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Abstract Consider a long piece of a trajectosy 7' (x), T (T (x)), ..., T" 1(x) of an
interval exchange transformatiofi. A generic interval exchange transformation is
uniquely ergodic. Hence, the ergodic theorem predicts that the numliern) of
visits of our trajectory to théth subinterval would be approximatelyn. Herex; is the
length of the corresponding subinterval of our unit inter¥alIn this paper we give an
estimate for the deviation of the actual number of visits toithesubintervalX; from
one predicted by the ergodic theorem.

We prove that for almost all interval exchange transformations the following bound

is valid: log L (x.n) — An| 6
. O i(x,n) —Ain )
max limsup glx: =<l
XX  pstoo logn 01
1<i<m

Roughly speaking the error term is bounded B%%. The numbers O< 6, < 6;

depend only on the permutatiancorresponding to the interval exchange transformation

(actually, only on the Rauzy class of the permutation). In the case of interval exchange

of two intervals we obviously havé, = 0. In the case of exchange of three and

more intervals the numbeid, 6, are the two top Lyapunov exponents related to the

corresponding generalized Gauss map on the space of interval exchange transformations.
The limit above ‘converges to the boundhiformly for all x € X in the following

sense. For any > 0 the ratio of logarithms would be less thés(r)/61(r) + ¢ for all

n > N(¢g), whereN (¢) does not depend on the starting paing X.

1. Introduction

1.1. Interval exchange transformations. General requirements on induction procedure.
Recall the notion of an interval exchange transformation. Consider an int&gvahd

cut it into m subintervals of length&q, ..., A,,. Now glue the subintervals together in
another order, according to some permutatioa S,, and preserving the orientation. We
again obtain an intervaX of the same length, and hence we get a mapfing{ — X,

which is called an interval exchange transformation. Our mapping is piecewise linear,
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1478 A. Zorich

and it preserves the orientation and Lebesgue measure. It is singular at the points of cuts,
unless two consecutive intervals separated by a point of cut are mapped to consecutive
intervals in the image.

An interval exchange transformatidh is completely determined by a paik, ),
LeRy € G, Letf =04 =2,k andX; = [fi_1. B[ so that
X =X1U---UX,. Define a skew-symmetri@ x m matrix:

1 ifi <jandw(@i) > 7w (j)
Qij(m)=1 -1 ifi>jandn(@) < n(j)
0 otherwise.

Consider the translation vecter= Q(x)A. Our interval exchange transformati@nis
defined as follows:

Tx)=x+71, forxeX;,1<i<m.

Note that if for somek < m we haver{1,...,k} = {1,...,k}, then our maprl
decomposes into two interval exchange transformations. We consider only the class
&9 of irreducible permutations—those which have no invariant subsets of the form
{1,...,k}, where 1< k < m.

Suppose that we have some induction procedure which assigns to a given interval
exchange transformatiofi corresponding to the paii, 7) some subintervak® c X.
Consider the induced map® = T|ya of T to this subinterval. It is easy to see, that
T@ is again an interval exchange transformation (e Buppose that we managed to
choose the induction procedure so that:

Requirement 1The new interval exchange transformatidf is again an exchange of
the same numben of subintervalsx ”, ..., X0.

For a pointx € X}l) in the ‘new’ subintervalX}l) define B;; to be the number of
intersections of the trajectomy, Tx, T(T (x)), ..., T""1(x) of x with the ‘old’ subinterval

X; before the first returf’(x) € X® to the ‘new’ subintervalx®. We assume that:
Requirement 2For any pair 1< i, j < m the numberB;; is the same for alk Xj(l).

‘Induction procedures’ as specified above really exist, for exarRalazy induction
[7]. Note that any induction procedure leads to a mapping of the space of interval
exchange transformations to itself (s&g [8]): given a pair(i, ) which determines an
interval exchange transformatidh we assign to it a paitA?, 7®), whereA® is the
vector of the lengths of subinterva”, ..., X, andz® is the new permutation.
Define the norm of a vector € R™ to be ||v|]| = |vi] + --- + |vn]. Having an
interval exchange transformatidh(, ), we can renormalize the domain @f(x, i)
to have the unit length. Thus fixing the permutationwe identify the space of all
interval exchange transformatioga, =) with the standardm — 1)-dimensional simplex
A=) e R | Al = 1}. Any induction procedure as described above leads to a
mappingA”~! x &,, - A" ! x &,,, under additional renormalization

2D
A, ) > < ,71(1)) .
A
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In Rauzy induction the induced permutatief® is always irreducible, provided that
the initial permutationr is irreducible,7 € &°. Denote byR(x), = € &2, all
permutations accessible from the given one by iterations of Rauzy induction. The finite
setfi(n) is called theRauzy clasof permutationr. SubsetsA” ! x 9R(xr) are invariant
under the mapZ : A" 1 x &% — A™-1 x &% corresponding to Rauzy induction.
W. Veech proved ing] that for any irreducible permutation the map7 is ergodic with
respect to the absolutely continuous invariant measura’®nt x R(r).

Modifying Rauzy induction in11] we have constructed the induction procedure which
leads to another ma@ : A" x R(wr) — A" 1 xR(x). Closely following the original
proof in [8] we proved ergodicity of this map with respect to absolutely continuous
invariant probability measurew on A"~! x 9R(r) (the invariant measure corresponding
to the map7 is infinite). The relation between mafis and g is similar to the relation
betweenadditive and multiplicative continued fraction algorithms irl].

Let us discuss what we can gain from the generalized Gausgnaur problem.

1.2. Recursive bound for the deviationThe induction procedurg satisfies both of the
conditions formulated above. Consider the matrix (actually, a matrix-valued function) as
described aboveB = B(X, ) corresponding to this induction procedure. We will show
that both matrice® (i, m) and'B(A, =) define measurable cocycles a1 x ) with
respect toy, i.e. [logt |B71| dw and [ log* |'B| dw are both finite. Here and below
we denote byA the matrix transposed to matrix.

Let X® = x¥ u...uX® be the interval and corresponding subintervals under the
exchange obtained aftérsteps of the induction proceduge We assume that the initial
interval exchange transformation is normalized, j.&| = 1, and we do not normalize
the vectora® whose components are represented by the lengths of subintéf}?é,ls
1< j < m. Denote byB® (A, ) the product

BYO(, ) 1= B, ) - BG(A, 7)) - BGG(, 7)) - BG P, ).
By definition of our induction procedure we have
r=B®O, ) AW, (1.2)

Now consider avery long piece of trajectoryr, T'(x), T (T (x)), ..., T" 1(x) of a point
x € X. We want to get an upper bound for the absolute value of the error term

E (X, x,T,n):=x,(X,x,T,n) — Ain, (1.2)
where
n—1
Xi(X,x, Ton) =Y xx, (T (x)) (1.3)
=0

and xy (x) is the characteristic function of the subsetc X.
Let x(1, be the first visit of our piece of trajectory to the subinter¥@, := X®. Let

n—1
nea = Z Xx (T'(x)) (1.4)
=0
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be the number of visits of our piece of trajectory to the subinteka/.
Consider the interval exchange transformation

T(]_) =T|xw (15)

induced byT on the subintervak®. Note that the successive visits X5 correspond
to a piece of trajectory ), T(1)(x1), - - - » T('l‘)“*l(x(l)) of the induced transformatiofi;,
on X(]_) =X®,
Consider the error term for the number of visits of this induced piece of trajectory of
T to the subintervaK;k) c X® =X

nay—1 (k)
I Aj
Ej (X, x, Ty, n@) = ; xxo Ty () = S5 -
Denote bye; the covector(O,...,0,1,0,...,0) having the only nontrivial entry at

theith place, 1< i < m. Denoteeg = (1,1, ..., 1).

ProPOSITION1. Assume that the interval exchange transformafiois uniquely ergodic.
Then the error term for the number of visits of a finite piece of trajectory to the subinterval
X; C X, 1<i < m, satisfies the following recursive relation:

|E«(X,x, T,n)] < 2- max |[BO0, )¢
1<j<m
+m - IBY () - (e = Aieo)ll - MaX |Ej (X, X, Ty, )
<j<m
We prove this proposition i§2.
1.3. Formulation of results. Let 6, > 6, > --- > 6,, be the collection of Lyapunov
exponents of the cocyclB~*(x, ).

PrRoOPOSITION2. For almost allx € A,,_1 x PR(r) the following limit exists and is equal
to 61():

lim }Iog |B® (1, m)e;|| = 61
k—+o0o k ’ !
forall 1< j <m.

PropPosITION3. For almost allx € A,,_1 x R() the limits below exist and satisfy the
following relation:

o1 to (k)
max lim —log['B™ (A, ) - (e; — Aieo)|| = 02,
1<i<m k—+o00 k
whereeg = (1,1, ..., 1).
General results in10] immediately imply the following.

ProPoOsSITION4. For any Rauzy clasfR, the largest Lyapunov exponeét(R) of the
Gauss map is strictly greater than the next one:

01(R) > 62(R).
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By combining the above propositions with some additional tricks and using the unique
ergodicity of almost all interval exchange transformatiossg], we will prove the main
theorem of this paper.

THEOREM 1. For any irreducible permutatiom of more than two elements and for any
A from a set of full Lebesgue measureAr),_; the following property is valid. Consider
interval exchange transformatidfi(x, =) defined on the unit intervat. For anye > 0
there exists an intege¥ (¢) such that for any: > N(¢) and for anyl <i <m

logxi(x, n) = din| _ 62(R(7)) .
logn TR

where
n—1

Xi(x,n) = xx,(T'(x))
=0

and yx, is the characteristic function of the subsét C X. The numbeV (¢) depends
on ¢ and on the pair(x, ) but does not depend on the point X.
Hence the following limits exist and satisfy the following bound:

lim SuploQ | xi (x, n) — Ain| < 92(9‘{(7T))’
n—+o0 logn 01 (R (1))

where
0 < 2R

—_ <
T 01(R())
For the dense set of poinis € X of the formx; = T/(0), I € Z, the equality is valid:

max Iimsuplog|Xi(xl’ n) — A;n| _ 92(9‘(7‘[)).
1<i<m psioo logn 01(R())

Remark 1.The casem = 2 is exceptional for us since this is the only case when
6,({2,1})) = —n?/(12log2 < 0. But an interval exchange transformation of two
intervals is equivalent to a rotation of a circle. The equality

. lo i(x, — A
lim sup glxi(x,n) n|

=0 fori=12
n—400 |Ogn

is well known in this case.

We prove Proposition 1 in the next section. §& we give some general information
concerning dual cocycles. I§% we discuss some basic properties of the cocyBlel
‘B, and'B|anncy, and prove Proposition 3. 1§56 we show that the columns a@f® are
asymptotically well-distributed and prove Proposition 2. The main theorem is proved
in §6.

2. Recursive bound for the deviation: proof of Proposition 1

In this section we prove Proposition 1. L&t be a unit interval and let € X be a
point on it. LetT : X — X be a uniquely ergodic interval exchange transformation;
let A = (A1,...,A,) andx be the corresponding vectors of lengths of subintervals and
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permutations. Leu, k € N be positive integers and lIef® ¢ X be the subinterval
obtained aftek iterations of the induction corresponding to the ngapDefine

+ N if T'(x) g X®P foralll<l<n
X x, Ton k) = { Ming<;, [ | T!(x) € X® otherwise
0 if T!(x) g X® foralll<l<n

“(X,x,T,n, k) = . .
n (X%, Ton k) { ming; L | 7" (x) € X® otherwise.

(2.2)
We denote
X = T"+(x), n=n—nt+n".

We will extend our piece of trajectory up to the time+ n~ — 1, and then we will

consider three parts of it. The first part7(x), ..., T" ~1(x) is the part before the
first visit to the intervalX®; we let it be empty ifn* = 0. The third part is the
extension parf”(x), ..., 7"t 1 we let it be empty ifn~ = 0. The second part is

7" (x),..., T"" ~1(x); we let it be empty ifn*™ = n. We let E;(X,y,T,0) := 0
for any X, y, T by convention;E;(X, y, T, n) is defined forn > 0 by (1.2). Note that
E;(X,x,T,n) is an additive cocycle, i.e.

EX,x,T,n+)=EX,x,T,n)+EX, T"(x), T,]) 1<i<m.

Hence we can use the following representation:

|E;(X,x,T,n)|
= |EI(X5 X, T’ n+) + Ei(X7 X1 Ta ;l) - Ei(Xa Tn(x)a T’ n_)|
< n*(X,x,T,n,k)+n7(X,x,T,n,k)+|Ei(X,x(1),T,ﬁ)|. (2.2)

Now we will treat the last term of the above expression.
Note that by Requirement 2 on the induction procedure the first returnrtjfﬁe:

n{ (., ) of the trajectoryy, T'(y), T(T()). ... to the subintervak ® is the same for
all y e X, and is equal to
n0.m) =B+ + B = 1BY . 1. (2.3)

where the only nonzero component of the veetois 1 at thejth place. Moreover, the
number of visits of this trajectory to the subintervgl is

xi(X.y. T.n{") = B (. 7). (2.4)
Hence, for anyy e X"
E(X.y.T.n{") = ;(X,y. T.n{") —an{” = BY 0o.m) = % -nP (1, 7). (2.5)

Let us keep track of successive intersections of the piece of a trajectory
x@, T(x@), - .., T"1 with the subintervalX®. We consider only the nontrivial case,
when this intersection is nonempty. Léi, ji,..., where 1< j, < m, enumerate
corresponding subintervalﬁs;k) c X®, so that the first visit to the intervad ® occurs

at the subintervaX};‘), the next atX}f), etc.
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Since E; is an additive cocycle we can rewrit€ (X, x), T, 72) as the sum ofq,
terms (see (1.4) and (1.5) for notation):

E,'(X,)C(l), T.n) = E;(X, X(1), T, n; )+ E; (X, T(l)(X(l)) T, n; )+ (26)

Note that due to (2.5) there are at mast different patterns corresponding to
jo € {1,...,m} in the above sum. The patterns are represented by (2.5). In
our notation (see (1.3)—(1.5)) the number of visits to subinteWﬁ"? is equal to
X (X, xq, Ty, nw). Hence, using (2.5) we can rewrite (2.6) as
Ei(X,xq,T,n) = Z X (X, xqw, Ty, nw) - (Bi(]lf) — )»inj(-k))- (2.7)
1<j<m

Using the notation of (1.2) we rewrite (2.7) as

k)
)»
. k k
E(X.xq.T.i) = Y. (E X, xa, Ty, n@) + ”)\'(k)”n(l)) (B — xinf)
1<j<m
k k
= Z E;(Xq,xq), T, nq) - (B[(j) - )»in; )
1<j<m
@ k)  pk) <k>
+||x(k)|| Z )‘j (Bij ); (2.8)
1<j<m
where 1® is the vector of lengths of subintervals'®, ... x® e |A®| =

A0 am,

m

Recall that bye; we denote the covecto©,...,0,1,0,...,0) having the only
nontrivial entry at theth place, 1< i < m. By ¢g we denoteeg = (1,1, ..., 1).

According to (2.5),

(BY —anl), ..., (BY —2n®)) = BOG, 1) - (e — Mieo) € Ann(.®).  (2.9)

The fact that the covector above belongs to the annihilator(XRn of vector A%
follows from (1.1):

(A0, B (e; — 1e)) (B0, B® . (e — hieo))
= (A, e; —Aieg) = (e;, L) — Xi{eo, A)

= MM+ -+ =i —A-1=0. (2.10)

Hence the second sum in (2.8) vanishes and we finally get
|Ei (X, xqy, T, 1)

k k
> B =) Ej(Xay, xa), Tay, nw)

1<j<m

m - 1BY () - (e = hieo)| - MaX |E; (X, ). T na)l. (211)

IA

Now let us estimate the values of andn—.

LEMMA 2.1. Assuming that the interval exchange transformatioims uniquely ergodic
the following bound is valid:

n*(X,x,T,n. k) < max n{’ (1, 7) = max ||B<k>(x ) - ejll.

<]<m J
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Proof. Note that according to results ir2][unique ergodicity of7 implies minimality

of T and T~. Hence any point € X belongs to a piece of trajectory of some point
% € X® pefore the first return t&®. Hencen® is less than or equal to the maximal
first return time to the intervak®. But the possible values of the first return time are

9, wherej =1,....m. O

Combining (2.2) with (2.11) and with Lemma 2.1 we complete the proof of
Proposition 1.

n

3. Dual cocycle
A pair (g, A) consisting of a magg : Y — Y preserving a probability measure on
the spaceY, and of a measurable cocycl(y), y € Y, with the values in the group
GL(m) defines a fiberwise linear mappiny) : R} — RY, on the total space of the
trivialized vector bundle over the bagewith the fiberR™. This mapping is a fiberwise
isomorphism. Hence it induces the dual fiberwise-linear mapping in the total space of
the adjoint trivialized vector bundle with the fibéR™)*. This mapping corresponds
to the cocycle!d—1, which we will call thedual cocycle By ‘A we denote the matrix
transposed to matrid.

We recall that

0 whenx > 1

log™(x) = { log(x) whenO<x <1

logt(x) = {'09(X) whenx > 1

0 when O< x < 1.
We will need several elementary facts concerning dual cocycles.

LEMMA 3.1. Consider a measurable cocyctewith the values inG L(m). If the function
log™ | det(A)] is integrable, then the dual cocycle is measurable.

Proof. First note that for square x m matricesA, the norms

I AllL=m - max |Aj] and ||All2 = (maximal eigenvalue ofAA)Y?
<i.j<m

are equivalent. From now on we will use the first norm. Now

logt'A7Y] = log® _max 'A;*| + logm
=i, j=m
m—1
< log" <|(detA)1| <(m—1!- <1<r??<xm |Aij|> > + logm
< —log™ | detA| + log(m!) + (m — 1) log™ (lmax |A,-j|)
<i,j<m
< —log™ | detA| + log(m!) + (m — 1) log™ | A]|. O

COROLLARY 3.1. A cocycle dual to a measurable cocycle with the value$fiim) is
always measurable.
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In this section it would be convenient for us to enumerate Lyapunov exponents in
ascending order.

LEMMA 3.2. Suppose that a cocyclé and its dual cocycléd—! are both measurable.
Letf91(A) < 6,(A) < --- < 6, (A) be Lyapunov exponents of the cocydle Then the
Lyapunov exponents of the dual cocycle are as follows:

01(A™ = —6,(A)
(A = —0,-1(A)
0,(A7Y = —61(A).

Note that we do not require ergodicity of the corresponding space, so the Lyapunov
exponents may depend on the point in the nonergodic case.

Proof.
1
0;(A) = lim = log(ith eigenvalue of'A®) . A®)
k—+o00 2k
1
6;(A™Y = lim = log(ith eigenvalue of A®)~1. (a®)-1)
k—+o00 2k

1
= lim = log(((m — i + 1)th eigenvalue ofA® . A®)~1)
k— 400 2k

1
= — lim = log((m — i + 1)th eigenvalue of'A®) . A®)
k—+o00 2k
= —Ou_i+1(A).

When speaking about theth eigenvalue’ of a symmetric matrix, we assume the
eigenvalues are enumerated in the same (ascending or descending) order. [

3.1. Lyapunov exponents for the annihilator of a subspadéonsideramag : Y — Y
preserving a probability measure on the sp&ceand consider a measurable cocycle
A(y), y € Y, with the values in the grou¥ L (m). Suppose that the dual cocycle is also
measurable, and that a pointis a regular point for the cocycld in the sense of the
multiplicative ergodic theorem. L&k C R, be some linear subspace. We will improve
Lemma 3.2 by establishing the relation between subcollections of Lyapunov exponents
of the cocyclesA and'4—* corresponding to the subspadksand Ann(K) respectively.
First we consider a special case.

Let

9(1)(14) < 9(2)(14) < e < 9(,1) (A)

be the Lyapunov exponents of the cocycleat the pointy now repeated without
multiplicities.
For any vector € R{}) and any covectoh € (R{}))* denote

1 1
0(v) = kllm P log[|A®v|, 6*(h) = Jlim p log || (A®)~1h).
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The assumption that is a regular point means that for any nonzerand# the limits
above exist; moreover, the valéév) equals one of thé;,, where 1< i < g. Lemma 3.2
implies that for any covectdr the valued*(h) equals one of the-6;,, where 1< i < g.
Let
F=0=FCFC--CF,=R"

be the flag of linear subspaceslif, furnished by the cocycld. HereF; = {v € R" |
O(v) <6y}, for 1 <i < gq. We will need the following notation:

d(F) = (dy(F),...,ds(F)), whered;(F) :=dimF;, —dimF,_;, forl<i <gq.
(3.1)
Obviously,d; (F) is exactly the multiplicity of the Lyapunov exponefif,. Let

H=0=HyCH C---C H,=®R")")

be the flag corresponding to the dual cocycle. Lemma 3.2 guarantees that it really has
the same number of components. Moreover, we have the following lemma.

LEmmMA 3.3. Flags F and'H are dual to each other:
H,; =Ann(F;) forO0<i<gq.

Proof. Let v € F; andh € (R™)* have non-vanishing pairingp, 4) # 0. This implies
that
(A®v, (A®Y1py = (v, h) #£ 0. (3.2)

Sincev € F; we haved(v) < 6. By (3.2) we see that*(h) > —6;,. Hence if for
some covectohy we haved*(hg) < —6 ), thenhg € Ann(F;). Note that Lemma 3.2
implies that for anyho € H,_; we haved*(ho) < —6;. HenceH,_; € Ann(F;). On
the other hand, Lemma 3.2 implies thd}_; has complimentary dimension #, and
henceH,_; = Ann(F;). O

Now consider a linear subspade C Rf},. Denote by
K=0=KoCKi1C---CK;=K)

the induced flag irK obtained as; := K () F;. The vectold (K) = (d1(K), ..., d,(K))
(see (3.1)) provides us with induced multiplicities of the Lyapunov expogpts: - - - <
6 on K. Consider the dual flag in AQiK):

(0 = (Ann(F,) N Ann(K)) € (Ann(F,_1) NANN(K)) < ...
-+ C (Ann(Fp) NANN(K)) = Ann(K)).

Combining Lemma 3.2 with Lemma 3.3, and with elementary considerations from linear
algebra we get the following.

LEMMA 3.4. A subcollection of the Lyapunov exponents corresponding to the subspace
Ann(K) € (R™)(, is obtained by taking Lyapunov exponent§;, with multiplicities
di(F)—d;(K),1<i < q. Inother words, the multiplicity of the Lyapunov expone#ft;

on the annihilatorAnn(K) is complementary to the multipliciy; (K) of the Lyapunov
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exponent®;, on K with respect to the total multiplicity; (F) of §;, on the whole space

m
R(y)'

The subspace of all covectokise Ann(K) such thato*(h) < —6;, coincides with
Ann(F;) (N ANN(K).

4. Lyapunov exponents &1, 'B and'B|anng,
In [11] we proved the following lemma (by analogy with the proof of a similar statement
in [8]).

LEMMA 4.1. The non-negative function
log (lmax B,»,-(A,n))
<i,j<m

on A"~ x R is integrable with respect tp.

Taking into consideration that dB(A, 7) = 1, we can use Corollary 3.1 to obtain
the following lemma.
LEMMA 4.2. CocyclesB—1(A, ) and'B(x, ) are measurable with respect to the measure
.

Let 9 > 6, > --- > 6, be a collection of Lyapunov exponents of the cocycle

B~Y(x, w). Recall the following theorem fromil].

THEOREM 2. The middlen — 2g Lyapunov exponents of the cocyde!(r, 7) are equal
to zero:
9g+l = 9g+2 == em—g =0

The remaining?g Lyapunov exponents are distributed into pairs:
Or = —Opm—r+1 fork:l,...,g.

Hereg = g(R) < m/2 is an integer which is defined by the Rauzy clg&s) of the
permutationz. (Actually, g is the genus of corresponding surface, 86 [Combining
the above theorem with Lemma 3.2 we get the following.

COROLLARY 4.1. Lyapunov exponents of the cocycks!(x, =) and B (A, =) coincide.

We will also need the following lemma, which follows immediately from a
combination of general results id(, §6] with Lemma 5.2.

LEMMA 4.3. The multiplicity of the largest Lyapunov exponéntB—1) is equal to one;
01(B™) > 02(B7Y.

We recall that the cocycl8 (i, 7) has a nice invariant one-dimensional subbundle
corresponding to the smallest eigenvalu@,. The fiber of this subbundle over a point
(A, ) is just (\)R, i.e. it is spanned by the vectar

Consider the vector subbundle Ann c (R™)*. Since the one-dimensional subbundle
(Mg is invariant under the action afg, B—1), we see that the annihilator A@r) is
invariant under the action ofG, 'B). Consider the restrictiofB|annu, Of the cocycle
'B(x, ) to this subbundle. Lemma 3.4 implies the following statement.

Downloaded from https://www.cambridge.org/core. 12 Jan 2022 at 16:23:04, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

1488 A. Zorich

PROPOSITIONS. The restriction'B(A, )|annc., Of the cocycléB(x, ) to the annihilator
Ann(1) has the following Lyapunov exponents:

02(B) = 03(B™) = -+ = —02(B™Y) = —01(B™Y).

(The collection is obtained from the collection of Lyapunov exponent of the cocycle
B~1(x, ) by omitting the largest Lyapunov exponéntB1).)

Now we can easily prove Proposition 3. Consider the coveetorsi;ep, 1 <i < m,
whereeg = e1 + --- + ¢,,. We have seen (see (2.10)) that— A;eqg € Ann(r) for all
1<i <m. Hence for all 1<i < m we get

. 1 tr (k)
lim —log ['B™ (A, 7) - (e; — Aieo)ll = b,
k—+oo k

whereg > 2 may depend o and on the poin{x, 7). We recall that the Oseledetc
theorem §] guarantees the existence of the above limits for almoghalt) € A"t xR.
Note that since the whole collection of covectors generateg’Arthere is at least one
(actually at least two) indices, a priori depending on the poinf\, =), for which
qg =q(i, A, ) =2. (Presumably; = 2 for all indicesi for almost all points(i, ).)
Proposition 3 is proved. O

5. Why the columns aB® are asymptotically well-distributed
In this section we prove Proposition 2. The title of this section is motivated by the
paper B] where a somewhat similar question is solved for the Rauzy induction.
Fix the Rauzy clas®t = () of an irreducible permutation < (‘59”. From now on
we will denote the Lyapunov exponerig B—1) of the cocycleB~1 on A% x R by
0; (R), or sometimes just by,.

LEMMA 5.1. For almost all(A, 7) € A" 1 x R

o1 ®
lim -log 1m'ax 1B (X, ) - ejll | =6.(R).
<j<m

k—+400 k
Proof.
lim }Iog max |BO, ) -e;]])] = lim }Iog max [BX, )|
k—+00 k 1<j<m ’ J k=00 k 1<ijj<m Y 7
. 1
= lim Zlog|'B® (., m)ll = 61(R),
k—+4o00 k
where the last equality is due to Corollary 4.1 O

COROLLARY 5.1. For almost all(x, 7) € A" x R

1
lim sup log|BX(h, ) - ¢jll < 61(R) forl<j<m.

k—+00

Consider the subset
Vii={0.m) e A" P xR BY () >0forall 1<i,j <m). (5.1)

Using finiteness of the measurewe get the trivial proof of the following well known
fact.
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LEMMA 5.2. For almost all points(x, ) the matrix B® (x, =) becomes strictly positive
after a sufficiently large numbérof iterations ofG:

[—+o00

Proof. One can easily choose a Sétof positive measure such that for some constgnt
and for any(x, ) € V the matrixB% (i, r) is strictly positive. Let

W, i=VUGg X Vyu...ug ).

The ergodicity ofG implies
l“T w(W) =1

By the definition ofV we have the inclusio, € Vit O

PROPOSITIONG. For any$ > 0 and for almost all(x, 7) € A" 1 x R

o1
I]!mlnf p log|BX (A, ) - ¢jll > 61(R) — s forall 1 < j <m.

— 400

Proof. Choose positive < 1. Choosd = I(¢) such thatu(V;) > 1—¢/2, where the set
V, is defined by (5.1). Consider the set

. 1
Z=17Z%e) = {(k,ﬂ)lkﬂTmEmglg}% ||B<k>ej||=91(m>}

) 1 n—=1
N {(x, )| lim ~ ; X (@GP0, ) = u(vo}. (5.2)

By Lemma 5.1 the first set in the definition above is the set of full measure; due to
the ergodicity ofG the second set is also the set of full measure. Herng® = 1. We
will prove that for any point of the set(¢), wheree = §/2(1 + 0;), the requirements
of Proposition 6 are valid.

Fix (A, ) € Z. By the construction o there existaV; = N1(A, 7, €) such that for
anyn > N the inequality

1 n—1 £
= @GP0y = u(V) -5 21—
n = 2

is valid. Hence for anyt > N1+ one can find(n) satisfying(n—1)(1—¢) < k(n) < n—I
such thatG*™ (., ) € V.

By the construction of the sef one can findN, = N,(A, 7, &) such that for any
k > N, the following inequality is valid:

1
p log max IBO (A, m)ej| — 01] <e. (5.3)
<j<m
Hence choosingvVs = I + max(N»/(1— ¢), N1) one guarantees for > N3 the existence

of k(n) satisfying(n — [)(1 — &) < k(n) < n — 1 such thatG*™ (x, =) € V;, and such
that for k(n) inequality (5.3) is valid.
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Note that
B(")()L’ ) = B(k(n))()\., ) - B(fl—k(fl))(g(k(”))()L7 7)).

By the construction ok(n) we haveG*™) (A, ) € V; andn — k(n) > I. Hence the
matrix B"—km)(G*m) () 1)) is a strictly positive integer matrix. Hence

min log || B (1, 7) - ¢;ll = maxlogl|B*™ (., )|
1<j=m

1<j<m

> (1—e)k(n) = (O1—e)(n —DH(A —e).

Hence forn > N3 we get

1 . 1 611
min = log||B™ (A, 7) -ejll > (01— e)(n — (L —¢) > 01 — & — bre — —.
l<j=m n n n

Choosinge = §/2(1 + 61), and Ny = N4(A, , §) = max(Ns, 26,1/8) we conclude that
for the pair(1, ) the desired inequality is valid for all > Nj,. O

Consider the set

1

+oo
Z=()Z(, whereg, =——
D (en) = 201+ 0y

=1

(see (5.2) for the definition of(¢)). Thenu(Z) = 1. Consider the intersection af
with the set of full measure from Corollary 5.1. For any point of this resulting set of
full measure we have

1
lim Zlog||B® .¢;|| =6
Jim - log l ejll =61

for any 1< j < m. Proposition 2 is proved. O

6. Bound for deviation
6.1. Lower bound. Letx = 0 be the left endpoint of the unit interval.

ProPOSITION7. For almost all interval exchange transformatioddi, ), (A, ) €
A x %R, the following relation is valid:

. log|x; (0, n) — A;n o
max lim sup 91x:(0.n) = Ain] > 2.
1<i<sm p— 400 Iogn 61

We will need several lemmas. Denote tbye R™" the vector(1,0, ..., 0).

LEMMA 6.1. For almost all (Ao, 10) € A x PR one can find a collection of integers
0=104 < --- < I, such that the vectors;, B% (rg, o) - v1, ..., B (Ao, 70) - v1
are linearly independent.

Proof. Assume anyn distinct elements from the sequence
vi, B(ho, 70) - v1, B? (o, 70) - v1, . ..«

are linearly dependent. It means that for dny 0 all vectorsvy, Bvy, ..., BOv; belong
to some fixed linear subspagec R™ of nontrivial codimension. Let it be spanned by
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the firstkg vectors of our sequence. Note that all these vectors have integer components,
and hence the subspaceis integer.

We may assume that all components of the vetgare rationally independent (which
is a generic situation). Hence it cannot belong to the integer linear subgpade
nontrivial codimension, which means that the distance from the pgitd the subspace
L is positive.

Note that the map — B®v/|B®v| maps a standard simplex to a small simplex
containing the poinkg. For uniquely ergodic interval exchange transformations o),
the size of this small simplex tends to zerokagrows; see§] or [3]. Hence the distance
betweenB® vy /|| B®v,|| andro becomes arbitrarily small, and henBé) v, is outside
of the subspacé for sufficiently large values of. This means that our assumption that
L has nontrivial codimension leads to a contradiction. O

We will also need the following trivial lemma.
LEMMA 6.2. Consider a basis of vectorsy, ..., w,, in R”. There is a positive constant
¢ > 0 (depending on the basis) such that for any linear functios R™* the following
bound is valid:
max |(f, w)| = c|l f1.

1<i<m

Now we can prove the following.

LEMMA 6.3. For almost all(A, ) € A x R the following relation is valid:

H 1 tp (k)
max lim sup- log [(B™ (A, ) - (e; — Ajeq), v1)| = Oa.

l<ism j— 400

We recall that a covectoe; has zero components except for thtd one which
is equal to 1. We define a covecteg aseg = (1,1,...,1), and a vectorv; as
v1=(1,0,0,...,0).

Proof. Proposition 3 immediately implies that

1
max lim sup- log [{(B® (x, ) - (e; — Aje), v1)| < 6. (6.1)

1<ism k400

According to Proposition 3 for almost allx, 7) and for at least one index
(presumably for all indices) the equality is valid:

1
lim Zlog|'B® (, 7) - (e; — Aieo)l| = 62. (6.2)
k— 400 k

Fix this indexi. Note that

(B*D(x, ) - (e; — rieo), v1)
= (BOGPM, 7)) - BPOO, ) (e; — rieo), v1)
<tB(k)()L7 7) - (e — Aieg), B(I)(g(k)()h T)) - v1). (6.3)

Consider any pointig, o) for which Lemma 6.1 is valid. By construction, the
vectorswy = vy, wy = B@ (g, mo) - ve,..., wy = B (Ao, mo) - v1 are linearly

Downloaded from https://www.cambridge.org/core. 12 Jan 2022 at 16:23:04, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

1492 A. Zorich

independent. Let be the positive constant from Lemma 6.2. 14§ x 7o be a simplex
containing the pointig, o), and sharing the same matricB&” (\', g) = B") (Ao, 7o)
forall (A, mg) € Agxmgand forallr =2, ..., m. Sinceu(Ag x mg) > 0, and since the
mapg is ergodic, a trajectory of almost any poifit, 7) under the action of the map
will visit our subsimplex infinitely many times. Lét obeyG® (A, 7) € Ag x 7. The
relation (6.3) means that for any 1 < j < m, we have

(B (1, 7) - (ei — Aieo), v1) = (BO(, ) - (ei — hieo), wy)
and, hence, according to Lemma 6.2 we get

max [(B* ) (n, 1) - (e; — Aieo), vi)| = ¢ - IBP (1, w)(e; — Aieo) .

1<r<m

Since alll,, 1 < r < m, andc are fixed, whilek gets arbitrary large, the latter relation
in combination with (6.1) and (6.2) completes the proof of the lemma. O

Now everything is prepared to prove Proposition 7. We will use very specific ‘times’
n=n{(, ), see (2.3), to prove the proposition. According to (2.5) and (2.9)

X%i(X, 0,7, n{") = 24n{? = (BY (4, 7) - (e — Aieo), v1).
Recall that according to (2.3) we hax€’ (1, 7) = |B® (x, 7)es|. We get

log|x:(X,0,T,n) — An|

max lim sup
1<ism p400 |Ogn
. log|x: (X, 0, T, n®) — x;n®
>  maxlimsup 9lxi L )~ hiny
1<i<m s poo logn}”
—  max IimsuploQHtB(k)()” ) - (e; — Ajeg), v1)|
1sism oo log||BO (X, ) - vy

. 1 tn (k)
= maxlim sup; log|(B*™ (X, ) - (e; — Aiep), v1)]

l<ism g0
1 -1
. ( lim Zlog||B®, ) - v1||> ==,
k—+oo k
In the last two equalities above we used Proposition 2 and Lemma 6.3. Proposition 7 is
proved. O

Note that any poink of the form7”(0), n € Z, would have the same property.

6.2. Choice of proper recurrence timesFrom now on we will always assume that
m > 3. This implies that, > 0, which immediately follows from Theorem 2.

For proper recurrence times we will choose something like arithmetic progression
with an additional property determined by the following proposition.

ProPOSITION8. For almost all(A, 7) € A x R and for anye > 0,8 > 0O, r € N, there
existsN = N((r,n), ¢, 8, r) such that for any» > N one can choose the sequence of
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integersO = ng < n1 < --- < n, = n with the following property. For ang </ <r,

max Iog ”B(”l*nI—l) ()\’(”I—l)’ ]T(nl—l)) -ej | —01(R)| <e
l§j§m n—nj_1
1 )\("I—l)
max ——— log || B -0 (A=) -0y f o - T eo || < 62(R) +-.
1<ism n; —nj_1 ||)L(n/71)||

Moreover, forany0 <[ <r
nj l

n r

<.

Proof. First let us construct a set of full measure for which we then prove the proposition.
For anye > 0 andN € N consider the set

1 tp (k)
max £ 10g B G, x) - (e = kieo)ll < b+ fork = N
On(e) =1 0.m)|
1 (k)
L 1ogl1BYG. ) - ¢l =61

max <e¢ fork >N
1<i<m

By definition
On(e) € On41(8)

and for anye; < &
On(e1) € On(e2).

By Propositions 2 and 3 for any> 0
w(On()) - 1 asN — +oo.
In particular, for anye > 0 one can findK (¢) such that for anyv > K (¢) the measure

w(On(¢€)) is positive. Since the sets

+00
Oxo(e) = ] On(e)
N=1

have full measure, the intersection

has full measure as well:
w(0) = 1.

For anye > 0 andN > K (¢) define the set

Un(e) = {(A,n)

1 n—1
o1 0 _
HE)TOO " 1;:0 Xoy@e (G7 (A, 7)) = H(ON(E))}'

For anye > 0 andN > K (¢) we have

n(Un(e) = 1.
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Hence the set

is the set of full measure
nwWU) =1

From now on we consider only those pai#s =) which belong toO N U, and which
correspond to uniquely ergodic interval exchange transformations. We also assume that
for any k > 0 no components ok®* are equal to zero. Note that we have confined
ourselves to the set of full measureAd'—1 x R We will prove Proposition 8 assuming
(A, ) is from the set thus defined.

Fix (&, ) from our set of full measure. Choose arbitrary numbees O < 6;, 0 < §,
andr € N. Reducings if necessary, we can get

1

Let g = [1/¢] + 1. We will always denote the integer part of a number by square
brackets. Sincér, 7) € O and hencel, ) € Oy (1/q) there is som&V = N(q, 1, )
such that(x, 7) € Oyx(1/q). Since ¥gq < 1/¢, we getOn(1/q) € On(e). EnlargeN
if necessary to ensure
u(On(1/q)) = 1-6. (6.5)
By our choice of N we also haveV > K(1/q). Since(\, ) € U we conclude that
(A, ) € Uy(1/g). Hence, by the definition dffy (1/¢) and by (6.5) we can findf € N
such that for anys > M
1 n—1 1 1
n

= xovw@P 0T = 2 xoa @0 (1)
=0 k=0
> u(On(1/q) —8=1-25. (6.6)

Enlarging M if necessary, we may assumgM < §.
Now we need the following technical lemma.

LEMMA 6.4. Consider a piece of trajectoryx, 7), G(A, ), ..., GV, ), where
n > M. There exist number® = ng < ny < np < --- < n,_1 < n, = n such
that

ny l

<8 and G™, 7)€ Oy(e), 1=0,...,r —1.

n r

Proof. The auxiliary numbeny = 0 obviously satisfies the desired requirements since by
construction(x, w) € Oy (e). Take 1< < n — 1. Take the pointl//r)n on the real line

R and consider an interval of lengtld2centered afl/r)n. We claim that our interval of
length 3n is strictly inside the interval [0z —1]. Indeed, by (6.4) we have/r —én > 0
and(n—n/r)+én <n—23an. Sincen > M > 1/5 we get(n —n/r)+én <n—1. Now,

by construction (see (6.6)) we haYe_s xo, (G (», 7)) > (1— 28)n. Hence we are
able to find at least one integer pointinside our interval such th&® (», ) € Oy (¢).

The inequalitiesy; < n;; for 0 <1 <r — 1 now follow from (6.4). (]
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To complete the proof of Proposition 8 let
L :=max([N/s], M) + 1,

where N and M are defined above. For any > L choose the collectiom; as in
Lemma 6.4. Note that

N
nl—nl_lzﬁ—28n248n—25n26L>8§=N, (6.7)
r

where 1< [ < r. Hence by the definition of the s&y (¢) our collectionng < n1 <
- < n, satisfies all the requirements of the proposition. To complete the proof we just
adjust the notation lettingV ((A, 7), €, 8,r) := L. O

6.3. Proof of Theorem 1. Consider the interval exchange transformatibm., ),
where (A, ) satisfies the conditions of Proposition 8. Consider arbitrary © < 6;,
0 <8 < 1/2, andr € N. Take correspondiny = N((A, ), &, 8, r) as in Proposition 8.
EnlargeN if necessary to make it obey the following technical conditioNs> 2, and

-1
(1 - exp(—(el —e)(1— 25)?))

< exp((&l +e)(1+ 28)7) — exp<(91 -1+ 28)?’) . (6.8)

Choose a piece of trajectony, T'(x), T(T (x)), ..., T""1(x) with
t > [exp((6L —e)N)] + 1.

To avoid confusion, from now on we will denote ‘time’ related to interval exchange
transformations by, possibly with subscripts. We will reserken, andN for the ‘time’
related to the Gauss map. Let

n :=[ log! ]+1. 6.9)

91—8

Sincen > N we can choose a collection®ng <ny <np < --- <n,_y <n,=n
satisfying the conditions of Proposition 8. Now everything is prepared foribtep
recursion (see Proposition 1). Let

kii=n,—n;_1 forli=1,...,r
Note that by the choice of; (see Proposition 8) for all ¥ / < r we have
2(1—25) <k < §(1+25) = k. (6.10)
Define
Ao, o) =, 1) X=X xo ' =x To:=T tg:=t

Assuming that the pointiy, 7)) and the aggregat& ), xq, Ty, tq) are defined for
0<!<r—1, define

(Aar)s Ta4n) = G ((hay, T@))-
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Define

"
X = X,

i.e. we defineX 41, as the (hon-normalized) interval obtained from the intei¥g) by
k; steps of the induction procedure corresponding;tderations of the mayy starting
from the point(x), 7). Obviously X 11y C X). Next define

.
X =T" (xq)) wheren™ = n™(Xq), xa), Tuy, tay» k141)

(see (2.1) for notation). Hereg;,1 is the point of the first visit of the trajectory,,
T([)(X(l)), T(%(X(l)), ... to the SubintervalX(IH). Further, define

Tyvr = Tylx,

to be the induced interval exchange transformation on the subint&ral. Finally,

define
[m—l

lavy = Z Xxasn Ty (X)),
—

i.e. tg+1) is the number of visits of the trajectory, Ty (xa)), - - -, T(’;f_l(x(,)) to the
subintervalX ;).
By the choice ofs; provided by Proposition 8 for all & [ < r — 1, we have

exp((61 — &)kit1) < 1BXY (hay, 7)) - €| < expl(Br + &)kir1), 1< j<m

)\‘ .
B(k[“)()\(]), 77(1)) . (ei _ ( (/))L
Al

Hence, according to Proposition 1 we get

max

1<i<m

6‘0) H < exp((@2 + )k;+1). (611)

|Ei (Xqy, x@y, Tay, nay)l
< 2-exp((61+ &)kiy1)
+m - exp((02 + &)kiv1) - 1Ei (X1, Xa+1)> Tasn, na+)l- (6.12)

Inequalities (6.11) imply

40
t < 1+ — - -
Gy = MiN,cx,,, first return time toX 1,
L)
= 14 —
MiNi< ;< | B&+D Ay, gy - €|
t
< 1+—0 (6.13)
exp((f1 — &)ki11)

To complete the preparations consider the last term in our recursion. Use the obvious
bound for it and then use (6.13) recursively:

max |E; (X -1, X¢—1), Ter—1), tr—1)]

1<i<m
= Ip-y
to—
< 1+ =2 <.
exq(el - S)kr—l)
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< 1+exp(—(1—e)k—1) +exp(—(61 —&)(k—1 + kr—2)) + -~

J— J— ... t(O)
+exp(—(O1 —&)ky_1+ -+ k2)) + exp((Or — &) (ky 1+ -+ k1))

(6.14)

Definition (6.9) implies that
logt =logt©) < (01— &)n = (01 — &)k, + - - + k1).
Hence, taking into consideration (6.10) and (6.8) we can continue (6.14) as follows:

max | Ei (X -1, X¢-1s To-1 fe-1)]
<m

1<i

-1
< (1 - exp(—(e1 —el— 23)ﬁ)) + exp((61 — £)k,)
r
< exp((br + &)k). (6.15)
Collecting inequalities (6.12) recurrently fdr = 0,1,...,r — 2, and completing

with (6.15) we obtain

max |E;(X,x, T,1)| = 2exp(fy+ e)ka)

1<i<m

+m exp((02 + &)k1) (2 exp((61 + &)kz)

+m exp((02 + &)k2) (2 exp((01 + &)ks)

+m eXP((02 + &)k, 2) (2 €XR(6 + £)ky1)

m exp((Oz + )k, _1) exp((61 + 8)k)> N )) .

Multiply the last term by two. Replace al} by k; see (6.10). We have increased the
value of the expression on the right-hand side of the inequality above. Note that we got
nothing but a partial sum of the geometric progression:

max |E; (X, x, T, t)|

1<i<m

IA

2 exp((61 + e)k) - (1 + exp((82 + )k + logm)

+ exp2((62 + &)k + logm)) + - - - + exp((r — 1)((2 + )k + logm)))

exp(r((02 + &)k + logm)) — 1
exp((02 + o)k + logm) — 1

2 exp((61 + e)k)
Taking into consideration (6.10) and inequality> 3, we obtain

max |E;(X,x, T,t)| < 2exp((91+g);(l+28))-exp(n(92+g)(1+28)+r logm). (6.16)

1<i<m
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By definition (6.9) ofn we have

logt > (n — 1)(61 — ¢). (6.17)
Combining inequalities (6.16) and (6.17) we obtain
logmax<i<pm |Ei(X,x, T, 1)

logt
- log2+ (61 + &) (1 + 28) + n(62 + £)(1 + 28) + rlogm
. (n— D1~ o)

2\ 02+ (02 + 250, + L+ 28) + 101 + &) (1 +25) + Lrlogm)
o)

N 91—8

Now note that we can choose §, and ¥ r arbitrary small. There is a ‘dangerous’
termr logm/N with r in the numerator, but we can make it arbitrary small by enlarging
N (andr respectively), which would not affed, ¢, or ». Hence for anyy > 0 we
can choose appropriate(y), 8(y), r(y), and N((x, ), v, 8, ¢,r) such that for any
t > exp(9:N) we will have

logmax<j<u |Ei(X,x,T,1)] - 6o
logt? ~ 6,

Note that the choice of(y), 8(y), r(y), and of N((x, ), y, 8, &, r) does not depend
on the starting point € X of the interval; the inequality above is valid for all
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Note added in proof. The formula for deviation presented in this paper may be improved:
the maximum with respect to points € X is unnecessary since the value of the
expression

. log|xi(x, n) — A;
lim sup glxi(x,n) n|
00 logn

is the same for alk € X. | have no doubt that it does not depend on the subinterval

X; C X as well. Although at the moment | do not have a general proof of the latter
statement, | can prove it for particular Rauzy classes. Moreover, for almost all interval
exchange transformations of a unit interva| the similar formula

I —1Y]-
imsup/@9 X m —1¥Lnl 6,

<1
n—>+00 logn 01
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should be valid for almost all subintervalsc X.

The subject of this paper is closely related to the Teighen geodesic flow. In
particular, the number % 6,/6; coincides with the second Lyapunov exponent of the
Teichmilller geodesic flow restricted to the corresponding connected component of the
corresponding stratum in the moduli space of holomorphic differentials on a surface of
genusg. Presumably, the tog Lyapunov exponents of the Teicliiter geodesic flow
have multiplicity one, which implies the formulae for the further terms of approximation
similar to the one presented here. All these improvements will be published in a
forthcoming paper.

To the best of my knowledge there are no methods for exact computation of Lyapunov
exponents except for some trivial cases. However, in collaboration with M. Kontsevich
we have recently discovered a beautiful formula for the sum of the dirsyapunov
exponents of the Teichiaier geodesic flow4]. Besides, it is possible to find approximate
values of6; and6, using computer calculationg,[12].
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