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Abstract. Various problems of geometry, topology and dynamical systems on surfaces as
well as some questions concerning one-dimensional dynamical systems lead to the study
of closed surfaces endowed with a flat metric with several cone-type singularities. In an
important particular case, when the flat metric has trivial holonomy, the corresponding
flat surfaces are naturally organized into families which appear to be isomorphic to moduli
spaces of holomorphic one-forms.

One can obtain much information about the geometry and dynamics of an individual
flat surface by studying both its orbit under the Teichmüller geodesic flow and under the
linear group action on the corresponding moduli space. We apply this general principle
to the study of generic geodesics and to counting of closed geodesics on a flat surface.
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Introduction: Families of Flat Surfaces as Moduli
Spaces of Abelian Differentials

Consider a collection of vectors v⃗1, . . . , v⃗n in R2 and construct from these vectors
a broken line in a natural way: a j-th edge of the broken line is represented by
the vector v⃗j . Construct another broken line starting at the same point as the
initial one by taking the same vectors in the order v⃗π(1), . . . , v⃗π(n), where π is some
permutation of n elements. By construction the two broken lines share the same
endpoints; suppose that they bound a polygon like in Fig. 1. Identifying the pairs
of sides corresponding to the same vectors v⃗j , j = 1, . . . , n, by parallel translations
we obtain a surface endowed with a flat metric. (This construction follows the one
in [M1].) The flat metric is nonsingular outside of a finite number of cone-type
singularities corresponding to the vertices of the polygon. By construction the
flat metric has trivial holonomy: a parallel transport of a vector along a closed
path does not change the direction (and length) of the vector. This implies, in
particular, that all cone angles are integer multiples of 2π.

∗The author is grateful to the MPI (Bonn) and to IHES for hospitality during the preparation
of this paper.
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Figure 1. Identifying corresponding pairs of sides of this polygon by parallel translations
we obtain a surface of genus two. It has single conical singularity with cone angle 6π; the
flat metric has trivial holonomy.

The polygon in our construction depends continuously on the vectors v⃗j . This
means that the combinatorial geometry of the resulting flat surface (its genus g,
the number m and types of the resulting conical singularities) does not change
under small deformations of the vectors v⃗j . This allows to consider a flat surface
as an element of a family of flat surfaces sharing common combinatorial geometry;
here we do not distinguish isometric flat surfaces. As an example of such family
one can consider a family of flat tori of area one, which can be identified with the
space of lattices of area one:

\ SL(2,R) /
SO(2,R) SL(2,Z) = H2/

SL(2,Z)

The corresponding “modular surface” is not compact, see Fig. 2. Flat tori
representing points, which are close to the cusp, are almost degenerate: they have
a very short closed geodesic. Similarly, families of flat surfaces of higher genera also
form noncompact finite-dimensional orbifolds. The origin of their noncompactness
is the same as for the tori: flat surfaces having short closed geodesics represent
points which are close to the multidimensional “cusps”.

We shall consider only those flat surfaces, which have trivial holonomy. Choos-
ing a direction at some point of such flat surface we can transport it to any other
point. It would be convenient to include the choice of direction in the definition of
a flat structure. In particular, we want to distinguish the flat structure represented
by the polygon in Fig. 1 and the one represented by the same polygon rotated by
some angle different from 2π.

Consider the natural coordinate z in the complex plane. In this coordinate the
parallel translations which we use to identify the sides of the polygon in Fig. 1
are represented as z′ = z + const. Since this correspondence is holomorphic, it
means that our flat surface S with punctured conical points inherits the complex
structure. It is easy to check that the complex structure extends to the punctured
points. Consider now a holomorphic 1-form dz in the complex plane. When we
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neighborhood of a
cusp = subset of
tori having short
closed geodesic

Figure 2. “Modular surface” H2/SL(2,Z) representing the space of flat tori is a noncom-
pact orbifold of finite volume.

pass to the surface S the coordinate z is not globally defined anymore. However,
since the changes of local coordinates are defined as z′ = z + const, we see that
dz = dz′. Thus, the holomorphic 1-form dz on C defines a holomorphic 1-form ω
on S which in local coordinates has the form ω = dz. It is easy to check that the
form ω has zeroes exactly at those points of S where the flat structure has conical
singularities.

Reciprocally, one can show that a pair (Riemann surface, holomorphic 1-form)
uniquely defines a flat structure of the type described above.

In an appropriate local coordinate w a holomorphic 1-form can be represented
in a neighborhood of zero as wd dw, where d is called the degree of zero. The
form ω has a zero of degree d at a conical point with cone angle 2π(d + 1). The
sum of degrees d1 + · · · + dm of zeroes of a holomorphic 1-form on a Riemann
surface of genus g equals 2g−2. The moduli space Hg of pairs (complex structure,
holomorphic 1-form) is a Cg-vector bundle over the moduli space Mg of complex
structures. The space Hg is naturally stratified by the strata H(d1, . . . , dm) enu-
merated by unordered partitions of the number 2g − 2 in a collection of positive
integers 2g − 2 = d1 + · · · + dm. Any holomorphic 1-forms corresponding to a
fixed stratum H(d1, . . . , dm) has exactly m zeroes, and d1, . . . , dm are the degrees
of zeroes. Note, that an individual stratum H(d1, . . . , dm) in general does not form
a fiber bundle over Mg.

It is possible to show that if the permutation π which was used to construct a
polygon in Fig. 1 satisfy some explicit conditions, vectors v⃗1, . . . , v⃗n represent-
ing the sides of the polygon serve as coordinates in the corresponding family
H(d1, . . . , dm). Consider vectors v⃗j as complex numbers. Let v⃗j join vertices
Pj and Pj+1 of the polygon. Denote by ρj the resulting path on S joining the
points Pj , Pj+1 ∈ S. Our interpretation of v⃗j as of a complex number implies that∫

ρj

ω =

∫ Pj+1

Pj

dz = vj ∈ C
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The path ρj represents a relative cycle: an element of the relative homology group
H1(S, {P1, . . . , Pm} ; Z) of the surface S relative to the finite collection of con-
ical points {P1, . . . , Pm}. Relation above means that v⃗j represents a period of
ω: an integral of ω over the relative cycle ρj . In other words, a small domain
in H1(S, {P1, . . . , Pm};C) containing [ω] can be considered as a local coordinate
chart in our family H(d1, . . . , dm) of flat surfaces.

We summarize the correspondence between geometric language of flat surfaces
and the complex-analytic language of holomorphic 1-forms on a Riemann surface
in the dictionary below.

Geometric language Complex-analytic language

flat structure (including a choice complex structure and a choice
of the vertical direction) of a holomorphic 1-form ω

conical point zero of degree d
with a cone angle 2π(d+ 1) of the holomorphic 1-form ω

(in local coordinates ω = wd dw)

side v⃗j of a polygon relative period
∫ Pj+1

Pj
ω =

∫
v⃗j
ω

of the 1-form ω

family of flat surfaces sharing stratum H(d1, . . . , dm) in the
the same cone angles moduli space of Abelian differentials

2π(d1 + 1), . . . , 2π(dm + 1)

coordinates in the family: coordinates in H(d1, . . . , dm) :
vectors v⃗i relative periods of ω in

defining the polygon H1(S, {P1, . . . , Pm};C)

Note that the vector space H1(S, {P1, . . . , Pm} ; C) contains a natural integer
lattice H1(S, {P1, . . . , Pm} ; Z ⊕

√
−1Z). Consider a linear volume element dν in

the vector space H1(S, {P1, . . . , Pm} ; C) normalized in such a way that the volume
of the fundamental domain in the “cubic” lattice

H1(S, {P1, . . . , Pm} ; Z ⊕
√
−1Z) ⊂ H1(S, {P1, . . . , Pm} ; C)

equals one. Consider now the real hypersurface H1(d1, . . . , dm) ⊂ H(d1, . . . , dm)
defined by the equation area(S) = 1. The volume element dν can be naturally
restricted to the hypersurface defining the volume element dν1 on H1(d1, . . . , dm).

Theorem (H. Masur. W. A. Veech). The total volume Vol(H1(d1, . . . , dm)) of
every stratum is finite.

The values of these volumes were computed by A. Eskin and A. Okounkov [EO].
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Consider a flat surface S and consider a polygonal pattern obtained by un-
wrapping S along some geodesic cuts. For example, one can assume that our flat
surface S is glued from a polygon Π ⊂ R2 as on Fig. 1. Consider a linear trans-
formation g ∈ GL+(2,R) of the plane R2. The sides of the new polygon gΠ are
again arranged into pairs, where the sides in each pair are parallel and have equal
length. Identifying the sides in each pair by a parallel translation we obtain a
new flat surface gS which, actually, does not depend on the way in which S was
unwrapped to a polygonal pattern Π. Thus, we get a continuous action of the
group GL+(2,R) on each stratum H(d1, . . . , dm).

Considering the subgroup SL(2,R) of area preserving linear transformations we
get the action of SL(2,R) on the “unit hyperboloid” H1(d1, . . . , dm). Considering

the diagonal subgroup

(
et 0
0 e−t

)
⊂ SL(2,R) we get a continuous action of this

one-parameter subgroup on each stratum H(d1, . . . , dm). This action induces a
natural flow on the stratum which is called the Teichmüller geodesic flow.

Key Theorem (H. Masur. W. A. Veech). The actions of the groups SL(2,R) and(
et 0
0 e−t

)
preserve the measure dν1. Both actions are ergodic with respect to this

measure on each connected component of every stratum H1(d1, . . . , dm).

The following basic principle (which was was first used in the pioneering works
of H. Masur [M1] and of W. Veech [V1] to prove unique ergodicity of almost all in-
terval exchange transformations) appeared to be surprisingly powerful in the study
of flat surfaces. Suppose that we need some information about geometry or dynam-
ics of an individual flat surface S. Consider the “point” S in the corresponding fam-

ily of flat surfacesH(d1, . . . , dm). Denote byN (S) = GL+(2,R)S ⊂ H(d1, . . . , dm)
the closure of the GL+(2,R)-orbit of S in H(d1, . . . , dm).

In numerous cases knowledge about the structure of N (S) gives a compre-
hensive information about geometry and dynamics of the initial flat surface S.
Moreover, some delicate numerical characteristics of S can be expressed as aver-
ages of simpler characteristics over N (S). We apply this general philosophy to the
study of geodesics on flat surfaces.

Actually, there is a hope that this philosophy extends much further. A closure
of an orbit of an abstract dynamical system might have extremely complicated
structure. According to the optimistic hopes, the closure N (S) of a GL+(2,R)-
orbit of any flat surface S is a nice complex-analytic variety, and all such varieties
might be classified. For genus two the latter statements were recently proved by
C. McMullen (see [Mc1] and [Mc2]) and partly by K. Calta [Ca].

The following theorem supports the hope for some nice and simple description
of orbit closures.

Theorem (M. Kontsevich). Suppose that the closure in the stratum H(d1, . . . , dm)
of a GL+(2,R)-orbit of some flat surface S is a complex-analytic subvariety. Then
in cohomological coordinates H1(S, {P1, . . . , Pm};C) this subvariety is represented
by an affine subspace.
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1. Geodesics Winding up Flat Surfaces

In this section we study geodesics on a flat surface S going in generic directions.
According to the theorem of S. Kerckhoff, H. Masur and J. Smillie [KeMS], for any
flat surface S the directional flow in almost any direction is uniquely ergodic. This
implies, in particular, that for such directions the geodesics wind around S in a
relatively regular manner. Namely, it is possible to find a cycle c ∈ H1(S;R) such
that a long piece of geodesic pretends to wind around S repeatedly following this
asymptotic cycle c. Rigorously it can be described as follows. Having a geodesic
segment X ⊂ S and some point x ∈ X we emit from x a geodesic transversal to
X. From time to time the geodesic would intersect X. Denote the corresponding
points as x1, x2, . . . . Closing up the corresponding pieces of the geodesic by joining
the starting point x0 and the point xj of j-th return to X with a path going along
X we get a sequence of closed paths defining the cycles c1, c2, . . . . These cycles
represent longer and longer pieces of the geodesic. When the direction of the
geodesic is uniquely ergodic, the limit

lim
N→∞

1

N
cN = c

exists and the corresponding asymptotic cycle c ∈ H1(S;R) does not depend on
the starting point x0 ∈ X. Changing the transverse interval X we get a collinear
asymptotic cycle.

When S is a flat torus glued from a unit square, the asymptotic cycle c is a
vector in H1(T2;R) = R2 and its slope is exactly the slope of our flat geodesic in
standard coordinates. When S is a surface of higher genus the asymptotic cycle
belongs to a 2g-dimensional space H1(S;R) = R2g. Let us study how the cycles
cj deviate from the direction of the asymptotic cycle c. Choose a hyperplane
W in H1(S,R) orthogonal (transversal) to the asymptotic cycle c and consider a
parallel projection to this screen along c. Projections of the cycles cN would not be
necessarily bounded: directions of the cycles cN tend to direction of the asymptotic
cycle c provided the norms of the projections grow sublinearly with respect to N .

Let us observe how the projections are distributed in the screen W . A heuristic
answer is given by Fig. 3. We see that the distribution of projections of the cycles
cN in the screenW is anisotropic: the projections accumulate along some line. This
means that in the original space R2g the vectors cN deviate from the asymptotic
direction L1 spanned by c not arbitrarily but along some two-dimensional subspace
L2 containing L1, see Fig. 3. Moreover, measuring the norms ∥proj(cN )∥ of the
projections we get

lim sup
N→∞

log ∥proj(cN )∥
logN

= ν2 < 1

Thus, the vector cN is located approximately in the two-dimensional plane L2, and
the distance from its endpoint to the line L1 in L2 is at most of the order ∥cN∥ν2 ,
see Fig. 3.

Consider now a new screen W2 ⊥ L2 orthogonal to the plane L2. Now the
screen W2 has codimension two in H1(S,R) ≃ R2g. Taking the projections of cN
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cN

∥cN∥ν2

∥cN∥ν3

H1(M ;R) ≃ R2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

M2
g

Figure 3. Deviation from the asymptotic direction exhibits anisotropic behavior: vec-
tors deviate mainly along two-dimensional subspace, a bit more along three-dimensional
subspace, etc. Their deviation from a Lagrangian g-dimensional subspace is already uni-
formly bounded.

to W2 along L2 we eliminate the asymptotic directions L1 and L2 and we see how
the vectors cN deviate from L2. On the screen W2 we observe the same picture as
in Fig. 3: the projections are again located along a one-dimensional subspace.

Coming back to the ambient space H1(S,R) ≃ R2g, this means that in the first
term of approximation all vectors cN are aligned along the one-dimensional sub-
space L1 spanned by the asymptotic cycle. In the second term of approximation,
they can deviate from L1, but the deviation occurs mostly in the two-dimensional
subspace L2, and has order ∥cN∥ν2 where ν2 < 1. In the third term of approxima-
tion we see that the vectors cN may deviate from the plane L2, but the deviation
occurs mostly in a three-dimensional space L3 and has order ∥cN∥ν3 where ν3 < ν2.

Going on we get further terms of approximation. However, getting to a subspace
Lg which has half of the dimension of the ambient space we see that, in there is
no more deviation from Lg: the distance from any cN to Lg is uniformly bounded.
Note that the intersection form endows the space H1(S,R) ≃ R2g with a natural
symplectic structure. It can be checked that the resulting g-dimensional subspace
Lg is a Lagrangian subspace for this symplectic form.

A rigorous formulation of phenomena described heuristically in Fig. 3 is given
by the theorem below.

By convention we always consider a flat surface together with a choice of
direction which is called the vertical direction, or, sometimes, “direction to the
North”. Using an appropriate homotethy we normalize the area of S to one, so



8 Anton Zorich

that S ∈ H1(d1, . . . , dm).
We chose a point x0 ∈ S and a horizontal segmentX passing through x0; by |X|

we denote the length of X. The interval X is chosen in such way, that the interval
exchange transformation induced by the vertical flow has the minimal possible
number n = 2g + m − 1 of subintervals under exchange. (Actually, almost any
other choice of X would also work.) We consider a geodesic ray γ emitted from
x0 in the vertical direction. (If x0 is a saddle point, there are several outgoing
vertical geodesic rays; choose any of them.) Each time when γ intersects X we
join the point xN of intersection and the starting point x0 along X producing a
closed path. We denote the homology class of the corresponding loop by cN .

Let ω be the holomorphic 1-form representing S; let g be genus of S. Choose
some Euclidean metric in H1(S;R) ≃ R2g which would allow to measure a distance
from a vector to a subspace. Let by convention log(0) = −∞.

Theorem 1. For almost any flat surface S in any stratum H1(d1, . . . , dm) there
exists a flag of subspaces

L1 ⊂ L2 ⊂ · · · ⊂ Lg ⊂ H1(S;R)

in the first homology group of the surface with the following properties.
Choose any starting point x0 ∈ X in the horizontal segment X. Consider the

corresponding sequence c1, c2, . . . of cycles.
— The following limit exists

|X| lim
N→∞

1

N
cN = c,

where the nonzero asymptotic cycle c ∈ H1(M
2
g ;R) is Poincaré dual to the co-

homology class of ω0 = Re[ω], and the one-dimensional subspace L1 = ⟨c⟩R is
spanned by c.

— For any j = 1, . . . , g − 1 one has

lim sup
N→∞

log dist(cN , Lj)

logN
= νj+1

and
dist(cN , Lg) ≤ const,

where the constant depends only on S and on the choice of the Euclidean structure
in the homology space.

The numbers 2, 1 + ν2, . . . , 1 + νg are the top g Lyapunov exponents of the
Teichmüller geodesic flow on the corresponding connected component of the stratum
H(d1, . . . , dm); in particular, they do not depend on the individual generic flat
surface S in the connected component.

It should be stressed, that the theorem above was formulated in [Z3] as a
conditional statement: under the conjecture that νg > 0 there exist a Lagrangian
subspace Lg such that the cycles are in a bounded distance from Lg; under the
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further conjecture that all the exponents νj , for j = 2, . . . , g, are distinct, there
is a complete Lagrangian flag (i.e. the dimensions of the subspaces Lj , where
j = 1, 2, . . . , g, rise each time by one). These two conjectures were later proved by
G. Forni [Fo1] and by A. Avila and M. Viana [AvVi] correspondingly.

Currently there are no methods of calculation of individual Lyapunov exponents
νj (though there is some experimental knowledge of their approximate values).
Nevertheless, for any connected component of any stratum (and, more generally,
for any GL+(2;R)-invariant suborbifold) it is possible to evaluate the sum of the
Lyapunov exponents ν1 + · · ·+ νg, where g is the genus. The formula for this sum
was discovered by M. Kontsevich; morally, it is given in terms of characteristic
numbers of some natural vector bundles over the strata H(d1, . . . , dm), see [K].
Another interpretation of this formula was found by G. Forni [Fo1]; see also a
very nice formalization of these results in the survey of R. Krikorian [Kr]. For
some special GL+(2;R)-invariant suborbifolds the corresponding vector bundles
might have equivariant subbundles, which provides additional information on cor-
responding subcollections of the Lyapunov exponents, or even gives their explicit
values in some cases, like in the case of Teichmüller curves considered in the paper
of I. Bouw and M. Möller [BMö].

Theorem 1 illustrates a phenomenon of deviation spectrum. It was proved by
G. Forni in [Fo1] that ergodic sums of smooth functions on an interval along trajec-
tories of interval exchange transformations, and ergodic integrals of smooth func-
tions on flat surfaces along trajectories of directional flows have deviation spectrum
analogous to the one described in theorem 1. L. Flaminio and G. Forni showed
that the same phenomenon can be observed for other parabolic dynamical sys-
tems, for example, for the horocycle flow on compact surfaces of constant negative
curvature [FlFo].

Idea of the proof: renormalization. The reason why the deviation of the
cycles cj from the asymptotic direction is governed by the Teichmüller geodesic
flow is illustrated in Fig. 4. In a sense, we follow the initial ideas of H. Masur [M1]
and of W. Veech [V1].

Fix a horizontal segment X and emit a vertical trajectory from some point x in
X. When the trajectory intersects X for the first time join the corresponding point
T (x) to the original point x along X to obtain a closed loop. Here T : X → X
denotes the first return map to the transversal X induced by the vertical flow.
Denote by c(x) the corresponding cycle in H1(S;Z). Let the interval exchange
transformation T : X → X decompose X into n subintervals X1 ⊔ · · · ⊔ Xn. It
is easy to see that the “first return cycle” c(x) is piecewise constant: we have
c(x) = c(x′) =: c(Xj) whenever x and x′ belong to the same subinterval Xj , see
Fig. 4. It is easy to see that

cN (x) = c(x) + c(T (x)) + · · ·+ c(TN−1(x))

The average of this sum with respect to the “time” N tends to the asymptotic
cycle c. We need to study the deviation of this sum from the value N · c. To do
this consider a shorter subinterval X ′ as in Fig. 4. Its length is chosen in such way,
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that the first return map of the vertical flow again induces an interval exchange
transformation T ′ : X ′ → X ′ of n subintervals. New first return cycles c′(X ′

k) to
the interval X ′ are expressed in terms of the initial first return cycles c(Xj) by
the linear relations below; the lengths |X ′

k| of subintervals of the new partition
X ′ = X ′

1 ⊔ · · · ⊔X ′
m are expressed in terms of the lengths |Xj | of subintervals of

the initial partition by dual linear relations:

c′(X ′
k) =

n∑
j=1

Ajk · c(Xj) |Xj | =
n∑

k=1

Ajk · |X ′
k| ,

where a nonnegative integer matrix Ajk is completely determined by the initial
interval exchange transformation T : X → X and by the choice of X ′ ⊂ X.

To construct the cycle cN representing a long piece of leaf of the vertical fo-
liation we followed the trajectory x, T (x), . . . , TN−1(x) of the initial interval ex-
change transformation T : X → X and computed the corresponding ergodic sum.
Passing to a shorter horizontal interval X ′ ⊂ X we can follow the trajectory
x, T ′(x), . . . , (T ′)N

′−1(x) of the new interval exchange transformation T ′ : X ′ →
X ′ (provided x ∈ X ′). Since the subinterval X ′ is shorter than X we cover the ini-
tial piece of trajectory of the vertical flow in a smaller number N ′ of steps. In other
words, passing from T to T ′ we accelerate the time: it is easy to see that the tra-
jectory x, T ′(x), . . . , (T ′)N

′−1(x) follows the trajectory x, T (x), . . . , TN−1(x) but
jumps over several iterations of T at a time.

This approach would not be efficient if the new first return map T ′ : X ′ → X ′

would be more complicated than the initial one. But we know that passing from
T to T ′ we stay within a family of interval exchange transformations of some fixed
number n of subintervals, and, moreover, that the new “first return cycles” c′(X ′

k)
and the lengths |X ′

k| of the new subintervals are expressed in terms of the initial
ones by means of the n×n-matrix A, which depends only on the choice of X ′ ⊂ X
and which can be easily computed.

Our strategy can be now formulated as follows. One can define an explicit
algorithm (generalizing Euclidean algorithm) which canonically associates to an
interval exchange transformation T : X → X some specific subinterval X ′ ⊂ X
and, hence, a new interval exchange transformation T ′ : X ′ → X ′. Similarly to
the Euclidean algorithm our algorithm is invariant under proportional rescaling of
X and X ′, so, when we find it convenient, we can always rescale the length of the
interval to one. This algorithm can be considered as a map T from the space of
all interval exchange transformations of a given number n of subintervals to itself.
Applying recursively this algorithm we construct a sequence of subintervals X =
X(0) ⊃ X(1) ⊃ X(2) ⊃ . . . and a sequence of matrices A = A(T (0)), A(T (1)), . . .
describing transitions form interval exchange transformation T (r) : X(r) → X(r)

to interval exchange transformation T (r+1) : X(r+1) → X(r+1). Taking a product
A(s) = A(T (0))·A(T (1))·· · ··A(T (s−1)) we can immediately express the “first return
cycles” to a microscopic subinterval X(s) in terms of the initial “first return cycles”
to X. Considering now the matrices A as the values of a matrix-valued function
on the space of interval exchange transformations, we realize that we study the
products of matrices A along the orbits T (0), T (1), . . . , T (s−1) of the map on the
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(
et0 0
0 e−t0

)

︸ ︷︷ ︸
X′

a)

b) c)

v⃗1

v⃗2 v⃗3

v⃗4

v⃗4

v⃗3
v⃗2

v⃗1

Figure 4. Idea of renormalization. a) Unwrap the flat surface into “zippered rectangles”.
b) Shorten the base of the corresponding zippered rectangles. c)Expand the resulting tall
and narrow zippered rectangle horizontally and contract it vertically by same factor et0 .
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space of interval exchange transformations. When the map is ergodic with respect
to a finite measure, the properties of these products are described by the Oseledets
theorem, and the cycles cN have a deviation spectrum governed by the Lyapunov
exponents of the cocycle A on the space of interval exchange transformations.

Note that the first return cycle to the subinterval X(s) (which is very short)
represents the cycle cN corresponding to a very long trajectory x, T (x), ..., TN−1(x)
of the initial interval exchange transformation. In other words, our renormalization
procedure T plays a role of a time acceleration machine: morally, instead of getting
the cycle cN by following a trajectory x, T (x), ..., TN−1(x) of the initial interval
exchange transformation for the exponential time N ∼ exp(const · s) we obtain
the cycle cN applying only s steps of the renormalization map T on the space of
interval exchange transformations.

It remains to establish the relation between the the cocycle A over the map T
and the Teichmüller geodesic flow. Conceptually, this relation was elaborated in
the original paper of W. Veech [V1].

First let us discuss how can one “almost canonically” (that is up to a finite
ambiguity) choose a zippered rectangles representation of a flat surface. Note that
Fig. 4 suggests the way which allows to obtain infinitely many zippered rectangles
representations of the same flat surface: we chop an appropriate rectangle on
the right, put it atop the corresponding rectangle and then repeat the procedure
recursively. This resembles the situation with a representation of a flat torus by a
parallelogram: a point of the fundamental domain in Fig. 2 provides a canonical
representative though any point of the corresponding SL(2,Z)-orbit represents the
same flat torus. A “canonical” zippered rectangles decomposition of a flat surface
also belongs to some fundamental domain. Following W. Veech one can define the
fundamental domain in terms of some specific choice of a “canonical” horizontal
interval X. Namely, let us position the left endpoint of X at a conical singularity.
Let us choose the length ofX in such way that the interval exchange transformation
T : X → X induced by the first return of the vertical flow to X has minimal
possible number n = 2g +m− 1 of subintervals under exchange. Among all such
horizontal segments X choose the shortest one, which length is greater than or
equal to one. This construction is applicable to almost all flat surfaces; the finite
ambiguity corresponds to the finite freedom in the choice of the conical singularity
and in the choice of the horizontal ray adjacent to it.

Since the interval X defines a decomposition of (almost any) flat surface into
“zippered rectangles” (see Fig. 4) we can pass from the space of flat surfaces to
the space of zippered rectangles (which can be considered as a finite ramified cov-
ering over the space of flat surfaces). Teichmüller geodesic flow lifts naturally to
the space of zippered rectangles. It acts on zippered rectangles by expansion in
horizontal direction and contraction in vertical direction; i.e. the zippered rectan-

gles are modified by linear transformations

(
et 0
0 e−t

)
. However, as soon as the

Teichmüller geodesic flow brings us out of the fundamental domain, we have to
modify the zippered rectangles decomposition to the “canonical one” correspond-
ing to the fundamental domain. (Compare to Fig. 2 where the Teichmüller geodesic
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flow corresponds to the standard geodesic flow in the hyperbolic metric on the up-
per half-plane.) The corresponding modification of zippered rectangles (chop an
appropriate rectangle on the right, put it atop the corresponding rectangle; repeat
the procedure several times, if necessary) is illustrated in Fig. 4.

Now everything is ready to establish the relation between the Teichmüller
geodesic flow and the map T on the space of interval exchange transformations.

Consider some codimension one subspace Υ in the space of zippered rectangles
transversal to the Teichmüller geodesic flow. Say, Υ might be defined by the
requirement that the base X of the zippered rectangles decomposition has length
one, |X| = 1. This is the choice in the original paper of W. Veech [V1]; under
this choice Υ represents part of the boundary of the fundamental domain in the
space of zippered rectangles. Teichmüller geodesic flow defines the first return map
S : Υ → Υ to the section Υ. The map S can be described as follows. Take a flat
surface of unit area decomposed into zippered rectangles Z with the base X of
length one. Apply expansion in horizontal direction and contraction in vertical
direction. For some t0(Z) the deformed zippered rectangles can be rearranged as
in Fig. 4 to get back to the base of length one; the result is the image of the map S.
Actually, we can first apply the rearrangement as in Fig. 4 to the initial zippered

rectangles Z and then apply the transformation

(
et0 0
0 e−t0

)
— the two operations

commute. This gives, in particular, an explicit formula for t0(Z). Namely let |Xn|
be the width of the rightmost rectangle and let |Xk| be the width of the rectangle,
which top horizontal side is glued to the rightmost position at the base X. (For
the upper zippered rectangle decomposition in Fig. 4 we have n = 4 and k = 2.)
Then

t0 = − log
(
1−min(|Xn|, |Xk|)

)
.

Recall that a decomposition of a flat surface into zippered rectangles naturally
defines an interval exchange transformation — the first return map of the vertical
flow to the base X of zippered rectangles. Hence, the map S of the subspace Υ
of zippered rectangles defines an induced map on the space of interval exchange
transformations. It remains to note that this induced map is exactly the map T .
In other words, the map S : Υ → Υ induced by the first return of the Teichmüller
geodesic flow to the subspace Υ of zippered rectangles is the suspension of the map
T on the space of interval exchange transformations.

We complete with a remark concerning the choice of a section. The natural
section Υ chosen in the original paper of W. Veech [V1] is in a sense too large:
the corresponding invariant measure (induced from the measure on the space of
flat surfaces) is infinite. Choosing an appropriate subset Υ′ ⊂ Υ one can get finite
invariant measure. Moreover, the subset Υ′ can be chosen in such way that the
corresponding first return map S ′ : Υ′ → Υ′ of the Teichmüller geodesic flow is a
suspension of some natural map G on the space of interval exchange transforma-
tions, see [Z1]. According to the results of H. Masur [M1] and W. Veech [V1] the
Teichmüller geodesic flow is ergodic which implies ergodicity of the maps S ′ and
G. To apply Oseledets theorem one should, actually, consider the induced cocycle
B over this new map G instead of the cocycle A over the map T described above.
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2. Closed Geodesics on Flat Surfaces

Consider a flat surface S; we always assume that the flat metric on S has trivial
holonomy, and that the surface S has finite number of cone-type singularities. By
convention a flat surface is endowed with a choice of direction, refereed to as a
“vertical direction”, or as a “direction to the North”. Since the flat metric has
trivial holonomy, this direction can be transported in a unique way to any point
of the surface.

A geodesic segment joining two conical singularities and having no conical
points in its interior is called saddle connection. The case when boundaries of
a saddle connection coincide is not excluded: a saddle connection might join a
conical point to itself. In this section we study saddle connections and closed reg-
ular geodesics on a generic flat surface S of genus g ≥ 2. In particular, we count
them and we explain the following curious phenomenon: saddle connections and
closed regular geodesics often appear in pairs, triples, etc of parallel saddle connec-
tions (correspondingly closed regular geodesics) of the same direction and length.
When all saddle connections (closed regular geodesics) in such configuration are
short the corresponding flat surface is almost degenerate; it is located close to the
boundary of the moduli space. A description of possible configurations of parallel
saddle connections (closed geodesics) gives us a description of the multidimensional
“cusps” of the strata.

The results of this section are based on the joint work with A. Eskin and
H. Masur [EMZ] and on their work [MZ]. A series of beautiful results developing
the counting problems considered here were recently obtained by Ya. Vorobets [Vo].

Counting closed geodesics and saddle connections. Closed geodesics on
flat surfaces of higher genera have some similarities with ones on the torus. Suppose
that we have a regular closed geodesic passing through a point x0 ∈ S. Emitting
a geodesic from a nearby point x in the same direction we obtain a parallel closed
geodesic of the same length as the initial one. Thus, closed geodesics appear
in families of parallel closed geodesics. However, in the torus case every such
family fills the entire torus while a family of parallel regular closed geodesics on
a flat surfaces of higher genus fills only part of the surface. Namely, it fills a
flat cylinder having a conical singularity on each of its boundaries. Typically, a
maximal cylinder of closed regular geodesics is bounded by a pair of closed saddle
connections. Reciprocally, any saddle connection joining a conical point P to itself
and coming back to P at the angle π bounds a cylinder filled with closed regular
geodesics.

A geodesic representative of a homotopy class of a curve on a flat surface is
realized in general by a broken line of geodesic segments with vertices at conical
points. By convention we consider only closed regular geodesics (which by defini-
tion do not pass through conical points) or saddle connections (which by definition
do not have conical points in its interior). Everywhere in this section we normalize
the area of a flat surface to one.

Let Nsc(S,L) be the number of saddle connections of length at most L on a
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flat surface S. Let Ncg(S,L) be the number of maximal cylinders filled with closed
regular geodesics of length at most L on S. It was proved by H. Masur that for any
flat surface S both counting functions N(S,L) grow quadratically in L. Namely,
there exist constants 0 < const1(S) < const2(S) < ∞ such that

const1(S) ≤ N(S,L)/L2 ≤ const2(S)

for L sufficiently large. Recently Ya. Vorobets has obtained uniform estimates
for the constants const1(S) and const2(S) which depend only on the genus of S,
see [Vo]. Passing from all flat surfaces to almost all surfaces in a given connected
component of a given stratum one gets a much more precise result, see [EM]:

Theorem (A. Eskin and H. Masur). For almost all flat surfaces S in any stratum
H(d1, . . . , dm) the counting functions Nsc(S,L) and Ncg(S,L) have exact quadratic
asymptotics

lim
L→∞

Nsc(S,L)

πL2
= csc(S) lim

L→∞

Ncg(S,L)

πL2
= ccg(S)

Moreover, the Siegel–Veech constants csc(S) (correspondingly ccg(S)) coincide for
almost all flat surfaces S in each connected component Hcomp

1 (d1, . . . , dm) of the
stratum.

Phenomenon of higher multiplicities. Note that the direction to the North is
well-defined even at a conical point of a flat surface, moreover, at a conical point P1

with a cone angle 2πk we have k different directions to the North! Consider some
saddle connection γ1 = [P1P2] with an endpoint at P1. Memorize its direction, say,
let it be the North-West direction. Let us launch a geodesic from the same starting
point P1 in one of the remaining remaining k − 1 North-West directions. Let us
study how big is the chance to hit P2 ones again, and how big is the chance to hit
it after passing the same distance as before. We do not exclude the case P1 = P2.
Intuitively it is clear that the answer to the first question is: “the chances are low”
and to the second one is “the chances are even lower”. This makes the following
theorem (see [EMZ]) somehow counterintuitive:

Theorem 2 (A. Eskin, H. Masur, A. Zorich). For almost any flat surface S in
any stratum and for any pair P1, P2 of conical singularities on S the function
N2(S,L) counting the number of pairs of parallel saddle connections of the same
length joining P1 to P2 has exact quadratic asymptotics

lim
L→∞

N2(S,L)

πL2
= c2 > 0 ,

where the Siegel–Veech constant c2 depends only on the connected component of
the stratum and on the cone angles at P1 and P2.

For almost all flat surfaces S in any stratum one cannot find neither a single
pair of parallel saddle connections on S of different length, nor a single pair of
parallel saddle connections joining different pairs of singularities.
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Analogous statements (with some reservations for specific connected compo-
nents of certain strata) can be formulated for arrangements of 3, 4, . . . parallel
saddle connections. The situation with closed regular geodesics is similar: they
might appear (also with some exceptions for specific connected components of
certain strata) in families of 2, 3, . . . , g − 1 distinct maximal cylinders filled with
parallel closed regular geodesics of equal length. A general formula for the Siegel–
Veech constant in the corresponding quadratic asymptotics is presented at the
end of this section, while here we want to discuss the numerical values of Siegel–
Veech constants in a simple concrete example. We consider the principal strata
H(1, . . . , 1) in small genera. Let Nk cyl(S,L) be the corresponding counting func-
tion, where k is the number of distinct maximal cylinders filled with parallel closed
regular geodesics of equal length bounded by L. Let

ck cyl = lim
L→∞

Nk cyl(S,L)

πL2

The table below (extracted from [EMZ]) presents the values of ck cyl for g =
1, . . . , 4. Note that for a generic flat surface S of genus g a configuration of k ≥ g
cylinders is not realizable, so we do not fill the corresponding entry.

k g = 1 g = 2 g = 3 g = 4

1
1

2
·

1

ζ(2)
≈ 0.304

5

2
·

1

ζ(2)
≈ 1.52

36

7
·

1

ζ(2)
≈ 3.13

3150

377
·

1

ζ(2)
≈ 5.08

2 − −
3

14
·

1

ζ(2)
≈ 0.13

90

377
·

1

ζ(2)
≈ 0.145

3 − − −
5

754
·

1

ζ(2)
≈ 0.00403

Comparing these values we see, that our intuition was not quite misleading.
Morally, in genus g = 4 a closed regular geodesic belongs to a one-cylinder family
with “probability” 97.1%, to a two-cylinder family with “probability” 2.8% and
to a three-cylinder family with “probability” only 0.1% (where “probabilities” are
calculated proportionally to the Siegel–Veech constants 5.08 : 0.145 : 0.00403).

Rigid configurations of saddle connections and “cusps” of the strata.
A saddle connection or a regular closed geodesic on a flat surface S persists under
small deformations of S inside the corresponding stratum. It might happen that
any deformation of a given flat surface which shortens some specific saddle connec-
tion necessarily shortens some other saddle connections. We say that a collection
{γ1, . . . , γn} of saddle connections is rigid if any sufficiently small deformation of
the flat surface inside the stratum preserves the proportions |γ1| : |γ2| : · · · : |γn|
of the lengths of all saddle connections in the collection. It was shown in [EMZ]
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S′
3

S′
2

S′
1

S3
S2

S1

S3
S2

γ1γ2

γ3

Figure 5. Multiple homologous saddle connections, topological picture (after [EMZ])

that all saddle connections in any rigid collection are homologous. Since their
directions and lengths can be expressed in terms of integrals of the holomorphic
1-form ω along corresponding paths, this implies that homologous saddle connec-
tions γ1, . . . , γn are parallel and have equal length and either all of them join the
same pair of distinct singular points, or all γi are closed loops.

This implies that when saddle connections in a rigid collection are contracted by
a continuous deformation, the limiting flat surface generically decomposes into sev-
eral connected components represented by nondegenerate flat surfaces S′

1, . . . , S
′
k,

see Fig. 5, where k might vary from one to the genus of the initial surface. Let the
initial surface S belong to a stratum H(d1, . . . , dm). Denote the set with multiplic-
ities {d1, . . . , dm} by β. Let H(β′

j) be the stratum ambient for S′
j . The stratum

H(β′) = H(β′
1) ⊔ · · · ⊔ H(β′

k) of disconnected flat surfaces S′
1 ⊔ · · · ⊔ S′

k is referred
to as a principal boundary stratum of the stratum H(β). For any connected com-
ponent of any stratum H(β) the paper [EMZ] describes all principal boundary
strata; their union is called the principal boundary of the corresponding connected
component of H(β).

The paper [EMZ] also presents the inverse construction. Consider any flat sur-
face S′

1⊔· · ·⊔S′
k ∈ H(β′) in the principal boundary of H(β); consider a sufficiently

small value of a complex parameter ε ∈ C. One can reconstruct the flat surface
S ∈ H(β) endowed with a collection of homologous saddle connections γ1, . . . , γn
such that

∫
γi
ω = ε, and such that degeneration of S contracting the saddle connec-

tions γi in the collection gives the surface S′
1 ⊔ · · · ⊔ S′

k. This inverse construction
involves several surgeries of the flat structure. Having a disconnected flat surface
S′
1 ⊔ · · · ⊔S′

k one applies an appropriate surgery to each S′
j producing a surface Sj

with boundary. The surgery depends on the parameter ε: the boundary of each
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Sj is composed from two geodesic segments of lengths |ε|; moreover, the boundary
components of Sj and Sj+1 are compatible, which allows to glue the compound
surface S from the collection of surfaces with boundary, see Fig. 5 as an example.

A collection γ = {γ1, . . . , γn} of homologous saddle connections determines
the following data on combinatorial geometry of the decomposition S \ γ: the
number of components, their boundary structure, the singularity data for each
component, the cyclic order in which the components are glued to each other.
These data are referred to as a configuration of homologous saddle connections. A
configuration C uniquely determines the corresponding boundary stratumH(β′

C); it
does not depend on the collection γ of homologous saddle connections representing
the configuration C.

The constructions above explain how configurations C of homologous saddle
connections on flat surfaces S ∈ H(β) determine the “cusps” of the stratum H(β).
Consider a subset Hε

1(β) ⊂ H(β) of surfaces of area one having a saddle connection

shorter than ε. Up to a subset Hε,thin
1 (β) of negligibly small measure the set

Hε,thick
1 (β) = Hε

1(β) \ H
ε,thin
1 (β) might be represented as a disjoint union

Hε,thick
1 (β) ≈

⊔
C

Hε
1(C)

of neighborhoods Hε
1(C) of the corresponding “cusps” C. Here C runs over a finite

set of configurations admissible for the given stratum H1(β); this set is explicitly
described in [EMZ].

When a configuration C is composed from homologous saddle connections join-
ing distinct zeroes, the neighborhood Hε

1(C) of the cusp C has the structure of a
fiber bundle over the corresponding boundary stratum H(β′

C) (up to a difference
in a set of a negligibly small measure). A fiber of this bundle is represented by a
finite cover over the Euclidean disc of radius ε ramified at the center of the disc.
Moreover, the canonical measure in Hε

1(C) decomposes into a product measure of
the canonical measure in the boundary stratum H(β′

C) and the Euclidean measure
in the fiber (see [EMZ]), so

Vol (Hε
1(C)) = (combinatorial factor) · πε2 ·

k∏
j=1

VolH1(β
′
j) + o(ε2). (1)

Remark. We warn the reader that the correspondence between compactification
of the moduli space of Abelian differentials and the Deligne—Mamford compact-
ification of the underlying moduli space of curves is not straightforward. In par-
ticular, the desingularized stable curve corresponding to the limiting flat surface
generically is not represented as a union of Riemann surfaces corresponding to
S′
1, . . . , S

′
k — the stable curve might contain more components.

Evaluation of the Siegel–Veech constants. Consider a flat surface S. To
every closed regular geodesic γ on S we can associate a vector v⃗(γ) in R2 having
the length and the direction of γ. In other words, v⃗ =

∫
γ
ω, where we consider
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a complex number as a vector in R2 ≃ C. Applying this construction to all
closed regular geodesic on S we construct a discrete set V (S) ⊂ R2. Consider the

following operator f 7→ f̂ from functions with compact support on R2 to functions
on a connected component Hcomp

1 (β) of the stratum H1(β) = H1(d1, . . . , dm):

f̂(S) :=
∑

v⃗∈V (S)

f(v⃗)

Function f̂(S) generalizes the counting function Ncg(S,L) introduced in the be-
ginning of this section. Namely, when f = χL is the characteristic function χL of
the disc of radius L with the center at the origin of R2, the function χ̂L(S) counts
the number of regular closed geodesics of length at most L on a flat surface S.

Theorem (W. Veech). For any function f : R2 → R with compact support the
following equality is valid:

1

VolHcomp
1 (β)

∫
Hcomp

1 (β)

f̂(S) dν1 = C

∫
R2

f(x, y) dx dy , (2)

where the constant C does not depend on the function f .

Note that this is an exact equality. In particular, choosing the characteristic
function χL of a disc of radius L as a function f we see that for any positive L
the average number of closed regular geodesics not longer than L on flat surfaces
S ∈ Hcomp

1 (β) is exactly C · πL2, where the Siegel–Veech constant C does not
depend on L, but only on the connected component Hcomp

1 (β).
The theorem of Eskin and Masur cited above tells that for large values of L one

gets approximate equality χ̂L(S) ≈ ccg ·πL2 “pointwisely” for almost all individual
flat surfaces S ∈ Hcomp

1 (d1, . . . , dm). It is proved in [EM] that the corresponding
Siegel–Veech constant ccg coincides with the constant C in equation (2) above.

Actually, the same technique can be applied to count separately pairs, triples, or
any other specific configurations C of homologous saddle connections. Every time
when we find a collection of homologous saddle connections γ1, . . . , γn representing
the chosen configuration C we construct a vector v⃗ =

∫
γi
ω. Since all γ1, . . . , γn

are homologous, we can take any of them as γi. Taking all possible collections
of homologous saddle connections on S representing the fixed configuration C we
construct new discrete set VC(S) ⊂ R2 and new functional f 7→ f̂C . Theorem of

Eskin and Masur and theorem of Veech [V4] presented above are valid for f̂C . The
corresponding Siegel–Veech constant c(C) responsible for the quadratic growth rate
NC(S,L) ∼ c(C)·πL2 of the number of collections of homologous saddle connections
of the type C on an individual generic flat surface S coincides with the constant
C(C) in the expression analogous to (2).

Formula (2) can be applied to χ̂L for any value of L. In particular, instead of
taking large L we can choose a very small L = ε ≪ 1. The corresponding function
χ̂ε(S) counts how many collections of parallel ε-short saddle connections (closed
geodesics) of the type C we can find on a flat surface S ∈ Hcomp

1 (β). For the
flat surfaces S outside of the subset Hε

1(C) ⊂ Hcomp
1 (β) there are no such saddle
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connections (closed geodesics), so χ̂ε(S) = 0. For surfaces S from the subset

Hε,thick
1 (C) there is exactly one collection like this, χ̂ε(S) = 1. Finally, for the

surfaces from the remaining (very small) subset Hε,thin
1 (C) = Hε

1(C) \ H
ε,thick
1 (C)

one has χ̂ε(S) ≥ 1. Eskin and Masur have proved in [EM] that though χ̂ε(S) might

be large on Hε,thin
1 the measure of this subset is so small (see [MS]) that∫

Hε,thin
1 (C)

χ̂ε(S) dν1 = o(ε2)

and hence ∫
Hcomp

1 (β)

χ̂ε(S) dν1 = VolHε,thick
1 (C) + o(ε2).

This latter volume is almost the same as the volume VolHε
1(C) of the neighbor-

hood of the cusp C evaluated in equation (1) above, namely, VolHε,thick
1 (C) =

VolHε
1(C) + o(ε2) (see [MS]). Taking into consideration that∫

R2

χε(x, y) dx dy = πε2

and applying Siegel–Veech formula (2) to χε we finally get

VolHε
1(C)

VolHcomp
1 (d1, . . . , dm)

+ o(ε2) = c(C) · πε2

which implies the following formula for the Siegel–Veech constant c(C):

c(C) = lim
ε→0

1

πε2
Vol(“ε-neighborhood of the cusp C ”)

VolHcomp
1 (β)

=

= (explicit combinatorial factor) ·
∏k

j=1 VolH1(β
′
k)

VolHcomp
1 (β)

Sums of the Lyapunov exponents ν1+ · · ·+νg discussed in section 1 are closely
related to the Siegel–Veech constants.

3. Ergodic Components of the Teichmüller Flow

According to the theorems of H. Masur [M1] and of W. Veech [V1] Teichmüller
geodesic flow is ergodic on every connected component of every stratum of flat
surfaces. Thus, the Lyapunov exponents 1 + νj of the Teichmüller geodesic flow
responsible for the deviation spectrum of generic geodesics on a flat surface (see
section 1), or Siegel–Veech constants responsible for counting of closed geodesics
on a flat surface (see section 2) are specific for each connected component of each
stratum. The fact that the strata H1(d1, . . . , dm) are not necessarily connected
was observed by W. Veech.
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In order to formulate the classification theorem for connected components of
the strata H(d1, . . . , dm) we need to describe the classifying invariants. There
are two of them: spin structure and hyperellipticity. Both notions are applicable
only to part of the strata: flat surfaces from the strata H(2d1, . . . , 2dm) have even
or odd spin structure. The strata H(2g − 2) and H(g − 1, g − 1) have a special
hyperelliptic connected component.

The results of this section are based on the joint work with M. Kontsevich [KZ].

Spin structure. Consider a flat surface S from a stratum H(2d1, . . . , 2dm). Let
ρ : S1 → S be a smooth closed path on S; here S1 is a standard circle. Note that at
any point of the surfaces S we know where is the “direction to the North”. Hence,
at any point ρ(t) = x ∈ S we can apply a compass and measure the direction of
the tangent vector ẋ. Moving along our path ρ(t) we make the tangent vector turn
in the compass. Thus we get a map G(ρ) : S1 → S1 from the parameter circle to
the circumference of the compass. This map is called the Gauss map. We define
the index ind(ρ) of the path ρ as a degree of the corresponding Gauss map (or,
in other words as the algebraic number of turns of the tangent vector around the
compass) taken modulo 2.

ind(ρ) = degG(ρ) mod 2

It is easy to see that ind(ρ) does not depend on parameterization. Moreover, it
does not change under small deformations of the path. Deforming the path more
drastically we may change its position with respect to conical singularities of the
flat metric. Say, the initial path might go on the left of Pk and its deformation
might pass on the right of Pk. This deformation changes the degG(ρ). However,
if the cone angle at Pk is of the type 2π(2dk + 1), then degG(ρ) mod 2 does not
change! This observation explains why ind(ρ) is well-defined for a free homotopy
class [ρ] when S ∈ H(2d1, . . . , 2dm) (and hence, when all cone angles are odd
multiples of 2π).

Consider a collection of closed smooth paths a1, b1, . . . , ag, bg representing a
symplectic basis of homology H1(S,Z/2Z). We define the parity of the spin-
structure of a flat surface S ∈ H(2d1, . . . , 2dm) as

ϕ(S) =

g∑
i=1

(ind(ai) + 1) (ind(bi) + 1) mod 2

Lemma. The value ϕ(S) does not depend on symplectic basis of cycles {ai, bi}. It
does not change under continuous deformations of S in H(2d1, . . . , 2dm).

The lemma above shows that the parity of the spin structure is an invariant
of connected components of the strata of those Abelian differentials (equivalently,
flat surfaces), which have zeroes of even degrees (equivalently, conical points with
cone angles which are odd multiples of 2π).
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Hyperellipticity. A flat surface S may have a symmetry; one specific family of
such flat surfaces, which are “more symmetric than others” is of a special interest
for us. Recall that there is a one-to-one correspondence between flat surfaces and
pairs (Riemann surface M , holomorphic 1-form ω). When the corresponding
Riemann surface is hyperelliptic the hyperelliptic involution τ : M → M acts on
any holomorphic 1-form ω as τ∗ω = −ω.

We say that a flat surface S is a hyperelliptic flat surface if there is an isometry
τ : S → S such that τ is an involution, τ ◦ τ = id, and the quotient surface S/τ
is a topological sphere. In flat coordinates differential of such involution obviously
satisfies Dτ = − Id.

In a general stratum H(d1, . . . , dm) hyperelliptic flat surfaces form a small sub-
space of nontrivial codimension. However, there are two special strata, namely,
H(2g − 2) and H(g − 1, g − 1), for which hyperelliptic flat surfaces form entire
hyperelliptic connected components Hhyp(2g − 2) and Hhyp(g − 1, g − 1) corre-
spondingly.

Remark. Note that in the stratum H(g − 1, g − 1) there are hyperelliptic flat
surfaces of two different types. A hyperelliptic involution τS → S may fix the
conical points or might interchange them. It is not difficult to show that for
flat surfaces from the connected component Hhyp(g − 1, g − 1) the hyperelliptic
involution interchanges the conical singularities.

The remaining family of those hyperelliptic flat surfaces in H(g − 1, g − 1), for
which the hyperelliptic involution keeps the saddle points fixed, forms a subspace
of nontrivial codimension in the complement H(g − 1, g − 1) \ Hhyp(g − 1, g − 1).
Thus, the hyperelliptic connected component Hhyp(g − 1, g − 1) does not coincide
with the space of all hyperelliptic flat surfaces.

Classification theorem for Abelian differentials. Now, having introduced
the classifying invariants we can present the classification of connected components
of strata of flat surfaces (equivalently, of strata of Abelian differentials).

Theorem 3 (M. Kontsevich and A. Zorich). All connected components of any
stratum of flat surfaces of genus g ≥ 4 are described by the following list:

The stratum H(2g − 2) has three connected components: the hyperelliptic one,
Hhyp(2g−2), and two nonhyperelliptic components: Heven(2g−2) and Hodd(2g−2)
corresponding to even and odd spin structures.

The stratum H(2d, 2d), d ≥ 2 has three connected components: the hyperel-
liptic one, Hhyp(2d, 2d), and two nonhyperelliptic components: Heven(2d, 2d) and
Hodd(2d, 2d).

All the other strata of the form H(2d1, . . . , 2dm) have two connected compo-
nents: Heven(2d1, . . . , 2dm) and Hodd(2d1, . . . , 2dn), corresponding to even and
odd spin structures.

The stratum H(2d − 1, 2d − 1), d ≥ 2, has two connected components; one of
them: Hhyp(2d−1, 2d−1) is hyperelliptic; the other Hnonhyp(2d−1, 2d−1) is not.

All the other strata of flat surfaces of genera g ≥ 4 are nonempty and connected.
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In the case of small genera 1 ≤ g ≤ 3 some components are missing in compar-
ison with the general case.

Theorem 3′. The moduli space of flat surfaces of genus g = 2 contains two strata:
H(1, 1) and H(2). Each of them is connected and coincides with its hyperelliptic
component.

Each of the strata H(2, 2), H(4) of the moduli space of flat surfaces of genus
g = 3 has two connected components: the hyperelliptic one, and one having odd
spin structure. The other strata are connected for genus g = 3.

Since there is a one-to-one correspondence between connected components of
the strata and extended Rauzy classes, the classification theorem above classifies
also the extended Rauzy classes.

Connected components of the strata Q(d1, . . . , dm) of meromorphic quadratic
differentials with at most simple poles are classified in the paper of E. Lanneau [L].

Bibliographical notes. As a much more serious accessible introduction to Te-
ichmüller dynamics I can recommend a collection of surveys of A. Eskin [E],
G. Forni [Fo2], P. Hubert and T. Schmidt [HSc] and H. Masur [M2], organized
as a chapter of the Handbook of Dynamical Systems. I also recommend recent
surveys of H. Masur and S. Tabachnikov [MT] and of J. Smillie [S] especially in
the aspects related to billiards in polygons. The part concerning renormalization
and interval exchange transformations is presented in the survey of J.-C. Yoc-
coz [Y]. The ideas presented in the current paper are illustrated in more detailed
way in the survey [Z4].
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IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes, FRANCE

E-mail: Anton.Zorich@univ-rennes1.fr


