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ABSTRACT

We state several conjectures on asymptotic “spectral properties” of transforma-
tion operators involved in Rauzy induction for a generic interval exchange transfor-
mation. Modulo these conjectures we get a very precise approximation for dynamics
of leaves of a generic orientable measured foliation on a surface. The main object,
which we get is a flag of subspaces in the first (co)homology group of the surface
of dimensions 1,...,g, where ¢ is a genus of the surface. This flag of subspaces
generalizes asymtotic cycle; in particular the smallest subspace is spanned by the
asymtotic cycle. Presumably this flag of subspaces provides a new invariant of
foliation.

We illustrate the conjectures by treating a specific example, which comes from
a model of electron dynamics on a Fermi-surface suggested by I.Dynnikov.

Authors belief in validity of conjectures proclaimed is strongly supported by
numerous computer experiments, which gave affirmative results.

1. Introduction

It is well known, that leaves of a generic orientable measured foliation on a sur-
face M gz of genus ¢ wind around the surface along one and the same cycle from the
first homology group Hl(Mgz,]R) of the surface, which is called asymptotic cycle®?.
In a sense asymptotic cycle gives the first term of approximation of dynamics of
leaves. Here we study other terms of approximation. Computer experiments show,
that taking the next term of approximation we get a two-dimensional subspace in
Hl(Mgz, R), i.e., with a good precision leaves deviate from asymtotic cycle not arbi-
trary, but inside one and the same two-dimensional subspace in the first homology.
Taking further steps n = 3,..., g of approximation we get subspaces of dimension &
for the k-th step; collection of the subspaces generates a flag of subspaces in the first
homology group. The largest, g-dimensional subspace, gives a Lagrangian subspace
in 2¢g-dimensional symplectic space Hl(Mgz, R), with the intersection form considered
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2 ANTON ZORICH

as a symplectic form. We stop at level g since in a sense at this level we get the best
possible approximation — it looks like the error can be in a sense uniformly bounded.

Having a measured foliation generated by a generic closed 1-form on a surface, one
can consider interval exchange transformation induced by the first return map on
a closed transversal. This interval exchange transformation would be minimal and
uniquely ergodic, provided we started from a generic closed 1-form. Our hypothetical
approximation is based on several conjectures on asymptotic “spectral properties”
of transformation operators (YA involved in Rauzy induction corresponding to this
interval exchange transformation. The conjectures are stated in section 2.

In section 3 we describe behavior of trajectories modulo conjectures on asymptotic
“spectral properties” of Rauzy induction.

In section 4 we list some properties of operators ®A and suggest some speculations
on possible proofs of conjectures.

In section 5 we apply general constructions to some particular case arising from an
example suggested by I.Dynnikov. This example came from study of Novikov’s prob-
lem on electron trajectories on Fermi-surfaces in a weak homogeneous magnetic field.
Here closed 1-form under consideration is obtained as a restriction of a specific 1-form
on three-dimensional torus with constant coefficients to a specific surface of genus 3
embedded into the torus. Rauzy process in this case is periodic, which simplifies the
picture. Besides, unfolding the torus we can “make visible” our trajectories.

In section 6 we present several illustrations for sections of Dynnikov surface.

2. Conjectures on “spectral properties” of Rauzy induction

Consider a minimal uniquely ergodic interval exchange transformation with proba-
bility vector (A!, ..., A\") and nondegenerate permutation o € &,,. To settle notations
we remind construction of Rauzy induction®. Our notations are almost the same as
int?.

Let us describe one step of Rauzy induction. Denote by [; ; square nxn-matrix,
which has only one nonzero entry, which equals one, at the (i,7) place. By E we

denote identity nxn-matrix. Let

(4 — E+ [nﬂ—l(n) if A, > )\U(n),
4+ [g—l(n)m if A, < )\U(n)
Let
My = (yg-1y
Let 0dgom = (1,2,...,n) and oy, = 0.
If A > As(n)y modify oy, by cyclically moving forward one step all those entries
occurring after the last entry in ogom, i.e., after gqom(n). Denote the permutation
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obtained by (1)0'im, and let Mogom = Gdom unchanged. If A\, < A;(,) modify oqom by
cyclically moving forward one step all those entries occurring after the last entry in
Tim, 1.€., after oy, (n). Denote the permutation obtained by (1)Ud0m, and let Vo, . = o,
unchanged. Let

Ny — (1)0501m O
Here the product of permutations should be understood as a composition of operators,
from right to left.

Vector Mot ((1))\) and permutation (V7 determine a new interval exchange trans-
formation . This interval exchange transformation is just an induction of original
interval exchange transformation to subinterval [0, 1 —n[, where n = min(X,, A;-1 ().
Note, that vector (VX has L'-norm smaller then A; we do not renormalize it.

By O\, ®o, gy Flogon we denote the data obtained after k steps of Rauzy
induction. By @X = X\, O = o, Qg = 0, Oogon = (1,2,...,n) we denote the
initial data. By ®JA we denote a product of k elementary matrices corresponding to
first k steps of induction, so that

) — (k)4 . (k) (1)
or in coordinates
Op = ( )A], (R (2)

Recall, that having an interval exchange transformation one can construct a Rie-
mann surface and a closed (harmonic) 1-form, which defines a measured foliation
on Riemann surface (see'! and??). Initial interval exchange transformation would
be generated as a first return map to a specific transversal to the foliation. Denote
genus of corresponding Riemann surface by g. Though value of ¢ is determined by
combinatorics of permutation o, we referred to construction of Riemann surface to
emphasize topological meaning of ¢, which is rather essential in this paper.

Let "y, ..., "z be eigenvalues of ®IA enumerated according to decreasing order
of their norms: [Py > |Fay| > - > [Fg |,

We formulate propositions and conjectures below everywhere assuming £ is suffi-
ciently large, and initial vector A is generic. We start with reminding a well-known
fact, concerning the greatest eigenvalue.

Proposition 1. The greatest eigenvalue ®xy is real and positive; it tends to infinity
as k tends to infinity; it is much greater then norms of other eigenvalues

lim (k):zjl =40
k— oo

(k).
lim —% =0 for 1 =2,...

k— 00 (k)l’l
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In particular Pz, has multiplicity one. Corresponding eigenvector "WV, has positive
coefficients. Being normalized in L'-norm it tends to (OX.

lim (k)\/1 — (O

k—o0

k)

Conjecture 1. Eigenvalues Py, ... . ®Fe, and P, o ... %, are all real pro-

vided k is sufficiently large.
My, ..., W, tend to infinity; their ratios (i%;l fore =

1,...,g— 1 tend to zero, i.e., Py > Byl > oo | | > 1

Conjecture 2. Figenvalues (

lim [Pl =00 for i=1,...,9
k—o0
(k).
lim — =0 fori=1,...,9—1
k— 00 x;
Conjecture 3. Eigenvalues x,_gi1,..., %, tend to zero; ratios =t fori =n — g+

Ly...,n—1tend to zero, i.e., 1 > |wp_gi1| > |wn_gi2| > - > |a,]

limaz; =0 fori=n—g+1,...,n
k—o0
. iy .
lim =0 fori=n—g+1,....n—1
k— 00 x;
Conjecture 4. Eigenvalues Pr,yy,. ... %, can be complex, but with probability p

their absolute values are uniformly bounded by a constant C(g,p), for anyp < 1. (As
a probability measure we consider a natural measure on simplex A", parametrizing
A.)
In other words

(k) (k) ~1

xg_l_lN...N xn_g

k)

Conjecture 5. Pairwise products of eigenvalues ®a; Wy, .0y fori = 1,...,q are

close to 1, i.e., Wx, Wy, ~ 15 ;W B~ 1

Note that det ®A = 1, and hence [T, ®; = 1.

Morally we claim, that operator )4 behaves “similar” to a high power of a sym-
plectic operator with real eigenvalues.

Consider a flag of subspaces L'  F)L? < ... C ®IL9 where subspace #ILP 1 <
i < g, is spanned by eigenvectors ¥V, ..., ®V; corresponding to “top” i eigenvalues
of operator WA. According to Conjecture 1 above, subspace FIL?, where 1 < i < ¢, is
real and has dimension 7. Consider this flag as a point of corresponding flag manifold

Fl,?,...,g(Rzg)-

Conjecture 6. Flags ¥ ¢ WL2  -.. < WLI have a limit as k — co with respect
to natural topology on flag manifold.
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Consider much more general problem. Let f : M — M be a transitive Anosov
diffeomorphism. Let f* be induced mapping in cohomology. It is known, that the
largest by absolute value eigenvalue 1 of f* is real, and that 1/ is also eigenvalue
of f*; corresponding eigenvectors are called Ruelle—Sullivan classes of f, they are
Poincaré dual one to the other.

Problem 1. Does f* have any other “spectral properties” (may be under some addi-
tional assumptions on f)? Are there any generalizations of Ruelle—Sullivan classes,
say, some invariant subspaces in cohomology?

3. Hypothetical behavior of leaves of orientable measured foliation

Having an interval exchange transformation one can associate to it a Riemann sur-
face and a holomorphic 1-form (see'* and**), which determines a measured foliation
on the surface. By construction we have a specific transversal to the foliation; first
return map to this transversal induces initial interval exchange transformation. We
may assume, that we started from orientable measured foliation, and then choosing a
transversal got interval exchange transformation; in any case, what we are interested
in is homological behavior of leaves of corresponding measured foliation.

Recall, that one can associate to each subinterval under exchange a cycle in the
first homology group of a surface. The cycle N,, corresponding to subinterval X;
is represented by the following closed pass on our surface Mgz: we start at the left
endpoint of the interval X (i.e., at the left endpoint of our transversal), and go to the
right along transversal till we get to some point @ € X; inside subinterval X;. Then
we follow (in positive direction) leaf of foliation starting at the point x till we hit
our transversal for the first time at the point T'(x), where T' is our interval exchange
transformation. Then we go to the left along interval X till we come back to its left
endpoint.

Choose some basis ¢, ...,¢, in the first homology group of ZWQ2 with real coeffi-
cients. In fact we do not care, whether it is a basis in absolute or relative homology, so
we do not want to specify dimension m precisely. It would be convenient to organize
our cycles in a nxm-dimensional matrix N as follows: row number 7 of matrix NV
is just our cycle N; represented in components N}, ..., N™ with respect to the basis
Cly...,Cp.

Let us trace how Rauzy induction affects the cycles N;. Denote the cycles obtained
after k steps of Rauzy induction by N;. (Note, that ordering of the subintervals,
and hence of the cycles, is determined by permutation Flrgo,.) We use initial basis
€1,..., ¢ in homology to decompose cycles ®IN; in components. It is easy to see,
that

N — (AT . O (3)
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or in coordinates

(FINT = (O . (k)A;ﬂ (4)

7 K3

where index ¢ enumerates components of cycles, and indices 7 and j enumerate cycles.

Remark 1. We would like to emphasize, that according to transformation rule Eq. 4
columns of matrix N are transformed as covariant objects with respect to linear trans-
formation defined by matrix ®AT, while vector #X of lengths ¢ of subintervals is
transformed as a contravariant object with respect to the same linear transformation
(c.f. Eq. 1 and Eq. 2). In other words, if we consider Eq. 4 as an action of a linear
operator ¥R with matrix AT on covariant objects, then Eq. 1 and Eq. 2 define an
action of adjoint operator on contravariant objects.

Probably we had to choose operator ¥R with matrix VR = WAT as a starting
object in our presentation, otherwise “unexpected transposition” leads to some con-
fusion. On the other hand these would lead to contradiction with existing notations
in'® and other papers.

Matrix ®AT of our transformation has the same collection ¥z, ..., ¥z, of eigen-
numbers as ¥4, According to Conjecture 2 eigennumbers Fy, ... ®, are all dis-
tinct. Denote corresponding eigenvectors by WW,, ... VW, We have a natural

projection to one-dimensional subspaces spanned by these eigenvectors.

Consider eigen(co)vector "WV; where 1 < i < g, of adjoint operator (having
matrix ®A~!) corresponding to eigennumber ﬁ Note, that it coincides with
eigen(co)vector of inverse to adjoint operator (having matrix (¥)A) corresponding to
eigennumber ¥lz;. Normalize our eigenvectors so that under a natural pairing (of
covariant and contravariant objects) we get

<(k)VVZ',(k)VZ'> =1 foranyi=1,...,9 (5)

Let us use Eq. 5 to rewrite Eq. 3 and Eq. 4 for the columns WN?, ¢ = 1,...,m of

matrix FIN,

Y

(RN — (k)x1<(0)Nq7 (k)vl> R4 (k)xg<(0)]\/'q7 (k)\/g> . (’“)Wg +0(1) (6)

We remind, that according to Conjectures 3 and 4 the tail in Eq. 6 is small with
respect to the leading terms, since projections to eigenvectors ¥W, _ .y, ... FW,
would be multiplied by corresponding eigennumbers ®z, . y,..., %, which tend
to zero, while projections to the “middle” eigenvectors ¥W,, ;... . ®W,_, would be
multiplied by eigennumbers, which presumably remain bounded.

Consider the following cycles (97, ..., (7 in the first homology group (same
where cycles N; live):

(kg — <(0)N1, (’“M>c1 N <(0)Nm7 (k)VZ)cm (7)
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We are interested, actually, in the rows of matrix ¥JN, representing cycles in the
first homology group of our surface. Combining equation Eq. 6 with definition Eq. 7
we obtain

(N, = B 7 Bz, g B B Bz 4 1) (8)

We are going to analyze now equation 8, which is a key equation in this section.
According to Proposition 1 we have ®lzy > |®z| for i = 2,...,n. Hence the first
term of approximation in Eq. 8 is defined by cycle ¥)Z;. This means, that if we will
rescale cycles N; by 1/®z; we get

(BN, = (k)Wli ML A o(1) (9)

i.e., cycle ®IN; is proportional to (¥1Z; with a coefficient of proportionality ®W; up
to an error, which tends to zero as & — 4+00. We would like to note that this result is
based only on Proposition 1, it does not depend on conjectures, so it is quite rigorous.
Still for this case we get nothing new. According to the same Proposition 1 one has

lim ¥y, = O)

k—+o0

Hence Eq. 7 leads to
lim Wz, = Ox, . On, 4 ... £ Oy . Opn

k—+4oco
i.e., cycle (97, tends to asymptotic cycle (see??).
Recall now, that according to Conjecture 2 we have ®zy > .. > By, | > 1.
Hence if we take leading r terms in approximation Eq. 8, 1 <r < g, we get

BN, e gy« 7E . )7, 4o By By (g,

r

In other words up to a relatively small error all the cycles belong to a r-dimensional
subspace in the first homology group spanned by cycles ®7,, ... (W7 Compare
this r-dimensional subspace with one obtained after some other number &’ of steps
in Rauzy induction. New cycles ¥)7,, ... )7 may change, since they are defined
in terms of eigen(co)vectors EWa, ..., W which may change. Still, according to
Conjecture 6, the space )L, generated by eigen(co)vectors FW, .., B s close
to the space FIL, generated by eigen(co)vectors ¥W;, ... "V in the sense of natural
topology of Grassmann manifold G, (R"). Hence (see definition Eq. 7) of cycles Z;)
subspaces generated by cycles W7, ... ®Z and #7, ... )7, would be also close.

Denote the subspace of the space of first homology of ZWQ2 with real coefficients
spanned by cycles ®Z, ... ®Z by " We showed that Conjectures 1, 2, 3, 4,
and 6 imply the following statement:

Main Conjecture. Flags FH' ¢ WH? C ... C W49 have a limit as k — co with
respect to natural topology on flag manifold.
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We checked this statement by computer experiments with small genuses (up to
genus 5) using Mathematica package®. We used random initial data, and high pre-
cision to be able to take approximately a thousand steps in Rauzy induction and
compared relative differences in Plucker coordinates. Typical result for the tail of the
sequence is 10719 for small genuses.

FIGURE 1. Computer simulation of “trajectory” for the case, when “asymptotic
cycle” equals zero. Initial permutation o = (6,5,3,8,7,4,2,1) corresponds to a
surface of genus 3. Number of iterations is 100.000.

The other obvious computer experiment is as follows. Chose arbitrary two dimen-
sional vectors Ny,..., N,, playing a role of cycles, which satisfy 3. A'N; = 0. Consider
a “trajectory” for some large number of iterations of interval exchange transforma-
tions. According to Main Conjecture our “trajectory” is supposed to follow a straight
line with direction Z,. This hypothetical straight line becomes already visible (see
figure 1) starting with 100000 iterations for small genuses; for greater values of ¢ and
n one has to take more iterations.

4. Properties of operators ('4 and some speculations on possible proofs
of conjectures

Remind some properties of operators (FIA.
Given an interval exchange transformation 7' corresponding to a pair (A, o), A €

R%, 0 € &,,set By =0, 3; = 2;21 Ajy and X; = [fi—1, Bi]. Define skew-symmetric
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nxn-matrix S(o) as follows:

1 ifi < jand o7 i) > a7(y)
S(o);; =2 =1 ifi>jand o7'(i) < o7(y) (10)

0 otherwise
Consider a translation vector
T = S(0)A (11)
Our interval exchange transformation 7' is defined as follows:
T(x)=x+m, forreX;,1<i<n

To each permutation m € S™ we assign nxn-matrix which we will denote by P(r):

P(r)., = {1 if j = o), 12)

0 otherwise

Our first comment is that operators ®JA preserve skew-symmetric scalar product S(o)
in the following sense (see'®):

pT((k)gdom)5((k)g)p((k)adom) — (A)yT . 5((0)0) NOYY (13)

In particular for those values of k, when Ko = O and Fog, = (O)Udom, Eq. 13
simplifies as follows:

5((0)0) — (RpT . 5((0)0) (kg (14)

i.e., for those values of k operators (VA preserve “degenerate symplectic form” ().

The other comment concerns kernels of operators S(*lo) (see Eq. 11). Recall con-
struction of a Riemann surface and a measured foliation on the surface corresponding
to a given interval exchange transformation (see'* and*!). Due to this construction
our initial interval exchange transformation (%%, (®A) is represented as a first re-
turn map to a transversal generated by the measured foliation. Enumerate saddles
Py, P, ..., Pson our surface. Assign to each endpoint of subintervals X;, 1 =1,...,n
under exchange corresponding saddle. To each saddle point P assign a vector K € R”
as follows:

4 1 if P is assigned to the left endpoint of X,
K’ = ¢ —1 if P is assigned to the right endpoint of X, (15)
0 otherwise

We got s vectors K7y,..., K, corresponding to saddles Py,..., P;.
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Proposition 2. Vectors K;, i = 1,...,s belong to the kernel of operator S(o), i.e.,
S(O‘)[(Z' =0.

Kernel of operator S(o) has dimension s—1; it coincides with a linear span of vectors
Ky,... K.

Since a step of Rauzy induction can be considered as induction to a proper subin-
terval of the transversal of the first return map, we get a natural identification of
saddles corresponding to interval exchange transformations (Mo, ®\). Consider vec-
tors WK; i = 1,...,s corresponding to interval exchange transformation obtained
after k steps of Rauzy induction.

Proposition 3. Operator WA maps vector WK, to vector (VK;:
(k)A((k)Ki) = (O, fori=1,...,s.

Construction of a Riemann surface in'* and?* by given interval exchange transfor-
mation in fact provides us with a natural basis in the first relative (co)homology of
the surface with respect to subset of saddle points. Recall, that a measured foliation
in this construction is obtained as a foliation of leaves of a closed 1-form. Note, that
values \; represent integrals over the basic relative 1-cycles. Note also, that values
7; of the translation vector in Eq. 11 represent integrals of the 1-form over cycles N;
(see previous section). Consider the following terms of exact sequence of a pair (set
of saddle points)C(Riemann surface M;):

oo — H%saddles; R) — Hl(M;, {saddles};R) — Hl(M;; R) — H'(saddles;R) = 0

Under identification with cohomology suggested above, Eq. 11 can be considered
as a mapping from relative to absolute cohomology from the exact sequence of the
pair, while the set of vectors K; defined by Eq. 15 represents image of the mapping
H°(saddles; R) — H'(M?, {saddles}; R). Moreover, under identification of our space
(where vector A lives) with the first cohomology of the surface, skew symmetric matrix
S(o) represents intersection form on (co)homology.

Recall construction of Veech?® of pseudo-Anosov maps related to given interval
exchange transformation. (See also'?.) Having an interval exchange transformation
consider a collection of rectangles, such that their bottom edges are represented by
intervals under exchange. Mark proper points on the side edges of rectangles (see®?),
and define some gluing rules, so that after proper identification of sides, the union
of rectangles gives a closed Riemann surface provided with a complex structure and
closed differential form Re(dz), which determines our measured foliation.

Rauzy induction for interval exchange transformation is naturally generalized in?*
to corresponding modification of our collection of rectangles. Under Rauzy induction
the “building” of rectangles grows high and becomes more narrow. Suppose after
ko steps of Rauzy induction we come back to initial permutation, i.e., *ly = (O
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and Folgy = Oy, Tt is shown in?*, that under a special choice of parameters
(lengths of the sides of rectangles and heights of the marked points) one can contract
the resulting “building” in vertical direction in p times and expand in horizontal
direction in g times to get initial “building” of rectangles, which produces a pseudo-
Anosov diffeomorphism.

For those numbers kg of iterations of Rauzy induction, which give initial per-
mutation, operators (%A preserve the space Ker(S(o)) = Im(H (saddles;R) (see
propositions 2 and 3). Moreover, they act on this space as identity mapping. Hence
action of ®9)4 on the quotient space is well defined and coincides with the mapping of
the first cohomology, induced by pseudo-Anosov diffeomorphism. Thus Conjectures 4
and 5 are valid at least for these specific values k = k.

In the next section we illustrate how our conjectures work for the easiest case,
when Rauzy process is periodic. We hope, that in general, quasiperiodic case, the
whole picture is similar.

5. Electron trajectories in Dynnikov’s example

In this section we want to illustrate ideas of section 3 by treating a particular
measured foliation. On the one hand the structure of Rauzy induction is very easy
for this case. On the other hand this example has some independent interest since it
came from the framework of S.Novikov problem on behavior of electron trajectories

on a Fermi-surface in the presence of a weak homogeneous magnetic field (see!® 17 26,

and?).

We remind briefly mathematical formulation of initial problem!® !7. Let M; C R?
be a periodic surface in R?, i.e., a surface invariant under translations of cubic lattice
in R?. Consider its intersection lines with a plane az +by+cz = const. What can one
say about behavior of these lines? S.Novikov conjectured, that generically nonclosed
curves as defined go along a straight line in the plane.

It was proved in%¢, that for a fixed embedding conjecture is valid for an open dense
set of directions of planes (union of neighbourhoods of rational directions). For this
set of directions all curves can not deviate too far from the lines along which they go
— they all belong to stripes of finite width. Paper* assumes that our surface is a level
surface of a periodic function, and proves that for any fixed direction of a plane the
same behavior of curves is valid for all but at most one level of the function. There
is an example due to S.Tzarev, when Novikov’s conjecture is not valid.

We need to reformulate the problem as follows. Consider a closed surface ZWQ2 of
genus ¢ (“Fermi-surface”) embedded into a three-dimensional torus 7°. We identify
torus 7% with the space R? factored over a cubic lattice. Having a closed 1-form with
constant coefficients @ dx+bdy+cdz on T? one can confine it to the surface. One gets
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a closed 1-form on the surface, which generically has nondegenerate singularities. This
1-form determines a measured foliation on M;. Consider universal covering R? — 7%

and induced covering M? — M?. Consider leaves of induced measured foliation on

the surface M; By construction they can be obtained as intersection lines of M;
with a plane ax 4+ by 4+ ¢z = const.

Generically measured foliation on a surface obtained by construction above splits
into several minimal components (tori with holes). For a long time it was not known
whether one can get in this way a minimal foliation. We can assume, that homological
class of a surface is equal to zero in the second homology of torus (the case when it
is nonzero is trivial). Hence, due to a remark by J.Smillie, the image of asymptotic
cycle of foliation equals zero in the first homology of torus. This means that curves
in R? obtained by unfolding of leaves of a minimal uniquely ergodic foliation do not
have any natural asymptotic direction. Hence examples of minimal foliations in this
problem could lead to quite peculiar behavior of leaves.

A family of examples of minimal measured foliations on a surface of genus 3 as re-
quired was recently constructed in®. One of the tools in the construction is a process
similar to Rauzy induction. We treat the case, when this process is periodic. Param-
eters, determining the surface, and the slope of the plane are obtained as components
of an eigenvector of the transformation matrix D (which is morally similar to matrix
A in Rauzy induction) corresponding to a period of the process.

Remark 2. We want to make a following side remark. The space of interval exchange
transformations arising from foliations determined by closed 1-forms on a surface of
genus ¢ has dimension 4¢ — 4. Dimension of a subspace, which comes from Dynnikov
construction is 2g — 1. It follows from the construction, that there are open sets
(in topology of the subspace), for which interval exchange transformation is always
nonminimal, which gives an estimate for dimension of stratum of nonminimal interval
exchange transformation in the space of all interval exchange transformations.

We chose a transversal on Dynnikov surface and considered interval exchange trans-
formation induced by foliation. In this example we have a surface of genus g = 3,
the 1-form has 2g — 2 = 4 saddles, so we have interval exchange transformation of
n =4g —3 =9 intervals. One can easily evaluate cycles Ny,..., Ny (see construction
in section 3). It would be convenient for us to consider images of these cycles in
Hy(T?;R), so we will identify cycles N; with vectors in R”.

For completeness of presentation we display numerical data for this example. Un-
der particular choice of transversal one has the following picture: interval exchange
transformation has permutation

o=(3,8,5274,91,6)

and vector A & (0.558,2.871,1.227, 1.558,0.700, 0.368, 2.730, 0.558,0.141) .
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Matrix N of cycles given in natural coordinates in Hy(7?;R) is as follows:

1 -2 —6
-1 0 -1
0 1 2
0 -1 —2
N=| 0o 1 3 (16)
0 -1 —2
10 1
1 2 5
1 0 0

Having such data it is easy to get computer pictures for the leaves of our foliation
(unfolded in R?). Figure 2 illustrates a piece of curve obtained by random choice of
initial point.

1250 |
1000 |
750
500

250

- 2000 - 1000 1000

-250 |

-500 |

FIGURE 2. A piece of leaf after 100 000 returns to the transversal. Unit of
measurement is one unit of our cubic lattice. Starting point is at the origin.

It is easy to see, that the leaf goes rather close to a straight line. Still one should
not think, that our leaf just goes straight in one direction — it walks along the line
to and fro many times (see section 6 for more details). We stress once more, that
such behavior of the leaf can not be explained by means of asymptotic cycle which
is equal to zero in the first homology of the torus.
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The “straight line” behavior of leaves immediately follows from our Main Conjec-
ture in the end of section 3. Consider images of the subspaces H', H?, H? in the first
homology H;(T?;R) of the torus. We know, that asymptotic cycle, which spans H*
maps to zero. Hence the image of H? is a one-dimensional subspace in H, (7?;R) (un-
less it also maps to zero, which is not the case in our example). This one-dimensional
subspace gives the direction of the line, which one sees at figure 2. One can also
check, that two-dimensional image of H? coincides with the plain ax + by + cy = 0.

Fortunately Rauzy process for interval exchange transformation in our example is
so simple, that we can prove all conjectures in this particular case. After 12 steps the
procedure starts to go cyclically with a period 162. Here is the list of eigennumbers
of the matrix Acyce = (12)4-1 . (1744 corresponding to a cycle in Rauzy induction:
x1 /25020, a9 &= 1260, 23 ~ 20, x4 = x5 = ¢ = 1, w7 &~ 0.05, sz~
0.0008, x9 ~ 0.00004. Taking a large power of this matrix one gets a picture as in
Conjectures above.

We checked cyclic behavior of Rauzy induction in this example as follows: having
initial data from Dynnikov process we got approximate initial data for interval ex-
change transformation with precision sufficient to be sure in first several hundred of
steps. Then using computer we generated Rauzy process for our data, and got in-
formation on probable length of cycle (162) and number of starting steps (12) before
going cyclically. We calculated corresponding matrices M24 and (1™A; this matrices
are integer, so they were calculated precisely. Then we checked that these integer
matrices obey some algebraic equation containing matrix D of period of Dynnikov
process, which proved that interval exchange transformation obtained from periodic
point in Dynnikov process gives periodic point (with period 162) in Rauzy induction.
Unfortunately we do not see any mapping or any other direct relations between Dyn-
nikov process and Rauzy induction, though morally they represent one and the same
process (it was noticed by J.Smillie). In particular we can not prove in general, that
periodic Dynnikov process generates periodic process in Rauzy induction.

Let us give some explanation of the properties of eigennumbers of matrix Agyce.
For simplicity take (A and (1%} as initial data. Then Rauzy process would be purely
cyclic with period 162, i.e.,

(162)0_ — (0)0_ (17)
(162)Ud0m — (O)Udom (18)
(0)) = (162)4 . (162)y _ (162), . (162)) (19)

i.e., A is exactly the eigenvector of (124 corresponding to largest eigennumber (162,

Consider matrix S = (9 defined by Eq. 10. Due to Eq. 17 (162§ = S and due

to Eq. 18 change of coordinates in Eq. 12 determined by g, is trivial — it is
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identity matrix. Hence in our case Eq. 13 simplifies as follows:
§ = ((162)A)T .S (162)A (20)

It means that transformation (*2)4 preserves three-dimensional kernel of operator S
(see proposition 2). Moreover, due to Eq. 17, Eq. 18, and using proposition 3 we
see, that operator (124 acts on the space KerS as identity mapping. This way we
get three unity eigenvalues x4 = x5 = x¢ = 1 (cf. Conjecture 4).

We have a well-defined action of operator 24 on the quotient space R?/KerS,
since we factorize over invariant subspace. On the quotient space we have skew-
symmetric bilinear form, which comes from skew-symmetric bilinear form on R? de-
termined by matrix S. On the quotient space our bilinear form is already nondegen-
erate, and according to Eq. 20 we get a symplectic operator on this six-dimensional
vector space. This explains why x; = 1/x9, 3 = 1/xs, x5 = 1 /a7 (cf. Conjecture 5).

Taking powers of matrix 124 we will get a picture of distribution of eigennumbers
as in Conjectures 2 and 3.

Let us discuss behavior of flags (VL' (¥)2 (F)£3 | Tt is easy to see, that for k, = 162-¢
we have

Ut = Uelpi — i o =1,2,3

Consider some intermediate k, say, & = 162 - ¢ + r, where 0 < r < 162. Then
()4 = (kg . (DA, Note, that A is nondegenarate operator. Since we have a finite
number of possible values for r, we can get any uniform estimates for action of A, so
morally we can consider this operator as a “small perturbation of identity operator”
with respect to “significant” operator f9A (assuming k, is sufficiently large).

More precisely we can express this idea as follows. Suppose we have a linear
projection operator P : X — X on a finite-dimensional vector space X, which maps
the whole space to some invariant subspace Y C X, i.e., Im(P) =Y, and P(Y) =Y.
Let (@ be an automorphism of the vector space X. Then composition P - @ (first
apply @, then P) is again projection to the subspace Y, i.e. Im(P - Q) =Y, and for
almost all automorphisms ) one has (P-Q)(Y) =Y.

Morally operator (A acts as a projection P to the subspace £° for i = 1,2,3
depending how many steps (1,2, or 3) of approximation we want to consider, while
operator (A plays a role of automorphism (). This idea can be easily formalized
in our case, which implies that intermediate subspaces %«t7)L? where i = 1,2,3
converge to L' as ¢ tends to infinity.

6. Appendix. Sections of Dynnikov surface

This is just to present several illustrations to section 5. Consider a section of
Dynnikov surface in R?® by a plane ax + by + cz = const, where coefficients a, b, ¢



16 ANTON ZORICH

are as in section 5. Consider a square in the (x,y) plane with a side d. Cut a
parallelogram from the plane ax + by 4+ ¢z = const which projects to our square
under projection along z-axes. A piece of section of Dynnikov surface which got into
our parallelogram splits into several connected components. Take one of them. Here
we present two pictures of such components for different values of d (we measure d
in terms of units of our lattice). On the first picture the visible area coincides with
accessible area and equals 40 x 40 units, i.e., d = 40.

Accessible areais 40x40 units

FIGURE 3. Slice of Dynnikov surface.

Problem 2. It would be rather interesting to know, how many connected compo-
nents has a generic section of Dynnikov surface: one, two, finite number, or countable
number?

It would not be interesting to show the whole picture for large values of d. Since
our components are just unions of pieces of trajectories, we would see just a strait line
for large values of d. Figure 4 demonstrates only a small part of the whole picture,
as if we use a zoom. Here d = 500, while we see only a piece of the picture which
gets inside a 50 x 50 square.

The picture presented is schematic — it is represented by a plane graph. The
actual picture is obtained by replacement of edges of the graph by thin ribbons, and
by proper conjugation of the ribbons near the vertices.
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Accessible areais 500x500 units
Graphic areais 50 units

Number of vertices: 6869

Number of branches: 1858

Starting point: t= 1.763092 at interval 3

FIGURE 4. Slice of Dynnikov surface.

The second picture illustrates, that our trajectories may “wonder along the line”
in a quite complicated way. Lacunas in the graph would be filled up after enlarging
the size of the rectangle under consideration. But the picture shows, that trajectories
have to go far enough before they come back and fill up the lacunas.
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