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Part of this list of problems grew out of a series of lectures given by the authors 
at the Luminy confrence in June 2003. These lectures appeared as survey articles 
in [HuSt3], [Mai], see the related [Es] and [Fo2]. 

Additional general references for the background material for these problems 
are the survey articles [MaTa], [Sm], [Gul], [Gu2], [Zo4] and the book [St]. 
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1. Flat surfaces and billiards in polygons 

The first set of problems concerns general flat surfaces with nontrivial holonomy 
and billiards in polygons. 

Using any of various variations of a standard unfolding construction one can 
glue flat surfaces from several copies of the billiard table. When the resulting surface 
is folded back to the polygon, the geodesies on the surface are projected to billiard 
trajectories, so billiards in polygons and flat surfaces are closely related. 

A quintessential example of a flat surface is given by the surface of the standard 
cube in real three-space. With its induced metric it is a flat sphere with eight 
singularities. Indeed, at each corner, three squares meet so that each corner has a 
neighborhood that is isometric to a Euclidean cone, with cone angle 3TT/2. These 
are indeed the only singularities of the flat metric; we call them conical singularities 
of the flat surface. Since the cone angle is not a multiple of 27r, parallel transport 
of a non-zero tangent vector about a simple closed curve around a corner will result 
in a distinct tangent vector; thus the holonomy is nontrivial. In general, a "flat 
surface" here refers to a surface of zero Gaussian curvature with isolated conical 
singularities. 

Having a Riemannian metric it is natural to study geodesies. Away from sin­
gularities geodesies on a flat surface "are (locally isometric to) straight lines. The 
geodesic flow on the unit tangent bundle is then also presumably well behaved. For 
simplicity, let "ergodic" here mean that a typical geodesic visits any region of the 
surface, and furthermore (under unit speed parametrization) spends a time in the 
region that is asymptotically proportional to the area of the region. 
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PROBLEM 1 (Geodesies on general flat surfaces). Describe the behavior of 
geodesies on general flat surfaces. Prove (or disprove) the conjecture that the 
geodesic flow is ergodic on a typical (in any reasonable sense) flat surface. Does 
any (almost any) flat surface have at least one closed geodesic which does not pass 
through singular points? 

If the answer is positive then one can ask for the asymptotics for the number 
of closed geodesies of bounded length as a function of the bound. 

Note that typically a geodesic representative in a homotopy class of a simple 
closed curve is realized by a broken line containing many geodesic segments going 
from one conical singularity to the other. The counting problem for regular closed 
geodesies (ones which do not pass through singularities) is quite different from the 
counting problem for geodesies realized by broken lines. 

The following questions treat billiards in arbitrary polygons in the plane. 

PROBLEM 2 (Billiards in general polygons). Does every billiard table have 
at least one regular periodic trajectory? If the answer is affirmative, does this 
trajectory persist under deformations of the billiard table? 

If a periodic trajectory exists, find the asymptotics for the number of periodic 
trajectories of bounded length as a function of the bound. 

Describe the behavior of a generic regular billiard trajectory in a generic poly­
gon; in particular, prove (or disprove) the assertion that the billiard flow is ergodic.1 

We note that the case of triangles is already highly non-trivial. For recent work 
on billiards in obtuse triangles see [Scl] and [Sc2]. 

In the case of triangles the notion of generic can be interpreted as follows. 
The space of triangles up to similarity can be parametrized as the set of triples 
(#i, 62, #3) with ^20{ = 7T and each Oi > 0. It is naturally an open simplex. Generic 
then refers to the natural Lebesgue measure. 

To motivate the next problem we note that there is a close connection between 
the study of interval exchange transformations and billiards in rational polygons 
(defined below). An important technique in the study of interval exchange maps 
is that of renormalization. Given an interval exchange on the unit interval one can 
take the induced transformation on a subinterval. The resulting map is again an 
interval exchange map, and if one renormalizes so that the new interval has length 
one, then this gives a transformation on the space of unit interval exchange maps. 
This transformation is called the Rauzy-Veech induction ([Ra], [Ve2]), and it has 
proved to be of fundamental importance. There is a corresponding notion for the 
renormalization of translation surfaces given by the Teichmuller geodesic flow. 

PROBLEM 3 (Renormalization of billiards in polygons). Is there a natural dy­
namical system acting on the space of billiards in polygons so as to allow a useful 
renormalization procedure? 

2. Rational billiards, translation surfaces 
quadratic differentials and SL(2,R) actions 

An important special case of billiards is given by the rational billiards — bil­
liards in polygonal tables whose vertex angles are rational multiples of TT. There 

1On behalf of the Center of Dynamics of Pennsylvania State University A. Katok promised 
a prize for a solution of this problem. 
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is a well-known procedure (see the surveys [MaTa], [Gul]) which associates to a 
rational billiard an object called a translation surface. One labels the sides of the 
polygon and successively reflects the polygon across sides. The rationality assump­
tion guarantees that after a certain number of reflections a labelled side appears 
parallel to itself. In that case the pair of sides with the same label is glued by a 
parallel translation. The result is a closed surface with conical singularities. The 
billiard flow on the polygon which involves reflection in the sides is replaced by a 
straight line flow on the glued surface; under the natural projection of the surface 
to the billiard table the geodesies are projected to billiard trajectories. It turns out 
that many results in rational billiards are found by studying more general transla­
tion surfaces. 

A translation surface is defined by the following data: 

• a finite collection of disjoint polygons A i , . . . , A n embedded into the ori­
ented Euclidean plane; 

• a pairing between the sides of the polygons: to each side s of any A^ is 
associated a unique side sf ^ s of some Aj in such way that the two sides 
s, sf in each pair are parallel and have the same length |s| = |s' | . The 
pairing respects the induced orientation: gluing A; to Aj by a parallel 
translation sending s to sf we get an oriented surface with boundary for 
any pair s, s'; 

• a choice of the positive vertical direction in the Euclidean plane. 

A classical example is the square with opposite unit sides identified, giving 
the flat torus. This example arises from billiards in a square of side length 1/2. 
Another example is a regular octagon with opposite sides identified. It arises by the 
unfolding process from billiards in a right triangle whose other angles are 7r/8, 3TT/S. 
When translation surfaces arise from billiards the polygons in the gluings can be 
taken to be congruent, so translation surfaces arising from rational billiards always 
have extra symmetries not possessed by general translation surfaces. In this sense 
translation surfaces coming from rational billiards are always rather special. 

Note that a translation surface is in particular a flat surface in the sense de­
scribed before. It is locally Euclidean except possibly at the points corresponding 
to the vertices of the polygons. These points can be conical singularities, but the 
total angle around such a vertex — its cone angle — is always an integer multiple 
of 2TT. For example, in the case of the regular octagon, the 8 vertices are identified 
to a single point with cone angle 6n. 

Since the gluing maps are translations which are of course complex analytic, the 
underlying structure is that of a Riemann surface X. Moreover since translations 
preserve the form dz in each polygon, these forms dz fit together to give a holo-
morphic 1-form w o n l . Thus translation surfaces are often denoted by (X,LJ). In 
this language a cone angle 2kir at a singularity corresponds to a zero of order k — 1 
of uj. The orders of the zeroes form a tuple a = (c*i,..., a n ) , where ]T a^ = 2g — 2 
and g is the genus of the surface. In the case of the regular octagon, there is a 
single zero of order 2 so a = (2). The set of all (X,u) whose zeroes determine a 
fixed tuple a form a moduli space TL{a) , called a stratum. We may think of the 
points of this moduli space as glued polygons where the vectors corresponding to 
the sides are allowed to vary. Since each (X, uo) has the underlying structure of a 
Riemann surface, remembering just the complex structure gives a projection from 
each stratum to the Riemann moduli space. One can introduce "markings" in order 
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to get a well-defined projection map from spaces of marked Abelian differentials to 
Teichmuller space. 

Studying translation surfaces from the different viewpoints of geometry and 
complex analysis has proved useful. 

If we loosen our restrictions on the gluings so as to allow reflections in the 
origin as well as translations, then there is still an underlying Riemann surface; the 
resulting form is a quadratic differential. The structure is sometimes also called 
a half-translation surface. Now the cone angles are integer multiples of IT. Thus 
each quadratic differential determines a set of zeroes whose orders again give a 
tuple (5 — (/3i,..., (3n) with ^ A — 4# — 4. We similarly have strata of quadratic 
differentials Q(/3). If we fix a genus g, and introduce markings, then the union 
of the strata of quadratic differentials (including those that are naturally seen as 
the squares of Abelian differentials) of genus g fit together to form the cotangent 
bundle over Teichmuller space. 

Much of the modern treatment of the subject arises from the study of the 
action of the group SL(2,R) on each moduli space H(a). Understanding the orbit 
of a translation surface allows one to understand much of the structure of the 
translation surface itself. For each (X,UJ) realized as a union of glued polygons 
Ai, and A G SL(2,R), let A act on each A^ by the linear action on R2. Since A 
preserves parallel lines, this gives a map of (X,UJ) to some A • (X,LJ). We have a 
similar action for A G GL+(2,R). If we introduce markings then the projection of 
the orbit to Teichmuller space gives an isometric embedding of the hyperbolic plane 
into Teichmuller space equipped with the Teichmuller metric. The projection of the 
orbit of (X,u>) is called a Teichmuller disc. Similarly, we have Teichmuller discs 
for quadratic differentials. The image of the disc in the moduli space is typically 
dense. However there are (X,UJ) whose orbit is closed in its moduli space H(a). 
These are called Veech surfaces. We will discuss these in more detail in the next 
section. 

2.1. Veech surfaces. This section discusses problems related to Veech sur­
faces and Veech groups. Given a translation surface (X,u), or quadratic differ­
ential, one can discuss its affine diffeomorphism group; that is, the homomor-
phisms that are diffeomorphisms on the complement of the singularities, with con­
stant Jacobian matrix (with respect to the flat metric). The group of Jacobians, 
SL(X, a;) C SL(2, R) can also be thought of as the stabilizer of (X, UJ) in the moduli 
space under the action of SL(2,R) on the moduli space of all translation surfaces. 
(The SL(2,R) action is discussed in the next section). The Jacobians of orientation 
preserving affine diffeomorphisms form a discrete subgroup of SL(2,R), also called 
a Fuchsian group. The image in PSL(2,R) is the Veech group of the surface. One 
can also think of this group as a subgroup of the mapping class group of the surface. 
Hyperbolic elements of this group correspond to pseudo-Anosovs in the mapping 
class group; parabolic elements to reducible maps and elliptics to elements of finite 
order. 

The surface (X, a;) is called a Veech surface if this group is a lattice (that is of co-
finite volume) in PSL(2,R). By a result of Smillie [Ve4] it is known that a surface 
is a Veech surface if and only if its SL(2,R)-orbit is closed in the corresponding 
stratum. 

In genus 2 it is known [McMl] that if SL(X,UJ) contains a hyperbolic element 
then in its action on the hyperbolic plane, it has as its limit set the entire circle 
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at infinity. Consequently, it is either a lattice or infinitely generated. There are 
known examples of the latter, see [HuSt2] and [McMl]. 

PROBLEM 4 (Characterization of Veech surfaces). Characterize all Veech sur­
faces (for each stratum of each genus). 

This problem is trivial in genus one; in genus two K. Calta [Ca] and C. Mc-
Mullen [McM2] have provided solutions. In the papers [KnSm] and Puchta [Pu] 
the acute rational billiard triangles that give rise to Veech surfaces were classified. 
In [SmWe] there is a criterion for a surface (X,u) to be a Veech surface that is 
given in terms of the areas of triangles embedded in (X, u). 

PROBLEM 5 (Fuchsian groups). Which Fuchsian groups are realized as Veech 
groups? Which subgroups of the mapping class group appear as Veech groups? 
This is equivalent to asking which subgroups are the stabilizers of a Teichmuller 
disc. 

PROBLEM 6 (Purely cyclic). Is there a Veech group that is cyclic and generated 
by a single hyperbolic element? Equivalently, is there a pseudo-Anosov map such 
that its associated Teichmuller disk, is invariant only under powers of the pseudo-
Anosov? 

PROBLEM 7 (Algorithm for Veech groups). Is there an algorithm for determin­
ing the Veech group of a general translation surface or quadratic differential? 

An interesting class of Veech surfaces are the square-tiled surfaces. These 
surfaces can be represented as a union of glued squares all of the same size, see [Zo3], 
[HuLe]. 

PROBLEM 8 (Orbits of square-tiled surfaces). Classify the SL(2,R) orbits of 
square-tiled surfaces in any stratum. Describe their Teichmuller discs. A particular 
case of this problem is that of the stratum W(l, 1). 

The above problem is solved only for the stratum W(2), see [HuLe], [McM4]. 

2.2. Minimal sets and analogue of R a t n e r ' s theorems . The next set 
of questions concern the SL(2,R) action. They are motivated by trying to find 
an analogue of the SL(2,R) action on the moduli spaces to Ratner's celebrated 
theorems on the actions of subgroups of a Lie group G on G/Y where T is a lattice 
subgroup. 

PROBLEM 9 (Orbit closures for moduli spaces). Determine the closures of the 
orbits for the GL+(2, Reaction on H(a) and Q(/3). Are these closures always 
complex-analytic (complex-algebraic?) orbifolds? Characterize the closures geo­
metrically. 

Note that by a theorem of Kontsevich any GL+ (2, R)-invariant complex-analytic 
subvariety is represented by an affine subspace in period coordinates. 

Consider the subset TCi(a) C 7i(a) of translation surfaces of area one. It is a 
real codimension one subvariety in H(a) invariant under the action of SL(2,R). In 
the period coordinates it is defined by a quadratic equation (the Riemann bilinear 
relation). It is often called a unit hyperboloid. It is worth noting that it is a manifold 
locally modelled on a paraboloid. The invariant measure on H(a) gives a natural 
invariant measure on the unit hyperboloid 7ii(a). Similarly one can define the unit 
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hyperboloid Qi(/3). It was proved by Masur and Veech that the total measure of 
any Hi(a), Qi((3) is finite. 

PROBLEM 10 (Ergodic measures). Classify the ergodic measures for the action 
of SL(2,R) on Hi{a) and Qi{(3). 

McMullen [McM3] has solved Problems 9 and 10 in the case of translation 
surfaces in genus 2. 

A subset Q is called minimal for the action of SL(2, R) if it is closed, invariant, 
and it has no proper closed invariant subsets. The SL(2, R) orbit of a Veech surface 
is an example of a minimal set. 

PROBLEM 11 (Minimal sets). Describe the minimal sets for the SL(2, R)-action 
on Hi(a) and Qi(fi). Since Veech surfaces give rise to minimal sets, this problem 
generalizes the problem of characterizing Veech surfaces. 

The problem below is particularly important for numerous applications. One 
application is to counting problems. 

PROBLEM 12 (Analog of Ratner theorem). Classify the ergodic measures for 

the action of the unipotent subgroup f I on Hi (a) and Qi(/3). We note that 
\U i / t e R 

a solution of Problem 10 does not imply a solution of this problem. In particular 
this problem is open even in genus 2. 

Similarly classify the orbit closures on these moduli spaces. 

There are some results in special cases on this problem, see [EsMaSl] and 
[EsMkWt]. 

K. Calta [Ca] and C. McMullen [McM2] have found unexpected closed 
GL+(2, R)-invariant sets in genus 2 which we now describe. One can form a family 
of translation surfaces from a given (X, a;) by varying the periods of the 1-form 
UJ along cycles in the relative homology — those that join distinct zeroes — while 
keeping the "true" periods (that is, the absolute cohomology class of UJ) fixed. One 
may also break up a zero of higher order into zeroes of lower order while keeping 
the absolute periods fixed. The resulting family of translation surfaces gives a leaf 
of the kernel foliation passing through (X, a;). 

It follows from [Ca] and [McM2] that for any Veech surface (X,u) G W(2), the 
union of the complex one-dimensional leaves of the kernel foliation passing through 
the GL+(2, R)-orbit of (X, UJ) is a closed complex orbifold J\f of complex dimension 
3. By construction N is GL+(2,R)-invariant. Note that the GL+(2,R)-orbit of 
the initial Veech surface (X, UJ) is closed and has complex dimension 2, so what is 
surprising is that the union of the complex one-dimensional leaves passing through 
each point of the orbit GL+(2,R) • (X,OJ) is again closed. 

We may ask a similar question in higher genus. Let O C H(ai,..., am) be a 
GL+(2,R)-invariant submanifold (suborbifold) on translation surfaces of genus g. 
Let H(a[,..., a'n) be a stratum of surfaces of genus g that is adjacent, in that each 
OLi is the sum of corresponding a'j . The complex dimension of the leaves of the 
kernel foliation in H(a[,..., a'n) is n — m. 

Consider the closure of the union of leaves of the kernel foliation in the stratum 
H(a[,..., a'n) passing through O; this is a closed GL+(2, R)-invariant subset Af C 
H(a/

ll..., a'n) of dimension at least dime O + n — m. 
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PROBLEM 13 (Kernel foliation). Is j\f a complex-analytic (complex-algebraic) 
orbifold? When is dime N = d\mc O+n — ml On the other hand when does j\f coin­
cide with the entire connected component of the enveloping stratum H(a[,..., a^J? 

One of the key properties used in [McM3] for the classification of the closures 
of orbits of GL(2,R) in each of W(l, 1) and H(2) was the knowledge that on any 
translation surface of either stratum, one can find a pair of homologous saddle 
connections. 

For example, cutting a surface (X, UJ) in 7Y(1,1) along two homologous saddle 
connections joining distinct zeroes decomposes the surface into two tori, allowing 
one to apply the machinery of Ratner's Theorem. 

PROBLEM 14 (Decomposition of surfaces). Given a connected component of the 
stratum H(a) of Abelian differentials (or of quadratic differentials Q((3) find those 
configurations of homologous saddle connections (or homologous closed geodesies), 
which are present on every surface in the stratum. 

For quadratic differentials the notion of homologous saddle connections (ho­
mologous closed geodesies) should be understood in terms of homology with local 
coefficients, see [MaZo]. 

The last two problems in this section concern the Teichmuller geodesic flow 
on the moduli spaces. This is the flow defined by the 1-parameter subgroup 

(e A o n H ( a b . . . , a m ) . 
\ u e / teR 

In any smooth dynamical system the Lyapunov exponents (see [BaPe], [Fo2]) 
are important. Recently, A. Avila and M. Viana [AvVi] have shown the simplicity 
of the spectrum for the cocycle related to the Teichmuller geodesic flow (strength­
ening the earlier result of Forni on positivity of the smallest Lyapunov exponent). 

PROBLEM 15 (Lyapunov exponents). Study individual Lyapunov exponents of 
the Teichmuller geodesic flow: 
- for all known SL(2;R)-invariant subvarieties; 
- for strata; 
- for strata of large genera as the genus tends to infinity. 

Are they related to characteristic numbers of any natural bundles over appro­
priate compactifications of the strata? 

The motivation for this problem is a beautiful formula of Kontsevich [Ko] 
representing the sum of the first g Lyapunov exponents in differential-geometric 
terms. 

It follows from the Calabi Theorem [Cb] that given a real closed 1-form UJ0 with 
isolated zeroes E (satisfying some natural conditions) on a smooth surface S of real 
dimension two, one can find a complex structure on S and a holomorphic 1-form 
UJ such that the UJQ is the real part of UJ. Consider the resulting point (X, a;) in the 
corresponding stratum. For generic (X,u) the cocycle related to the Teichmuller 
geodesic flow acting on H1 (X, R) defines a pair of transverse Lagrangian subspaces 
H1(X1 R) = Lo©Li by means of the Oseledets Theorem ([BaPe]). These subspaces 
correspond to contracting and to expanding directions. 

Though the pair (X,UJ) is not uniquely determined by UJQ, the subspace LQ C 
HX(X, R) does not depend on (X,u) for a given c«;o- Moreover, L$ does not 
change under small deformations of UJQ that preserve the cohomology class [UJ] G 
#*(£, E;R). We get a topological object LQ defined in implicit dynamical terms. 
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PROBLEM 16 (Dynamical Hodge decomposition). Study properties of distribu­
tions of the Lagrangian subspaces in H1 (S; R) defined by the Teichmiiller geodesic 
flow, in particular, their continuity. Is there any topological or geometric way to 
define them? 

The Lagrangian subspaces are an interesting structure relating topology and 
geometry. 

2.3. Geometry of individual flat surfaces. Let (X,w) be a translation 
surface (resp. quadratic differential). Fix a direction 0 < 0 < 2-n and consider a 
vector field (resp. line field) on each polygon of unit vectors in direction 0. Since 
the gluings are by translations (or by rotations by ir about the origin followed by 
translations) which preserve this vector field, there is a well-defined vector field on 
(X, UJ) (resp. line field) defined except at the zeroes. There is a corresponding flow 
(j)e

t (resp. foliation). A basic question is to understand the dynamics of this flow or 
foliation. In the case of a flat torus this is classical. For any direction either every 
orbit in that direction is closed or every orbit is dense and uniformly distributed 
on the surface. This property is called unique ergodicity. 

For a general translation surface a saddle connection is defined to be a leaf 
joining a pair of conical singularities. There are only count ably many saddle con­
nections in all possible directions. For any direction which does not have a saddle 
connection, the flow or foliation is minimal, which means that for any point, if the 
orbit in either the forward or backward direction does not hit a conical singularity 
then it is dense. Veech [Ve3] showed that as in the case of a flat torus, every Veech 
surface satisfies the dichotomy that for any 9, the flow or foliation has the property 
that either: 

• Every leaf which does not pass through a singularity is closed. This implies 
that the surface decomposes into a union of cylinders of parallel closed 
leaves. The boundary of each cylinder is made up of saddle connections. 
The directional flow is said to be completely periodic if it has this property. 

• The foliation is minimal and uniquely ergodic. 

PROBLEM 17 (Converse to dichotomy). Characterize translation surfaces for 
which 

(1) the set of minimal directions coincides with the set of uniquely ergodic 
directions; 

(2) the set of completely periodic directions coincides with the set of non-
uniquely ergodic directions. 

Note that Property (2) implies Property (1). 
In genus g = 2 it is known that for every translation surface which is not a Veech 

surface there is a direction 0 which is minimal and not uniquely ergodic [ChMa]. 
On the other hand, using work of Hubert-Schmidt [HuSt2], J. Smillie and B. Weiss 
[SmWe] have given an example of a surface which is not a Veech surface and yet 
for which Property (2) holds. (This surface is obtained as a ramified covering over 
a Veech surface with a single ramification point.) 

As mentioned above, a closed orbit avoiding the conical singularities of the flat 
surface determines a cylinder of parallel lines, all of the same length. It is of interest 
to find the asymptotics for the number of cylinders (in all possible directions) of 
lengths less than a given number. In the case of the standard flat torus the number 
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of cylinders of length at most L is asymptotic to 
1 

-7TLZ. 
C(2) 

Each Veech surface also has quadratic asymptotics [Ve3] and the same is true for 
generic surfaces in each stratum [EsMa]. 

PROBLEM 18 (Quadratic asymptotics for any surface). Is it true that every 
translation surface or quadratic differential has exact quadratic asymptotics for the 
number of saddle connections and for the number of regular closed geodesies? 

PROBLEM 19 (Error term for counting functions). What can be said about the 
error term in the quadratic asymptotics for counting functions 

N({X,u),L) ~C-L2 

on a generic translation surface (X,u)? In particular, is it true that 

,. log\N(S,L)-c-L*\ ^ o 9 lim sup < 2: 
L^OO log L 

Is the lim sup the same for almost all flat surfaces in a given connected compo­
nent of a stratum? 

The classical Circle Problem gives an estimate for the error term in the case of 
the torus. 

Veech proved that for Veech surfaces the limsup in the error term is actually a 
limit, see [Ve3]. However, nothing is known about the value of this limit. One may 
ask whether there is a uniform bound for this limit for Veech surfaces in a given 
stratum or even for the square-tiled surfaces in a given stratum. 

2.4. Topological and geometric properties of strata. 

PROBLEM 20 (Topology of strata). Is it true that the connected components 
of the strata H(a) and of the strata Q(/3) are K(TT, l)-spaces (i.e. their universal 
covers are contractible)? 

It is known [KoZo], [La] that the strata H(a) and Q(/3) need not be connected. 
With the exception of the four strata listed below, there are intrinsic invariants 
that allow one to tell which component a given translation surface or quadratic 
differential belongs to. 

PROBLEM 21 (Exceptional strata). Find a geometric invariant which distin­
guishes different connected components of the four exceptional strata Q(—1,9), 
Q( - l , 3 , 6 ) , Q( - l ,3 ,3 ,3 ) and 2(12). 

At the moment the known invariant (called the extended Rauzy class) distin­
guishing connected components is given in combinatorial and not geometric terms. 
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