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Abstract. Consider a long piece of a trajectoryx, T (x), T (T (x)), . . . , T n−1(x) of an
interval exchange transformationT . A generic interval exchange transformation is
uniquely ergodic. Hence, the ergodic theorem predicts that the numberχi(x, n) of
visits of our trajectory to theith subinterval would be approximatelyλin. Hereλi is the
length of the corresponding subinterval of our unit intervalX. In this paper we give an
estimate for the deviation of the actual number of visits to theith subintervalXi from
one predicted by the ergodic theorem.

We prove that for almost all interval exchange transformations the following bound
is valid:

max
x∈X

1≤i≤m

lim sup
n→+∞

log |χi(x, n) − λin|
logn

= θ2

θ1
< 1.

Roughly speaking the error term is bounded bynθ2/θ1. The numbers 0≤ θ2 < θ1

depend only on the permutationπ corresponding to the interval exchange transformation
(actually, only on the Rauzy class of the permutation). In the case of interval exchange
of two intervals we obviously haveθ2 = 0. In the case of exchange of three and
more intervals the numbersθ1, θ2 are the two top Lyapunov exponents related to the
corresponding generalized Gauss map on the space of interval exchange transformations.

The limit above ‘converges to the bound’uniformly for all x ∈ X in the following
sense. For anyε > 0 the ratio of logarithms would be less thanθ2(π)/θ1(π) + ε for all
n ≥ N(ε), whereN(ε) does not depend on the starting pointx ∈ X.

1. Introduction
1.1. Interval exchange transformations. General requirements on induction procedure.
Recall the notion of an interval exchange transformation. Consider an intervalX, and
cut it into m subintervals of lengthsλ1, . . . , λm. Now glue the subintervals together in
another order, according to some permutationπ ∈ Sm and preserving the orientation. We
again obtain an intervalX of the same length, and hence we get a mappingT : X → X,
which is called an interval exchange transformation. Our mapping is piecewise linear,
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1478 A. Zorich

and it preserves the orientation and Lebesgue measure. It is singular at the points of cuts,
unless two consecutive intervals separated by a point of cut are mapped to consecutive
intervals in the image.

An interval exchange transformationT is completely determined by a pair(λ, π),
λ ∈ R

m
+, π ∈ Sm. Let β0 = 0, βi = ∑i

j=1 λj , and Xi = [βi−1, βi [ so that
X = X1 t · · · t Xm. Define a skew-symmetricm × m matrix:

�ij (π) =



1 if i < j andπ(i) > π(j)

−1 if i > j andπ(i) < π(j)

0 otherwise.

Consider the translation vectorτ = �(π)λ. Our interval exchange transformationT is
defined as follows:

T (x) = x + τi, for x ∈ Xi , 1 ≤ i ≤ m.

Note that if for somek < m we haveπ{1, . . . , k} = {1, . . . , k}, then our mapT
decomposes into two interval exchange transformations. We consider only the class
S0

m of irreducible permutations—those which have no invariant subsets of the form
{1, . . . , k}, where 1≤ k < m.

Suppose that we have some induction procedure which assigns to a given interval
exchange transformationT corresponding to the pair(λ, π) some subintervalX(1) ⊂ X.
Consider the induced mapT (1) = T |X(1) of T to this subinterval. It is easy to see, that
T (1) is again an interval exchange transformation (see [2]). Suppose that we managed to
choose the induction procedure so that:

Requirement 1.The new interval exchange transformationT (1) is again an exchange of
the same numberm of subintervalsX(1)

1 , . . . , X(1)
m .

For a pointx ∈ X
(1)
j in the ‘new’ subintervalX(1)

j defineBij to be the number of
intersections of the trajectoryx, T x, T (T (x)), . . . , T l−1(x) of x with the ‘old’ subinterval
Xi before the first returnT l(x) ∈ X(1) to the ‘new’ subintervalX(1). We assume that:

Requirement 2.For any pair 1≤ i, j ≤ m the numberBij is the same for allx ∈ X
(1)
j .

‘Induction procedures’ as specified above really exist, for exampleRauzy induction
[7]. Note that any induction procedure leads to a mapping of the space of interval
exchange transformations to itself (see [7], [8]): given a pair(λ, π) which determines an
interval exchange transformationT we assign to it a pair(λ(1), π(1)), whereλ(1) is the
vector of the lengths of subintervalsX(1)

1 , . . . , X(1)
m , and π(1) is the new permutation.

Define the norm of a vectorv ∈ R
m to be ‖v‖ = |v1| + · · · + |vm|. Having an

interval exchange transformationT (λ, π), we can renormalize the domain ofT (λ, π)

to have the unit length. Thus fixing the permutationπ we identify the space of all
interval exchange transformationsT (λ, π) with the standard(m−1)-dimensional simplex
1m−1 = {λ ∈ R

m
+ | ‖λ‖ = 1}. Any induction procedure as described above leads to a

mapping1m−1 × Sm → 1m−1 × Sm, under additional renormalization

(λ, π) 7→
(

λ(1)

‖λ(1)‖ , π(1)

)
.
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In Rauzy induction the induced permutationπ(1) is always irreducible, provided that
the initial permutationπ is irreducible, π ∈ S0

m. Denote byR(π), π ∈ S0
m, all

permutations accessible from the given one by iterations of Rauzy induction. The finite
setR(π) is called theRauzy classof permutationπ . Subsets1m−1 ×R(π) are invariant
under the mapT : 1m−1 × S0

m → 1m−1 × S0
m corresponding to Rauzy induction.

W. Veech proved in [8] that for any irreducible permutationπ the mapT is ergodic with
respect to the absolutely continuous invariant measure on1m−1 × R(π).

Modifying Rauzy induction in [11] we have constructed the induction procedure which
leads to another mapG : 1m−1 ×R(π) → 1m−1 ×R(π). Closely following the original
proof in [8] we proved ergodicity of this map with respect to absolutely continuous
invariantprobability measureµ on 1m−1 × R(π) (the invariant measure corresponding
to the mapT is infinite). The relation between mapsT andG is similar to the relation
betweenadditive andmultiplicative continued fraction algorithms in [1].

Let us discuss what we can gain from the generalized Gauss mapG in our problem.

1.2. Recursive bound for the deviation.The induction procedureG satisfies both of the
conditions formulated above. Consider the matrix (actually, a matrix-valued function) as
described above:B = B(λ, π) corresponding to this induction procedure. We will show
that both matricesB−1(λ, π) andtB(λ, π) define measurable cocycles on1m−1×R with
respect toµ, i.e.

∫
log+ ‖B−1‖ dµ and

∫
log+ ‖tB‖ dµ are both finite. Here and below

we denote bytA the matrix transposed to matrixA.
Let X(k) = X

(k)

1 t · · · t X(k)
m be the interval and corresponding subintervals under the

exchange obtained afterk steps of the induction procedureG. We assume that the initial
interval exchange transformation is normalized, i.e.‖λ‖ = 1, and we do not normalize
the vectorλ(k) whose components are represented by the lengths of subintervalsX

(k)
j ,

1 ≤ j ≤ m. Denote byB(k)(λ, π) the product

B(k)(λ, π) := B(λ, π) · B(G(λ, π)) · B(G(G(λ, π))) · · ·B(G(k−1)(λ, π)).

By definition of our induction procedure we have

λ = B(k)(λ, π) · λ(k). (1.1)

Now consider avery long piece of trajectoryx, T (x), T (T (x)), . . . , T n−1(x) of a point
x ∈ X. We want to get an upper bound for the absolute value of the error term

Ei(X, x, T , n) := χi(X, x, T , n) − λin, (1.2)

where

χi(X, x, T , n) :=
n−1∑
l=0

χXi
(T l(x)) (1.3)

andχY (x) is the characteristic function of the subsetY ⊂ X.
Let x(1) be the first visit of our piece of trajectory to the subintervalX(1) := X(k). Let

n(1) :=
n−1∑
l=0

χX(1)
(T l(x)) (1.4)
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1480 A. Zorich

be the number of visits of our piece of trajectory to the subintervalX(1).
Consider the interval exchange transformation

T(1) := T |X(k) (1.5)

induced byT on the subintervalX(k). Note that the successive visits toX(k) correspond
to a piece of trajectoryx(1), T(1)(x(1)), . . . , T

n(1)−1
(1) (x(1)) of the induced transformationT(1)

on X(1) = X(k).
Consider the error term for the number of visits of this induced piece of trajectory of

T(1) to the subintervalX(k)
j ⊂ X(k) = X(1):

Ej(X(1), x(1), T(1), n(1)) =
n(1)−1∑
l=0

χ
X

(k)
j

(T l
(1)(x(1))) − λ

(k)
j

λ(k)
n(1).

Denote byei the covector(0, . . . , 0, 1, 0, . . . , 0) having the only nontrivial entry at
the ith place, 1≤ i ≤ m. Denotee0 = (1, 1, . . . , 1).

PROPOSITION1. Assume that the interval exchange transformationT is uniquely ergodic.
Then the error term for the number of visits of a finite piece of trajectory to the subinterval
Xi ⊂ X, 1 ≤ i ≤ m, satisfies the following recursive relation:

|Ei(X, x, T , n)| ≤ 2 · max
1≤j≤m

‖B(k)(λ, π) · ej‖

+m · ‖tB(k)(λ, π) · (ei − λie0)‖ · max
1≤j≤m

|Ej(X(1), x(1), T(1), n(1))|.

We prove this proposition in§2.

1.3. Formulation of results. Let θ1 ≥ θ2 ≥ · · · ≥ θm be the collection of Lyapunov
exponents of the cocycleB−1(λ, π).

PROPOSITION2. For almost allλ ∈ 1m−1 × R(π) the following limit exists and is equal
to θ1(π):

lim
k→+∞

1

k
log‖B(k)(λ, π)ej‖ = θ1

for all 1 ≤ j ≤ m.

PROPOSITION3. For almost allλ ∈ 1m−1 × R(π) the limits below exist and satisfy the
following relation:

max
1≤i≤m

lim
k→+∞

1

k
log‖tB(k)(λ, π) · (ei − λie0)‖ = θ2,

wheree0 = (1, 1, . . . , 1).

General results in [10] immediately imply the following.

PROPOSITION4. For any Rauzy classR, the largest Lyapunov exponentθ1(R) of the
Gauss map is strictly greater than the next one:

θ1(R) > θ2(R).
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By combining the above propositions with some additional tricks and using the unique
ergodicity of almost all interval exchange transformations [5, 8], we will prove the main
theorem of this paper.

THEOREM 1. For any irreducible permutationπ of more than two elements and for any
λ from a set of full Lebesgue measure in1m−1 the following property is valid. Consider
interval exchange transformationT (λ, π) defined on the unit intervalX. For anyε > 0
there exists an integerN(ε) such that for anyn > N(ε) and for any1 ≤ i ≤ m

log |χi(x, n) − λin|
logn

≤ θ2(R(π))

θ1(R(π))
+ ε,

where

χi(x, n) =
n−1∑
l=0

χXi
(T l(x))

and χXi
is the characteristic function of the subsetXi ⊂ X. The numberN(ε) depends

on ε and on the pair(λ, π) but does not depend on the pointx ∈ X.
Hence the following limits exist and satisfy the following bound:

lim sup
n→+∞

log |χi(x, n) − λin|
logn

≤ θ2(R(π))

θ1(R(π))
,

where

0 ≤ θ2(R(π))

θ1(R(π))
< 1.

For the dense set of pointsxl ∈ X of the formxl = T l(0), l ∈ Z, the equality is valid:

max
1≤i≤m

lim sup
n→+∞

log |χi(xl, n) − λin|
logn

= θ2(R(π))

θ1(R(π))
.

Remark 1.The casem = 2 is exceptional for us since this is the only case when
θ2({2, 1}) = −π2/(12 log 2) < 0. But an interval exchange transformation of two
intervals is equivalent to a rotation of a circle. The equality

lim sup
n→+∞

log |χi(x, n) − λin|
logn

= 0 for i = 1, 2

is well known in this case.

We prove Proposition 1 in the next section. In§3 we give some general information
concerning dual cocycles. In§4 we discuss some basic properties of the cocyclesB−1,
tB, and tB|Ann(λ), and prove Proposition 3. In§5 we show that the columns ofB(k) are
asymptotically well-distributed and prove Proposition 2. The main theorem is proved
in §6.

2. Recursive bound for the deviation: proof of Proposition 1
In this section we prove Proposition 1. LetX be a unit interval and letx ∈ X be a
point on it. Let T : X → X be a uniquely ergodic interval exchange transformation;
let λ = (λ1, . . . , λm) andπ be the corresponding vectors of lengths of subintervals and
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permutations. Letn, k ∈ N be positive integers and letX(k) ⊂ X be the subinterval
obtained afterk iterations of the induction corresponding to the mapG. Define

n+(X, x, T , n, k) :=
{

n if T l(x) 6∈ X(k) for all 1 ≤ l < n

min0≤l<n l | T l(x) ∈ X(k) otherwise

n−(X, x, T , n, k) :=
{

0 if T l(x) 6∈ X(k) for all 1 ≤ l ≤ n

min0<l l | T n+l(x) ∈ X(k) otherwise.
(2.1)

We denote
x(1) := T n+

(x), ñ := n − n+ + n−.

We will extend our piece of trajectory up to the timen + n− − 1, and then we will
consider three parts of it. The first partx, T (x), . . . , T n+−1(x) is the part before the
first visit to the intervalX(k); we let it be empty ifn+ = 0. The third part is the
extension partT n(x), . . . , T n+n−−1; we let it be empty ifn− = 0. The second part is
T n+

(x), . . . , T n+n−−1(x); we let it be empty ifn+ = n. We let Ei(X, y, T , 0) := 0
for any X, y, T by convention;Ei(X, y, T , n) is defined forn > 0 by (1.2). Note that
Ei(X, x, T , n) is an additive cocycle, i.e.

Ei(X, x, T , n + l) = Ei(X, x, T , n) + Ei(X, T n(x), T , l) 1 ≤ i ≤ m.

Hence we can use the following representation:

|Ei(X, x, T , n)|
= |Ei(X, x, T , n+) + Ei(X, x(1), T , ñ) − Ei(X, T n(x), T , n−)|
≤ n+(X, x, T , n, k) + n−(X, x, T , n, k) + |Ei(X, x(1), T , ñ)|. (2.2)

Now we will treat the last term of the above expression.
Note that by Requirement 2 on the induction procedure the first return timen

(k)
j =

n
(k)
j (λ, π) of the trajectoryy, T (y), T (T (y)), . . . to the subintervalX(k) is the same for

all y ∈ X
(k)
j , and is equal to

n
(k)
j (λ, π) := B

(k)

1j + · · · + B
(k)
mj = ‖B(k)(λ, π)ej‖, (2.3)

where the only nonzero component of the vectorej is 1 at thej th place. Moreover, the
number of visits of this trajectory to the subintervalXi is

χi(X, y, T , n
(k)
j ) = B

(k)
ij (λ, π). (2.4)

Hence, for anyy ∈ X
(k)
j

Ei(X, y, T , n
(k)
j ) = χi(X, y, T , n

(k)
j ) − λin

(k)
j = B

(k)
ij (λ, π) − λi · n

(k)
j (λ, π). (2.5)

Let us keep track of successive intersections of the piece of a trajectory
x(1), T (x(1)), . . . , T

ñ−1 with the subintervalX(k). We consider only the nontrivial case,
when this intersection is nonempty. Letj0, j1, . . . , where 1 ≤ jq ≤ m, enumerate
corresponding subintervalsX(k)

j ⊂ X(k), so that the first visit to the intervalX(k) occurs

at the subintervalX(k)
j0

, the next atX(k)
j1

, etc.
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SinceEi is an additive cocycle we can rewriteEi(X, x(1), T , ñ) as the sum ofn(1)

terms (see (1.4) and (1.5) for notation):

Ei(X, x(1), T , ñ) = Ei(X, x(1), T , nk
j0
) + Ei(X, T(1)(x(1)), T , nk

j1
) + · · · . (2.6)

Note that due to (2.5) there are at mostm different patterns corresponding to
jq ∈ {1, . . . , m} in the above sum. The patterns are represented by (2.5). In
our notation (see (1.3)–(1.5)) the number of visits to subintervalX

(k)
j is equal to

χj (X(1), x(1), T(1), n(1)). Hence, using (2.5) we can rewrite (2.6) as

Ei(X, x(1), T , ñ) =
∑

1≤j≤m

χj (X(1), x(1), T(1), n(1)) · (B
(k)
ij − λin

(k)
j ). (2.7)

Using the notation of (1.2) we rewrite (2.7) as

Ei(X, x(1), T , ñ) =
∑

1≤j≤m

(
Ej(X(1), x(1), T(1), n(1)) + λ

(k)
j

‖λ(k)‖n(1)

)
· (B

(k)
ij − λin

(k)
j )

=
∑

1≤j≤m

Ej (X(1), x(1), T(1), n(1)) · (B
(k)
ij − λin

(k)
j )

+ n(1)

‖λ(k)‖
∑

1≤j≤m

λ
(k)
j (B

(k)
ij − λin

(k)
j ), (2.8)

where λ(k) is the vector of lengths of subintervalsX(k)

1 , . . . , X(k)
m , i.e. ‖λ(k)‖ =

λ
(k)

1 + · · · + λ(k)
m .

Recall that byei we denote the covector(0, . . . , 0, 1, 0, . . . , 0) having the only
nontrivial entry at theith place, 1≤ i ≤ m. By e0 we denotee0 = (1, 1, . . . , 1).

According to (2.5),

((B
(k)

i1 − λin
(k)

1 ), . . . , (B
(k)
im − λin

(k)
m )) = tB(k)(λ, π) · (ei − λie0) ∈ Ann(λ(k)). (2.9)

The fact that the covector above belongs to the annihilator Ann(λ(k)) of vector λ(k)

follows from (1.1):

〈λ(k), tB(k)(ei − λie0)〉 = 〈(B(k))−1 · λ, tB(k) · (ei − λie0)〉
= 〈λ, ei − λie0〉 = 〈ei, λ〉 − λi〈e0, λ〉
= λi − λi(λ1 + · · · + λm) = λi − λi · 1 = 0. (2.10)

Hence the second sum in (2.8) vanishes and we finally get

|Ei(X, x(1), T , ñ)|
=

∣∣∣∣ ∑
1≤j≤m

(B
(k)
ij − λin

(k)
j ) · Ej(X(1), x(1), T(1), n(1))

∣∣∣∣
≤ m · ‖tB(k)(λ, π) · (ei − λie0)‖ · max

1≤j≤m
|Ej(X(1), x(1), T(1), n(1))|. (2.11)

Now let us estimate the values ofn+ andn−.

LEMMA 2.1. Assuming that the interval exchange transformationT is uniquely ergodic
the following bound is valid:

n±(X, x, T , n, k) ≤ max
1≤j≤m

n
(k)
j (λ, π) = max

1≤j≤m
‖B(k)(λ, π) · ej‖.
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Proof. Note that according to results in [2] unique ergodicity ofT implies minimality
of T and T −1. Hence any pointx ∈ X belongs to a piece of trajectory of some point
x̃ ∈ X(k) before the first return toX(k). Hencen± is less than or equal to the maximal
first return time to the intervalX(k). But the possible values of the first return time are
n

(k)
j , wherej = 1, . . . , m. �

Combining (2.2) with (2.11) and with Lemma 2.1 we complete the proof of
Proposition 1.

3. Dual cocycle
A pair (g, A) consisting of a mapg : Y → Y preserving a probability measure on
the spaceY , and of a measurable cocycleA(y), y ∈ Y , with the values in the group
GL(m) defines a fiberwise linear mappingA(y) : R

m
y → R

m
g(y) on the total space of the

trivialized vector bundle over the baseY with the fiberRm. This mapping is a fiberwise
isomorphism. Hence it induces the dual fiberwise-linear mapping in the total space of
the adjoint trivialized vector bundle with the fiber(Rm)∗. This mapping corresponds
to the cocycletA−1, which we will call thedual cocycle. By tA we denote the matrix
transposed to matrixA.

We recall that

log−(x) :=
{

0 whenx > 1
log(x) when 0< x ≤ 1

log+(x) :=
{

log(x) whenx ≥ 1
0 when 0< x < 1.

We will need several elementary facts concerning dual cocycles.

LEMMA 3.1. Consider a measurable cocycleA with the values inGL(m). If the function
log− | det(A)| is integrable, then the dual cocycle is measurable.

Proof. First note that for squarem × m matricesA, the norms

‖A‖1 = m · max
1≤i,j≤m

|Aij | and ‖A‖2 = (maximal eigenvalue oftAA)1/2

are equivalent. From now on we will use the first norm. Now

log+ ‖tA−1‖ = log+ max
1≤i,j≤m

|tA−1
ij | + logm

≤ log+
(

|(detA)−1| · (m − 1)! ·
(

max
1≤i,j≤m

|Aij |
)m−1)

+ logm

≤ − log− | detA| + log(m!) + (m − 1) log+
(

max
1≤i,j≤m

|Aij |
)

≤ − log− | detA| + log(m!) + (m − 1) log+ ‖A‖. �

COROLLARY 3.1. A cocycle dual to a measurable cocycle with the values inSL(m) is
always measurable.
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In this section it would be convenient for us to enumerate Lyapunov exponents in
ascending order.

LEMMA 3.2. Suppose that a cocycleA and its dual cocycletA−1 are both measurable.
Let θ1(A) ≤ θ2(A) ≤ · · · ≤ θm(A) be Lyapunov exponents of the cocycleA. Then the
Lyapunov exponents of the dual cocycle are as follows:

θ1(
tA−1) = −θm(A)

θ2(
tA−1) = −θm−1(A)

· · · = · · ·
θm(tA−1) = −θ1(A).

Note that we do not require ergodicity of the corresponding space, so the Lyapunov
exponents may depend on the point in the nonergodic case.

Proof.

θi(A) = lim
k→+∞

1

2k
log(ith eigenvalue of(tA(k)) · A(k))

θi(
tA−1) = lim

k→+∞
1

2k
log(ith eigenvalue of(A(k))−1 · (tA(k))−1)

= lim
k→+∞

1

2k
log(((m − i + 1)th eigenvalue oftA(k) · A(k))−1)

= − lim
k→+∞

1

2k
log((m − i + 1)th eigenvalue of(tA(k)) · A(k))

= −θm−i+1(A).

When speaking about the ‘ith eigenvalue’ of a symmetric matrix, we assume the
eigenvalues are enumerated in the same (ascending or descending) order. �

3.1. Lyapunov exponents for the annihilator of a subspace.Consider a mapg : Y → Y

preserving a probability measure on the spaceY , and consider a measurable cocycle
A(y), y ∈ Y , with the values in the groupGL(m). Suppose that the dual cocycle is also
measurable, and that a pointy is a regular point for the cocycleA in the sense of the
multiplicative ergodic theorem. LetK ⊂ R

m
(y) be some linear subspace. We will improve

Lemma 3.2 by establishing the relation between subcollections of Lyapunov exponents
of the cocyclesA andtA−1 corresponding to the subspacesK and Ann(K) respectively.
First we consider a special case.

Let
θ(1)(A) < θ(2)(A) < · · · < θ(q)(A)

be the Lyapunov exponents of the cocycleA at the pointy now repeated without
multiplicities.

For any vectorv ∈ R
m
(y) and any covectorh ∈ (Rm

(y))
∗ denote

θ(v) := lim
k→∞

1

k
log‖A(k)v‖, θ∗(h) := lim

k→∞
1

k
log‖(tA(k))−1h‖.
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The assumption thaty is a regular point means that for any nonzerov andh the limits
above exist; moreover, the valueθ(v) equals one of theθ(i), where 1≤ i ≤ q. Lemma 3.2
implies that for any covectorh the valueθ∗(h) equals one of the−θ(i), where 1≤ i ≤ q.

Let
F = (0 = F0 ⊂ F1 ⊂ · · · ⊂ Fq = R

m)

be the flag of linear subspaces inR
m
(y) furnished by the cocycleA. HereFi = {v ∈ R

m |
θ(v) ≤ θ(i)}, for 1 ≤ i ≤ q. We will need the following notation:

d(F) := (d1(F), . . . , dq(F)), wheredi(F) := dimFi − dimFi−1, for 1 ≤ i ≤ q.

(3.1)
Obviously,di(F) is exactly the multiplicity of the Lyapunov exponentθ(i). Let

H = (0 = H0 ⊂ H1 ⊂ · · · ⊂ Hq = (Rm)∗)

be the flag corresponding to the dual cocycle. Lemma 3.2 guarantees that it really has
the same number of components. Moreover, we have the following lemma.

LEMMA 3.3. FlagsF andH are dual to each other:

Hq−i = Ann(Fi) for 0 ≤ i ≤ q.

Proof. Let v ∈ Fi and h ∈ (Rm)∗ have non-vanishing pairing〈v, h〉 6= 0. This implies
that

〈A(k)v, (tA(k))−1h〉 = 〈v, h〉 6= 0. (3.2)

Sincev ∈ Fi we haveθ(v) ≤ θ(i). By (3.2) we see thatθ∗(h) ≥ −θ(i). Hence if for
some covectorh0 we haveθ∗(h0) < −θ(i), thenh0 ∈ Ann(Fi). Note that Lemma 3.2
implies that for anyh0 ∈ Hq−i we haveθ∗(h0) < −θi . HenceHq−i ⊆ Ann(Fi). On
the other hand, Lemma 3.2 implies thatHq−i has complimentary dimension toFi , and
henceHq−i = Ann(Fi). �

Now consider a linear subspaceK ⊂ R
m
(y). Denote by

K = (0 = K0 ⊆ K1 ⊆ · · · ⊆ Kq = K)

the induced flag inK obtained asKi := K
⋂

Fi . The vectord(K) = (d1(K), . . . , dq(K))

(see (3.1)) provides us with induced multiplicities of the Lyapunov exponentsθ(1) < · · · <

θ(q) on K. Consider the dual flag in Ann(K):

(0 = (Ann(Fq) ∩ Ann(K)) ⊆ (Ann(Fq−1) ∩ Ann(K)) ⊆ . . .

· · · ⊆ (Ann(F0) ∩ Ann(K)) = Ann(K)).

Combining Lemma 3.2 with Lemma 3.3, and with elementary considerations from linear
algebra we get the following.

LEMMA 3.4. A subcollection of the Lyapunov exponents corresponding to the subspace
Ann(K) ∈ (Rm)∗(y) is obtained by taking Lyapunov exponents−θ(i) with multiplicities
di(F)−di(K), 1 ≤ i ≤ q. In other words, the multiplicity of the Lyapunov exponent−θ(i)

on the annihilatorAnn(K) is complementary to the multiplicitydi(K) of the Lyapunov
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exponentsθ(i) on K with respect to the total multiplicitydi(F) of θ(i) on the whole space
R

m
(y).
The subspace of all covectorsh ∈ Ann(K) such thatθ∗(h) < −θ(i) coincides with

Ann(Fi)
⋂

Ann(K).

4. Lyapunov exponents ofB−1, tB and tB|Ann(λ)

In [11] we proved the following lemma (by analogy with the proof of a similar statement
in [8]).

LEMMA 4.1. The non-negative function

log

(
max

1≤i,j≤m
Bij (λ, π)

)

on 1m−1 × R is integrable with respect toµ.

Taking into consideration that detB(λ, π) = 1, we can use Corollary 3.1 to obtain
the following lemma.

LEMMA 4.2. CocyclesB−1(λ, π) andtB(λ, π) are measurable with respect to the measure
µ.

Let θ1 ≥ θ2 ≥ · · · ≥ θm be a collection of Lyapunov exponents of the cocycle
B−1(λ, π). Recall the following theorem from [11].

THEOREM 2. The middlem− 2g Lyapunov exponents of the cocycleB−1(λ, π) are equal
to zero:

θg+1 = θg+2 = · · · = θm−g = 0.

The remaining2g Lyapunov exponents are distributed into pairs:

θk = −θm−k+1 for k = 1, . . . , g.

Hereg = g(R) ≤ m/2 is an integer which is defined by the Rauzy classR(π) of the
permutationπ . (Actually, g is the genus of corresponding surface, see [8].) Combining
the above theorem with Lemma 3.2 we get the following.

COROLLARY 4.1. Lyapunov exponents of the cocyclesB−1(λ, π) andBT (λ, π) coincide.

We will also need the following lemma, which follows immediately from a
combination of general results in [10, §6] with Lemma 5.2.

LEMMA 4.3. The multiplicity of the largest Lyapunov exponentθ1(B
−1) is equal to one;

θ1(B
−1) > θ2(B

−1).

We recall that the cocycleB−1(λ, π) has a nice invariant one-dimensional subbundle
corresponding to the smallest eigenvalue−θ1. The fiber of this subbundle over a point
(λ, π) is just 〈λ〉R , i.e. it is spanned by the vectorλ.

Consider the vector subbundle Ann(λ) ⊂ (Rm)∗. Since the one-dimensional subbundle
〈λ〉R is invariant under the action of(G, B−1), we see that the annihilator Ann(λ) is
invariant under the action of(G, tB). Consider the restrictiontB|Ann(λ) of the cocycle
tB(λ, π) to this subbundle. Lemma 3.4 implies the following statement.
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PROPOSITION5. The restrictiontB(λ, π)|Ann(λ) of the cocycletB(λ, π) to the annihilator
Ann(λ) has the following Lyapunov exponents:

θ2(B
−1) ≥ θ3(B

−1) ≥ · · · ≥ −θ2(B
−1) ≥ −θ1(B

−1).

(The collection is obtained from the collection of Lyapunov exponent of the cocycle
B−1(λ, π) by omitting the largest Lyapunov exponentθ1(B

−1).)

Now we can easily prove Proposition 3. Consider the covectorsei −λie0, 1 ≤ i ≤ m,
wheree0 = e1 + · · · + em. We have seen (see (2.10)) thatei − λie0 ∈ Ann(λ) for all
1 ≤ i ≤ m. Hence for all 1≤ i ≤ m we get

lim
k→+∞

1

k
log‖tB(k)(λ, π) · (ei − λie0)‖ = θq,

whereq ≥ 2 may depend oni and on the point(λ, π). We recall that the Oseledetc
theorem [6] guarantees the existence of the above limits for almost all(λ, π) ∈ 1m−1×R.
Note that since the whole collection of covectors generates Ann(λ) there is at least one
(actually at least two) indicesi, a priori depending on the point(λ, π), for which
q = q(i, λ, π) = 2. (Presumablyq = 2 for all indicesi for almost all points(λ, π).)

Proposition 3 is proved. �

5. Why the columns ofB(k) are asymptotically well-distributed
In this section we prove Proposition 2. The title of this section is motivated by the
paper [3] where a somewhat similar question is solved for the Rauzy induction.

Fix the Rauzy classR = R(π) of an irreducible permutationπ ∈ S0
m. From now on

we will denote the Lyapunov exponentsθi(B
−1) of the cocycleB−1 on 1m−1 × R by

θi(R), or sometimes just byθi .

LEMMA 5.1. For almost all(λ, π) ∈ 1m−1 × R

lim
k→+∞

1

k
log

(
max

1≤j≤m
‖B(k)(λ, π) · ej‖

)
= θ1(R).

Proof.

lim
k→+∞

1

k
log

(
max

1≤j≤m
‖B(k)(λ, π) · ej‖

)
= lim

k→+∞
1

k
log

(
max

1≤i,j≤m
|B(k)

ij (λ, π)|
)

= lim
k→+∞

1

k
log‖tB(k)(λ, π)‖ = θ1(R),

where the last equality is due to Corollary 4.1 �

COROLLARY 5.1. For almost all(λ, π) ∈ 1m−1 × R

lim sup
k→+∞

1

k
log‖B(k)(λ, π) · ej‖ ≤ θ1(R) for 1 ≤ j ≤ m.

Consider the subset

Vl := {(λ, π) ∈ 1m−1 × R | B
(l)
ij (λ, π) > 0 for all 1 ≤ i, j ≤ m}. (5.1)

Using finiteness of the measureµ we get the trivial proof of the following well known
fact.
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LEMMA 5.2. For almost all points(λ, π) the matrixB(l)(λ, π) becomes strictly positive
after a sufficiently large numberl of iterations ofG:

lim
l→+∞

µ(Vl) = 1.

Proof. One can easily choose a setṼ of positive measure such that for some constantl0

and for any(λ, π) ∈ Ṽ the matrixB(l0)(λ, π) is strictly positive. Let

Wl := Ṽ ∪ G−1(Ṽ ) ∪ · · · ∪ G−l(Ṽ ).

The ergodicity ofG implies
lim

l→+∞
µ(Wl) = 1.

By the definition ofṼ we have the inclusionWl ⊆ Vl+l0. �

PROPOSITION6. For anyδ > 0 and for almost all(λ, π) ∈ 1m−1 × R

lim inf
k→+∞

1

k
log‖B(k)(λ, π) · ej‖ ≥ θ1(R) − δ for all 1 ≤ j ≤ m.

Proof. Choose positiveε < 1. Choosel = l(ε) such thatµ(Vl) ≥ 1− ε/2, where the set
Vl is defined by (5.1). Consider the set

Z = Z(ε) :=
{
(λ, π) | lim

k→+∞
1

k
log max

1≤j≤m
‖B(k)ej‖ = θ1(R)

}
⋂{

(λ, π) | lim
n→+∞

1

n

n−1∑
q=0

χVl
(G(q)(λ, π)) = µ(Vl)

}
. (5.2)

By Lemma 5.1 the first set in the definition above is the set of full measure; due to
the ergodicity ofG the second set is also the set of full measure. Henceµ(Z) = 1. We
will prove that for any point of the setZ(ε), whereε = δ/2(1 + θ1), the requirements
of Proposition 6 are valid.

Fix (λ, π) ∈ Z. By the construction ofZ there existsN1 = N1(λ, π, ε) such that for
any n ≥ N1 the inequality

1

n

n−1∑
k=0

χVl
(G(k)(λ, π)) ≥ µ(Vl) − ε

2
≥ 1 − ε

is valid. Hence for anyn ≥ N1+l one can findk(n) satisfying(n−l)(1−ε) ≤ k(n) ≤ n−l

such thatG(k(n))(λ, π) ∈ Vl .
By the construction of the setZ one can findN2 = N2(λ, π, ε) such that for any

k ≥ N2 the following inequality is valid:∣∣∣∣1k log max
1≤j≤m

‖B(k)(λ, π)ej‖ − θ1

∣∣∣∣ ≤ ε. (5.3)

Hence choosingN3 = l + max(N2/(1− ε), N1) one guarantees forn ≥ N3 the existence
of k(n) satisfying(n − l)(1 − ε) ≤ k(n) ≤ n − l such thatG(k(n))(λ, π) ∈ Vl , and such
that for k(n) inequality (5.3) is valid.
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Note that
B(n)(λ, π) = B(k(n))(λ, π) · B(n−k(n))(G(k(n))(λ, π)).

By the construction ofk(n) we haveG(k(n))(λ, π) ∈ Vl and n − k(n) ≥ l. Hence the
matrix B(n−k(n))(G(k(n))(λ, π)) is a strictly positive integer matrix. Hence

min
1≤j≤m

log‖B(n)(λ, π) · ej‖ ≥ max
1≤j≤m

log‖B(k(n))(λ, π)‖
≥ (θ1 − ε)k(n) ≥ (θ1 − ε)(n − l)(1 − ε).

Hence forn ≥ N3 we get

min
1≤j≤m

1

n
log‖B(n)(λ, π) · ej‖ ≥ 1

n
(θ1 − ε)(n − l)(1 − ε) ≥ θ1 − ε − θ1ε − θ1l

n
.

Choosingε = δ/2(1 + θ1), andN4 = N4(λ, π, δ) = max(N3, 2θ1l/δ) we conclude that
for the pair(λ, π) the desired inequality is valid for alln ≥ N4. �

Consider the set

Z̃ =
+∞⋂
n=1

Z(εn) whereεn = 1

2n(1 + θ1)

(see (5.2) for the definition ofZ(ε)). Thenµ(Z̃) = 1. Consider the intersection of̃Z
with the set of full measure from Corollary 5.1. For any point of this resulting set of
full measure we have

lim
k→+∞

1

k
log‖B(k) · ej‖ = θ1

for any 1≤ j ≤ m. Proposition 2 is proved. �

6. Bound for deviation
6.1. Lower bound. Let x = 0 be the left endpoint of the unit intervalX.

PROPOSITION7. For almost all interval exchange transformationsT (λ, π), (λ, π) ∈
1 × R, the following relation is valid:

max
1≤i≤m

lim sup
n→+∞

log |χi(0, n) − λin|
logn

≥ θ2

θ1
.

We will need several lemmas. Denote byv1 ∈ R
m the vector(1, 0, . . . , 0).

LEMMA 6.1. For almost all (λ0, π0) ∈ 1 × R one can find a collection of integers
0 = l1 < · · · < lm such that the vectorsv1, B

(l2)(λ0, π0) · v1, . . . , B
(lm)(λ0, π0) · v1

are linearly independent.

Proof. Assume anym distinct elements from the sequence

v1, B(λ0, π0) · v1, B
(2)(λ0, π0) · v1, . . .

are linearly dependent. It means that for anyl > 0 all vectorsv1, Bv1, . . . , B
(l)v1 belong

to some fixed linear subspaceL ⊂ R
m of nontrivial codimension. Let it be spanned by
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the firstk0 vectors of our sequence. Note that all these vectors have integer components,
and hence the subspaceL is integer.

We may assume that all components of the vectorλ0 are rationally independent (which
is a generic situation). Hence it cannot belong to the integer linear subspaceL of
nontrivial codimension, which means that the distance from the pointλ0 to the subspace
L is positive.

Note that the mapv 7→ B(k)v/‖B(k)v‖ maps a standard simplex to a small simplex
containing the pointλ0. For uniquely ergodic interval exchange transformations(λ0, π0),
the size of this small simplex tends to zero ask grows; see [8] or [3]. Hence the distance
betweenB(k)v1/‖B(k)v1‖ andλ0 becomes arbitrarily small, and henceB(k)v1 is outside
of the subspaceL for sufficiently large values ofk. This means that our assumption that
L has nontrivial codimension leads to a contradiction. �

We will also need the following trivial lemma.

LEMMA 6.2. Consider a basis of vectorsw1, . . . , wm in R
m. There is a positive constant

c > 0 (depending on the basis) such that for any linear functionf ∈ R
m∗ the following

bound is valid:
max

1≤i≤m
|〈f, wi〉| ≥ c‖f ‖.

Now we can prove the following.

LEMMA 6.3. For almost all(λ, π) ∈ 1 × R the following relation is valid:

max
1≤i≤m

lim sup
k→+∞

1

k
log |〈tB(k)(λ, π) · (ei − λie0), v1〉| = θ2.

We recall that a covectorei has zero components except for theith one which
is equal to 1. We define a covectore0 as e0 = (1, 1, . . . , 1), and a vectorv1 as
v1 = (1, 0, 0, . . . , 0).

Proof. Proposition 3 immediately implies that

max
1≤i≤m

lim sup
k→+∞

1

k
log |〈tB(k)(λ, π) · (ei − λie0), v1〉| ≤ θ2. (6.1)

According to Proposition 3 for almost all(λ, π) and for at least one indexi
(presumably for all indices) the equality is valid:

lim
k→+∞

1

k
log‖tB(k)(λ, π) · (ei − λie0)‖ = θ2. (6.2)

Fix this indexi. Note that

〈tB(k+l)(λ, π) · (ei − λie0), v1〉
= 〈tB(l)(G(k)(λ, π)) · tB(k)(λ, π) · (ei − λie0), v1〉
= 〈tB(k)(λ, π) · (ei − λie0), B

(l)(G(k)(λ, π)) · v1〉. (6.3)

Consider any point(λ0, π0) for which Lemma 6.1 is valid. By construction, the
vectorsw1 := v1, w2 := B(l2)(λ0, π0) · v1, . . . , wm := B(lm)(λ0, π0) · v1 are linearly
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independent. Letc be the positive constant from Lemma 6.2. Let10 × π0 be a simplex
containing the point(λ0, π0), and sharing the same matricesB(lr )(λ′, π0) = B(lr )(λ0, π0)

for all (λ′, π0) ∈ 10 ×π0 and for allr = 2, . . . , m. Sinceµ(10 ×π0) > 0, and since the
mapG is ergodic, a trajectory of almost any point(λ, π) under the action of the mapG
will visit our subsimplex infinitely many times. Letk obeyG(k)(λ, π) ∈ 10 × π0. The
relation (6.3) means that for anyj , 1 ≤ j ≤ m, we have

〈tB(k+lj )(λ, π) · (ei − λie0), v1〉 = 〈tB(k)(λ, π) · (ei − λie0), wj 〉

and, hence, according to Lemma 6.2 we get

max
1≤r≤m

|〈tB(k+lr )(λ, π) · (ei − λie0), v1〉| ≥ c · ‖tB(k)(λ, π)(ei − λie0)‖.

Since alllr , 1 ≤ r ≤ m, andc are fixed, whilek gets arbitrary large, the latter relation
in combination with (6.1) and (6.2) completes the proof of the lemma. �

Now everything is prepared to prove Proposition 7. We will use very specific ‘times’
n = n

(k)

1 (λ, π), see (2.3), to prove the proposition. According to (2.5) and (2.9)

χi(X, 0, T , n
(k)

1 ) − λin
(k)

1 = 〈tB(k)(λ, π) · (ei − λie0), v1〉.

Recall that according to (2.3) we haven
(k)

1 (λ, π) = ‖B(k)(λ, π)e1‖. We get

max
1≤i≤m

lim sup
n→+∞

log |χi(X, 0, T , n) − λin|
logn

≥ max
1≤i≤m

lim sup
k→+∞

log |χi(X, 0, T , n
(k)

1 ) − λin
(k)

1 |
logn

(k)

1

= max
1≤i≤m

lim sup
k→+∞

log |〈tB(k)(λ, π) · (ei − λie0), v1〉|
log‖B(k)(λ, π) · v1‖

= max
1≤i≤m

lim sup
k→+∞

1

k
log |〈tB(k)(λ, π) · (ei − λie0), v1〉|

·
(

lim
k→+∞

1

k
log‖B(k)(λ, π) · v1‖

)−1

= θ2

θ1
.

In the last two equalities above we used Proposition 2 and Lemma 6.3. Proposition 7 is
proved. �

Note that any pointx of the formT n(0), n ∈ Z, would have the same property.

6.2. Choice of proper recurrence times.From now on we will always assume that
m ≥ 3. This implies thatθ2 ≥ 0, which immediately follows from Theorem 2.

For proper recurrence times we will choose something like arithmetic progression
with an additional property determined by the following proposition.

PROPOSITION8. For almost all(λ, π) ∈ 1 × R and for anyε > 0, δ > 0, r ∈ N, there
existsN = N((λ, π), ε, δ, r) such that for anyn > N one can choose the sequence of
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integers0 = n0 < n1 < · · · < nr = n with the following property. For any1 ≤ l ≤ r,

max
1≤j≤m

∣∣∣∣ 1

nl − nl−1
log‖B(nl−nl−1)(λ(nl−1), π(nl−1)) · ej‖ − θ1(R)

∣∣∣∣ ≤ ε

max
1≤i≤m

1

nl − nl−1
log

∥∥∥∥∥B(nl−nl−1)(λ(nl−1), π(nl−1)) ·
(

ei − λ
(nl−1)

i

‖λ(nl−1)‖e0

)∥∥∥∥∥ ≤ θ2(R) + ε.

Moreover, for any0 ≤ l ≤ r ∣∣∣∣nl

n
− l

r

∣∣∣∣ ≤ δ.

Proof.First let us construct a set of full measure for which we then prove the proposition.
For anyε > 0 andN ∈ N consider the set

ON(ε) :=




(λ, π)

∣∣∣∣∣∣∣∣∣
max

1≤i≤m

1

k
log‖tB(k)(λ, π) · (ei − λie0)‖ ≤ θ2 + ε for k ≥ N

max
1≤i≤m

∣∣∣∣1k log‖B(k)(λ, π) · ej‖ − θ1

∣∣∣∣ ≤ ε for k ≥ N




.

By definition
ON(ε) ⊆ ON+1(ε)

and for anyε1 < ε2

ON(ε1) ⊆ ON(ε2).

By Propositions 2 and 3 for anyε > 0

µ(ON(ε)) → 1 asN → +∞.

In particular, for anyε > 0 one can findK(ε) such that for anyN ≥ K(ε) the measure
µ(ON(ε)) is positive. Since the sets

O∞(ε) :=
+∞⋃
N=1

ON(ε)

have full measure, the intersection

O :=
+∞⋂
n=1

O∞

(
1

n

)

has full measure as well:
µ(O) = 1.

For anyε > 0 andN ≥ K(ε) define the set

UN(ε) :=
{
(λ, π)

∣∣∣∣ lim
n→+∞

1

n

n−1∑
k=0

χON (ε)(G(k)(λ, π)) = µ(ON(ε))

}
.

For anyε > 0 andN ≥ K(ε) we have

µ(UN(ε)) = 1.
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Hence the set

U :=
+∞⋂
n=1

+∞⋂
k=K(1/n)

Uk

(
1

n

)

is the set of full measure
µ(U) = 1.

From now on we consider only those pairs(λ, π) which belong toO ∩U , and which
correspond to uniquely ergodic interval exchange transformations. We also assume that
for any k > 0 no components ofλ(k) are equal to zero. Note that we have confined
ourselves to the set of full measure in1m−1 ×R. We will prove Proposition 8 assuming
(λ, π) is from the set thus defined.

Fix (λ, π) from our set of full measure. Choose arbitrary numbers 0< ε < θ1, 0 < δ,
andr ∈ N. Reducingδ if necessary, we can get

r ≤ 1

4δ
. (6.4)

Let q = [1/ε] + 1. We will always denote the integer part of a number by square
brackets. Since(λ, π) ∈ O and hence(λ, π) ∈ O∞(1/q) there is someN = N(q, λ, π)

such that(λ, π) ∈ ON(1/q). Since 1/q < 1/ε, we getON(1/q) ⊆ ON(ε). EnlargeN

if necessary to ensure
µ(ON(1/q)) ≥ 1 − δ. (6.5)

By our choice ofN we also haveN ≥ K(1/q). Since(λ, π) ∈ U we conclude that
(λ, π) ∈ UN(1/q). Hence, by the definition ofUN(1/q) and by (6.5) we can findM ∈ N

such that for anyn ≥ M

1

n

n−1∑
k=0

χON (ε)(G(k)(λ, π)) ≥ 1

n

n−1∑
k=0

χON (1/q)(G(k)(λ, π))

> µ(ON(1/q)) − δ = 1 − 2δ. (6.6)

EnlargingM if necessary, we may assume 1/M ≤ δ.
Now we need the following technical lemma.

LEMMA 6.4. Consider a piece of trajectory(λ, π), G(λ, π), . . . ,G(n−1)(λ, π), where
n > M. There exist numbers0 = n0 < n1 < n2 < · · · < nr−1 < nr = n such
that ∣∣∣∣nl

n
− l

r

∣∣∣∣ ≤ δ and G(nl )(λ, π) ∈ ON(ε), l = 0, . . . , r − 1.

Proof. The auxiliary numbern0 = 0 obviously satisfies the desired requirements since by
construction(λ, π) ∈ ON(ε). Take 1≤ l ≤ n− 1. Take the point(l/r)n on the real line
R and consider an interval of length 2δn centered at(l/r)n. We claim that our interval of
length 2δn is strictly inside the interval [0, n−1]. Indeed, by (6.4) we haven/r −δn > 0
and(n−n/r)+ δn < n− δn. Sincen > M ≥ 1/δ we get(n−n/r)+ δn ≤ n−1. Now,
by construction (see (6.6)) we have

∑n−1
k=0 χON (ε)(G(k)(λ, π)) > (1− 2δ)n. Hence we are

able to find at least one integer pointnl inside our interval such thatG(nl )(λ, π) ∈ ON(ε).
The inequalitiesnl < nl+1 for 0 ≤ l ≤ r − 1 now follow from (6.4). �
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To complete the proof of Proposition 8 let

L := max([N/δ], M) + 1,

where N and M are defined above. For anyn ≥ L choose the collectionnl as in
Lemma 6.4. Note that

nl − nl−1 ≥ n

r
− 2δn ≥ 4δn − 2δn ≥ δL > δ

N

δ
= N, (6.7)

where 1≤ l ≤ r. Hence by the definition of the setON(ε) our collectionn0 < n1 <

· · · < nr satisfies all the requirements of the proposition. To complete the proof we just
adjust the notation lettingN((λ, π), ε, δ, r) := L. �

6.3. Proof of Theorem 1. Consider the interval exchange transformationT (λ, π),
where(λ, π) satisfies the conditions of Proposition 8. Consider arbitrary 0< ε < θ1,
0 < δ < 1/2, andr ∈ N. Take correspondingN = N((λ, π), ε, δ, r) as in Proposition 8.
EnlargeN if necessary to make it obey the following technical conditions:N ≥ 2, and(

1 − exp

(
−(θ1 − ε)(1 − 2δ)

N

r

))−1

≤ exp

(
(θ1 + ε)(1 + 2δ)

N

r

)
− exp

(
(θ1 − ε)(1 + 2δ)

N

r

)
. (6.8)

Choose a piece of trajectoryx, T (x), T (T (x)), . . . , T t−1(x) with

t > [exp((θ1 − ε)N)] + 1.

To avoid confusion, from now on we will denote ‘time’ related to interval exchange
transformations byt , possibly with subscripts. We will reservek, n, andN for the ‘time’
related to the Gauss map. Let

n :=
[

log t

θ1 − ε

]
+ 1. (6.9)

Sincen > N we can choose a collection 0= n0 < n1 < n2 < · · · < nr−1 < nr = n

satisfying the conditions of Proposition 8. Now everything is prepared for ther-step
recursion (see Proposition 1). Let

kl := nl − nl−1 for l = 1, . . . , r.

Note that by the choice ofnl (see Proposition 8) for all 1≤ l ≤ r we have

n

r
(1 − 2δ) ≤ kl ≤ n

r
(1 + 2δ) =: k. (6.10)

Define

(λ(0), π(0)) := (λ, π) X(0) := X x(0) := x T(0) := T t(0) := t.

Assuming that the point(λ(l), π(l)) and the aggregateX(l), x(l), T(l), t(l) are defined for
0 ≤ l < r − 1, define

(λ(l+1), π(l+1)) := Gkl+1((λ(l), π(l))).
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Define
X(l+1) := X

(kl+1)

(l) ,

i.e. we defineX(l+1) as the (non-normalized) interval obtained from the intervalX(l) by
kl steps of the induction procedure corresponding tokl iterations of the mapG starting
from the point(λ(l), π(l)). ObviouslyX(l+1) ⊂ X(l). Next define

x(l+1) := T n+
(x(l)) wheren+ = n+(X(l), x(l), T(l), t(l), kl+1)

(see (2.1) for notation). Herex(l+1) is the point of the first visit of the trajectoryx(l),
T(l)(x(l)), T 2

(l)(x(l)), . . . to the subintervalX(l+1). Further, define

T(l+1) := T(l)|X(l)

to be the induced interval exchange transformation on the subintervalX(l+1). Finally,
define

t(l+1) :=
t(l)−1∑
i=0

χX(l+1)
(T i

(l)(x(l))),

i.e. t(l+1) is the number of visits of the trajectoryx(l), T(l)(x(l)), . . . , T
t(l)−1
(l) (x(l)) to the

subintervalX(l+1).
By the choice ofnl provided by Proposition 8 for all 0≤ l ≤ r − 1, we have

exp((θ1 − ε)kl+1) ≤ ‖B(kl+1)(λ(l), π(l)) · ej‖ ≤ exp((θ1 + ε)kl+1), 1 ≤ j ≤ m

max
1≤i≤m

∥∥∥∥B(kl+1)(λ(l), π(l)) ·
(

ei − (λ(l))i

‖λ(l)‖ e0

)∥∥∥∥ ≤ exp((θ2 + ε)kl+1). (6.11)

Hence, according to Proposition 1 we get

|Ei(X(l), x(l), T(l), n(l))|
≤ 2 · exp((θ1 + ε)kl+1)

+m · exp((θ2 + ε)kl+1) · |Ei(X(l+1), x(l+1), T(l+1), n(l+1))|. (6.12)

Inequalities (6.11) imply

t(l+1) ≤ 1 + t(l)

minx∈X(l+1)
first return time toX(l+1)

= 1 + t(l)

min1≤j≤m ‖B(kl+1)(λ(l), π(l)) · ej‖
≤ 1 + t(l)

exp((θ1 − ε)kl+1)
. (6.13)

To complete the preparations consider the last term in our recursion. Use the obvious
bound for it and then use (6.13) recursively:

max
1≤i≤m

|Ei(X(r−1), x(r−1), T(r−1), t(r−1))|
≤ t(r−1)

≤ 1 + t(r−2)

exp((θ1 − ε)kr−1)
≤ · · ·
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≤ 1 + exp(−(θ1 − ε)kr−1) + exp(−(θ1 − ε)(kr−1 + kr−2)) + · · ·
+ exp(−(θ1 − ε)(kr−1 + · · · + k2)) + t(0)

exp((θ1 − ε)(kr−1 + · · · + k1))
.

(6.14)

Definition (6.9) implies that

log t = log t(0) < (θ1 − ε)n = (θ1 − ε)(kr + · · · + k1).

Hence, taking into consideration (6.10) and (6.8) we can continue (6.14) as follows:

max
1≤i≤m

|Ei(X(r−1), x(r−1), T(r−1), t(r−1))|

≤
(

1 − exp
(
−(θ1 − ε)(1 − 2δ)

n

r

))−1
+ exp((θ1 − ε)kr)

≤ exp((θ1 + ε)k). (6.15)

Collecting inequalities (6.12) recurrently forl = 0, 1, . . . , r − 2, and completing
with (6.15) we obtain

max
1≤i≤m

|Ei(X, x, T , t)| ≤ 2 exp((θ1 + ε)k1)

+m exp((θ2 + ε)k1)


2 exp((θ1 + ε)k2)

+m exp((θ2 + ε)k2)

(
2 exp((θ1 + ε)k3)

+ · · ·
+m exp((θ2 + ε)kr−2)

(
2 exp((θ1 + ε)kr−1)

+m exp((θ2 + ε)kr−1) exp((θ1 + ε)k)
)

. . .

) .

Multiply the last term by two. Replace allkl by k; see (6.10). We have increased the
value of the expression on the right-hand side of the inequality above. Note that we got
nothing but a partial sum of the geometric progression:

max
1≤i≤m

|Ei(X, x, T , t)|

≤ 2 exp((θ1 + ε)k) ·
(

1 + exp((θ2 + ε)k + logm)

+ exp(2((θ2 + ε)k + logm)) + · · · + exp((r − 1)((θ2 + ε)k + logm))
)

= 2 exp((θ1 + ε)k)
exp(r((θ2 + ε)k + logm)) − 1

exp((θ2 + ε)k + logm) − 1
.

Taking into consideration (6.10) and inequalitym ≥ 3, we obtain

max
1≤i≤m

|Ei(X, x, T , t)| ≤ 2 exp((θ1+ε)
n

r
(1+2δ))·exp(n(θ2+ε)(1+2δ)+r logm). (6.16)
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By definition (6.9) ofn we have

log t ≥ (n − 1)(θ1 − ε). (6.17)

Combining inequalities (6.16) and (6.17) we obtain

log max1≤i≤m |Ei(X, x, T , t)|
log t

≤ log 2+ (θ1 + ε) n
r
(1 + 2δ) + n(θ2 + ε)(1 + 2δ) + r logm

(n − 1)(θ1 − ε)

≤
(

1 + 2

N

)θ2 +
(

log 2
N

+ 2δθ2 + ε(1 + 2δ) + 1
r
(θ1 + ε)(1 + 2δ) + 1

N
r logm

)
θ1 − ε


 .

Now note that we can chooseε, δ, and 1/r arbitrary small. There is a ‘dangerous’
term r logm/N with r in the numerator, but we can make it arbitrary small by enlarging
N (and t respectively), which would not affectδ, ε, or r. Hence for anyγ > 0 we
can choose appropriateε(γ ), δ(γ ), r(γ ), and Ñ((λ, π), γ, δ, ε, r) such that for any
t > exp(θ1Ñ) we will have

log max1≤i≤m |Ei(X, x, T , t)|
log t

≤ θ2

θ1
+ γ.

Note that the choice ofε(γ ), δ(γ ), r(γ ), and of Ñ((λ, π), γ, δ, ε, r) does not depend
on the starting pointx ∈ X of the interval; the inequality above is valid for allx.
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Note added in proof. The formula for deviation presented in this paper may be improved:
the maximum with respect to pointsx ∈ X is unnecessary since the value of the
expression

lim sup
n→+∞

log |χi(x, n) − λin|
logn

is the same for allx ∈ X. I have no doubt that it does not depend on the subinterval
Xi ⊂ X as well. Although at the moment I do not have a general proof of the latter
statement, I can prove it for particular Rauzy classes. Moreover, for almost all interval
exchange transformations of a unit intervalX, the similar formula

lim sup
n→+∞

log |χY (x, n) − |Y | · n|
logn

= θ2

θ1
< 1
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should be valid for almost all subintervalsY ⊂ X.
The subject of this paper is closely related to the Teichmüller geodesic flow. In

particular, the number 1+ θ2/θ1 coincides with the second Lyapunov exponent of the
Teichm̈uller geodesic flow restricted to the corresponding connected component of the
corresponding stratum in the moduli space of holomorphic differentials on a surface of
genusg. Presumably, the topg Lyapunov exponents of the Teichmüller geodesic flow
have multiplicity one, which implies the formulae for the further terms of approximation
similar to the one presented here. All these improvements will be published in a
forthcoming paper.

To the best of my knowledge there are no methods for exact computation of Lyapunov
exponents except for some trivial cases. However, in collaboration with M. Kontsevich
we have recently discovered a beautiful formula for the sum of the firstg Lyapunov
exponents of the Teichm̈uller geodesic flow [4]. Besides, it is possible to find approximate
values ofθ1 andθ2 using computer calculations [4, 12].
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