows. Let SO(2, R) :=

{Rθ | θ ∈ [0, 2π)} and let

(S(t,θ), ω(t,θ)) := (G t ◦ Rθ )(S, ω) for all (t, θ) ∈ R
+ × [0, 2π).

For µ-almost every Abelian differential ω ∈H
(1)
g on a Riemann surface S and for any

k-dimensional isotropic subspace Ik ⊂ Vω, let {c1, . . . , ck} ⊂ Ik be any Hodge orthonor-

mal basis at (S, ω) and let ‖c1 ∧ · · · ∧ ck‖(ω,t,θ) denote the Hodge norm of the polyvector

c1 ∧ · · · ∧ ck ∈3k(H1(S, R)) at the point (S(t,θ), ω(t,θ)) ∈ SO(2, R)\ SL(2, R) · ω of

coordinates (t, θ) ∈ D.

From the variational formulas of Lemma 2.9 for the hyperbolic Laplacian of the Hodge

norm of a polyvector on a Teichmüller disk, by the Green formula (or, equivalently, by

explicit integration of the Poisson equation for the hyperbolic Laplacian on the Poincaré

disk D), we derive the formula stated below (see [F2, formula (5.10)]). Let Dt denote

the disk of hyperbolic radius t > 0 centered at the origin of the Poincaré disk, let |Dt |
denote its hyperbolic area and let AP denote the Poincaré area form. Let us also adopt the

convention, introduced above, on the logarithmic derivative of the Hodge norm of isotropic

subspaces. We have

1

2π

∫ 2π

0

∂

∂t
log ‖(GK Z

t ◦ Rθ )(ω, Ik)‖ dθ

= 1

2π

∫ 2π

0

∂

∂t
log ‖c1 ∧ · · · ∧ ck‖(ω,t,θ) dθ

= tanh t

|Dt |

∫

Dt

(8k ◦ GK Z
τ ◦ Rθ )(ω, Ik) dAP (τ, θ). (3.9)

Let us now integrate formula (3.9) over the Grassmannian Gk(V ) with respect to the

SO(2, R)-invariant probability measure ν ∈ O
V
k (µ). Note that by Corollary 2.2 all of the

integrands are uniformly bounded, hence it is possible to exchange the order of integration.

On the left-hand side (LHS) of formula (3.9), by the SO(2, R)-invariance of the measure

ν on Gk(V ), we compute as follows:

∫

Gk (V )

1

2π

∫ 2π

0

∂

∂t
log ‖(GK Z

t ◦ Rθ )(ω, Ik)‖ dθ dν

= 1

2π

∫ 2π

0

∫

Gk (V )

∂

∂t
log ‖(GK Z

t ◦ Rθ )(ω, Ik)‖ dν dθ

= 1

2π

∫ 2π

0

∫

Gk (V )

d

dt
log ‖GK Z

t (ω, Ik)‖ dν dθ

=
∫

Gk (V )

d

dt
log ‖GK Z

t (ω, Ik)‖ dν. (3.10)

On the RHS of formula (3.9) we compute as follows. Let us recall that the

Poincaré area form can be written as dAP (τ, θ)= d(sinh2 τ) dθ in geodesic polar
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coordinates (τ, θ) ∈ R
+ × [0, 2π) and, as a consequence, the Poincaré area of the disk

Dt of geodesic radius t > 0 is |Dt | = 2π sinh2 t .

By taking into account the uniform bound (2.48) for |8k(ω, Ik)|, and by the above

elementary formulas of hyperbolic geometry and the SO(2, R)-invariance of the measure

ν on Gk(V ), we proceed as follows:

1

2π

∫

Gk (V )

∫

Dt

(8k ◦ GK Z
τ ◦ Rθ )(ω, Ik) dAP (τ, θ) dν

= 1

2π

∫ 2π

0

∫

Gk (V )

∫ t

0

(8k ◦ GK Z
τ ◦ Rθ )(ω, Ik) d(sinh2 τ) dν dθ

=
∫

Gk (V )

∫ t

0

(8k ◦ GK Z
τ )(ω, Ik) d(sinh2 τ) dν. (3.11)

To sum up our computations so far, by integration of formula (3.9) over the

Grassmannian Gk(V ) with respect to the SO(2, R)-invariant probability measure ν ∈
O
V
k (µ) we have

∫

Gk (V )

d

dt
log ‖GK Z

t (ω, Ik)‖ dν

= tanh t

sinh2 t

∫

Gk (V )

∫ t

0

8k ◦ GK Z
τ d(sinh2 τ) dν. (3.12)

Let us then average the above formula over the interval [0, T ] ⊂ R and take the limit

as T →+∞. The average of the LHS of formula (3.12) converges, by the definition

in formula (3.7), to the average Lyapunov exponent of the SO(2, R)-invariant measure

ν ∈ O
V
k (µ), that is,

3(k)(ν)= lim
T→+∞

1

T

∫ T

0

∫

Gk (V )

d

dt
log ‖GK Z

t (ω, Ik)‖ dν dt. (3.13)

We claim that for any probability measure ν̂ ∈ I (ν) there exists a diverging sequence {Tn}
such that the average over [0, Tn] of the RHS of formula (3.12) converges to the integral

∫

Gk (V )

8k(ω, Ik) d ν̂, (3.14)

so that, taking into account the limit in formula (3.13), the theorem follows from formula

(3.12). The above claim is proved as follows. For any continuous function ϕ with compact

support on Gk(H
1
R
), the function

tanh t

sinh2 t

∫ t

0

ϕ ◦ GK Z
τ d(sinh2 τ)− ϕ ◦ GK Z

t

converges to zero uniformly as t→+∞. In fact, the hyperbolic tangent converges to

one, the function ϕ is uniformly continuous, and for any ε > 0, the mass assigned by the

probability measure d(sinh2 τ)/sinh2 t over [0, t] to the interval [0, t − ε] converges to

zero as t→+∞.

It follows that the measure

1

T

∫ T

0

tanh t

sinh2 t

∫ t

0

(GK Z
τ )∗(ν) d(sinh2 τ)− 1

T

∫ T

0

(GK Z
t )∗(ν)
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converges to zero weakly as T →+∞. Thus, for any ν̂ ∈ I (ν) there exists a diverging
sequence {Tn} such that the sequence of measures

1

Tn

∫ Tn

0

tanh t

sinh2 t

∫ t

0
(GK Z

τ )∗(ν) d(sinh2 τ)

converges weakly to the measure ν̂ on Gk(H
1
R
), essentially supported on Gk(V )⊂

Gk(H
1
R
). Since the function 8k is continuous and bounded on Gk(H

1
R
) it follows

that the average over [0, Tn] of the RHS of formula (3.12) converges to the integral in
formula (3.14), as claimed, and the proof of the theorem is complete. ✷

For any k ∈ {1, . . . , r − 1} such that λ
V,µ
k > λ

V,µ

k+1, let j (k) be the index such that

λ
V,µ

( j (k)) = λ
V,µ
k . Let us define

V+k := V
µ

1 ⊕ · · · ⊕ V
µ

j (k).

In general, the subbundle V+k does not need to be a bundle of isotropic subspaces, that is, a

measurable section of the Grassmannian Gk(V ). However, note that if λ
V,µ

k+1 ≥ 0, then the
bundle V+k is a subbundle of the unstable Oseledets bundle which is isotropic (since the
Kontsevich–Zorich cocycle is symplectic), hence it is itself isotropic.

COROLLARY 3.1. Let µ be any SL(2, R)-invariant Borel probability ergodic measure on

the moduli space H
(1)
g of normalized Abelian differentials. Let V ⊂ H1

R
be any SL(2, R)-

invariant measurable subbundle defined µ-almost everywhere. Assume that there exists

k ∈ {1, . . . , dim(V )− 1} such that λ
V,µ
k > λ

V,µ

k+1 and that the subbundle V+k is a bundle

of k-dimensional isotropic subspaces (that is, it defines a measurable section of the

Grassmannian Gk(V )). Then the following formula holds:

λ
V,µ

1 + · · · + λ
V,µ
k =

∫

H
(1)
g

8k(ω, V+k (ω)) dµ(ω). (3.15)

Proof. Let νk ∈ O
V
k (µ) be an SO(2, R)-invariant probability measure on Gk(V ) such that

all of its conditional measures on the fibers Gk(V )ω of the Grassmannian bundle are
equivalent to the Lebesgue measure, for µ-almost all ω ∈H

(1)
g . Theorem 1 in this special

case implies formula (3.15). In fact, by the assumption that λ
V,µ
k > λ

V,µ

k+1 the family of
measures given in formula (3.5) converges to the unique probability measure ν̂k on Gk(V )

given by the condition that for µ-almost all ω ∈H
(1)
g the conditional measure νk |G(V )ω

is the Dirac measure at the point V+k (ω) (in other terms, the measure νk is defined as the

push-forward of the measure µ on H
(1)
g under the section V+k :H

(1)
g → Gk(V )). In other

words, the set I (νk) of all weak limits of the family of measures given in formula (3.5) is
equal to {ν̂k}. By the Oseledets theorem, the average Lyapunov exponent 3(k)(νk) of the
Kontsevich–Zorich cocycle with respect to the measure νk on the bundle Gk(V ) is given
by the formula

3(k)(νk)= λ
V,µ

1 + · · · + λ
V,µ
k .

Thus, formula (3.15) is indeed a particular case of formula (3.8). ✷

In the particular case of the full Hodge bundle we derive below a result first proved
in [F2, Corollary 5.5], for the canonical absolutely continuous invariant measures on
connected components of strata of the moduli space.
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COROLLARY 3.2. Let µ be any SL(2, R)-invariant Borel probability ergodic measure

on the moduli space H
(1)
g of normalized Abelian differentials. Assume that there exists

k ∈ {1, . . . , g − 1} such that λµ
k > λ

µ

k+1 ≥ 0. Then the following formula holds:

λ
µ

1 + · · · + λ
µ
k =

∫

H
(1)
g

8k(ω, E+k (ω)) dµ(ω). (3.16)

By Remark 2.4, Corollary 3.2 for k = g holds without any assumptions on the Lyapunov
exponents and provides a version of the Kontsevich formula for their sum (see [K] and [F2,
Corollary 5.3]).

COROLLARY 3.3. Let µ be any SL(2, R)-invariant Borel probability ergodic measure

on the moduli space H
(1)
g of normalized Abelian differentials. The following formula

holds:

λ
µ

1 + · · · + λµ
g =

∫

H
(1)
g

(31 + · · · +3g) dµ. (3.17)

3.3. Reducibility of the second fundamental form. Let V ⊂ H1(S, R) be a subspace
invariant under the Hodge operator. Since for any non-zero c ∈ V one has ‖c‖ = 〈c, ∗c〉>
0, this implies that c cannot be symplectic-orthogonal to V . Thus, invariance of V

under the Hodge star-operator implies, in particular, that restriction of the symplectic
form to V is non-degenerate; in particular, V is even-dimensional. For any Hodge star-
invariant subspace V ⊆ H1(S, R), let us define V 1,0 ⊂ H1,0(S) and V 0,1 ⊂ H0,1(S) to be
the subspaces of cohomology classes of all holomorphic, respectively anti-holomorphic,
forms ω such that [Re(ω)] ∈ V . Invariance of V under the Hodge operator implies that
the sets V 1,0 and V 0,1 are indeed complex vector spaces, that VC = V 1,0 ⊕ V 0,1 and that
V 1,0 = V 0,1. In particular, dimR V = 2 dimC V 1,0. Let us denote by Hω|V 1,0 and Bω|V 1,0

the restrictions of the forms Hω and Bω to V 1,0 ⊆ H1,0(S) and by HR
ω |V and BR

ω |V the
restrictions of the forms HR

ω and BR
ω to V ⊆ H1(S, R), respectively.

LEMMA 3.4. A subspace V ⊂ H1(S, R) is invariant under the Hodge star-operator if

and only if the subspace V⊥, Hodge-orthogonal to V , coincides with the subspace V †,

symplectic-orthogonal to V . In that case the subspace V⊥ = V † is Hodge star-invariant

and (V 1,0)⊥ = (V⊥)1,0.

Proof. Assume that a subspace V ⊂ H1(S, R) is Hodge star-invariant. Let V † be the
subspace symplectic-orthogonal to V . By (2.5) for any c1 ∈ V † and c2 ∈ V one has
(c1, c2)= 〈c1, ∗c2〉. Since V is Hodge star-invariant, we have ∗c2 ∈ V and hence the right
expression is equal to zero. It follows that V † ⊂ V⊥. The converse inclusion is proved
similarly. In fact, for any c1 ∈ V⊥ and c2 ∈ V one has 〈c1, c2〉 = −(c1, ∗c2). Again since
V is Hodge star-invariant, we have ∗c2 ∈ V , hence the right expression is equal to zero.
Thus V⊥ ⊂ V † and equality holds. Conversely, assume that V⊥ = V †. Let c1 ∈ V and let
c2 ∈ V⊥. By (2.5), one has (∗c1, c2)= 〈c1, c2〉 = 0, hence ∗c1 ∈ (V⊥)⊥ = V . Thus, V is
Hodge star-invariant.

Let us show that if V is Hodge star-invariant, then V⊥ is also Hodge star-invariant. Let
c2 ∈ V⊥ and take any c1 ∈ V . By the same equation (2.5) one has 〈c1, ∗c2〉 = (c1, c2).
Since c1 and c2 belong to Hodge-orthogonal subspaces the expression on the right-hand
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side is equal to zero. Hence, ∗c2 is symplectic-orthogonal to any c1 in V , which implies
that
∗c2 ∈ V⊥.

Finally, for any ω1 ∈ V 1,0 and any ω2 ∈ (V⊥)1,0 let c1 = [Re(ω1)] ∈ V and let c2 =
[Re(ω2)] ∈ V⊥. By formula (2.6)

(ω1, ω2) := (h(c1), h(c2))= (c1, c2)+ i〈c1, c2〉,

which is equal to zero since V and V⊥ are both symplectic-orthogonal and Hodge-
orthogonal. This implies that (V 1,0)⊥ = (V⊥)1,0. ✷

Remark. Note that the above property is not related to either the SL(2, R)-action or the
Teichmüller flow.

PROPOSITION 1. Let V ⊂ H1(S0, R) be a Hodge star-invariant subspace in the fiber of

the Hodge bundle over (S0, ω0) ∈H
(1)
g and let V † ⊂ H1(S0, R) denote its symplectic-

orthogonal. Let U = ]−ε, ε[ be any open interval along the trajectory of the Teichmüller

flow passing through ω0. Let us identify the fibers of the Hodge bundle over U by parallel

transport with respect to the Gauss–Manin connection. The following properties are

equivalent.

(i) For any t ∈U the subspace V stays Hodge star-invariant at (St , ωt ).

(ii) For any t ∈U the subspaces V and V † are BR
ωt
-orthogonal.

An analogous equivalence holds when U is replaced by a small open ball in SL(2, R)

containing the identity element, or by a small open neighborhood of the initial point

(S0, ω0) in its Teichmüller disk.

Proof. Suppose that property (i) is satisfied. By Lemma 3.4 we have a direct sum
decomposition H1(St , R)= V ⊕ V † where V and V † are simultaneously symplectic-
orthogonal and Hodge-orthogonal with respect to the Hodge-inner product (·, ·)ωt on
H1(St , R). Since the symplectic structure is preserved by the Gauss–Manin connection,
V † is constant over U under our identification of the real cohomology spaces H1(St , R)

given by the connection. Hence, for any pair (v, v†) ∈ V × V †, the Hodge inner products
satisfy (v, v†)ωt = (∗v, v†)ωt = 0 for all t ∈U , so that by Lemma 2.6

d

dt
(v, v†)ωt =−2 Re BR

ωt
(v, v†)= 0 and

d

dt
(∗v, v†)ωt =−2 Re BR

ωt
(∗v, v†)= 2 Im BR

ωt
(v, v†)= 0.

(3.18)

It follows that V and V⊥ are BR
ωt
-orthogonal for all t ∈U .

Conversely, suppose that property (ii) is satisfied. Let V † be the symplectic-orthogonal
of V . Since the Gauss–Manin connection preserves the symplectic structure, the space V †

is constant over U . In addition, since V is Hodge star-invariant, the symplectic-orthogonal
V † and the Hodge-orthogonal V⊥ coincide at t = 0. It follows from formulas (3.18) that
since V and V † are BR

ωt
-orthogonal for all t ∈U and they are Hodge-orthogonal for t = 0,

then they are Hodge-orthogonal for all t ∈U . Thus, the symplectic-orthogonal and the
Hodge-orthogonal subspaces of V coincide, hence by Lemma 3.4 the space V is Hodge
star-invariant, for all t ∈U . ✷
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In the setting of Proposition 1 let

3V
1 (ωt )≥ · · · ≥3V

n (ωt )≥ 0

be the eigenvalues of the positive-semidefinite Hermitian form Hωt |V 1,0
t

restricted to V
1,0
t ,

where n = dimC V
1,0
t .

COROLLARY 3.4. In the setting of Proposition 1 the following sets with multiplicities

coincide:

{31(ω), . . . , 3g(ω)} = {3V
1 (ω), . . . , 3V

n (ω)} ⊔ {3V⊥
1 (ω), . . . , 3V⊥

g−n(ω)}.

Proof. Let {ω1, . . . , ωg} be an orthonormal basis such that {ω1, . . . , ωn} spans V ,
{ωn+1, . . . , ωg} spans V⊥ and Bω has block-diagonal matrix in the basis {ω1, . . . , ωg}.
By formula (2.31) the matrix Hωt is also block-diagonal in the basis ω1, . . . , ωg . Hence,

Hωt = Hωt |V 1,0
t
+ Hωt |(V⊥t )

1,0 ,

which is exactly the statement of the corollary. ✷

Remark. Suppose that at some point (S, ω) of the moduli space of normalized Abelian
differentials H

(1)
g all of the eigenvalues 31(ω), . . . , 3g(ω) are distinct. The corollary

above implies that there is only a finite number of subspaces (namely 2g) which might
a priori serve as fibers of Hodge star-invariant subbundles, namely, those spanned by
Re(ωi j ), Im(ωi j ) for some subcollection {ωi1 , . . . , ωik } of eigenvectors {ω1, . . . , ωg}
of Hω.

The condition that Bω is block-diagonal in the corresponding basis in a small
neighborhood U of the initial point is a necessary and sufficient condition for extension
of the corresponding subspace to a local Hodge star-invariant subbundle over U .

Let V ⊂ H1
R

be an SL(2, R)-invariant and Hodge star-invariant subbundle of
dimension 2n over a full measure set for an SL(2, R)-invariant ergodic probability measure
µ on the moduli spaceH

(1)
g of normalized Abelian differentials. The Hodge star-invariance

is a very strong property of an SL(2, R)-invariant subbundle. In particular, the restriction
of the Kontsevich–Zorich cocycle to V mimics most of the properties of the cocycle on
the Hodge bundle H1

R
, where n plays the role of a ‘virtual genus’. Let us give several

illustrations of this general philosophy.
We have seen that the symplectic structure on H1

R
restricts to a non-degenerate

symplectic structure on V , hence the Kontsevich–Zorich cocycle on V is symplectic. It
follows that for any SL(2, R)-invariant Borel probability ergodic measure µ on H

(1)
g the

Kontsevich–Zorich spectrum on V is symmetric:

λ
V,µ

1 ≥ · · · ≥ λµ
n ≥−λV,µ

n ≥ · · · ≥ −λ
V,µ

1 .

We get the following generalization of the Kontsevich formula for the sum of positive
Lyapunov exponents (compare analogous formulas in [EKZ1, K] and, for the specific case
of Teichmüller curves, in [BMo]).
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COROLLARY 3.5. Let µ be any SL(2, R)-invariant ergodic Borel probability measure on

the moduli space H
(1)
g . The following formula holds for the Kontsevich–Zorich exponents

of any subbundle V ⊂ H1
R
(of dimension 2n), µ-almost everywhere SL(2, R)-invariant and

Hodge star-invariant:

λ
V,µ

1 + · · · + λV,µ
n =

∫

H
(1)
g

(3V
1 + · · · +3V

n ) dµ. (3.19)

Proof. Let us consider a maximal isotropic subspace In of Vω, and some Hodge-
orthonormal basis {c1, . . . , cn} of In . Let {ω1, . . . , ωn} be Abelian differentials in
H1,0(S) such that c j = [Re(ω j )] for j = 1, . . . , n. Since V is Hodge star-invariant,
we get ω j ∈ V 1,0 for j = 1, . . . , n. Since {c1, . . . , cn} are symplectic-orthogonal and
Hodge orthonormal, the collection {ω1, . . . , ωn} is orthonormal, see (2.6). Complete
the latter collection of Abelian differentials to an orthonormal basis {ω1, . . . , ωg} in
H1,0(S). By construction {ωn+1, . . . , ωg} is an orthonormal basis in (V⊥)1,0. Finally,
let c j = [Re(ω j )] for j = n + 1, . . . , g. We have constructed a Hodge-orthonormal basis
{c1, . . . , cg} of a Lagrangian subspace in H1(S, R) which completes the initial Hodge-
orthonormal basis in the isotropic subspace In ⊂ V . By formula (2.49) we have

n∑

i=1
HR

ω (ci , ci ) :=
n∑

i=1
Hω(ωi , ωi )=

n∑

i=1

g∑

j=1
|Bω(ωi , ω j )|2.

By Proposition 1 the matrix Bω is block-diagonal in the chosen basis, so we obtain the
following relations:

3V
1 + · · · +3V

n = Tr(Hω|V 1,0)=
n∑

i=1
Hω(ωi , ωi )

=
n∑

i=1

g∑

j=1
|Bω(ωi , ω j )|2 =

n∑

i, j=1
|Bω(ωi , ω j )|2.

Plugging the latter formula in definition (2.47) we finally obtain the following expression
for 8n(ω, In):

8n(ω, In)=
n∑

i=1
3V

i (ω) for µ-almost all ω ∈H
(1)
g . (3.20)

Since the function 8n has no dependence on the maximal isotropic subspace In ⊂ V

and the subbundle V is SL(2, R)-invariant, the statement follows from the variational
formula given in Lemma 2.9 and mimics the proof of the Kontsevich formula (see
Corollary 3.3 above and [F2, Corollary 5.3]). Alternatively, the statement can be now
immediately obtained from the more general formula (3.16) on partial sums of exponents
in Corollary 3.2 above (see [F2, Corollary 5.5] for the proof). ✷

4. Degenerate Kontsevich–Zorich spectrum

In this section we collect several results which address the occurrence of zero Kontsevich–
Zorich exponents. In particular, we prove that all of the exponents are zero on a
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given SL(2, R)-invariant subbundle if and only if the cocycle is isometric and that
happens whenever the second fundamental form vanishes on that subbundle. In all known
examples the vanishing of the second fundamental form can be derived from symmetries
(automorphisms) of (almost) all Abelian differentials in the support of an SL(2, R)-
invariant measure. We conclude with a partial converse which gives a lower bound on
the number of strictly positive exponents in terms of the rank of the second fundamental
form.

4.1. Isometric subbundles. By the variational formulas, whenever the second
fundamental form vanishes identically on any flow-invariant subbundle then the
Kontsevich–Zorich cocycle acts isometrically, hence all of its exponents are zero. We
prove below partial converse results in the special case of SL(2, R)-invariant, Hodge star-
invariant subbundles.

LEMMA 4.1. Let V ⊂ H1
R
be a flow-invariant subbundle over a full measure set for a flow-

invariant ergodic Borel probability measure µ on the moduli space H
(1)
g of normalized

Abelian differentials. Consider the following two properties:

(1) the bilinear form BR
ω |V vanishes for µ-almost all ω ∈H

(1)
g ;

(2) the restriction of the Kontsevich–Zorich cocycle to V is isometric with respect to the

Hodge norm.

Then, one has that (1) implies (2). Moreover, if one also assumes that V is Hodge star-

invariant, then (2) implies (1).

Proof. By Lemma 2.6, the real part of the bilinear form BR
ω gives the derivative of the

Hodge inner product under the action of the Kontsevich–Zorich cocycle at any ω ∈H
(1)
g .

Whenever BR
ω |V vanishes for µ-almost all ω ∈H

(1)
g , by continuity it vanishes identically

on the support of the measure, and, hence, it follows from the variational formula (2.45)
that the Kontsevich–Zorich cocycle acts isometrically on V with respect to the Hodge inner
product.

Let us show now that (2) implies (1) (assuming also that V is Hodge star-invariant).
By the variational formula (2.39) the real part of the bilinear form B vanishes on V 1,0,
i.e. Re B(α, β)= 0 for all α, β ∈ V 1,0. Note that, since Bω is complex bilinear,

Bω(eiϕα, eiϕβ)= e2iϕBω(α, β).

Since the Hodge star-invariance of V implies that V 1,0 is a complex space, we see that if
Re B(α, β)= 0 for all α, β ∈ V 1,0, then Bω(α, α)= 0. ✷

Remark 4.1. Under either condition (1) or condition (2) of Lemma 4.1 above, all
Lyapunov exponents of the restriction of the Kontsevich–Zorich cocycle to V are equal
to zero. In fact, any isometric cocycle has a Lyapunov spectrum reduced to the single
exponent zero.

Under the extra assumption that the invariant subbundle V and the ergodic measure µ

are invariant not only with respect to the Teichmüller flow, but with respect to the action of
SL(2, R), one can prove a converse statement and prove that the vanishing of all Lyapunov
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exponents of an invariant subbundle implies the vanishing of the second fundamental form
on this subbundle, see Theorem 3 below.

In the particular case that V is Hodge star-invariant, the converse result becomes a
straightforward corollary of the generalized Kontsevich formula (see formula (3.19) in
Corollary 3.5).

COROLLARY 4.1. Let V ⊂ H1
R
be an SL(2, R)-invariant, Hodge star-invariant subbundle

over a full measure set for an SL(2, R)-invariant ergodic Borel probability measure µ on

the moduli space H
(1)
g of Abelian differentials. The following properties are equivalent:

(1) the bilinear form BR
ω |V vanishes for µ-almost all ω ∈H

(1)
g ;

(2) the restriction of the Kontsevich–Zorich cocycle to V is isometric with respect to the

Hodge norm;

(3) the non-negative Lyapunov spectrum of V has the form

λ
V,µ

1 = · · · = λV,µ
n = 0.

Proof. The first two statements are equivalent by Lemma 4.1. The second statement
implies the third by the definition of Lyapunov exponents. All of the above statements hold
for any flow-invariant subbundle. If V is SL(2, R)-invariant and Hodge star-invariant, the
third statement implies the first statement by the generalized Kontsevich formula. In fact,
by that formula (see Corollary 3.5) the vanishing of all Lyapunov exponents of V implies
that

3V
1 (ω)= · · · =3V

n (ω)= 0 for µ-almost all ω ∈H
(1)
g .

It follows that Hω|V 1,0 vanishes on the support of the measure µ inH
(1)
g . By formula (2.31)

this implies that the bilinear forms Bω|V 1,0 and, thus, BR
ω |V also vanish for µ-almost all

ω ∈H
(1)
g . ✷

An important particular case of the above Corollary 4.1 is given below. In Appendix A
we shall see other examples.

The Hodge bundle H1
R
over H

(1)
g splits into a direct sum of two subbundles. The first

(the tautological subbundle) has dimension two; its fibers are spanned by cohomology
classes [Re(ω)] and [Im(ω)] ∈ H1(S, R). The second subbundle, W , is the orthogonal
complement to the first with respect to the symplectic intersection form (and with respect
to the Hodge inner product) on the Hodge bundle H1

R
. Clearly, both the tautological

subbundle and its orthogonal complement W are SL(2, R)-invariant and Hodge star-
invariant. In particular, for all ω ∈H

(1)
g the space W 1,0

ω is the orthogonal complement
to ω in H1,0(S) with respect to the Hermitian form (2.1).

By Corollary 4.1 we have the following result (see [F3, Corollary 7.1]).

COROLLARY 4.2. Let µ be an SL(2, R)-invariant ergodic Borel probability measure on

the moduli space H
(1)
g of normalized Abelian differentials. The second fundamental form

Bω has rank equal to one for µ-almost all ω ∈H
(1)
g if and only if all the non-trivial

Lyapunov exponents of the Kontsevich–Zorich cocycle with respect to µ vanish, that is,

if and only if

λ
µ

2 = · · · = λµ
g = 0.
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Proof. It can be verified explicitly that the Lyapunov spectrum of the tautological bundle is
{1,−1}. It follows that the non-negative Lyapunov spectrum of its symplectic-orthogonal
complement W ⊂ H1

R
is {λµ

2 , . . . , λ
µ
g }. Since by definition Bω(ω, ω)= 1, the rank of

Bω is one if and only if the rank of Bω|W 1,0 is zero, for all ω ∈H
(1)
g . The statement

then follows from Corollary 4.1 for the SL(2, R)-invariant, Hodge star-invariant bundle
W ⊂ H1

R
. ✷

4.2. A symmetry criterion. We recall below a simple symmetry criterion for the
vanishing of the second fundamental form found in [F3, §7]. Let ω ∈H

(1)
g be an Abelian

differential on a Riemann surface S. Suppose that S has a holomorphic automorphism T

and that the holomorphic 1-form ω is an eigenvector of the induced action T ∗ : H1,0(S)→
H1,0(S). Denote by u(T ) the corresponding eigenvalue, T ∗ω = u(T )ω. Note that the
action T ∗ : H1,0(S)→ H1,0(S) preserves the restriction of the Hermitian intersection form
(2.1) which is positive-definite on H1,0(S), which implies that |u(T )| = 1 and T ∗|H1,0(S)

is diagonalizable. Consider a basis {ω1, . . . , ωg} of eigenvectors of T ∗ in H1,0(S) and
denote the corresponding eigenvalues by u1(T ), . . . , ug(T ). The following statement is a
simplified version of [F3, Lemma 7.2].

THEOREM 2. Let M be an SL(2, R)-invariant suborbifold in some stratum of Abelian

differentials in genus g. Let M be endowed with an ergodic probability measure. Suppose

that almost every flat surface (S, ω) in M is endowed with a holomorphic automorphism

T : S→ S, and that ω is an eigenvector of T ∗ with an eigenvalue u(T ). Denote by

u1(T ), . . . , ug(T ) all eigenvalues of T ∗ : H1,0(S)→ H1,0(S).

If for all but one pair of indices (i, j), where 1≤ i ≤ j ≤ g, one has ui (T )u j (T ) 6=
u2(T ), then the rank of the bilinear form Bω on H1,0 is equal to one for all ω ∈M, and,

hence, all of the non-trivial Lyapunov exponents of the Hodge bundle with respect to the

Teichmüller geodesic flow on M vanish:

λ2 = · · · = λg = 0.

Proof. Consider a holomorphic automorphism T : S→ S. For any two holomorphic
differentials ωi , ω j of our basis of eigenvectors of the linear map T ∗ in H1,0(S), by
definition (2.11) of the form Bω and by change of coordinates, we obtain

Bω(ωi , ω j ) =
i

2

∫

S

ωiω j

ω
ω̄ = i

2

∫

S

T ∗ωiT
∗ω j

T ∗ω
T ∗ω̄

= i

2

∫

S

ui (T )u j (T )

u2(T )

ωiω j

ω
ω̄ = ui (T )u j (T )

u2(T )
Bω(ωi , ω j ).

Hence, for every pair of indices i, j such that ui (T )u j (T ) 6= u2(T ), the element
Bω(ωi , ω j ) of the matrix of the form Bω is equal to zero. The result now follows from
Corollary 4.2. ✷

In Appendix A (more precisely, §A.2 below), we will give an application of this
symmetry criterion (for the vanishing of exponents) provided by Theorem 2 in a particular
interesting case (of an arithmetic Teichmüller disk of a square-tiled cyclic cover in genus
four).
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4.3. The central Oseledets subbundle. An important example of a Hodge star-invariant
subspace is given by the kernel of the second fundamental form. In fact, the following
elementary result holds. For any (S, ω) ∈Hg , let Ann(BR

ω ) denote the kernel of the
form BR

ω on H1(S, R), that is,

Ann(BR
ω ) := {c ∈ H1(S, R) | BR

ω (c, c′)= 0 ∀c′ ∈ H1(S, R)}.

LEMMA 4.2. For any (S, ω) ∈Hg the subspace Ann(BR
ω ) in H1(S, R) is Hodge star-

invariant. Moreover, (Ann(BR
ω ))

1,0 = Ann Bω.

Proof. Let c1, c2 ∈ H1(S, R) be any two cohomology classes, and let ω1, ω2 be
holomorphic 1-forms such that c1 = [Re(ω1)] and c2 = [Re(ω2)]. By definition ∗c1 =
[Im(ω1)], so we have ∗c1 = [Re(−iω1)]. Thus, by the definition of BR

ω given in §2.5 and
by bilinearity of the form Bω defined in (2.11) one obtains

BR
ω (∗c1, c2) := Bω(−iω1, ω2)=−i Bω(ω1, ω2)=−i BR

ω (c1, c2).

Hence, if for some c1 ∈ H1(S, R) one has the identity BR
ω (c1, c2)= 0 for all c2 ∈

H1(S, R), one also has BR
ω (∗c1, c2)= 0 for all c2 ∈ H1(S, R). The last statement is a

direct corollary of the definition of BR
ω . ✷

Another remarkable, however simple, property of the bundle Ann(BR
ω ) is described

below.

LEMMA 4.3. For any flow-invariant (respectively, SL(2, R)-invariant) measurable

subbundle V ⊂ Ann(BR
ω ) the Hodge-orthogonal splitting H1

R
= V ⊕ V⊥ is flow-invariant

(respectively, SL(2, R)-invariant).

Proof. By the variational formula (2.39) of Lemma 2.6 for the Hodge inner product, the
condition V ⊂ Ann(BR

ω ) implies that the Hodge product (v, w) is constant for any parallel
(locally constant) sections v ∈ V and w ∈ H1

R
. In particular, the equation (v, w)= 0 is

invariant under parallel transport. ✷

We prove below our strongest result on the central Oseledets bundle.

THEOREM 3. Let µ be a flow-invariant ergodic probability measure on the moduli space

H
(1)
g of normalized Abelian differentials.

If V ⊂ H1
R
is a flow-invariant subbundle of the Hodge bundle such that Ann(BR|V ) is

µ-almost everywhere flow-invariant, then the dimension dim Ann(BR|Vω) is the same for

µ-almost all ω ∈H
(1)
g (so Ann(BR|V ) defines a vector bundle over the support of µ) and

Ann(BR|V )⊆ E
µ

(0) ∩ V (µ-almost everywhere).

If µ is SL(2, R)-invariant and W is any SL(2, R)-invariant measurable subbundle of

the Oseledets (measurable) bundle E
µ

(0), then

W ⊆ Ann(BR) (µ-almost everywhere).

In particular, if µ is SL(2, R)-invariant and E
µ

(0) ∩ V is µ-almost everywhere SL(2, R)-

invariant, then E
µ

(0) ∩ V ⊆ Ann(BR) (µ-almost everywhere).
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Consequently, if µ is SL(2, R)-invariant and V ⊂ H1
R
is a Hodge star-invariant and

SL(2, R)-invariant subbundle of the Hodge bundle such that Ann(BR|V ) is µ-almost

everywhere flow-invariant and E
µ

(0) ∩ V is µ-almost everywhere SL(2, R)-invariant, then

E
µ

(0) ∩ V = Ann(BR|V )= Ann(BR) ∩ V (µ-almost everywhere).

Proof. Since dim Ann(BR|V ) is, by hypothesis, a flow-invariant integer-valued function
on H

(1)
g , the ergodicity of µ implies that it is constant µ-almost everywhere. (The

dimension can jump and become larger, say, on suborbifolds of non-trivial codimension).
Thus, Ann(BR|V ) defines a flow-invariant vector bundle over the support of µ and we can
apply Lemma 4.1 to this bundle to prove the first statement.

The last statement is a trivial combination of the first two, so the essential part of the
theorem is the second statement, which is proved below.

LetNW
k (µ) be the space of all probability measures on the Grassmannian bundleGk(W )

of k-dimensional isotropic subspaces projecting on H
(1)
g to some µ̄ absolutely continuous

with respect to µ. Let us denote by 2p the rank of the restriction of the symplectic form
to the subbundle W and by l the difference l = dimW − p. By Lemma 3.2, for any k ∈ N

satisfying the relations 1≤ k ≤ l, the space N
W
k (µ) is non-empty. Let O

W
k (µ)⊂N

W
k (µ)

be the subset of all SO(2, R)-invariant measures. As we have already seen in §3.2, since
SO(2, R) is a compact amenable group, the set O

W
k (µ) is non-empty whenever N

W
k (µ) is

non-empty: the SO(2, R)-average of any measure in N
W
k (µ) is a measure in O

W
k (µ).

Since by assumption W ⊂ E
µ

(0), all of the Lyapunov exponents of the restriction of the
Kontsevich–Zorich cocycle to W are zero, hence by the Oseledets theorem the average
Lyapunov exponent 3(k)(ν) of any probability measure ν ∈N

W
k (µ) is equal to zero. By

Theorem 1 it follows that, for any measure ν ∈ O
W
k (µ) and for any weak limit ν̂ ∈ I (ν),

0=
∫

Gk (W )

8k d ν̂. (4.1)

Since 8k is by definition non-negative, the above formula implies that 8k vanishes
ν̂-almost everywhere. Hence, for ν̂-almost all (ω, Ik) ∈ Gk(W ) we obtain the following
conclusion. By applying the identity in the middle of formula (2.51) to any Lagrangian
Hodge-orthonormal completion {c1, . . . , ck, ck+1, . . . , cg} of a Hodge-orthonormal basis
{c1, . . . , ck} of the k-dimensional isotropic subspace Ik ⊂Wω we obtain

0=8k(ω, Ik)=
k∑

i=1

g∑

j=1
|Bω(ωi , ω j )|2 +

k∑

i=1

g∑

j=k+1
|Bω(ωi , ω j )|2.

By the definition (2.33) of the form BR, it follows that BR
ω (ci , c j )= 0 for all i ∈

{1, . . . , k} and j ∈ {1, . . . , g}, or, equivalently, that Ik ⊂ Ann(BR
ω ). Thus we have proved

that, for any Borel probability measure ν ∈ O
W
k (µ) and for any weak limit ν̂ ∈ I (ν),

Ik ⊂ Ann(BR
ω ) for ν̂-almost all (ω, Ik) ∈ Gk(W ).

For every Borel probability measure ν ∈ O
W
k (µ), we then define, over the support of the

measure µ on H
(1)
g , a flow-invariant Borel measurable subbundle F(ν)⊂W as follows.

For µ-almost all Abelian differentials ω ∈H
(1)
g we let the fiber Fω(ν) be the linear span
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of all isotropic subspaces Ik ⊂Wω such that (ω, Ik) belongs to the essential support of
at least one measure ν̂ ∈ I (ν) on the Grassmannian Gk(W ). Since I (ν) is a compact
set of probability measures, and, by Rokhlin’s disintegration theorem [Ro], for each
ν̂ ∈ I (ν), the conditional measures ν̂ω of ν̂ on the fibers Gk(H

1
R
)ω depend measurably

on ω ∈H
(1)
g , one can check that Fω(ν) depends measurably on ω ∈H

(1)
g . By construction,

since all measures ν̂ ∈ I (ν) are flow-invariant, the family of subspaces Fω(ν) is defined µ-
almost everywhere and is flow-invariant. Since the measure µ is ergodic, this implies
that the dimension dim Fω(ν) is µ-almost everywhere constant, hence F(ν)⊂W is a
µ-measurable flow-invariant subbundle. By construction, every such F(ν) is a subbundle
of Ann(BR), since at µ-almost all ω ∈H

(1)
g the fiber Fω(ν) is spanned by subspaces Ik of

Ann(BR
ω ).

We then define, for every 1≤ k ≤ l one more flow-invariant measurable subbundle
F

µ
k ⊂W over the support of µ on H

(1)
g . For µ-almost any ω ∈H

(1)
g , the fiber (F

µ
k )ω

is defined as a linear span of the family of vector spaces {Fω(ν)}ν∈O
W
k (µ). Finally, we

let Fµ ⊂W be the flow-invariant measurable subbundle, defined µ-almost everywhere,
such that the fiber Fµ

ω over µ-almost any ω ∈H
(1)
g is the linear span of vector subspaces

{(Fµ
k )ω}1≤k≤l . As above, sinceµ is ergodic, the bundles Fµ

k and Fµ are indeed measurable
subbundles. By construction, the measurable bundle Fµ is a subbundle of Ann(BR),
since its fiber at µ-almost any Abelian differential ω ∈H

(1)
g is spanned by subspaces of

Ann(BR
ω ).

Let us argue by contradiction. Let us assume that the subset P⊂H
(1)
g of all ω ∈H

(1)
g

such that Wω 6⊆ Ann(BR
ω ) has positive measure (with respect to the SL(2, R)-invariant

ergodic probability measure µ on H
(1)
g ). Since the subbundles Ann(BR) and W are

SO(2, R)-invariant, it follows that the set P is SO(2, R)-invariant. For µ-almost all
ω ∈H

(1)
g , let SO(2, R)F

µ
ω ⊂Wω denote the smallest SO(2, R)-invariant linear subspace

which contains the subspace F
µ
ω ⊂Wω. The vector space SO(2, R)F

µ
ω can be defined

as the intersection of the (non-empty) family of all SO(2, R)-invariant subspaces of the
vector space Wω which contain F

µ
ω or, equivalently, as the span of the union of the

family {Fµ

ω′ |ω′ ∈ SO(2, R) · ω}. By construction F
µ
ω ⊂ Ann(BR

ω ), hence SO(2, R)F
µ
ω ⊂

Ann(BR
ω ), which implies that SO(2, R)F

µ
ω 6=Wω, for all ω ∈ P. Note that it is not

restrictive to assume that the dimension of the vector space SO(2, R)F
µ
ω is constant for

all ω ∈ P. In fact, the positive measure set P has a finite partition

P :=
dim(W )−1⋃

d=1
{ω ∈ P|dim(SO(2, R)Fµ

ω )= d},

hence, at least one of these sets has positive measure. We can therefore assume that the
collection of vector spaces {SO(2, R)F

µ
ω |ω ∈ P} forms a proper measurable SO(2, R)-

invariant subbundle SO(2, R)Fµ of the restriction W |P of the subbundle W to P. By
the above construction, it follows that the bundle (SO(2, R)Fµ)⊥ ∩W |P is a non-trivial
SO(2, R)-invariant subbundle of the restriction of the subbundle (Fµ)⊥ ∩W to P.

We claim that there exists k0 ∈ {1, . . . , l} such that for all k ≤ k0 there exists
an SO(2, R)-invariant probability measure ν∗

P
∈ O

W
k (µ) essentially supported on the

Grassmannian Gk((F
µ)⊥ ∩W ). In fact, let µP be the restriction of the measure µ on H

(1)
g

to the positive measure set P, normalized to have unit total mass. There exists k0 ∈ N\{0}
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such that the Grassmannian of k0-dimensional isotropic subspaces of the (non-trivial)
subbundle (SO(2, R)Fµ)⊥ ∩WP is non-empty. By Lemma 3.2, for any k ≤ k0 there exists
a probability measure νP on Gk(H

1) essentially supported on Gk((SO(2, R)Fµ)⊥ ∩W ),
which projects onto the probability measure µP on H

(1)
g under the canonical projection.

Let ν∗
P
be the SO(2, R)-average of the measure νP. By construction ν∗

P
belongs to the

set O
W
k (µ): in fact, it is SO(2, R)-invariant, it projects onto the probability measure µP,

which is absolutely continuous with respect to µ on H
(1)
g , and it is essentially supported

on Gk((F
µ)⊥ ∩W ). The above claim is therefore proved.

Since Fµ ⊂ Ann(BR) and by construction it is flow-invariant, by Lemma 4.3 there is a
flow-invariant Hodge-orthogonal splitting

H1
R
= Fµ ⊕ (Fµ)⊥.

It follows that, on the one hand, F(ν∗
P
)⊂ (Fµ)⊥ by construction, since ν∗

P
is essentially

supported on Gk((F
µ)⊥ ∩W ) and the bundle (Fµ)⊥ ∩W is flow invariant; on the other

hand, F(ν∗
P
)⊂ Fµ by the definition of the bundle Fµ given above. Of course, this is a

contradiction since Fµ ∩ (Fµ)⊥ = {0}. The argument is therefore complete. ✷

Remark 4.2. Concerning the invariance assumptions (under Teichmüller flow and/or
SL(2, R)) in the previous theorem, we would like to point out that they are really necessary.
More precisely, while in Appendix A below we introduce a class of ergodic SL(2, R)-
invariant probability measures supported on the SL(2, R)-orbit of square-tiled cyclic

covers such that we can show E
µ

(0) = Ann(BR) is SL(2, R)-invariant (see Theorem 7
below), we construct in Appendix B below an example of a closed SL(2, R)-invariant
locus Z supporting an ergodic SL(2, R)-invariant probability measure such that Eµ

(0) is

not SL(2, R)-invariant, Ann(BR) is not Teichmüller invariant and hence E
µ

(0) 6= Ann(BR)

even though they have the same dimension. In other words, although Ann(BR) does not
coincide with E

µ

(0) in the case of the locus Z, the number of zero exponents is still predicted

by the corank of BR. Partly motivated by the features of these examples, we pose below the
problem to establish whether the corank of BR always gives the correct number of central
exponents (see Problem 1 below).

Note that invariance of a Hodge star-invariant vector subbundle V ⊂ H1
R
of the Hodge

bundle under SL(2, R) does not imply invariance of the corresponding subbundle V 1,0 ⊂
H1,0 under SL(2, R) or under the flow. For example, the tautological bundle, spanned by
[Re ω] and [Im ω], is SL(2, R)-invariant, while the line bundle C · ω ⊂ H1,0 is not. The
proposition below shows that Ann(BR) is special in this sense.

PROPOSITION 2. Assume that the kernel Ann(BR) of the bilinear form BR on H1
R

is

invariant over an open interval U = ]−ε, ε[ along the trajectory of the Teichmüller flow

passing through (S0, ω0) ∈H
(1)
g . Then the kernel Ann(B) of the form B on H1,0 is also

invariant over U.

An analogous statement holds when U is replaced by a small open ball in SL(2, R)

containing the identity element, or by a small open neighborhood of the initial point

(S0, ω0) in the Teichmüller disk of (S0, ω0).
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Proof. Since by Lemma 4.2 the subspace V := Ann(BR
ω ) is Hodge star-invariant, the

subspace VC is invariant over the interval U and admits a (a priori non-invariant)
decomposition VC = V

1,0
t ⊕ V

0,1
t , for all t ∈U . By Lemma 4.2 V

1,0
t = Ann(Bωt ), hence

by the definition (2.7) of the second fundamental form the projection of the covariant
derivative DH1(ω) onto V

0,1
t vanishes for every ω ∈ V

1,0
t and for all t ∈U . It follows

that the subspace V 1,0
t is constant over t ∈U , as stated. ✷

4.4. Non-vanishing of the Kontsevich–Zorich exponents. In this subsection we prove
a general lower bound on the number of strictly positive Lyapunov exponents of the
Kontsevich–Zorich cocycle in terms of the rank of B. Such a bound is considerably
weaker than a sharp estimate (roughly by a factor of two) and no upper bound other than
Lemma 4.1 is known.

THEOREM 4. Let µ be any SL(2, R)-invariant ergodic probability measure on the moduli

space of Abelian differentials. Let V ⊂ H1
R

be any Hodge star-invariant, SL(2, R)-

invariant subbundle (of dimension n ∈ N) defined µ-almost everywhere. If for some

k ∈ {1, . . . , n − 1} the bottom n − k exponents of the restriction of the Kontsevich–Zorich

cocycle to V with respect to the measure µ vanish, that is,

λ
V,µ

k+1 = · · · = λV,µ
n = 0, (4.2)

then the rank of the bilinear form B|V 1,0
ω satisfies the inequality:

rank(B|V 1,0
ω )≤ 2k for µ-almost all ω ∈H

(1)
g .

Proof. The proof follows closely the argument given in [F2, Corollary 5.4], which was
stated for the Hodge bundle with respect to the canonical absolutely continuous invariant
measures only. In that case, the bilinear form B has maximal rank (equal to g) on a subset
of positive (Lebesgue) measure on each connected component of every stratum, as proved
in [F2, §4], which implies that

λ
µ

1 > λ
µ

2 ≥ · · · ≥ λ
µ

[(g+1)/2] > 0.

The generalized argument proceeds as follows. If all Lyapunov exponents vanish, then the
rank(B|V 1,0

ω ) also vanishes by Corollary 4.1, hence the statement holds in this case. It
follows that without loss of generality we may assume that λ

V,µ
k > 0: if this assumption

only holds for a smaller value of k ∈ {1, . . . , n − 1}, we would prove a statement even
stronger than the claim.

Let us assume then that λ
V,µ
k > λ

V,µ

k+1 = 0. We are in the setting of Corollary 3.1

and we can apply formula (3.15). For µ-almost all ω ∈H
(1)
g , let {c1, . . . , ck} ⊂ V+k (ω)

be a Hodge orthonormal basis. Let {c1, . . . , cg} ⊂ H1(S, R) be a completion of the
system {c1, . . . , ck} to an orthonormal basis of any Lagrangian subspace of H1(S, R).
By formula (3.15) and by the definition of the function 8k in formula (2.46) we have

λ
V,µ

1 + · · · + λ
V,µ
k =

∫

H
(1)
g

8k(ω, V+k (ω)) dµ(ω)

=
∫

H
(1)
g

( g∑

i=1
3i (ω)−

g∑

i, j=k+1
|BR

ω (ci , c j )|2
)
dµ(ω).
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Since V is Hodge star-invariant, by the reducibility of the second fundamental form (see
Proposition 1) it follows that

λ
V,µ

1 + · · · + λ
V,µ
k =

∫

H
(1)
g

( n∑

i=1
3V

i (ω)−
n∑

i, j=k+1
|BR

ω (ci , c j )|2
)
dµ(ω).

By the generalized Kontsevich formula (see Corollary 3.5) we get

(λ
V,µ

1 + · · · + λ
V,µ
k )+ (λ

V,µ

k+1 + · · · + λV,µ
n )=

∫

H
(1)
g

n∑

i=1
3V

i (ω) dµ.

Since λ
V,µ

k+1 = · · · = λ
V,µ
n = 0 the above two expressions coincide, which implies that

∫

H
(1)
g

n∑

i, j=k+1
|BR

ω (ci , c j )|2 dµ(ω)= 0.

This means that µ-almost everywhere we have BR
ω (ci , c j )= 0 for any pair (i, j) such

that i, j ≥ k + 1. Thus, for µ-almost all ω ∈H
(1)
g there exists an orthonormal basis

{ω1, . . . , ωn} of the subspace V 1,0
ω of holomorphic differentials on the Riemann surface S

such that
Bω(ωi , ω j )= 0 for all i, j ∈ {k + 1, . . . , n}.

Hence, the matrix of the form B|V 1,0
ω with respect to the basis {ω1, . . . , ωn} has a

(n − k)× (n − k) zero diagonal block. It follows that B|V 1,0
ω has rank at most 2k. ✷

COROLLARY 4.3. [F2, Corollary 5.4] Let µ be any SL(2, R)-invariant ergodic probabil-

ity measure on the moduli space of Abelian differentials. If for some k ∈ {1, . . . , g − 1}
the bottom g − k exponents of the Kontsevich–Zorich cocycle with respect to the measure

µ vanish, that is,

λ
µ

k+1 = · · · = λµ
g = 0, (4.3)

then the rank of the bilinear form Bω on H1,0 satisfies the inequality

rank(Bω)≤ 2k for µ-almost all ω ∈H
(1)
g .

Remark 4.3. In [F3] the first author introduced analytic subvarieties R
(1)
g (k) of the moduli

space H
(1)
g , defined as follows:

R
(1)
g (k) := {ω ∈H

(1)
g | rank(Bω)≤ k} where k ∈ {1, . . . , g − 1}.

In terms of such subvarieties Theorem 4 can be formulated as follows: if the support of
the SL(2, R)-invariant measure µ on H

(1)
g is not contained in the subvariety R

(1)
g (2k), then

formula (4.3) does not hold, that is,

λ
µ

1 > λ
µ

2 ≥ · · · ≥ λ
µ

k+1 > 0.

Remark 4.4. A lower bound for the number of strictly positive exponents which holds
in general for SL(2, R)-invariant probability measures supported on regular orbifolds is
proved in [EKZ1]. Such a bound cannot be derived from the above Corollary 4.3 without
assumptions on the minimal rank of the fundamental form B on the moduli space H

(1)
g .

However, to the best of the authors’ knowledge, lower bounds on the rank of the second
fundamental form for g ≥ 5 are not available. It could be conjectured that it grows linearly
with respect to the genus of the surface.
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Remark 4.5. The argument given in the proof of Theorem 4 is not sufficient to prove the
non-vanishing of all of the Kontsevich–Zorich exponents. In fact, any improvement on
Theorem 4 based on the formulas for sums of Lyapunov exponents, given in Corollary 3.2,
seems to require some control a priori on the position of the unstable bundle E+g of the
cocycle on a set of positive measure of Abelian differentials. In the case of a canonical
absolutely continuous invariant measure such a set can be found near the boundary of the
moduli space and the full non-vanishing of the Lyapunov spectrum can thus be proved (see
[F2, §§4 and 8.2]). Later Avila and Viana [AV] proved the simplicity of the Lyapunov
spectrum, that is, that all of the exponents are non-zero and distinct. The simplicity of the
top exponent, that is, the strict inequality λ

µ

1 > λ
µ

2 is much simpler. Veech [V] proved it
for the canonical absolutely continuous invariant measures on connected components of
strata. This result was generalized by the first author in [F2] to an arbitrary Teichmüller
invariant ergodic probability measure.

Recently, Forni has developed his method from [F2] to give a general criterion for
the non-uniform hyperbolicity of the Kontsevich–Zorich spectrum for a wide class of
SL(2, R)-invariant measures [F4]. The criterion is based on a topological condition on
completely periodic directional foliations contained in the support of the measure.

Closing the considerations of this section, we observe that the following fundamental
question is wide open.

Problem 1. Does there exist any finite SL(2, R)-invariant ergodic measure such that the
number of strictly positive exponents for the Kontsevich–Zorich cocycle differs from the
maximal rank of the bilinear form Bω at a positive measure set in the space of Abelian
differentials?
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A. Appendix. Lyapunov spectrum of square-tiled cyclic covers

Arithmetic Teichmüller curves of square-tiled cyclic covers (see e.g. the Appendix A.1
below and/or [FMZ] for definitions) provide a basic model for the discussion of relations
between the Lyapunov spectrum and the geometry of the Hodge bundle. In particular, we
will show that, in the case of square-tiled cyclic covers, the annihilator Ann(BR) of the
second fundamental form BR coincides with the neutral Oseledets bundle Eµ

(0). Therefore,
in the context of square-tiled cyclic covers, the rank of the second fundamental form (at the
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generic point with respect to an SL(2, R)-invariant measure) equals the number of strictly
positive Lyapunov exponents, and the corank of the second fundamental form is always
completely explained by the symmetries of the underlying surfaces.

However, we go further and show that these relations are not true in general, as an
example in Appendix B below will show: actually, the best general results available (on
the relationship between Ann(BR) and E

µ

(0)) were already given above in Theorems 2, 3
and 4.

A.1. Square-tiled cyclic covers. In the following, we recall the definition of square-tiled
cyclic covers and some of its basic properties. For more details and proofs of the statements
below, see e.g. [FMZ].

Let N > 1 be an integer, and consider (a1, . . . , a4) as a 4-tuple of integers satisfying
the following conditions:

0 < ai ≤ N ; gcd(N , a1, . . . , a4)= 1;
4∑

i=1
ai ≡ 0 (mod N ). (A.1)

Let z1, z2, z3, z4 ∈ C be four distinct points. Conditions (A.1) imply that, possibly after a
desingularization, a Riemann surface defined by the equation

wN = (z − z1)
a1(z − z2)

a2(z − z3)
a3(z − z4)

a4

is closed, connected and non-singular. We denote this Riemann surface by M =
MN (a1, a2, a3, a4). Puncturing the ramification points we obtain a regular N -fold cover
over P

1(C)\{z1, z2, z3, z4}. The group of deck transformations of this cover is the cyclic
group Z/NZ with a generator T : M→ M given by

T (z, w) := (z, ζw), (A.2)

where ζ is a primitive N th root of unity, ζ N = 1.
Next, we recall that any meromorphic quadratic differential q(z)(dz)2 with at most

simple poles on a Riemann surface defines a flat metric g(z)= |q(z)| with conical
singularities at zeros and poles of q. Consider a meromorphic quadratic differential

q0 =
(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)
(A.3)

on P
1(C). For a convenient choice of parameters z1, . . . , z4 the rectangles become

unit squares. Therefore, given MN (a1, a2, a3, a4) as above and denoting by p :
MN (a1, a2, a3, a4)→ P

1(C) the canonical projection p(z, w)= z, we have that the
quadratic differential q = p∗q0 on MN (a1, a2, a3, a4) induces a flat structure naturally
tiled by unit squares (by construction). In other words, we get in this way a square-tiled
surface (or origami or arithmetic translation surface) (MN (a1, . . . , a4), q = p∗q0).

During the present discussion, we focus exclusively on the orientable case q = ω2 for
an Abelian differential ω. By [FMZ, Lemma 2], this amounts to assuming that N is even,
and ai is odd, i = 1, 2, 3, 4, in what follows. Finally, closing this preliminary subsection
on square-tiled cyclic covers, we recall (for later use) the following property.
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LEMMA A.1. [FMZ, Lemma 5] In the case q := p∗q0 = ω2 for an Abelian differential

ω, one has that the form ω is anti-invariant with respect to the action of a generator of the

group of deck transformations,

T ∗ω =−ω. (A.4)

A.2. Maximally degenerate spectrum in genus four. Before entering into the discussion
of the relation between the annihilator Ann(BR) of the second fundamental form and
the neutral Oseledets bundle E

µ

0 in the context of square-tiled cyclic covers, we recall
below one of only two examples of Teichmüller curves of square-tiled cyclic covers with
maximally degenerate Kontsevich–Zorich spectrum. The first example to be discovered,
in genus three, is the Teichmüller curve of the well-known Eierlegende Wollmilchsau
(see [F3, §7], and [HS]). The second example, in genus four, was announced in [FMt]
and is presented below.

These examples were the motivation for a full investigation of the spectrum of square-
tiled cyclic covers carried out in [EKZ2] and, from a slightly different perspective, in the
next subsections of this appendix. In [FMZ] we showed that there are no other (maximally
degenerate) examples among square-tiled cyclic covers (see [Mo], for a stronger result
in the class of all Veech surfaces and [Au] for progress on the general case). Both
examples were discovered as an application of the symmetry criterion given by Theorem 2
to the arithmetic Teichmüller curves of the square-tiled cyclic covers M4(1, 1, 1, 1) and
M6(1, 1, 1, 3) respectively.

Below, we will follow the presentation in [FMt] and apply the symmetry criterion to
the arithmetic Teichmüller curve of the square-tiled cyclic cover M6(1, 1, 1, 3) to derive
that it is maximally degenerate.

COROLLARY A.1. The Lyapunov spectrum of the Hodge bundle over the geodesic flow on

the Teichmüller curve of cyclic covers M6(1, 1, 1, 3) is maximally degenerate, λ2 = λ3 =
λ4 = 0.

Proof. By Lemma A.1, the generator T of the group of deck transformations of M6(1, 1,
1, 3) acts on ω as T ∗ω =−ω, see (A.4); in particular, u(T )=−1, and u2(T )= 1. We
have an explicit basis

(z − z4)
2 dz

w5
,

(z − z4)
3 dz

w5
,

(z − z4) dz

w4
and ω := (z − z4) dz

w3

in the space of holomorphic 1-forms on M6(1, 1, 1, 3); the corresponding eigenvalues are

{u1(T ), u2(T ), u3(T ), u4(T )} = {ζ, ζ, ζ 2, ζ 3} where ζ = 3
√
−1.

It is easy to see that for all couples of indices 1≤ i ≤ j ≤ 4 except (i, j)= (4, 4) one has
ui (T )u j (T ) 6= 1= u2(T ). By Theorem 2, the proof is complete. ✷

In both cases of M4(1, 1, 1, 1) and M6(1, 1, 1, 3), the symmetries given by the deck
transformations force the rank of the second fundamental form to be equal to one (its
lowest possible value) and there is exactly one strictly positive exponent, the top exponent
of the tautological bundle. In the following, we extend this picture to the whole class of
square-tiled cyclic covers.
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A.3. Rank of the second fundamental form and positive exponents. The identity
between the rank of the second fundamental form and the number of strictly positive
Kontsevich–Zorich exponents always holds for square tiled-cyclic covers. In fact, we have
the following result.

THEOREM 5. Let MN (a1, a2, a3, a4) be a square-tiled cyclic cover with N even and all

ai odd. The rank of Bω is constant for all ω in the corresponding SL(2, R)-orbit and

it is equal to the number of strictly positive Kontsevich–Zorich exponents on the Hodge

bundle H1
R
.

The result was inspired by [EKZ2], and it can be obtained as a corollary of the results of
that paper. For the sake of completeness, we present in the remaining part of this appendix
a proof of Theorem 5. Such a proof is based on Theorem 3 and a remarkable property
of square-tiled cyclic covers, namely, the existence of an explicit SL(2, R)-invariant,
BR-orthogonal splitting of the Hodge bundle H1

R
over a Teichmüller curve of a square-

tiled cyclic cover into subbundles of small dimension (two or four). We start with the
description of the splitting, see [BMo, EKZ2] for more details.

Consider a generator T of the group of deck transformations of the cyclic cover,
see (A.2). The induced linear map

T ∗ : H1(S, C)→ H1(S, C)

verifies (T ∗)N = Id, hence its eigenvalues are N th roots of unity, that is, they form a
subset of the set {1, ζ, . . . , ζ N−1}, where ζ is an N th primitive root of unity. For all
k ∈ {1, . . . , N − 1}, let

Vk := Ker(T ∗ − ζ k Id)⊂ H1(S, C).

Since the deck transformation T commutes with the SL(2, R)-action, each Vk is an
SL(2, R)-invariant subbundle of H1

C
.

On the other hand, T ∗ has a well-defined restriction to H1,0(S, C)= H1,0, and
(T ∗|H1,0(S,C))

N = Id, so that we can also define

V
1,0
k := Ker(T ∗ − ζ k Id)⊂ H1,0(S, C).

In general, the subspaces V 1,0
k do not form SL(2, R)-invariant subbundles of the complex

cohomology bundle.
Let us consider the decomposition

H1(S, C)= H1,0(S)⊕ H0,1(S).

Since the operator T ∗ preserves the subspace H1,0(S) and commutes with complex
conjugation, it follows that

H1(S, C)=
N−1⊕

k=1
Vk =

N−1⊕

k=1
(V

1,0
k ⊕ V

0,1
k )=

N−1⊕

k=1
(V

1,0
k ⊕ V

1,0
N−k).

In particular, by defining

Wk :=





Vk ⊕ VN−k for k = 1, . . . ,
N

2
− 1,

VN/2 for k = N

2
,
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and
H1
k (S, R) :=Wk ∩ H1(S, R),

we see that, for any k < N/2, one has

Wk = (V
1,0
k ⊕ V

1,0
N−k)⊕ (V

1,0
k ⊕ V

1,0
N−k) (A.5)

and, for k = N/2, one obtains

WN/2 = V
1,0
N/2 ⊕ V

1,0
N/2. (A.6)

Thus, each H1
k (S, R) is SL(2, R)-invariant and Hodge star-invariant.

Concerning the dimensions of these subbundles, we have the following lemma. Denote

t (k) :=
4∑

i=1

{
kai

N

}
for k = 1, . . . , N − 1, (A.7)

where {x} denotes the fractional part of x . Conditions (A.1) imply that t (k) is integer,
hence, clearly, t (k) ∈ {1, 2, 3}.

Lemma [B, Lemma 4.3]. For any k ∈ {1, . . . , N − 1}, one has

dimC V
1,0
k = t (N − k)− 1 ∈ {0, 1, 2}.

Define the following two complementary subsets I0 and I1 of the set {1, . . . , N/2}:

I0 := {k | 1≤ k ≤ N/2, and at least one of V 1,0
k or V 1,0

N−k vanish},
I1 := {1, . . . , N/2}\I0,

and consider the subspaces

H1
I0

(S, R) :=
⊕

k∈I0

H1
k (S, R), H1

I1
(S, R) :=

⊕

k∈I1

H1
k (S, R)

of the real cohomology. By definition,

H1(S, R)= H1
I0

(S, R)⊕ H1
I1

(S, R).

In this language, a consequence of the previous lemma is the following result.

COROLLARY A.2. An integer k, such that 1≤ k ≤ N − 1, belongs to the subset I1 if and

only if

dim V
1,0
k = dim V

1,0
N−k = 1.

Proof. The definition (A.7) of the integers t (k) and conditions (A.1) on the sum of ai imply
that t (k)+ t (N − k) ∈ {2, 3, 4} or, equivalently,

dim V
1,0
k + dim V

1,0
N−k ∈ {0, 1, 2}.

It follows that if k ∈ I1, then the integers dim V
1,0
k and dim V

1,0
k are both different from

zero, hence they have to be both equal to one, as claimed. ✷
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In any case, for a square-tiled cyclic cover, we can use these subbundles to compute the
complex bilinear form B on H1,0 as follows.

LEMMA A.2. Let ω j , ωk be eigenvectors of the linear map T ∗|H1,0(S,C) with eigenvalues

ζ j and ζ k respectively. The following formula holds:

Bω(ω j , ωk)

{
6= 0 if j = N − k,

= 0 otherwise.

Proof. Symmetry arguments analogous to those in the proof of Theorem 2 show that, in
our case, if the eigenvalues u j = ζ j and uk = ζ k are not complex-conjugate, the value

Bω(ω j , ωk) on the corresponding eigenvectors is equal to zero. Since ζ k = ζ N−k =
1/ζ N−k , one has that j 6= N − k implies Bω(ω j , ωk)= 0.

Now, consider the action of T ∗ on the Abelian differential (ωk · ωN−k)/ω. By
Lemma A.1, we obtain

T ∗
(

ωk ωN−k
ω

)
= ζ kωk · ζ N−kωN−k

(−ω)
=−ωk ωN−k,

that is, (ωk · ωN−k)/ω is T ∗ anti-invariant. In other words, since ζ N/2 =−1, we have that
(ωk · ωN−k)/ω ∈ V

1,0
N/2. By Corollary A.2, this implies that (ωk · ωN−k) is proportional to

ω2 with a non-zero constant coefficient const. Thus,

Bω(ωk, ωN−k) :=
i

2

∫

S

ωk ωN−k
ω

ω̄ = const · i
2

∫

S

ωω̄ = const · 1 6= 0.

This completes the proof of the lemma. ✷

Our discussion so far can be summarized by the following lemma.

LEMMA A.3. The real Hodge bundle H1
R

over an arithmetic Teichmüller curve of a

square-tiled cyclic cover splits into a direct sum

H1(S, R)=
N/2⊕

k=1
H1
k (S, R) (A.8)

of SL(2, R)-invariant, BR-orthogonal, Hodge star-invariant subbundles.

Remark A.1. By Lemmas 3.4 and A.3 the subspaces H1
k (S, R) in the splitting (A.8) are

symplectic-orthogonal and Hodge-orthogonal. Of course, it can be also immediately seen
directly.

Given a Teichmüller curve C associated with a square-tiled cyclic cover, we denote
by H1

I0
⊂ H1

R
the bundle over C formed by the subspaces H1

I0
(S, R), and E0 ⊂ H1

R
be

the Oseledets bundle corresponding to the zero Lyapunov exponents (with respect to the
unique SL(2, R)-invariant probability supported on C). The lemma below is a consequence
of Theorem 3 and Lemma A.2.

LEMMA A.4. The following inclusions hold:

H1
I0
⊆ Ann(BR) and H1

I0
⊆ E0.
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Proof. For each k ∈ I0, one has V
1,0
k ⊕ V

1,0
N−k = V

1,0
N−k or V

1,0
k . Hence, (B|

V
1,0
k ⊕V

1,0
N−k

)= 0

by Lemma A.2. It follows that BR|H1
I0
= 0, that is, H1

I0
⊆ Ann(BR). On the other hand,

we have that, by construction, H1
I0

is SL(2, R)-invariant and Hodge star-invariant. Thus,

the inclusion H1
I0
⊆ E0 follows from Theorem 3 (and the inclusion H1

I0
⊆ Ann(BR)). ✷

In what follows, we want to show that the inclusions in the previous lemma are actually
equalities. The first step is to prove the following fact.

LEMMA A.5. The following identity holds:

H1
I0
= Ann(BR).

Proof. For any k ∈ I1, take ωk ∈ V
1,0
k − {0} and ωN−k ∈ V

1,0
N−k − {0}. It follows from

Corollary A.2 that such ωk and ωN−k exist, and V
1,0
k = Cωk , V

1,0
N−k = CωN−k . By (A.5)

and (A.6), we obtain that Re ωk , Re ωN−k , Im ωk , Im ωN−k is a basis of H1
k (S, R) when

k 6= N/2, and Re ωN/2, Im ωN/2 is a basis of H1
N/2(S, R). By Lemma A.2, we deduce

that the BR|H1
k (S,R) is non-degenerate for any k ∈ I1. Since H1

I1
(S, R) is a BR-orthogonal

sum (see Lemma A.3), it follows that the restriction of BR to H1
I1

(S, R) is non-degenerate.

Finally, since H1(S, R) splits as a BR-orthogonal sum of H1
I1

(S, R) and H1
I0

(S, R) (again

see Lemma A.3), it follows that Ann(BR)⊆ H1
I0
. Because the converse inclusion was

proved as part of Lemma A.4, the proof of this lemma is complete. ✷

Next, we invoke the following key result.

THEOREM 6. [EKZ2, Theorem 2.6, item (iii)] For every k ∈ I1 the Kontsevich–Zorich

cocycle has no zero exponents on the SL(2, R)-invariant subbundle H1
k ⊂ H1

R
. Moreover,

for each k ∈ I1 − {N/2}, the Lyapunov spectrum of the Kontsevich–Zorich cocycle

restricted to H1
k has the form {λk, λk,−λk,−λk} with λk > 0 (i.e. there is only one double-

positive Lyapunov exponent).

Remark A.2. This theorem could be deduced directly from the properties of BR|H1
k

discussed in this paper. However, we prefer to skip the presentation of this proof
because, in contrast to the arguments in [EKZ2], it does not yield the precise value
λk = 2 ·min{t j (k), 1− t j (k) : j = 1, 2, 3, 4}.

At this stage, we are ready to get the following result stating in particular that for square-
tiled cyclic covers the central Oseledets subbundle indeed coincides with the kernel of the
second fundamental form.

THEOREM 7. Suppose that N is even and all ai are odd. Consider the SL(2, R)-orbit of

the square-tiled cyclic cover MN (a1, a2, a3, a4). The following identities hold:

E0 = Ann(BR)= H1
I0

.

In particular, the number of strictly positive Lyapunov exponents of the Kontsevich–Zorich

cocycle is given by the following formula:

#{k ∈ {1, . . . , N − 1} | dimC V
1,0
k = dimC V

1,0
N−k = 1}.
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Proof. The decomposition (A.8) of the Hodge bundle into a direct sum of SL(2, R)-
invariant subbundles implies that the Lyapunov spectrum of the Hodge bundle is the union
of the spectra of the subbundles. Lemmas A.4 and A.5 show that Ann(BR)= H1

I0
⊆ E0,

while Theorem 6 shows that the inclusion H1
I0
⊆ E0 is actually an equality. Finally,

the formula counting the number of non-negative Lyapunov exponents is obtained by a
combination of Theorem 6 with Corollary A.2. ✷

Theorem 5 is now an immediate corollary of the more precise Theorem 7.

B. Appendix. Lyapunov spectrum of a higher-dimensional SL(2, R)-invariant locus Z

This appendix is devoted to the description of an SL(2, R)-invariant locus Z⊂H(8, 25)
supporting an ergodic SL(2, R)-invariant probability µ with the following properties:
• there are precisely six vanishing exponents out of ten non-negative Kontsevich–

Zorich exponents (with respect to µ);
• the corank of Bω is six for every ω ∈ Z; but
• E

µ

(0) 6= Ann(BR), Eµ

(0) is not SL(2, R)-invariant and Ann(BR) is not flow-invariant.
The construction of Z is partially motivated by McMullen’s paper [Mc].

Below, we will only sketch the proof of these properties. The details are part of a
forthcoming paper [FMZ2].

B.1. Description of the locus Z. Denote by Z the family of Riemann surfaces

C6 = {w6 = (z − z1) . . . (z − z6)}

equipped with the Abelian differentials

ω = (z − z1) dz

w3
.

Here, z1, . . . , z6 ∈ P
1(C) are six pairwise distinct points of the Riemann sphere. A quick

inspection reveals that these Riemann surfaces have genus 10, and any such ω has a zero
of order eight at the branch point over z1 and a double zero at the branch point over z j ,
j = 2, . . . , 6. In other words, Z⊂H(8, 25).

Observe that ω2 = g∗q where g : C6→ P
1(C), g(z, w)= z, and q is the following

quadratic differential with a simple zero and five simple poles of the Riemann sphere:

q = (z − z1) dz
2

(z − z2) . . . (z − z6)
∈ Q(1,−15).

Alternatively, ω = h∗ω̂ where h : C6→ C2, h(z, w)= (z, w3), C2 = {y2 = (z − z1) . . .

(z − z6)} is a genus two Riemann surface and ω̂ is the following Abelian differential onC2:

ω̂ = (z − z1) dz

y
∈H(2).

Since Z, Q(1,−15) and H(2) are four-dimensional loci, it follows that Z≃ Q(1,−15)≃
H(2) and Z is the closure of the GL+(2, R)-orbit of (C6, ω) for a generic choice of
z1, . . . , z6.
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B.2. Decomposition of Hodge bundle over Z. Similarly to the discussion of the case
of square-tiled cyclic covers in Appendix A above, we note that the group of deck
transformations of the cover g : C6→ P

1(C) (ramified over z1, . . . , z6) is generated by

T (z, w)= (z, εw),

where ε is a primitive sixth root of unity. For sake of concreteness, we take ε =
exp(2π i/6). Again, we denote by T ∗ : H1(C6, C)→ H1(C6, C) the induced linear map.
Of course, since (T ∗)6 = Id, its eigenvalues are a subset of {1, ε, . . . , ε5}. For every
k = 1, . . . , 5, we put

Vk = Ker(T ∗ − εkId).

Again, because SL(2, R) acts by monodromy of the flat Gauss–Manin connection, these
eigenspaces Vk form SL(2, R)-invariant subbundles of the Hodge bundle over Z.

Next, we consider the restriction of T ∗ to H1,0(C6, C). Because there is no Abelian
differential on P

1(C), we see that the eigenvalues of T ∗|H1,0(C6,C) form a subset of
{ε j : j = 1, . . . , 5} and we denote

V
1,0
k = Ker(T ∗|H1,0(C6,C) − εkId),

so that

H1,0(C6, C)=
5⊕

k=1
V

1,0
k .

A quick computation shows that
{
z j dz

wk
: 0 < j < k < 5

}

is a basis of holomorphic differentials on the genus 10 Riemann surface C6. In particular,

dimCV
1,0
k = k − 1

for each k = 1, . . . , 5.
Finally, we form the subspaces

Wk =
{
Vk ⊕ V6−k if k 6= 3,

V3 if k = 3

and
H1
k (C6, R) :=Wk ∩ H1(C6, R).

Since Vk ⊕ V6−k and V3 are invariant under complex conjugation, each Vk is SL(2, R)-

invariant and Vk = V
1,0
k ⊕ V

0,1
k = V

1,0
k ⊕ V

1,0
6−k , we have the following Hodge ∗- and

SL(2, R)-invariant splitting

H1(C6, R)=
3⊕

k=1
H1
k (C6, R).

Moreover, a direct application of the arguments of the proof of Theorem 2 shows that the
H1
k (C6, R) are pairwise BR-orthogonal.
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In the following, we will use these decompositions to analyze Ann(BR) and the neutral
Oseledets bundle of SL(2, R)-invariant ergodic probabilities supported on Z.

B.3. Neutral Oseledets bundle versusAnn(BR) over Z. In the present case, we just saw

that dimCV
1,0
k = k − 1, so that V1 = V

1,0
5 , V5 = V

1,0
5 and, a fortiori, V 1,0

5 ⊂ Ann(B) and
H1
1 (C6, R)⊂ Ann(BR) (compare with Theorem 2 and Lemma A.2). Furthermore, from

Theorem 3, it follows also that H1
1 (C6, R)⊂ E

µ

(0) for any ergodic SL(2, R)-invariant µ

supported on Z, that is, any such measure automatically possesses at least four vanishing
exponents among the ten non-negative exponents of Kontsevich–Zorich cocycle restricted
to the Hodge bundle over Z.

Remark B.1. The fact V 1,0
5 = V5 says that the Jacobian ofC6 has a fixed part (of dimension

four, = dimCV5), i.e. the complex torus A = V
1,0
5 /V

1,0
5 (Z) obtained from the quotient of

V
1,0
5 by the lattice V 1,0

5 (Z)= V
1,0
5 ∩ H1(C6, Z) is a fixed part (rigid factor) of the Jacobian

Jac(C6) of C6 in the sense that we have an isogeny Jac(C6)→ J (C6)× A. The fact that
V

1,0
5 is a fixed part of the Jacobian was already known by McMullen [Mc, Theorem 8.3]

and it was our starting point to study the locus Z.

Next, we pass to the analysis of H1
3 (C6, R). Because h∗(H1,0(C2, C)) equals V

1,0
3

(where h : C6→ C2, h(z, w)= (z, w3), is the covering map used above to construct the
isomorphism Z≃H(2)), by the results of Bainbridge [Ba] and [EKZ1], we conclude that
the non-negative exponents of the Kontsevich–Zorich cocycle restricted to H1

3 (C6, R) are
1 and 1/3 for any ergodic SL(2, R)-invariant probability supported on Z and the second
fundamental form B restricted to V

1,0
3 has full rank (equal to two).

Therefore, it remains to study the restriction of the second fundamental form B to
W

1,0
2 := V

1,0
2 ⊕ V

1,0
4 and the restriction of the Kontsevich–Zorich cocycle to H1

2 (C6, R).

Remark B.2. For sake of concreteness, we observe that H1
2 (C6, R) is a copy of the first

homology group H1(C3, R) of the genus four Riemann surface

C3 := {x3 = (z − z1) . . . (z − z6)} = C6/〈T 2〉.

Moreover, the square of the Abelian differential ω on C6 projects into the quadratic
differential q(4) = (z − z1)

2 dz2/x3. In other words, the study of the restriction of
the Kontsevich–Zorich cocycle over Z to H1

2 (C6, R) is equivalent to the study of
the Kontsevich–Zorich cocycle over the locus determined by the family of quadratic
differentials (C3, q(4)) ∈ Q(7, 15) of genus four. In fact, in the forthcoming paper [FMZ2],
we will adopt the latter point of view (i.e. we will study this family of quadratic differentials
of genus four directly).

LEMMA B.1. The restriction of the form B to W
1,0
2 has rank two. In particular,

Ann(BR) ∩ H1
2 (C6, R) is a four-dimensional (real) subspace of the eight-dimensional

space H1
2 (C6, R).

Proof. Let α ∈ V
1,0
2 and β0, β1, β2 ∈ V

1,0
4 be a basis of W 1,0

2 . By the arguments in the
proof of Theorem 2, we have that Bω(α, α)= 0 and Bω(β j , βl)= 0 for all 0≤ j, l ≤ 3.
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Hence, the matrix of B|
W

1,0
2

in the basis {α, β0, β1, β2} is



0 b0 b1 b2

b0 0 0 0
b1 0 0 0
b2 0 0 0


,

where b j := Bω(α, β j ), j = 0, 1, 2. Hence, it suffices to prove that one of the entries b j

is non-zero to conclude that the rank of B|
W

1,0
2

is two. To do so, we make the following

choice of basis α = dz/w2, β j = (z − z1)
j dz/w4, and we compute

Bω(α, β2)=
∫

αβ2

ω
ω =

∫ |z − z1|2
|w|6 dz dz 6= 0,

that is b2 6= 0. ✷

LEMMA B.2. The non-negative part of the Lyapunov spectrum of the restriction of the

Kontsevich–Zorich cocycle to H1
2 (C6, R) with respect to any SL(2, R)-invariant ergodic

probability µ has the form

{λµ = λµ > 0= 0}.
In particular, the neutral Oseledets bundle E

µ

0 intersects H1
2 (C6, R) in a subspace of real

dimension four.

We begin the proof of this lemma by following [EKZ2] to see that the Lyapunov
exponents of GK Z

t |H1
2 (C6,R) have multiplicity two (at least). Indeed, given a vector

v ∈ H1
2 (C6, R) corresponding to a Lyapunov exponent λ, we have that T ∗v corresponds to

the same Lyapunov exponent (as T ∗ commutes with the monodromy). On the one hand,
since the eigenvalues of T ∗|H1

2 (C6,R) are not real (i.e. ε
2, ε4 /∈ R), it follows that T ∗v is not

collinear to v, that is, λ has at least multiplicity two.
Consequently, the non-negative part of the Lyapunov spectrum of GK Z

t restricted to
H1
2 (C6, R) (with respect to µ) has the form

{λµ = λµ ≥ θµ = θµ}.
On the other hand, we know that BR restricted to H1

2 (C6, R) is not degenerate (see
Lemma B.1). Hence, from Theorem 3, we conclude that

λµ > 0.

In other words, the proof of the previous lemma is reduced to showing that θµ = 0, which
is the following lemma.

LEMMA B.3. The non-negative part of the Lyapunov spectrum of GK Z
t restricted to

H1
2 (C6, R) has two vanishing exponents.

In the forthcoming paper [FMZ2], we will deduce this lemma along the following lines.

Since V4 = V
1,0
4 ⊕ V

1,0
2 , dimC(V

1,0
4 )= 3, and dimC(V

1,0
2 )= 1, the intersection form (2.1)

has signature (3, 1) and hence the action of SL(2, R) through monodromy of the Gauss–
Manin connection on the subspace V4 of the complex Hodge bundle H1

C
is represented by

U (3, 1) matrices. In [FMZ2], we will see that, in general, a cocycle preserving a pseudo-
Hermitian form of signature (p, q) (i.e. with values in the matrix group U (p, q)) has at
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least |p − q| zero Lyapunov exponents. By applying this general principle in the context of
the previous lemma, we have that the Kontsevich–Zorich cocycle has (at least) 3− 1= 2
zero Lyapunov exponents, so that the lemma follows.

In any event, by Lemmas B.1 and B.3, we can discuss the main result of this
appendix. In the following theorem, we denote by µ the natural SL(2, R)-invariant ergodic
probability fully supported on Z (obtained from the so-called Masur–Veech probability on
H(2) via the isomorphism Z≃H(2) constructed previously).

THEOREM 8. We have Ann(BR) ∩ H1
2 (C6, R) 6= E

µ

(0) ∩ H1
2 (C6, R). Consequently,

Ann(BR) 6= E
µ

(0), hence E
µ

(0) is not SL(2, R)-invariant.

Actually, this theorem is a consequence of the following fact.

THEOREM 9. There is no continuous two-dimensional subbundle V ⊂W
1,0
2 under the

Teichmüller flow and SO(2, R)-invariant (i.e. SL(2, R)-invariant).

Assuming momentarily this theorem, one can conclude Theorem 8 as follows. We
have that Ann(B) ∩W

1,0
2 is a continuous (actually, real-analytic) and SO(2, R)-invariant

two-dimensional subbundle of W
1,0
2 . From Theorem 9 it follows that Ann(B) ∩W

1,0
2

is not flow-invariant, and hence Ann(BR) ∩ H1
2 (C6, R) is not flow-invariant. Since

E
µ

(0) ∩ H1
2 (C6, R) is flow-invariant, it follows that Eµ

(0) ∩ H1
2 (C6, R) cannot coincide with

Ann(BR) ∩ H1
2 (C6, R). By Theorem 3, if E

µ

(0) were SL(2, R)-invariant, it would be a

subbundle of the bundle Ann(BR), hence it would coincide with it by dimensional reasons,
thereby contradicting the first part of the statement.

Concerning the proof of Theorem 9, let us just say a few words (for more details
see [FMZ2]): the basic idea is that SL(2, R)-invariance of a continuous subbundle V

can be tested along pseudo-Anosovs (i.e. periodic orbits of Teichmüller flow); indeed, the
existence of SL(2, R)-invariant continuous subbundles V implies that the monodromy
matrices along pseudo-Anosovs passing by the same Riemann surface should share a
common subspace, and (the non-validity of) this last property can be tested by direct
calculation.

Closing this appendix, let us mention that the precise value of the positive Lyapunov
exponent coming from H1

2 (C6, R) can be computed from the main formula of [EKZ1]
and a computation with Siegel–Veech constants related to Q(1,−15) (see [FMZ2]).

PROPOSITION 3. Let ν be any SL(2, R)-invariant ergodic probability supported on Z.

Then, the non-negative part of the Lyapunov spectrum of the Kontsevich–Zorich cocycle

with respect to ν has the form

{1 > 4/9= 4/9 > 1/3 > 0= 0= 0= 0= 0= 0}.
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