Apparent contours from Monge to Todd

by Bernard Teissier

In this lecture I try to follow through the nineteenth century and within algebraic geometry the avatars
of the idea of apparent contour. A basic question about apparent contours is to understand to what extent the
collection of all the apparent contours of a given body embedded in affine or projective space determines that
body, or at least some of its numerical characters. In projective algebraic Geometry it turns out that a very
direct generalization of the idea of apparent contour, the concept of polar variety, together with the notion of
hyperplane section, gives the basic cohomological invariants of a projective variety, its Chern classes, and provides
a generalization of the connexion between the analytic and topological interpretations of the genus of a curve.
What I try to describe is a part of the merging between the currents of thought originated by Poncelet and by
Riemann. In the theory of convex bodies, the analogous problem of determining a convex body in Rd from
the collection of the apparent contours of its orthogonal projections to lower dimensional spaces was solved in

arbitrary dimension only fairly recently.

The way we perceive the shape of a smooth object A € R3 with our eye is through
its apparent contour, the curve on the object where the lines passing through our eye and
tangent to the boundary surface S = 0A of A touches S. One may say that this fact has
been at the origin of a certain quantity of experimental Mathematics since the invention of
perspective. One may also speculate that the origin of the mathematical study of apparent
contours is, stated in modern terms, a problem of measure of complexity; first remark that
the apparent contour depends only upon the bounding surface S; it is also the apparent
contour of S. Remark also that we may measure the complexity of an algebraic surface
by the degree of its equation. Now the following is a natural problem: if S is an algebraic
surface of degree m, how complicated is its apparent contour; what is its degree (as a
space curve)? Intersecting everything with a plane containing the origin 0 (the eye) and
not tangent to S reduces the problem to the following: given a nonsingular algebraic curve
C of degree m in R?, how many of the lines tangent to C pass through a given point 0?



This question would be quite natural for a mathematician like Monge, who used
extensively the concept of apparent contour, in particular in his work on fortifications, and
provided what one may call “geometric algorithms” to draw apparent contours to special
surfaces in descriptive geometry. According to Salmon ([14]), however, the first to study
this question was Wallis, who said that the number of these tangents, for a general point
0 of the plane, was at most m?2.

Later Poncelet, for whom the natural setting of this problem was complex projective
geometry, considered, following Monge, the polar curve (the terminology is his): Let

f(X,Y, X) =0,

where f is a homogeneous polynomial of degree m, be an equation for C'. The points of C
where the tangent goes though the point of P?(C) with coordinates (£,7, () are on C and
on the curve of degree m — 1 with equation
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obtained by polarizing the polynomial f with respect to the point (&,7,¢). If C' is non
singular, the points we seek are all the intersection points of C'and P ,, ¢)(C'). By Bézout’s
theorem, the number of these points counted with multiplicity is m(m — 1), for every point
(&,m,C), so the number of real tangents to the real part of C' passing through a point
0 € R? is at most that number.

Monge and Poncelet almost never wrote equations; their arguments were “synthetic”,
and a bit difficult to follow for modern geometers. The first to write equations in our
style are Bobillier ([1]) and Pliicker ([8], [9]). They used, perhaps for the first time, the
projective coordinates of a point of projective space. They also considered the family of
polar curves as parametrized linearly by the coordinates (£,7,(), and began the study of
what is one of the first examples of a linear system of curves of degree > 3 with base points
(when the curve has singularities, all the polar curves go through the singular points).

In fact a number of important ideas are introduced at that time. First and foremost
is the use of the complex projective plane as a natural setting for geometry, an idea due
mostly to Poncelet. Second, the idea of the group of projective transformations, of course
not stated so explicitely or in these terms, but certainly present in the background of the
work of Monge and Poncelet. Then there is projective duality, very dear to Poncelet and
viewed perhaps as an extra transformation of the projective plane.

A line in the projective space P? is by definition a point in the dual projective space
P2

Poncelet saw that given a nondegenerate conic (), since the polar curve of ) with
respect to any point is a line, we get an isomorphism between P? and its dual P?; he
insisted that duality was defined with respect to a non degenerate conic. This insistence
was partly a reply to Gergonne’s idea of a sort of metamathematical principle of duality.
We shall, however, refrain from identifying in this way, as was done at that time, P? and
P2 .

The collection of points of P? corresponding to the lines in P? tangent to an algebraic
curve C is an algebraic curve C C P2. A point z in P? corresponds to a line # in P2;
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each point of this line represents a line in P? which contains z, and the lines through x
tangent to C' correspond to the intersection points in P? of the curve C' and the line .
So the class of the curve C, defined as the number of lines tangent to C' at non singular
points and passing through a given general point of P2, is the degree 1 of C; as we saw
above, it is equal to m(m — 1) if C has no singularities. It is geometrically obvious that

C = C ; this is called biduality (it is wrong if we do geometry over a field of positive
characteristic). If the curve C had no singularities as well, the computation of degrees
would give m(m — 1)(m? — m — 1) = m, which holds only for m = 2. So if m > 2 the
dual of a non singular curve has singularities ; for a general non singular curve, double
points (a.k.a. nodes) corresponding to double tangents of C' and cusps corresponding to
its inflexion points.

To understand biduality better, it becomes important to find the class of a projective
plane curve with singularities, at least when these singularities are the simplest: nodes and
cusps. This was done by Pliicker and the formula for a curve with § nodes and k cusps is

m=m(m—1)—20 — 3k

One said that“ a node decreases the class by two, and a cusp by three”
This is perhaps the first example of a search of numerical invariants of singularities.

In fact, as I mentionned earlier, from the beginning the theory was extended to surfaces
in P3; given such a surface S defined by the homogeneous polynomial F(x,y,z,t) = 0, a
point (£ : n: ¢ : 7) € P3 defines a polar surface Pem:c:ry(5); the intersection of S and
P(S) is the apparent contour of S from the point (£ : n : ¢ : 7). Now the intersection
of the polar surfaces of two points lying on a line ¢ is a curve, called the polar curve of
S with respect to £. The dual surface S C P3 is the closure of the locus of points in P3
corresponding to the tangent planes to S at non singular points of S. The projective dual
of ¢ is a line £ in P3, and the number of points of intersection of ¢ with S is the number
of hyperplanes tangent to S at non singular points and containing ¢. If ¢ is a general line,
the points of intersection of ¢ with S are all simple.

This is a modernized account of what was known about the apparent contours in the
middle of the last century.

To summarize, the problem of estimating the complexity of the apparent contour,
together with the concept of duality intoduced by Poncelet, led to the construction of the
dual curve of a given algebraic curve and the computation of its degree for curves and
surfaces with simple singularities. The equation of the dual curve or surface are called
“tangential equations” of the original curve or surface.

This current of thought, rather dominant in “pure ” geometry in France and Germany,
seems to have been for a while fairly independant of the other developments of the time,
including the work of Gauss and Riemann. Think that the second edition of Poncelet’s
magnum opus “Traité des propriétés projectives des figures” was published in 1863. I will
not describe the work of Riemann, but quote Dieudonné in [4]:

“ Riemann’s Memoir on abelian functions avoided the geometric language, and it is only in
1863 that Roch and Clebsch begin to link Riemann’s results with the projective Geometry of
plane algebraic curves. Their first successes quickly attract followers, and around 1870 an
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active scool of algebraic Geometry develops, around Brill and Max Noether in Germany,
Smith and Cayley in England, Halphen in France, Zeuthen in Denmark, and the first
generation of the Italian geometers, Cremona, C. Segre and Bertini. The main theme of
their researches will be the mutual adaptation of the algebraic Geometry of the beginning
of the century and the new ideas of Riemann.”

Now if we follow the thread of apparent contours, we have to move to England where
Cayley and H.J.S. Smith continue to think about the general Pliicker formulas for plane
curves and for surfaces, and the diminution of class that a singular point imposes on a
surface. Cayley proposed the idea that each singular point of a plane curve should be
“equivalent” to certain numbers of cusps and nodes, as far as Pliicker formulas are con-
cerned. This caused H.J.S. Smith to write a very interesting paper containing in particular
results on the contact of the polar curve with the given one near one of its singular points.
It is amusing to note also that the famous “rational double points” which were so carefully
studied in the 1960’s and 70’s appear in Salmon indexed not by their “Coxeter number”
which comes from their connexion with simple Lie groups, and is equal to their “Mil-
nor number” which is a topological invariant, but by the diminution of class which their
presence on a projective surface would impose. For example the modern FEg is Salmon’s
Uio.

Salmon himself made extensive computations of the numerical characters of the dual
surface of a general algebraic surface of degree m lying in P3.

In the meantime, the identification of compact Riemann surfaces with non singular
projective algebraic curves and their topological classification by the genus , as well as the
birational classification by the same genus had been perfected, and by the end of the last
century, the ordre du jour was the extension of this classification to projective surfaces.
So it is not very surprising that the next important step for us comes from the search of
invariants of projective surfaces.

In the theory of algebraic curves, an important formula states that given an algebraic
map f:C — C' between algebraic curves, which is of degree degf = d (meaning that
for a general point ¢’ € C’, f~1(c') consists of d points, and is ramified at the points
x; € C, 1 < i < r, which means that near x;, in suitable local coordinates on C and C’,
the map f is of the form t — t¢*! with e; € N, e; > 1. The integer e; is the ramification
index of f at x;. Then we have the Riemann-Hurwitz formula relating the genus of C' and
the genus of C” via d and the ramification indices:

29(C) —2=d(29(C") — 2) + Z €

If we apply this formula to the case C' = P!, knowing that any compact algebraic curve
is a finite ramified covering of P!, we find that we can calculate the genus of C' from any
linear system of points made of the fibers of a map C' — P?!) if we know its degree and its
singularities: we get

29(C)=2-2d+ e

The ramification points x; can be computed as the so-called jacobian divisor of the linear
system, which consists of the singular points, properly counted, of the singular members
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of the linear system. In particular if C' is a plane curve and the linear system is the system
of its plane sections by lines through a general point x = (£ : 1 : ¢) of P2, the map f is the
projection from C' to P! from z; its degree is the degree m of C' and its ramification points
are exactly the points where the line from x is tangent to C'. Since x is general, these are
simple tangency points, so the e; are equal to 1, and their number is equal to the class m
of C; the formula gives

29(C)—2==2m+rm,

thus giving for the genus an expression linear in the degree and the class.

This is the first example of the relation between the “characteristic classes” (in this
case only the genus) and the polar classes; in this case the curve itself, of degree m and
the degree of the polar locus, or apparent contour from z, i.e. in this case the class m.
There is a similar construction for surfaces, which gives the Zeuthen-Segre invariant :

Consider a linear system of curves on a non singular algebraic surface .S, without base
points, i.e. defined as the fibers of an algebraic map f: S — P!. Let us assume that the
general fiber ' = f~1(t) (for “generic” t), which is non singular, is of genus g, and that
there are o singular fibers, each having a single ordinary double point as singularity. A
computation of topological Euler-Poincaré characteristics, nowadays quite standard, gives

X(S)=2x(F)+o0=4—-4g+o0c

so that Z(S) = 0 —4g = x(S) —4 does not depend upon the choice of the pencil of curves;
it is the Zeuthen-Segre invariant of the surface S. We may in fact also allow pencils with
base points; if there are b of these, then Z(S) = o —4g — b. Such pencils correspond to
maps f:S — P!, where S — S is a blowing up map determined by the structure of the
base points.

Now let us take a surface S of degree m and a pencil of hyperplanes in P3; we can view
it as the pencil of hyperplanes containing a line (a copy of P!) ¢ C P3? and if we choose
another line P! C P? not meeting ¢, the map which to a point s € S\ £ associates the
intersection point with P! of the plane determined by s and ¢ extends to a map S — Pl
where S — S is the blowing up of SN ¢ in S. The singular fibers correspond to planes in
the pencil that are tangent to S; if £ is general, they are simply tangent, and their number
is the class 7 of the surface S. The Zeuthen-Segre formula gives, taking into account the
fact that we have blown up m points on S, the equality Z(S) = x(S) —4 = — 49 — m,
where now ¢ is the genus of a general plane section of S.

We may interpret all this in two ways; first, as Zeuthen-Segre and Severi did, as
creating an invariant of the algebraic surface S, which is in fact x(S) — 4, in terms of the
singular curves of a linear system on S, and second as saying that, given S, if the general
curve of a pencil has high genus, then there must be many degenerate fibers.

Severi and others tried to generalize this construction of invariants via the singularities
of elements of linear systems, but it was Todd who in 1936 found the right formulation,
which is based on the apparently less general case of linear projections. The basic idea is to
generalize the notion of apparent contour, considering what Todd calls the ” Polar loci” of a
projective variety X C P™. Then it turns out that certain formal linear combinations of the
intersections of general polar loci of X with general linear sections (of various dimensions)
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of X are invariants of X, i.e. do not depend upon the projective embedding of X and the
choices of polar loci and linear sections.

More precisely, given a non singular d — 1-dimensional variety X in PV~ for a linear
subspace L C PV~! of dimension N —d + k — 2, i.e. of codimension d — k + 1, let us set

Pu(X;L) = {z € X/dim(Tx . NL) >k — 1}

This is the Polar variety of X associated to L; if L is general, it is either empty or purely
of codimension k in X. We see that this construction is a direct generalization of the
apparent contour. The eye 0 is replaced by the linear subspace L!

Todd shows that the following formal linear combinations of varieties

=y d—Fk+j+1
Xp=)Y (-1) ( ; )Pk_j(X; L)NH,
=0

where H; is a linear subspace of codimension j, are independant of all the choices made
and of the embedding of X in a projective space, provided that the L’'s and the H 53 have
been chosen general enough.

The linear combination is at first sight a rather awkward object to deal with. The
idea is that X; represents a generalized variety of codimension ¢ in X and what we should
remember is that any numerical character e(Y) associated to algebraic varieties Y, and
which is additive in the sense that e(Y; UY3) = e(Y7) +e(Y2) whenever Y; and Y3 have the
same dimension, can be extended by linearity to such a generalized variety. In particular,
given a partition ¢1,...,7; of d — 1, we obtain that the intersection numbers

(Xiy- oo X))

10
which are well defined since the intersection of the corresponding varieties (each one as-
sumed to be a general representative obtained by taking general and independant linear
spaces) is of dimension zero, depend only upon the structure of X as an algebraic variety.

In fact, Todd preferred to introduce an equivalence relation between varieties, called
nowadays rational equivalence and instead of considering “general linear spaces” and so
on considered the equivalence classes of the corresponding objects, which (by definition
of rational equivalence) turn out to be independant of the choices of linear spaces and
so on. This relation, however, considers as equivalent objects which are geometrically
very different, while the geometry (the topology, and in fact much more) of the polar
variety corresponding to a general linear space is perfectly well defined and contains a lot
of information.

In any case, one of the main results of Todd is that the numbers (X;, --- X;, ) depend
only upon X, that they are independent invariants (there is no relation between them valid
for all X’s) and finally that the arithmetic genus of X is a linear function of these invariants.
The arithmetic genus is the Euler characteristic in coherent cohomology x (X, Ox) of the
sheaf of algebraic functions on X; by Serre duality (see [5]), it is equal to (—1)?x(X,wx)
where d = dimX and wyx is the sheaf of germs of holomorphic d-forms on X. Thus,
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since the Euler-Poincaré characteristic of a sheaf is the stable, or computable form of the
dimension of the space of global sections, the arithmetic genus is a generalization of the
analytic definition of the genus of a non singular curve (dimension of the space of regular
differential forms) to an arbitrary algebraic variety. The expression for the arithmetic
genus is not simple; it involves what is now called the Todd class (see [5]) of the tangent
bundle.

On the other hand, the topological Euler-Poincaré characteristic of X can be com-
puted, in the same way we used for the Zeuthen-Segre invariant, to show the equality

d

X(X) = degXy =) (j+1)(Pay(X).Hj)
§=0

where (a.b) denotes the intersection number, in this case since we intersect with a linear
space of complementary dimension, it is just the degree of the projective variety P;(X).

So Todd’s results give a rather complete generalization of the genus formula, both in
its analytic and its topological aspects. The connection between these two aspects goes
much deeper and leads to the Hirzebruch-Riemann-Roch theorem. One must first realize,
after Nakano, Hirzebruch, Serre, Gamkrelidze (see [5]), that the invariants X}, of Todd (or
rather their cohomology classes) coincide with the Chern classes of the tangent bundle of
X, which provides a good reason for them to be invariant!.

The Chern classes are cohomology classes expressing the obstruction to the existence
of k-uples of everywhere linearly independant sections of the tangent bundle. The best
known of them is the Euler class, expressing the obstruction to finding an everywhere non
zero section of the tangent bundle, that is, finding an everywhere non zero vector field; it
is represented by finite collections of points of X, the zeroes of a general vector field. All
these finite collections of points are rationnally equivalent and their number, counted with
multiplicities, is the Euler-Poincaré characteristic of X.

Then we remark that the formula for the topological Euler characteristic can be in-
verted to compute the degrees of the polar varieties from the topological Euler charac-
teristics of general plane sections (of all dimensions) of X. Using the expression for the
arithmetic genus which I mentionned, one expresses in the end the arithmetic genus as
a linear function of the Euler-Poincaré characteristics of X, its polar varieties, and their
plane sections.

Following this thread of the determination of the geometry of an object from its apparent
contours, we have been led not only to the determination of such a fundamental topolog-
ical invariant as the Euler-Poincaré characteristic, but also to an extension to arbitrary
dimensions of the connexion between the geometry of a variety and the theory of algebraic
functions on this variety discovered by Riemann. In recent years this geometric viewpoint
has been extended to singular projective varieties, and to the study of an analytic space
embedded in CV in the vicinity of one of its singular points (see [6], [7], [18]). There is
much left to understand, and in particular what form a similar theory would take for real
algebraic or semi-algebraic varieties in R,

Finally T remark that the analogous problem of showing that the collection of its
orthogonal projections to subspaces R* C R determines a convex body K C R? has been
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completely solved only in the last fifty years or so. The problem of doing so effectively (up
to some approximation) is not yet satisfactorily solved.
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