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Abstract. We approximate intersection numbers
〈
ψd1
1 · · ·ψdn

n

〉
g,n

on Deligne–Mumford’s

moduli spaceMg,n of genus g stable complex curves with n marked points by certain closed-
form expressions in d1, . . . , dn. Conjecturally, these approximations become asymptotically
exact uniformly in di when g →∞ and n remains bounded or grows slowly. In this note we
prove a lower bound for the intersection numbers in terms of the above-mentioned approx-
imating expressions multiplied by an explicit factor λ(g, n), which tends to 1 when g → ∞
and d1 + · · ·+ dn−2 = o(g).

Key words: intersection numbers; ψ-classes; Witten–Kontsevich correlators; moduli space
of curves; large genus asymptotics
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1 Introduction

Let Mg,n be the Deligne–Mumford moduli space of genus g complex stable algebraic curves
(possibly with nodes), with n > 0 distinct labeled marked points. Consider the tautological line
bundles Li →Mg,n, i = 1, . . . , n, defined fiberwise by Li|C,x1,...,xn ∼= T ∗xiC, where C is a genus g
curve with marked points x1, . . . , xn (the definition makes sense since the marked points are not
allowed to coincide with the nodes).

In the late 1980-ies E. Witten [21] introduced a theory of two-dimensional topological gravity,
where the classes ψi = c1(Li), i = 1, . . . , n, played the role of observables, and the intersection
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numbers

〈τd1 · · · τdn〉g,n =
〈
ψd11 · · ·ψ

dn
n

〉
g,n

=

∫
Mg,n

ψd11 · · ·ψ
dn
n ,

where d1 + · · · + dn = 3g − 3 + n, represented correlators of the theory. Following a common
convention, we will omit g and n, or just n when they are clear from the context. On the basis of
a low genus evidence and considerations from physics, E. Witten conjectured that the generating
function

F (t0, t1, . . . ) =
∑
g≥0
n≥1

1

n!

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉td1 · · · tdn

(total free energy of Witten’s two-dimensional topological gravity) satisfies the KdV (Korteveg–
de Vries) hierarchy. An equivalent formulation of Witten’s conjecture is that the partition
function eF is a highest weight vector of a Virasoro algebra representation, see papers [9, 10] of
R. Dijkgraaf and of R. Dijkgraaf, H. Verlinde, and E. Verlinde. Witten’s conjecture was first
proven by M. Kontsevich [16], and then several other proofs appeared, including the proofs due
to A. Okounkov and R. Pandharipande [20], to M. Kazarian and S. Lando [15], to M. Mirza-
khani [18, 19]. Note that the two-dimensional topological gravity may be interpreted as the
simplest instance of the Gromov–Witten theory, where the tagret space is a point.

Computability of the intersection numbers 〈τd1 · · · τdn〉 is an important open problem. Besides
the cases of small g or n no general explicit formulas for the numbers 〈τd1 · · · τdn〉g,n are known.
In applications it is often sufficient to know large genus behavior of these intersection numbers,
and here either not much was known in general before the current paper and before even more
recent beautiful work by A. Aggarwal [3].

In this note we prove a simple lower bound for the numbers that appears to be asymptotically
exact as g → ∞. To begin with, we recall some basic facts about the numbers 〈τd1 · · · τdn〉
(Witten’s correlators). They are uniquely defined by the initial data〈

τ3
0

〉
= 1, 〈τ1〉 =

1

24

via the recursive relations known as Virasoro constraints that we present below.
Virasoro constraints (in Dijkgraaf–Verlinde–Verlinde form [9, 10]):

〈τk+1τd1 · · · τdn〉g =
1

(2k + 3)!!

[
n∑
j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn〉g

+
1

2

∑
r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!!〈τrτsτd1 · · · τdn〉g−1

+
1

2

∑
r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!!

×
∑

{1,...,n}=I
∐
J

〈
τr
∏
i∈I

τdi

〉
g′

〈
τs
∏
i∈J

τdi

〉
g−g′

]
. (1)

For k = −1 and k = 0 the above relations have particularly simple form.
String equation (k = −1):

〈τ0τd1 · · · τdn〉g,n+1 = 〈τd1−1 · · · τdn〉g,n + · · ·+ 〈τd1 · · · τdn−1〉g,n. (2)
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Dilaton equation (k = 0):

〈τ1τd1 · · · τdn〉g,n+1 = (2g − 2 + n)〈τd1 · · · τdn〉g,n.

For any partition d of 3g − 3 + n into a sum of n nonnegative integers define ε(d) through
the following equation:〈

ψd11 · · ·ψ
dn
n

〉
g,n

=
(6g − 5 + 2n)!!

(2d1 + 1)!! · · · (2dn + 1)!!
· 1

g! · 24g
·
(
1 + ε(d)

)
.

We denote by Π(m,n) the set of ordered partitions of an integer m into a sum of n nonnegative
integers.

Main Conjecture ([7]). For any strictly positive constant C

lim
g→+∞

max
1≤n≤C log(g)

max
d∈Π(3g−3+n,n)

|ε(d)| = 0.

Corollary 6 below makes the first step towards a proof of the Main Conjecture. It establishes
an efficient uniform lower bound for ε(d) for those partitions d for which the sum of the first
n− 2 entries is small with respect to the sum of the remaining two entries.

Remark 1. It follows from the definition of ε(d) that ε(d) does not change under any permu-
tation of the entries of d.

Remark 2. It is plausible, that much stronger statement might be true, where the bound
n < C log(g) is replaced by the bound n < gα with any fixed α satisfying α < 1

2 . The reason
why one cannot go beyond the bound n <

√
g is explained at the very end of Section 1.

Remark 3 (added in proofs). The Main Conjecture was proved in a very strong form in the
recent paper [3] of A. Aggarwal.

Motivation. Certain universality phenomena in flat and hyperbolic geometry and in dy-
namics of surfaces manifest themselves in large genera. The large genus asymptotics of the
Masur–Veech volumes of strata in moduli spaces of Abelian differentials conjectured in [12] was
successfully proved by independent methods in [2] and in [6]. However, the analogous conjectures
stated in [4] on the large genus asymptotics of the Masur–Veech volumes of strata in moduli
spaces of quadratic differentials are open.

There are several approaches to evaluation of Masur–Veech volumes of such strata. The orig-
inal approach of A. Eskin and A. Okounkov discovered in [11] uses characters of the symmetric
group. Using modern computers for exact computations based on this approach, É. Goujard
evaluated in [13] the volumes of all strata up to dimension 11. Currently it is not known how
to obtain volume asymptotics based on this approach.

The recent paper [5] of D. Chen, M. Möller and A. Sauvaget expressed the Masur–Veech
volume of the principal stratum through certain very special linear Hodge integrals. The pa-
pers [14] of M. Kazarian and [22] of D. Yang, D. Zagier and Y. Zhang provide extremely efficient
recursive formulae for these Hodge integrals, which allow to compute exact values of the volumes
of the principal strata up to genus 250 and more. However, currently it is not known how to
prove large genus asymptotic formulae for the Masur–Veech volume of the principal stratum
developing this approach.

One more approach to evaluation of Masur–Veech volumes is elaborated in our paper [7]
where we express the Masur–Veech volume of the principal stratum of meromorphic quadratic
differentials with at most simple poles through intersection numbers of ψ-classes and suggest
conjectures aimed to prove large genus asymptotics of these volumes. This conjectural scheme
involves the Main Conjecture stated above as one of the key ingredients.
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Remark 4 (added in proofs). The asymptotic formula for the Masur–Veech volume conjectured
in [7] was recently proved in [3] by A. Aggarwal. Together with the Main Conjecture proved by
A. Aggarwal in the same paper, this allowed us to provide in [8] a detailed description of the
asymptotic geometry of random square-tiled surfaces and of random simple closed multicurves
on surfaces of large genus.

1.1 State of the art

Currently we have the following evidence towards the Main Conjecture. Direct computation
shows that ε(0, 0, 0) = 0. It is known [21] that

〈τ3g−2〉g,1 =
1

24g · g!
,

so for all 1-correlators we have

ε(3g − 2) = 0. (3)

Applying the string equation recursively we get〈
τn−1

0 τ3g−3+n

〉
g,n

=
1

24g · g!
, (4)

so for all partitions with at most one nonzero entry we have

ε
(
0n−1, 3g − 3 + n

)
= 0. (5)

For 2-correlators the Main Conjecture is valid. Namely, by Remark 1, we have ε(d1, d2) =
ε(d2, d1) for any (d1, d2) ∈ Π(3g − 1, 2). Thus, we may assume that d1 < d2. We have already
seen that ε(0, 3g − 1) = 0. For the remaining 2-partitions we have the following bounds:

Theorem ([7]). For all g ∈ N and for all integer k satisfying 2 ≤ k ≤ 3g−1
2 the following bounds

are valid:

− 2

6g − 1
= ε(1, 3g − 2) < ε(k, 3g − 1− k) < 0 = ε(0, 3g − 1). (6)

We performed a detailed analysis of ε(k, 3g − 1 − k) in [7] based on [23]. In particular, for
large g the error term ε(k, 3g−1−k) rapidly tends to 0 when k approaches 3g−1

2 , so the statement
of the above theorem can be seriously strengthened, if needed.

It is easy to compute ε
(
d
)

explicitly for those partitions where all but one entries d1, . . . , dn−1

are equal to 0 or 1. Namely, we first apply recursively the dilaton equation eliminating all those
entries of the partition, which are equal to 1, and then apply (4). In particular,

〈
τn−1

1 τ3g−2

〉
g,n

= (2g − 3 + n)(2g − 4 + n) · · · (2g − 1) · 1

24g · g!
,

so

1 + ε((1, 1, . . . , 1, 3g − 2)) = 1 + ε
((

1n−1, 3g − 2
))

= (2g − 3 + n)(2g − 4 + n) · · · (2g − 1) · 3n−1 · (6g − 3)!!

(6g − 5 + 2n)!!

=
6g − 3 + 3(n− 2)

6g − 1 + 2(n− 2)
· 6g − 3 + 3(n− 3)

6g − 1 + 2(n− 3)
· · · 6g − 3

6g − 1
.



Uniform Lower Bound for Intersection Numbers of ψ-Classes 5

This implies that for any constant α satisfying 0 < α < 1
2 (respectively 1

2 < α) we have

lim
g→+∞

max
1≤n≤gα

∣∣ε(1n−1, 3g − 2
)∣∣ = 0, when 0 < α <

1

2
,

lim
g→+∞

inf
n≥gα

ε
(
1n−1, 3g − 2

)
= +∞, when

1

2
< α,

which explains why the restriction α < 1
2 in Remark 2 cannot be loosened.

2 Uniform lower bound

Given a real number L and integers g ≥ 1 and n ≥ 3, denote by ΠL(3g− 3 + n, n) the following
subset of ordered partitions:

ΠL(3g − 3 + n, n) =
{
d ∈ Π(3g − 3 + n, n)

∣∣ d1 + · · ·+ dn−2 ≤ L
}
.

For any nonnegative L and any integer g ≥ 1 we define ΠL(3g − 2, 1) = Π(3g − 2, 1) and
ΠL(3g − 1, 2) = Π(3g − 1, 2).

Define the following function of integer arguments g, L, satisfying g > L ≥ 0:

λ(g, L) =

(
L−1∏
i=0

(
1− 1

6(g − i) + 1

))
·
(

1− 2

6(g − L)− 1

)
, (7)

where, by convention,

λ(g, 0) =

(
1− 2

6g − 1

)
. (8)

It follows from the definition of λ(g, L) that 0 < λ(g, L) < 1 for any g > L ≥ 0.

Theorem 5. Let g, L be nonnegative integers such that g > L. For any partition d ∈ ΠL(3g −
3 + n, n) one has

ε(d) ≥ λ(g, L)− 1. (9)

Corollary 6. Let L(g), where g = 1, 2, . . . , be any sequence of nonnegative integers such that
L(g) = o(g) as g → +∞. One has

lim
g→+∞

inf
n≥1

min
d∈ΠL(g)(3g−3+n,n)

ε(d) = 0. (10)

Proof of Corollary 6. Definition (7) of λ(g, L) implies that for any sequence L(g) of nonneg-
ative integers satisfying L(g) = o(g) as g → +∞ one has

lim
g→+∞

λ(g, L(g)) = 1.

Now (10) follows from combination of (9) and (3). �

Remark 7. Proposition 3.2 in [17] claims that for any triple (n,K,M) of positive integers one
has

lim
g→+∞

max
d∈ΠK(3g−3+n,n)

|ε(d)| = 0

under the additional requirement that dn−1 ≤M .
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We start by proving three Lemmas (corresponding to the string and the dilaton equations,
and to Virasoro constraints). It would be useful to introduce the following notation. Given
d ∈ Π(3g − 3 + n, n) let

bτd1 · · · τdncg,n =
(6g − 5 + 2n)!!

(2d1 + 1)!! · · · (2dn + 1)!!
· 1

g! · 24g
. (11)

By definition of ε(d) we have

〈τd1 · · · τdn〉g,n = bτd1 · · · τdncg,n ·
(
1 + ε(d)

)
. (12)

From now on we suppose that g ≥ 1.

Lemma 8. Let d ∈ Π(3g− 2 + n, n− k) such that dj > 0 for j = 1, . . . , n− k. We assume that
k ≥ 0 and n− k > 0. Define δstring(0k+1,d) by equation⌊

τk+1
0 τd1 · · · τdn−k

⌋
g,n+1

·
(
1 + δstring

(
0k+1,d

))
=
⌊
τk0 τd1−1 · · · τdn−k

⌋
g,n

+ · · ·+
⌊
τk0 τd1 · · · τdn−k−1

⌋
g,n
. (13)

Then

δstring

(
0k+1,d

)
=

n− k − 1

6g − 3 + 2n
.

In particular, for any d as above and for any k ≥ 0 we have

δstring

(
0k+1,d

)
≥ 0. (14)

Proof. Dividing both sides of equation (13) by
⌊
τk+1

0 τd1 . . . τdn−k
⌋
g,n+1

and applying defini-

tion (11) to all terms involved in the right-hand side of the resulting equation we get

1 + δstring

(
0k+1,d

)
=

(2d1 + 1) + · · ·+ (2dn−k + 1)

6g − 3 + 2n

=
2(3g − 2 + n) + (n− k)

6g − 3 + 2n
=

6g − 4 + 3n− k
6g − 3 + 2n

= 1 +
n− k − 1

6g − 3 + 2n
. �

Corollary 9. For any (d1, d2) ∈ Π(3g − 2 + n, 2) and for any n ∈ N one has

ε
(
0n−1, d1, d2

)
≥ − 2

6g − 1
. (15)

Proof. If one of d1, d2 is equal to zero, the statement for arbitrary n follows from (5), so
from now on we assume that both d1, d2 are strictly positive. For n = 1 the statement follows
directly from (6). This serves us as a base of induction in n. Suppose that for all n = 1, . . . , k
the statement is true. Let us prove it for n = k + 1:〈

τk+1
0 τd1τd2

〉
g,k+3

=
〈
τk0 τd1−1τd2

〉
g,k+2

+
〈
τk0 τd1τd2−1

〉
g,k+2

≥
(

1− 2

6g − 1

)
·
(⌊
τk0 τd1−1τd2

⌋
g,k+2

+
⌊
τk0 τd1τd2−1

⌋
g,k+2

)
=

(
1− 2

6g − 1

)
·
(
1 + δstring

(
0k+1, d1, d2

))
·
⌊
τk+1

0 τd1τd2
⌋
g,k+3

≥
(

1− 2

6g − 1

)
·
⌊
τk+1

0 τd1τd2
⌋
g,k+3

,

where the first equality is the string equation; inequality between the first and the second
lines is the assumption of the induction; the equality between the second and the third line is
equation (13); the inequality between the third and the forth line is an implication of (14) and
of the fact that all the factors in both lines are positive. �
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Corollary 10. For any g, n ∈ N and for any d ∈ Π0(3g − 3 + n, n) one has

1 + ε(d) ≥ λ(g, 0). (16)

Proof. Recalling convention (8) for λ(g, 0) we conclude that for n = 1 inequality (16) follows
from (3); for n = 2 inequality (16) follows from (6); for n ≥ 3 inequality (16) corresponds
to (15). �

Lemma 11. Let d ∈ Π(3g − 3 + n, n). Define δdilaton(1,d) by equation

bτ1τd1 · · · τdncg,n+1 ·
(
1 + δdilaton(1,d)

)
= (2g − 2 + n)bτd1 · · · τdncg,n. (17)

Then

δdilaton(1,d) =
n− 3

6g − 3 + 2n
.

In particular,

δdilaton(1,d)


≥ 0 when n ≥ 3,

= − 1

6g + 1
when n = 2,

= − 2

6g − 1
when n = 1.

(18)

Proof. Dividing both sides of equation (17) by bτ1τd1 · · · τdncg,n+1, applying definition (11) and
canceling common factors in the numerator and in the denominator of the resulting expression
we get

1 + δdilaton(1,d) =
3(2g − 2 + n)

6g − 3 + 2n
=

6g − 6 + 3n

6g − 3 + 2n
. �

Corollary 12. For any partition d ∈ Π1(3g − 3 + n, n) one has

1 + ε(d) ≥
(

1− 1

6g + 1

)
·
(

1− 2

6g − 1

)
. (19)

Proof. We have seen in (3) that for all 1-correlators we have ε(3g − 2) = 0, so for n = 1 the
statement is true. For n = 2 the statement is a direct implication of equation (6). Suppose that
n ≥ 3.

By Remark 1, the quantity ε(d) does not change under any permutation of the entries of d.
Thus, we can permute the first n−2 elements of the partition without affecting the value of ε(d),
in particular, we can place them in the growing order. Since the sum of the first n− 2 elements
is less than or equal to 1 either they are all equal to 0 or they form the sequence (0, . . . , 0, 1)
after such reordering. If they all are equal to 0, the statement follows from equation (15) from
Corollary (9).

It remains to consider the case when n ≥ 3 and when the first n−2 elements form a sequence
(0, . . . , 0, 1). We prove first the desired inequality for partitions of the form (1, d1, d2):

〈τ1τd1τd2〉g,3 = (2g) · 〈τd1τd2〉g,2 ≥
(

1− 2

6g − 1

)
· (2g)bτd1τd2cg,2

=

(
1− 2

6g − 1

)
· bτ1τd1τd2cg,3 ·

(
1 + δdilaton(1, d1, d2)

)
≥
(

1− 2

6g − 1

)(
1− 1

6g + 1

)
· bτ1τd1τd2cg,3.



8 V. Delecroix, É. Goujard, P. Zograf and A. Zorich

Here the first equality is the dilaton equation; the inequality which follows is equation (6); the
equality between the first two lines is equation (17) and the inequality between the second and
the third line is based on equation (18).

To complete the proof of Corollary 12 we prove it for partitions of the form
(
0k+1, 1, d1, d2

)
by induction in k ≥ 0. The proof follows line-by-line the proof of Corollary 9. �

Lemma 13. Let d ∈ Π(3g− 3 +n− k, n), where k, n ∈ N. Define δVirasoro(k+ 1,d) by equation

bτk+1τd1 · · · τdncg
(
1 + δVirasoro(k + 1,d)

)
=

1

(2k + 3)!!

(
n∑
j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
bτd1 · · · τdj+k · · · τdncg

+
1

2

∑
r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!!bτrτsτd1 · · · τdncg−1

)
. (20)

Then

δVirasoro(k + 1,d) =
n− 3

6g − 3 + 2n
− 2k(2n− 5)

(6g − 3 + 2n)(6g − 5 + 2n)
. (21)

Proof. Dividing both sides of equation (20) by bτk+1τd1 · · · τdncg,n+1, applying definition (11)
and canceling common factors in the numerator and in the denominator of the resulting expres-
sion we get

1 + δVirasoro(k + 1,d)

=
1

6g − 3 + 2n
·
((

(2d1 + 1) + · · ·+ (2dn + 1)
)

+
1

2
· k · 24g

6g − 5 + 2n

)
=

1

6g − 3 + 2n
·
((

6g − 6 + 3n− 2k
)

+ 2k − 2k · 2n− 5

6g − 5 + 2n

)
= 1 +

n− 3

6g − 3 + 2n
− 2k(2n− 5)

(6g − 3 + 2n)(6g − 5 + 2n)
. �

Remark 14. In expression (20) we ignored the third term in the Virasoro constraints. Since
this third term is, clearly, positive, this is suitable for getting a lower bound instead of exact
asymptotics. It is widely believed that the third term of Virasoro constraints becomes negligible
in large genera. We expect that technique from [1] might be useful for replacing the lower bound
in (10) by the exact asymptotics under strengthening restrictions on α.

We shall need the following technical corollary of Lemma 13.

Corollary 15. Let k, n be integers satisfying k ≥ 0, n ≥ 2. Let d be a partition d ∈ Π(3g− 3 +
n− k, n), such that k + 1 ≤ dj for j = 1, . . . , n− 2, and k + d1 + · · ·+ dn−2 ≤ 3

2g. Then

δVirasoro(k + 1,d) ≥ − 1

6g + 1
. (22)

Proof. Use expression (21) for δVirasoro(k + 1,d). When n = 2 we get

δVirasoro(k + 1,d) = − 1

6g + 1
+

2k

(6g + 1)(6g − 1)
≥ − 1

6g + 1
.

Let n ≥ 3. By assumption, (k + 1) ≤ dj for j = 1, . . . , dn−2, so (k + 1)(n − 2) ≤ 3
2g, and

hence 2k(2n− 5) < 6g, which implies that

δVirasoro((k + 1,d)) =
n− 3

6g − 3 + 2n
− 2k(2n− 5)

(6g − 3 + 2n)(6g − 5 + 2n)
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≥ − 2k(2n− 5)

(6g − 3 + 2n)(6g − 5 + 2n)
≥ − 6g

(6g + 3)(6g + 1)
> − 1

6g + 1
. �

Before passing to the step of induction, we recapitulate the properties of the function λ(g, L)
defined in (7). Recall that the arguments g, L of λ(g, L) are nonnegative integers satisfying
g > L. Inequalities (23)–(25) below follow from the definition of λ(g, L). Each inequality is
applied to those ordered pairs g, L for which the argument of λ on both sides of the inequality
belongs to the domain of definition of λ. We have

1 > λ(g + 1, L) > λ(g, L) > λ(g, L+ 1) > 0, (23)

and (
1− 1

6g + 1

)
· λ(g − 1, L− 1) = λ(g, L). (24)

Combining the latter two relations we get(
1− 1

6g + 1

)
· λ(g, L) >

(
1− 1

6(g − 1) + 1

)
· λ(g, L)

>

(
1− 1

6(g − 1) + 1

)
· λ(g − 1, L) = λ(g, L+ 1). (25)

Proposition 16 (step of induction). Suppose that for some nonnegative integer L0 the following
uniform bound is valid: for all integers g, L satisfying g > L0, 0 ≤ L ≤ L0, for all partitions
d ∈ ΠL(3g − 2 + n, n+ 1), where n ≥ 0, one has

1 + ε(d) ≥ λ(g, L).

Then for all integers g, L satisfying g > L0 + 1, 0 ≤ L ≤ L0 + 1, for all partitions d ∈
ΠL(3g − 2 + n, n+ 1), where n ≥ 0, one also has

1 + ε(d) ≥ λ(g, L).

Proof. We warn the reader that the total number of elements of the partition is denoted in
Proposition 16 by n+ 1 and not by n as in Theorem 5. This allows us to use formulae from the
key Lemmas 11 and 13 without adjustments.

By convention ΠL(3g−2, 1) = Π(3g−2, 1) and ΠL(3g−1, 2) = Π(3g−1, 2) for any L ∈ Z≥0.
We have seen in (3) that for all 1-correlators we have ε(3g − 2) = 0, so for n = 0 the statement
is trivially true. For n = 1 the statement is a direct implication of inequality (6):

1 + ε(d) ≥
(

1− 2

6g − 1

)
= λ(g, 0) ≥ λ(g, L).

Thus, from now on we can assume that n ≥ 2. Let d ∈ ΠL(3g − 2 + n, n+ 1). If L ≤ L0, then
the statement makes part of the induction assumption. Hence, from now on we can assume that

d ∈ ΠL0+1(3g − 2 + n, n+ 1) \ΠL0(3g − 2 + n, n+ 1),

where n ≥ 2 and g > L0 + 1. This implies that d1 + · · ·+ dn−1 = L0 + 1 and, hence,

dn + dn+1 = 3g − 2 + n− (L0 + 1) > 2L0 + 2.

By Remark 1, the quantity ε(d) does not change under any permutation of the entries of d.
Place to the leftmost position the smallest strictly positive element among the first n−1 elements.



10 V. Delecroix, É. Goujard, P. Zograf and A. Zorich

This operation does not change the last two elements of the partition and does not change the
sum of its first n − 1 elements. Denote the resulting partition by (k + 1, d1, . . . , dn). To prove
the proposition we have to prove the inequality

1 + ε(k + 1, d1, . . . , dn) ≥ λ(g, L0 + 1), (26)

where

k + d1 + d2 + · · ·+ dn−2 = L0, n ≥ 2, k ≥ 0,

k + 1 ≤ min
1≤i≤n−2
di>0

di, g > L0 + 1 ≥ 1. (27)

We consider the special case k = 0 separately. In this special case, when n = 2 the partition
(k + 1, d1, . . . , dn) becomes (1, d1, d2) and the desired inequality is proved in (19). Assume that
k = 0 and n ≥ 3. By (18) we have

δdilaton(1, d1, . . . , dn) ≥ 0, for n ≥ 3. (28)

Thus, for any g > L0 + 1 we have(
1 + ε(1, d1, . . . , dn)

)
· bτ1τd1 · · · τdncg,n+1 = 〈τ1τd1 · · · τdn〉g,n+1

= (2g − 2 + n)〈τd1 · · · τdn〉g,n ≥ (2g − 2 + n) ·
(
λ(g, L0) · bτd1 · · · τdncg,n

)
= λ(g, L0) · bτ1τd1 · · · τdncg,n+1 ·

(
1 + δdilaton(1,d)

)
≥ λ(g, L0) · bτ1τd1 · · · τdncg,n+1 > λ(g, L0 + 1) · bτ1τd1 · · · τdncg,n+1.

Here the first equality is definition (12) of ε(1, d1, . . . , dn); the second equality is the string
equation (2); the inequality in the middle of the second line is the induction assumption; the
equality in the beginning of the third line is definition (17) of (1+δdilaton(1,d)); the inequality in
the beginning of the last line is a direct implication of (28); the last inequality is an implication
of (23).

Suppose now that k ≥ 1. We first prove the desired inequality (26) in the special case when

dj ≥ 1, for j = 1, . . . , n− 2 (29)

and then prove it in the most general situation when some of dj (possibly all of them) are equal
to 0.

Note that by assumption, k + 1 is less than or equal to any strictly positive element among
d1, . . . , dn−2, so inequalities (29), actually, imply that

dj ≥ k + 1, for j = 1, . . . , n− 2.

Also, from (27) we get

k + d1 + d2 + · · ·+ dn−2 = L0 <
3g

2
.

Thus, the partition (k + 1, d1, . . . , dn) satisfies assumptions of Corollary 15.
Let g > L0 + 1. Under the above assumptions we have(

1 + ε(k + 1, d1, . . . , dn)
)
· bτk+1τd1 · · · τdncg = 〈τk+1τd1 · · · τdn〉g

≥ 1

(2k + 3)!!

(
n∑
j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn〉g
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+
1

2

∑
r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!!〈τrτsτd1 · · · τdn〉g−1

)

≥ 1

(2k + 3)!!

(
n−2∑
j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
· λ(g, L0) · bτd1 · · · τdj+k · · · τdncg

+
(2k + 2dn−1 + 1)!!

(2dn−1 − 1)!!
· λ(g, L0 − k) · bτd1 · · · τdn−2τdn−1+kτdncg

+
(2k + 2dn + 1)!!

(2dn − 1)!!
· λ(g, L0 − k) · bτd1 · · · τdn−1τdn+kcg

+
1

2

∑
r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!! · λ(g − 1, L0 − 1) · bτrτsτd1 · · · τdncg−1

)

≥ λ(g, L0) · bτk+1τd1 · · · τdncg
(
1 + δVirasoro(k + 1,d)

)
≥
(

1− 1

6g + 1

)
· λ(g, L0) · bτk+1τd1 · · · τdncg

≥ λ(g, L0 + 1) · bτk+1τd1 · · · τdncg.

Here the first equality is the definition (12) of ε(1, d1, . . . , dn); the first inequality is an instant
corollary of the Virasoro constraints in which we omitted the terms in the third line of (1). The
second inequality is the induction assumption. The third inequality combines the inequality
λ(g, L0− k) > λ(g, L0) which follows from (23), the inequality λ(g− 1, L0− 1) > λ(g, L0) which
follows from (24), and the definition (20) of δVirasoro(k + 1,d). The inequality

(
1 + δVirasoro(k +

1,d)
)
≥
(
1− 1

6g+1

)
is justified by (22). The last inequality is justified in (25).

It remains to prove inequality (26), without extra assumptions (29). In other words, we have
to prove the inequality

1 + ε
(
0s, k + 1, d1, . . . , dn−s

)
≥ λ(g, L0 + 1).

The case n− s = 0 follows from (5). For n− s = 1 inequality (15) implies

1 + ε
(
0s, k + 1, d1

)
≥ 1− 2

6g − 1
= λ(g, 0) ≥ λ(g, L0 + 1).

Thus, we may assume that n− s ≥ 2 and that the following inequalities are valid:
k + d1 + d2 + · · ·+ dn−s−2 = L0,

n ≥ s ≥ 0,

k ≥ 1,

dj > k for j = 1, . . . , n− s− 2.

We proceed by induction in s. For s = 0, which serves us as a base of induction, the statement
is already proved. We perform a step of induction as follows(

1 + ε
(
0s+1, k + 1, d1, . . . , dn−s

))
·
⌊
τ s+1

0 τk+1τd1 · · · τdn−s
⌋
g

=
〈
τ s+1

0 τk+1τd1 · · · τdn−s
〉
g

=
〈
τ s0τkτd1 · · · τdn−s

〉
g

+
〈
τ s0τk+1τd1−1 · · · τdn−s

〉
g

+ · · ·+
〈
τ s0τk+1τd1 · · · τdn−s−1

〉
g

=
(
1 + ε

(
0s, k, d1, . . . , dn−s

))
·
⌊
τ s0τkτd1 · · · τdn−s

⌋
g

+
(
1 + ε

(
0s, k + 1, d1 − 1, . . . , dn−s

))
·
⌊
τ s0τk+1τd1−1 · · · τdn−s

⌋
g

+ · · ·

+
(
1 + ε

(
0s, k + 1, d1, . . . , dn−s − 1

))
·
⌊
τ s0τk+1τd1 · · · τdn−s−1

⌋
g
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≥ λ(g, L0) ·
⌊
τ s0τkτd1 · · · τdn−s

⌋
g

+ λ(g, L0) ·
⌊
τ s0τk+1τd1−1 · · · τdn−s

⌋
g

+ · · ·

+ λ(g, L0) ·
⌊
τ s0τk+1τd1 · · · τdn−s−2−1τdn−s−1τdn−s

⌋
g

+ λ(g, L0 + 1) ·
⌊
τ s0τk+1τd1 · · · τdn−s−2τdn−s−1−1τdn−s

⌋
g

+ λ(g, L0 + 1) ·
⌊
τ s0τk+1τd1 · · · τdn−s−2τdn−s−1τdn−s−1

⌋
g

≥ λ(g, L0 + 1)
(⌊
τ s0τkτd1 · · · τdn−s

⌋
g

+
⌊
τ s0τk+1τd1−1 · · · τdn−s

⌋
g

+ · · ·

+
⌊
τ s0τk+1τd1 · · · τdn−s−1

⌋
g

)
= λ(g, L0 + 1) ·

⌊
τ s+1

0 τk+1τd1 · · · τdn−s
⌋
g
·
(
1 + δstring

(
0s+1, k + 1, d1, . . . , dn−s

))
≥ λ(g, L0 + 1) ·

⌊
τ s+1

0 τk+1τd1 · · · τdn−s
⌋
g
.

Here the first equality is the definition (12) of ε
(
0s+1, k + 1, d1, . . . , dn−s

)
. The second equality

is the string equation (2). (Recall that by convention, if one of dn−s−1 or dn−s is equal to zero,
the term, containing the negative index dn−s−1 − 1 or dn−s − 1 respectively, is missing in the
string equation and below.) The equality which follows, is equation (12) applied to every term
of the resulting expression. The inequality, where λ appears on the left-hand side for the first
time, is the induction assumption applied to each term. The next inequality follows from the
inequality λ(g, L0) > λ(g, L0 + 1), see (23). The equality which follows is the definition (13) of
δstring

(
0s+1, k + 1, d1, . . . , dn−s

)
. The last inequality is justified by (14). �

Proof of Theorem 5. For L = 0 Theorem 5 follows from Corollary 10. For L = 1 it follows
from (19) combined with the fact that

(
1 − 1

6g+1

)
·
(
1 − 2

6g−1

)
> λ(g, 1). For L > 1 we apply

recursively Proposition 16. �
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