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Introduction

In the study of the moduli space of plane branches with a single characteristic
pair (β0, β1), an important point (cf. Ch. VI of the Course, where (β0, β1) is
denoted (n, m)) is that every such branch is the deformation of the branch C0 :
Y β0 −Xβ1 = 0. As a result, one obtains a surjection

m : CN −→M

where CN is the base of the miniversal equisingular deformation of C0 (cf. ch. VI,
Eqs. Defr. C0 of the Course), M is the moduli space of Zariski corresponding to
(β0, β1), and m satisfies the property that its restriction to every neighborhood of
0 is surjective (cf. ch. VI, §2.4).

Now a general theorem (cf. Addendum 2.7, the “efficiency of miniversal de-
formations”) justifies the naming of CN as the space of local moduli of C0. As a
result, we are in the particularly simple situation where a global moduli space is
the quotient of a local moduli space. This allows us to apply general theorems
about the miniversal deformation, in particular the Product Decomposition The-
orem (Addendum 2.1), to study the mapping m and therefore M (compare with
Ch. VI, §2.5 - 2.7). One should think of the Product Decomposition Theorem as
an implicit and imprecise, but general, variant of Zariski’s theorems (cf. Ch. IV §3
of the Course) that identify those terms in the Puiseux development of a branch
that can be eliminated without changing the analytic type.

The initial purpose of this Appendix was to clarify the role played by the
Theorems of Efficiency and Product Decomposition in Zariski’s Course. However,
their discussion is delayed until the third chapter (Addendum) because I thought
it worthwhile to construct first in Chapter I a type of local moduli space, for which
the moduli space of a branch (plane or not) with given semigroup Γ is always a
quotient. Then, in Chapter II, I apply this construction to study the moduli space
of any branch. (We should recall that two plane branches are equisingular if and
only if they have the same semigroup (cf. Ch II of the Course), in which case,
it seems reasonable to say that two non planar branches are equisingular if they
have the same semigroup.) It seems to me that this discussion helps shed light
on the constructions of Ch. VI of the Course, in particular, how the two Theo-
rems, cited above, are actually used. Moreover, one obtains in this way a natural
compactification of the moduli space of a plane branch with given characteristic.

The fundamental point here is that the role played by C0 : Y β0 − Xβ1 = 0
in Ch. VI of Zariski’s Course is now played by the monomial curve CΓ ⊂ Cg+1 ,

given parametrically by ui = tβi (0 ≤ i ≤ g), where the βi determine a minimal
set of generators of the semigroup Γ, associated to a given equisingularity class
(cf. Ch. II of the Course). We establish this point and deduce some additional
consequences in Chapter I below. In Chapter II, I use the fact that two plane
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2 INTRODUCTION

branches are equisingular iff they have the same semigroup Γ to show that Zariski’s
moduli space is an open dense subset of a quasi-compact quotient of the local moduli
space DΓ of CΓ. In particular, in §3, which motivated the entire text, I use the fact
that DΓ is smooth to show how the generic component of the moduli space can be
defined by a semicontinuity argument. Unfortunately, this approach does not yield
any information about the dimension of this generic component. Finally, I show
how this work relates to that of Pinkham [Pi], which I have found useful.

Numerous conversations with M. Merle have been very helpful, as well as, of
course, the inspiration I drew from Zariski’s Course itself. I hope that this text will
eventually prove useful in calculating the dimension of the generic component of
moduli spaces1

References such as (VI, 3.2) refer to Zariski’s Course, ch. VI, §3, No. 2, and
those like [Pi] refer to the Bibliography at the end of this Appendix. Finally, (App.,
ch. I, 2.11) is a reference to chapter I of the Appendix.

I have tried to make this text reasonably self-contained. This has made it
somewhat longer than it should perhaps be.

1Added in translation: This has been the case: see Pierrette Cassou-Noguès Courbes de
semi-groupe donné Rev. Mat. Univ. Complut. Madrid, 4 No. 1 (1991) 13-44.



Chapter I
The monomial curve CΓ

and its deformations

1. The monomial curve CΓ

1.1. Let O(= OC,0) be the analytic algebra of the germ of an analytically
irreducible curve (i.e. of a branch) (C,0) ⊂ (Ck,0). The normalization morphism of
O can be understood as an injection i : O ↪→ C{t}, and is interpreted geometrically
as a parametrization of C in a neighborhood of 0. The t−adic valuation of C{t} is
denoted ν, and Γ ⊂ Z+ denotes the associated semigroup:

Γ = {ν(ξ) : ξ ∈ O − {0} }.
I will also say that the branch (C,0) has the semigroup Γ.

Since O is an analytic algebra, C{t} is an O−module of finite type that is
contained in the fraction field of O, as in the case of plane branches (II, §1), and
there exists a smallest integer c, the conductor, such that tc ·C{t} ⊂ O. As a result,
any integer in [c,∞) must belong to Γ, which implies that Z+ − Γ is finite. (In
order to verify this, one can also show that a “sufficiently general” linear projection
Ck → C2 maps C onto a plane branch (C′,0) ⊂ (C2,0) whose algebra O′ is a
subalgebra of O that has the same fraction field, and then apply (II. §2) to C′.)

I will denote the maximal ideal of O byM, and the ideal of elements of O with
(t)−valuation ≥ i byMi

:

Mi
= {ξ ∈ O : ν(ξ) ≥ i}.

As a result, one obtains a filtration of O :

O =M0
�M1 ⊇ · · · ⊇ Mi ⊇Mi+1 ⊇ · · · .

1.1.1. I recall that a filtration F of a ring O is a decreasing sequence of
additive subgroups of O :

F : O = F0 ⊇ F1 ⊇ · · · ⊇ Fi ⊃ Fi+1 ⊇ · · ·
satisfying Fi·Fj ⊂ Fi+j . If

⋂
i∈Z+

Fi = {0} then the filtration is said to be separable.
One also will assume F1 	= O.

One then observes that each Fi is an ideal of O since F0 = O. If ξ ∈ Fi−Fi+1,
then ξ has order i, and one writes ν(ξ) = i. In this event, inF(ξ) (the initial form
of ξ relative to F) denotes the image of ξ in Fi/Fi+1. Moreover, multiplication
in O induces on grFO =

⊕
i∈Z+

Fi/Fi+1 a graded algebra structure - “the graded
algebra associated to the filtered ring (O,F)” - in which inF(ξ) is an element whose
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4 THE MONOMIAL CURVE CΓ AND ITS DEFORMATIONS

degree equals the order of ξ. (Here, I have assumed familiarity with [Bourbaki, Alg.
Comm., ch. III, §§1, 2] and especially [ibid., §2 no. 4].)

1.1.2. Since Z+−Γ is finite, one can find a minimal generating set (β0, . . . , βg)
(“minimal” means here that no βi belongs to the semigroup generated by the others)
such that β0 < · · · < βg, and gcd (β0, . . . , βg) = 1. Moreover, this generating set is
uniquely determined by Γ. (I am using here the notations of (II, §3) except for β0

which Zariski denotes n.)
To fix notations I recall that βi is defined inductively as the smallest nonzero

element of Γ that does not belong to the semigroup generated by β0, . . . , βi−1

(which will be denoted < β0, . . . , βi−1 > in the following). In addition, one defines
the two sequences of integers: ei by the formula e0 = β0, ei = (ei−1, βi), i ≥ 1, and
ni by the formula ei−1 = niei. One therefore concludes:

β0 = n1 · · ·ng.

1.2. Let Γ =< β0, . . . , βg > be a semigroup such that Z+ − Γ is finite,
i.e. gcd (β0, . . . , βg) = 1. Let CΓ ⊂ Cg+1 be the affine curve defined via the
parametrization

CΓ : ui = tβi 0 ≤ i ≤ g.

The following elementary observations can then be made:
1.2.1. The affine algebra C[CΓ] of CΓ is the image in C[t] of the morphism

ϕ : C[u0, . . . , ug]→ C[t] defined by ϕ(ui) = tβi . In other words,
C[CΓ] = C[{th : h ∈ Γ}] = C[tβ0 , . . . , tβg ] ⊂ C[t] is, in a natural way, a graded
subalgebra of C[t].

1.2.2. CΓ is irreducible and, more precisely, its germ (in the analytic sense)
at 0 is analytically irreducible. This follows from the fact that gcd (β0, . . . , βg) = 1,

and the branch (CΓ,0) has Γ as its semigroup (1.1). Indeed,

OCΓ,0 = C{tβ0 , . . . , tβg} ↪→ C{t}
clearly has Γ as its semigroup. This shows that Γ is the semigroup of at least one
branch.

1.2.3. Given the analytic algebra O of a branch with semigroup Γ, one can use
the filtration Mi

(1.1) to define the associated graded algebra, denoted grMO. It
then follows that grMO is isomorphic, as a graded algebra, to C[CΓ].

(This was first proved by Monique Lejeune-Jalabert for plane branches, see
[L.T-2]. Indeed, grMO is a particular example of the graded objects studied sys-
tematically in [ibid.].)

Proof of (1.2.3). We first remark that grMO is an integral domain since
ν(ξ · η) = ν(ξ) + ν(η). Furthermore, by the definition of Γ and the βi, there exist
elements ξi ∈ O (0 ≤ i ≤ g) such that in C{t} one has:

ξi = tβi +
∑
j>βi

γi,jt
j (γi,j ∈ C).

The fact that the filtrationMi of O is induced, via the inclusion i : O ↪→ C{t}, by
the filtration (t)i of C{t} gives us a morphism:

gr(t)i : grMO −→ gr(t)C{t} = C[t],
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which is immediately seen to be injective. As a result, grMO is a graded subring of
C[t], which contains, evidently, each tβi = inM ξi. Therefore, one has an embedding:

j : C[CΓ] = C[tβ0 , . . . , tβg ] ↪→ grMO ⊂ C[t].

It remains to show that j is surjective. This follows from the fact that the βi

generate Γ as follows. Let inM ξ ∈ grMO be the initial form of ξ ∈ O. By the
definition of Γ, ν(ξ) ∈ Γ, and therefore ν(ξ) =

∑g
i=0 aiβi , ai ∈ Z+. Thus, there

exists c ∈ C∗ such that ν(ξ − c ξa0
0 · · · ξag

g ) > ν(ξ), which implies

inM ξ = inM c ξa0
0 · · · ξag

g = c ta0β0 · · · tagβg ∈ C[tβ0 , . . . , tβg ].

This shows that j is surjective and finishes the proof of 1.2.3. �

1.2.4. Corollary [L.T-2]. The graded algebra grMO of the algebra O of a
branch (C,0) (with respect to the filtrationMi

) only depends upon the semigroup Γ
of (C,0) (and also determines it). In particular, two plane branches are equisingular
if and only if the corresponding graded algebras are isomorphic as graded algebras.

(Indeed, two plane branches are equisingular if and only if they have the same
semigroup Γ (II, §3).)

1.3. Theorem 1. Every branch (C,0) with semigroup Γ is isomorphic to the
generic fiber of a one parameter complex analytic deformation of (CΓ,0).

We remark that in general, the generic fiber of a deformation is neither complex
analytic nor necessarily defined over C, and the above statement is actually a short-
hand way of stating the following: There exists a deformation p : (X,0) → (D, 0)
of (CΓ,0),2 with a section σ, such that for any sufficiently small representative p̃
of the germ of p, (p̃−1(v), σ(v)) is analytically isomorphic to (C,0), for all v 	= 0
in the image of p̃.

I will give two proofs of this assertion. The first is formal and is based upon
1.2.3. The second is elementary and shorter (§1.10). Note that Theorem 1 is a
generalization of (VI, 2.1).

1.4.(first proof) Let O = F0 ⊃ F1 ⊃ · · · ⊃ Fi ⊃ Fi+1 ⊃ · · · be a filtered
ring (i.e. unitary and commutative). We extend indexing by setting Fi = O for all
i ≤ 0 (the only possibility consistent with the inclusion Fi+1 ⊂ Fi), and consider
the graded algebra

A =
⊕
i∈Z

Fiv
−i ⊂ O[v, v−1].

One can then observe the following:
1.4.1. There exists a graded homomorphism

Φ : A→ grFO =
⊕
i≥0

Fi/Fi+1

defined as follows:
Φ(

∑
i

ζiv
−i) =

∑
inFζi.

2that is, a germ of a flat morphism, where D = {v ∈ C : |v| < 1}, and (p−1(0), 0) is
analytically isomorphic to (CΓ,0)
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Indeed,
∑

i ζiv
−i ∈ A implies ζi ∈ Fi for each i, and inFζi ∈ Fi/Fi+1. Thus, Φ is

well defined since Fi/Fi+1 = 0 whenever i < 0.
Moreover, by homogeneity, Φ(

∑
i ζiv

−i) = 0 if and only if inF(ζi) = (0)
for each i, i.e. ζi ∈ Fi+1, which, in turn, means that

∑
i ζiv

−i−1 ∈ A, thus,∑
i ζiv

−i ∈ vA, and conversely. As a result, KerΦ = vA. Since Φ is evidently
surjective, it follows that Φ induces an isomorphism of graded algebras:

Φ : A/vA
∼−→ grFO.

1.4.2. A ⊃ O[v], and, in fact, O[v] is the set of elements of degree ≤ 0 of A.

From now on, we will consider A as an O[v] algebra.
1.4.3. Every element of the O[v] module A/O[v] is annihilated by some power

of v.

Indeed, if α =
∑i1

i=i0
ζiv

−i, then vi1α ∈ O[v].
1.4.4. If the graded O−algebra

⊕
i≥0 Fi is of finite type (resp. of finite pre-

sentation), then so is the O[v]−algebra A.
Indeed, the hypothesis means that one can find a graded surjection of graded

O−algebras
O[T1, . . . , TN ] π−→

⊕
i≥0

Fiv
−i

(resp. whose kernel I is of finite type).
Then the morphism of O−algebras:

O[v, T1, . . . , TN ] π̃−→ A

defined by: π̃(Ti) = π(Ti), π̃(v) = v, is also graded and surjective, which shows,
in fact, that A is an O algebra of finite type. To verify the finite presentation, it
suffices to observe that the kernel of π̃ is generated by I.

1.4.5. To every element v0 ∈ O∗ (the invertible elements of O), one can
associate a morphism : ev0 : A → O defined by : ev0(

∑
ζiv

−i) =
∑

ζiv
−i
o ∈ O,

whose kernel is (v − vo)A. Since evo is clearly surjective, this gives an isomorphism

evo : A
/
(v − vo)A

∼−→ O.

1.5. We now consider the particular case in which O contains a field k. One
can then view A as a k[v]−algebra via the natural inclusion k[v] ⊂ O[v]. Since it
is clear that A is k[v] torsion free, one deduces [S.G.A. I] that A is a flat k[v]−
module, or geometrically, that the morphism

F : spec A −→ A1(k) = spec k[v] ( the affine line),

corresponding to the inclusion k[v] ⊂ A, is flat. Moreover, by 1.4.5, for each
v0 ∈ k∗ ⊂ A1(k)− {0} (where 0 denotes the origin), one has an isomorphism:{

F−1(v0) 
 specO
F−1(0) 
 spec grF(O) by 1.4.1.

1.6. In addition to the hypothesis of 1.5, let us also assume thatO is a local ring
with maximal idealM, for which k is a field of representatives (i.e. the composition
k ↪→ O → O/M is the identity map on k).
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Denoting by S the ideal of A generated by{∑
i≥1

Fiv
−i,

∑
i≥0

Mv−i

}
,

one can verify that the mapping σ∗ : A→ k[v] defined by:

σ∗( i=i1∑
i=i0

ζiv
−i

)
=

i=i1∑
i=i0
i≤0

ζiv
−i

(where ζi is the image of ζi in O/M = k) is in fact a ring homomorphism. This
follows because Fi ⊂ M for each i ≥ 1, and Fi is a nontrivial ideal of O. One
also verifies without any difficulty that σ∗ is surjective with kernel S and that the
composition of morphisms:

k[v] ↪→ O[v] ↪→ A
σ∗−→ k[v]

is the identity.
Geometrically, σ∗ corresponds to a section σ of the morphism F : spec A →

A1(k) of 1.5. We can therefore summarize the situation by the diagram

F : spec A
σ
�−→ A1(k)

where F is flat, and for each v0 ∈ k∗ ⊂ A1(k) − {0}, the local ring of F−1(vo) at
the point σ(vo) is O, by 1.4.5 and the fact that evo(S) =M⊂ O for each vo ∈ k∗.
If k is algebraically closed, then k∗ = A1(k) − {0}. In fact, we can even reduce to
this case by pulling back F via the base change spec k[v]→ spec k[v] = A1(k).

1.7. To summarize, we have shown the following:
Any ring R that contains a field is the deformation of a graded ring grFR deter-
mined by any filtration F .

More precisely, by combining the different results of §1.4, we conclude:

1.7.1. Theorem 2. 3 Let O be unitary commutative ring containing the field
k. Let F : O = F0 ⊃ · · · ⊃ Fi ⊃ Fi+1 ⊃ · · · be any filtration. Then there exists a
flat morphism

F : specA −→ A1(k)
such that

F−1(vo) 
 specO, for any vo ∈ k∗ ⊂ A1(k)− {0},
and F−1(0) 
 spec grFO.

In addition, 1.4.4 shows us, on the one hand, that if O is a k−algebra of finite
type (i.e. “geometric over k”) then so too is A, while on the other hand, 1.6 gives
precise conditions that insure the existence of a section of F. Finally, 1.4.3 tells us
what is true when O does not contain a field, i.e. A

⊗
O[v]O(v) 
 O(v).

3While writing this text, I learned from D. Eisenbud and S. Kleiman that this result is not
new. S. Kleiman gave me the following reference : M. Gerstenhaber, On the deformations of
rings and algebras, Ann. of Math., vol. 79 no. 1 (1964). The point of view of that article is
however quite different from that taken here.
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1.7.2. Remark: The reader will immediately observe that commutativity has
only been used to simplify the discussion. �

1.8. In particular, if O is an analytic algebra, corresponding to the germ of
an analytic space (W, w), and if F is a filtration of finite presentation in the sense
of 1.4.4, the argument therein, combined with the existence of Specan (Séminaire
Cartan 60-61, exposés de Houzel, Publ. de l’I.H.P.), shows that for a sufficiently
small representative W of (W, w) one can construct a morphism of complex analytic
spaces

SpecanW×C A −→W × C

whose composition F : SpecanW×C A→ W × C
pr2−−→ C admits a section σ so that

the following properties are satisfied:

1. F : (SpecanW×C A,0)
σ
�−→ (C, 0) is flat;

2. (F−1(vo), σ(vo))
∼−→ (W, w) for each vo ∈ C − {0} (for a sufficiently small

representative of the germ of F );
3. (F−1(0), σ(0)) is the analytic space associated to the germ at 0 of the “affine

algebraic space above W”, denoted SpecanW grF O.
I recall that grF O is a graded O−algebra of finite presentation since F is, by

hypothesis, of finite presentation, and grF O is a quotient of
⊕

i≥0

(Fi

⊗
O O/F1

)
.

1.8.1. Remark: The extension of 1.4 to sheaves of filtered algebras allows
one to construct, for example, a deformation of immersions whose generic fiber is
a given immersion Y ↪→ X, defined by an OX−ideal I, and whose special fiber is
Y ↪→ CX,Y , where CX,Y = SpecOY

(⊕ν≥0 Iν/Iν+1
)

is the normal cone of Y in X.
1.9. End of first proof of Theorem 1. To complete the proof, it suffices for

us to make the monomial curve CΓ appear as the graded object associated to the
analytic algebra O of a branch with semigroup Γ. This is precisely what is done in
1.2.3.

1.10. Second proof of Theorem 1.
The abstract construction now motivates us to construct a more down to earth

and explicit deformation of (CΓ,0), whose generic fiber is (C,0). It is reasonable
to view this argument as the natural generalization of (VI, 2.1).

We assume (C,0) is given parametrically in (Ck,0) by: zi = ϕi(t), ϕi(t) ∈ C{t},
1 ≤ i ≤ k. As a result, O = OC,0 = C{ϕ1(t), . . . , ϕk(t)} → C{t}. By a suitable
coordinate change, we may also choose the parameter t so that

ϕ1 = tn, ϕi = tai +
∑
j>ai

ρi,jt
j 2 ≤ i ≤ k,

where n is the multiplicity of (C,0), and each ai > n.
We remark that since Γ is the semigroup of (C,0), each ai ∈ Γ, as is n, of course,

and that in fact n = β0 in the notations of 1.1.2. Furthermore, the definition of Γ
and the βi (1.1.2) assures us of the existence of elements ξi ∈ O (0 ≤ i ≤ g) such
that:

ξi = tβi +
∑
j>βi

γi,jt
j ,

and that we can, of course, choose ξ0 = ϕ1 = tn.
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We now consider the family of curves in Cg+k, parametrised by v, as follows:

Cv :




Z0 = tn

Z1 = tβ1 +
∑

j>β1
γ1,j vj−β1 tj

...
...

Zg = tβg +
∑

j>βg
γg,j vj−βg tj

Zg+1 = ta2 +
∑

j>a2
ρ2,j vj−a2 tj

...
...

Zg+k−1 = tak +
∑

j>ak
ρk,j vj−ak tj .

It remains for us to verify that (C0,0) 
 (CΓ,0), and that for v 	= 0, (Cv,0) 

(C,0). Now, if v = vo 	= 0, one can consider the curve C′

vo
, deduced from Cvo by the

isomorphism : t = vot
′, Zi = v

−βi
o Z ′

i if 1 ≤ i ≤ g, and Zi = v−ai
o Z ′

i if g + 1 ≤ i ≤
g+k−1. It follows that the algebra of C′

vo
is C{tn, ϕ2(t), . . . , ϕk(t), ξ1(t), . . . , ξg(t)},

which equals C{tn, ϕ2(t), . . . , ϕk(t)} = O, since ξi ∈ O (1 ≤ i ≤ g). Or equivalently,
as one might prefer to say it, ξi is a series in tn, ϕ2(t), . . . , ϕk(t), and the coordinate
change in the Zi induces an isomorphism of (C′

vo
,0) onto (C,0). Thus, for vo 	= 0,

(Cvo ,0) 
 (C,0).
In addition, for vo = 0, (C0,0) is parametrized by: Zi = tβi (1 ≤ i ≤ g), and

Zi = tai (g+1 ≤ i ≤ g+k−1). Since ai ∈ Γ, which is generated by the βj , we know
that ai =

∑g
j=0 bi,jβj , bi,j ∈ Z+. This implies that (C0,0) is contained in each

of the nonsingular hypersurfaces Zi − Z
bi,0
0 · · ·Zbi,g

g = 0 (g + 1 ≤ i ≤ g + k − 1).
The corresponding coordinate change Zi = Z ′

i + Z
bi,0
0 · · ·Zbi,g

g then gives us the
isomorphism of (C0,0) onto (CΓ,0).

This completes the second proof of Theorem 1 (1.3). �
1.11. Remark: Up to isomorphism, one can always assume that no exponent

j ≥ c, (c = conductor, cf. 1.1) appears in the power series expansion of the ξi or
ϕi. Therefore, 1.10 actually gives us, for free, a deformation of affine curves that
connects an affine curve, whose germ at 0 is isomorphic to the given branch (C,0),
to the affine curve CΓ. �

2. The miniversal constant semigroup deformation of CΓ

(Starting with this section, I allow myself free use of the notations and resultats
about miniversal deformations that are recalled in the Addendum.)

2.1. In the case where Γ is the semigroup of a plane branch (and more generally
when CΓ is a complete intersection), I will now show that there exists a (germ of a)
nonsingular subspace (DΓ,0) inside the base (S,0) of the miniversal deformation

G : (X, CΓ) −→ (S,0)
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such that the deformation obtained by restricting G to DΓ (i.e. XΓ = X ×S DΓ)

(XΓ, CΓ) inclusion−−−−−→ (X, CΓ)

GΓ

� G

�
(DΓ,0) inclusion−−−−−→ (S,0)

is miniversal for the deformations of CΓ with reduced base each of whose fibers is
irreducible with semigroup Γ. I will refer to these as “miniversal constant semigroup
deformations”. According to 1.2.2, among these deformations we find, in particular,
those that were constructed in §1.9, 1.10.

2.2. Proposition [Lejeune-Jalabert] (not published, see [L.T-2] ) . If Γ
is the semigroup of a plane branch, then the affine curve CΓ ⊂ Cg+1 is a complete
intersection, and therefore, so too is the branch (CΓ,0).

The proof uses:

2.2.1. Lemma (Azevedo [Az], Merle [Me]). If Γ =< β0, . . . , βg > is the
semigroup of a plane branch, one has (in the notations of 1.1.2)

niβi ∈< β0, . . . , βi−1 > 1 ≤ i ≤ g.

Proof. Using the notations and resultats of (II, 3.11), we have:

(*) βq = nq−1 · βq−1 − βq−1 + βq (1 ≤ q ≤ g)

where the βq are the Puiseux characteristic exponents of the plane branch. By the
definition of the integers mq (II, 3.11), this formula can be written in this way:

βq = nq−1 · βq−1 −mq−1 · eq−1 + mq · eq,

from which it follows that

nq · βq = nq · nq−1 · βq−1 + (mq − nq ·mq−1)eq−1.

We now observe that the interpretation of the βq = mq

n1···nq
· β0 as characteristic

exponents implies βq−1 < βq, i.e. mq − nq ·mq−1 > 0.
Writing the above formula as

nq · βq = (nq − 1) · nq−1 · βq−1 + nq−1 · βq−1 + (mq − nq ·mq−1)eq−1,

one sees that to verify nq · βq ∈< β0, . . . , βq−1 >, it suffices to verify the same
inclusion for nq−1 · βq−1 + h · eq−1 for any h ∈ Z+, which we will now do by
induction on q. For q = 1, it follows from the equation (and, by convention, n0 = 1)
β0 + h · e0 = (h + 1) · β0, which is evidently in < β0 > . Furthermore, by the
definitions and (*):

eq−1 = (eq−2, βq−1) = (eq−2, mq−1 · eq−1),

which implies for any h ∈ Z+ :

h · eq−1 = λ ·mq−1 · eq−1 + µ · eq−2 (λ, µ ∈ Z).
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Since nq−1 · eq−1 = eq−2, one can choose λ such that 0 > λ > −nq−1. One then
rewrites (*) for q − 1 as:

nq−1 · βq−1 + h · eq−1 = (nq−1 + λ)βq−1 − λ
(
nq−2 · βq−2 −mq−2 · eq−2 + mq−1 · eq−1

)
+ λ ·mq−1 · eq−1 + µ · eq−2

= (nq−1 + λ)βq−1 − λ · nq−2 · βq−2 + (λ ·mq−2 + µ)eq−2.

Now, our choice of λ implies, on the one hand, nq−1 + λ > 0 and −λ > 0 on the
other. Moreover, λmq−2 + µ > 0 since nq−1(λmq−2 + µ) = λ · nq−1 · mq−2 + µ ·
mq−1 > λ · mq−1 + µ · nq−1 = h ≥ 0 (by the hypothesis on h), using again that
mq−1 > nq−1 ·mq−2 and λ < 0.

In this way, we see that each coefficient on the right side of the second equation
above is positive. Now, our induction hypothesis:

nq−2 · βq−2 + h′ · eq−2 ∈< β0, . . . , βq−2 > for any h′ ∈ Z+ ,
implies that

−λ · nq−2 · βq−2 + (λ ·mq−2 + µ)eq−2 ∈< β0, . . . , βq−2 >

since −λ and λ ·mq−2 + µ are positive. Finally, since nq−1 + λ > 0, it is now clear
that

nq−1 · βq−1 + h · eq−1 ∈< β0, . . . , βq−1 >,

which completes the proof of 2.2.1. �

2.2.2. Remark: We have used the hypothesis that Γ is the semigroup of a
plane branch in the formula (*) as well as the inequality βq > βq−1. The semigroup
Γ =< β0, . . . , βg > of a plane branch therefore satisfies, by 2.2.1:

nq · βq ∈< β0, . . . , βq−1 >(1)

and

nq · βq < βq+1 (0 ≤ q ≤ g − 1)(2)

(which follow immediately from (*) and βq−1 < βq). �
I will prove below, as a corollary of Theorem 3 (cf. §3, 2.1), that properties (1),

(2) in fact characterize the semigroup of plane branches, by explicitly constructing
a plane branch with semigroup Γ, given that Γ satisfies (1) and (2).

2.2.3. Completing the proof of 2.2. Lemma 2.2.1 allows us to write for
any i, 1 ≤ i ≤ g :

ni · βi = �(i)
o · β0 + · · ·+ �

(i)
i−1 · βi−1, �

(i)
j ∈ Z+ .

This implies that our monomial curve CΓ parametrized by ui = tβi (0 ≤ i ≤ g)
satisfies the following equations:

fi = uni

i − u
�
(i)
0

0 · u�
(i)
1

1 · · ·u�
(i)
i−1

i−1 = 0 (1 ≤ i ≤ g).

Moreover, since the sequence βi is increasing, ni <
∑i−1

j=0 �
(i)
j (1 ≤ i ≤ g), and

therefore, the term of lowest degree (in the usual sense) of fi is uni

i .
Let I ⊂ C{u0, . . . , ug} be the ideal generated by the fi (1 ≤ i ≤ g), let C′ be

the subspace of (Cg+1,0) defined by I, and set O′ = OC′,0 = C{u0, . . . , ug}/I. We
have (CΓ,0) ⊂ (C′,0). Thus, the multiplicity of C′ at 0 is at least that of CΓ, which
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equals β0. Furthermore, Theorem 2 yields a deformation whose “generic fiber” is
O′ and special fiber Spec grMO is the tangent cone to C′ at 0, where grMO′ is
the associated graded algebra for the filtration of O′ by the powers of its maximal
ideal. Since (un1

1 , . . . , u
ng
g ) forms a regular sequence that defines an irreducible

subspace, a direct calculation shows that grMO′ = C[U0, . . . , Ug]/(Un1
1 , . . . , U

ng
g ),

where Ui = inM ui denotes the initial form of ui in the graded algebra associated
to the filtration of C{u0, . . . , ug} by the powers of its maximal ideal.

Additionally, the multiplicity of C′ (as well as its dimension, of course) equals
that of its tangent cone. This shows that C′ is a complete intersection branch
with multiplicity n1 · · ·ng = β0. Indeed, by Theorem 2, C′ is a flat deformation
of its tangent cone, Spec (grMO′) (the u0 axis counted n1 · · ·ng times), which
has multiplicity β0 = n1 · · ·ng, and which is a complete intersection, a property
preserved by a flat deformation. Moreover, it contains CΓ, which is irreducible and
also has multiplicity β0. From this, one deduces that CΓ = C′, and thus, CΓ is a
complete intersection, which completes the proof of 2.2. �

2.3. Corollary. Any branch (C,0), whose semigroup Γ equals the semigroup
of a plane branch, is a complete intersection.

Proof. By Theorem 1, (C,0) is a flat deformation of (CΓ,0), which is a
complete intersection by 2.2. The assertion now follows because a flat deformation
preserves the property of being a complete intersection (cf. [Tj], [S]). �

2.4. Remarks:
2.4.1. The proof of 2.3 and the final part of the proof of 2.2 exemplify an

application of Theorem 2 of the following type: if one is able to find a filtration
F of a ring O such that grF O satisfies a property that is stable under flat de-
formation (for example: regularity, locally complete intersection, Cohen-Macauley,
isolatedness of singularities, reduced...), then O itself also possesses this property.

2.4.2. I do not know if the semigroups of complete intersection branches satisfy,
in general, the property of Lemma 2.2.1 (cf. 2.2.2). �

In the following, I will often impose the condition that Γ is the semigroup of a
plane branch, since this is the context in which we are working here, but I will only
use the fact that CΓ is a complete intersection, which is, a priori, a less restrictive
hypothesis (a posteriori also, cf. §3, 3.2.3).

2.5. Corollary (of 2.2). (cf. Pinkham [Pi] chap. I, 2.3) If Γ is the semi-
group of a plane branch, one can construct a miniversal deformation G : (X, CΓ)→
(S,0) of CΓ (as an affine curve) with C∗ action that is compatible with those
on X and S (i.e. G is equivariant relative to these actions in the sense that
G(λ · x) = λ · G(x) ∀λ ∈ C∗). The induced C∗ action on CΓ 
 G−1(0) is the
natural C∗ action on CΓ (given by t → λ · t, λ ∈ C∗). Moreover, S is smooth
because CΓ is a complete intersection ([Tj], [S]).

Proof. We begin by first recalling the following:
2.5.1. The affine algebra C[CΓ] of CΓ ⊂ Cg+1 is isomorphic, as a graded

algebra, to (notations of 2.2.3) C[u0, . . . , ug]/(f1, . . . , fg) with the quotient grading,
induced from that of C[u0, . . . , ug] where deg ui = βi. The quotient grading exists

because fi = uni

i − u
�
(i)
0

0 · · ·u�
(i)
i−1

i−1 is homogeneous of degree ni · βi with respect to
this grading on C[u0, . . . , ug] (cf. 2.2.3). The ideal generated by the fi is therefore
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homogeneous so that the grading passes through to the quotient. I also want to
emphasize here that this quotient grading on C[u0, . . . , ug]/(f1, . . . , fg) = C[CΓ] ↪→
C[t] coincides with that induced by the natural grading on C[t] (cf. 1.2.1).

2.5.2. Additionally, one knows that since CΓ is a complete intersection (cf.
Addendum, [S], [Tj]), the miniversal deformation G of CΓ can be described as the
restriction of the natural projection Cg+1×Cτ → Cτ to the subspace X ⊂ Cg+1×Cτ

defined, in the coordinates u0, . . . , ug on Cg+1 and w1, . . . , wτ on Cτ , by the ideal
generated in C[u0, . . . , ug, w1, . . . , wτ ] by (F1, . . . , Fg) where

Fi = fi(u0, . . . , ui) +
τ∑

j=1

wj · sij(u0, . . . , ug) 1 ≤ i ≤ g.

Here, the vectors sj = (s1,j , . . . , sg,j) ∈ C[u0, . . . , ug]g satisfy the property that
their images (via the map ν : C[u0, . . . , ug]g → C[CΓ]g, induced by the canoni-
cal surjection C[u0, . . . , ug] → C[u0, . . . , ug]/(f1, . . . , fg) 
 C[CΓ]) in the quotient
C[CΓ]g/N form a basis as C vector space, where N is the submodule of C[CΓ]g

generated by the g + 1 vectors

γ0 = ν
(
∂f1/∂u0, . . . , ∂fg/∂u0

)
, . . . , γg = ν

(
∂f1/∂ug, . . . , ∂fg/∂ug

)
.

(Note that the C−dimension of C[CΓ]g/N = T 1
CΓ is finite because CΓ has an

isolated singularity).
One can endow C[u0, . . . , ug]g (resp. C[CΓ]g) with a graded C[u0, . . . , ug] (resp.

C[CΓ]) module structure so that the γk (resp. their images in C[CΓ]g) are homoge-
neous relative to the grading defined by deg ui = βi (resp. the image of ui in C[CΓ]
has degree βi). Indeed, a vector ϕ = (ϕ1, . . . , ϕg) is homogeneous of degree µ if for
each i, 1 ≤ i ≤ g, ϕi is homogeneous of degree niβi +µ. (This is equivalent to writ-
ing C[u0, . . . , ug]g =

⊕g
i=1 C[u0, . . . , ug]](niβi), in the classical notation of EGA,

ch. II, 2.1, Publ. Math. I.H.E.S. No. 8). In this way, γk becomes homogeneous of
degree −βk because deg ∂fi/∂uk = niβi − βk by Euler’s identity.

One can then choose the vectors sj ∈ C[u0, . . . , ug]g to be homogeneous with
respect to this grading since they are characterized solely by the fact that their
images form a basis of a finite dimensional vector space. Finally, one can, in this
way, endow the algebra C[u0, . . . , ug, w1, . . . , wτ ] with the unique grading for which
deg ui = βi, and Fi is homogeneous of degree niβi by setting:

deg wj = −deg sj.

Indeed, by the definition of deg sj , one then has:

Fi = fi +
∑

j

wj sij

and
deg wjsij = deg wj + deg sij = niβi − deg sij + deg sij = niβi.

This permits us to define a C∗ action on Cg+1 and Cτ (via ui � λβi · ui ; wj �
λdeg wj · wj , λ ∈ C∗), which respects the subspace X ⊂ Cg+1 × Cτ defined by the
ideal (F1, . . . , Fg), since this ideal is homogeneous by the definition of deg wj . As a
result, we therefore have an action of C∗ on Cτ and X ⊂ Cg+1 ×Ct, and it is easy
to verify that G : X → Cτ , the restriction to X of the projection, is equivariant.
This completes the proof of 2.5. �
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2.6. Remarks:
2.6.1. Strictly speaking, the miniversal deformation of CΓ is only the germ

of G on CΓ, or more precisely, if one insists, one should say that the germ of G
at 0 is the miniversal deformation of the branch (CΓ,0). We have constructed an
algebraic representative of these miniversal deformations in 2.5.2 (cf. [Pi]).

2.6.2. In [Pi], Pinkham shows the existence of an miniversal equivariant de-
formation even for a non complete intersection.

2.7. Proposition (Pinkham [Pi], chap. IV, 14.9). If CΓ is Gorenstein,
and therefore, in particular, if Γ is the semigroup of a plane curve, the dimension
τ of the base of the miniversal deformation of CΓ is:

τ = 2δ(Γ) where δ(Γ) = #(Z+ − Γ).

Besides the fact that this formula helps in finding the vectors sj , this result will be
useful to us later on.

2.8. Remark ([Pi], chap. IV, 12.5): In the construction of 2.5, none of the
vectors sj can be chosen to have degree 0. As a result, deg wj ∈ Z−{0} 1 ≤ j ≤ τ.�

Proof of 2.7. One needs to show that any vector s ∈ C[CΓ]g, homogeneous
of degree 0, belongs to N . Since C[CΓ]g/N is finite dimensional, if we view C[CΓ]g

as a C[CΓ] submodule of C[t]g (which we certainly can due to the inclusion C[CΓ] ⊂
C[t]), then we see that for any such s, there exists µ ∈ Z+ such that tµ · s ∈ N (it
suffices to take µ ≥ c, the conductor, since then tµ ∈ C[CΓ]). Now, deg s = 0 means
that if s = (s1, . . . , sg), then deg si = niβi, and therefore, for each i, 1 ≤ i ≤ g,

si = αi · tniβi for some αi ∈ C∗. The fact that tµs ∈ N is then written as follows
for 1 ≤ i ≤ g :

αi · tµ+niβi =
g∑

j=0

aij

(
∂fi/∂uj

)
,

where
(
∂fi/∂uj

)
is the image of ∂fi/∂uj in C[CΓ] (2.5.1, 2.5.2). Now, in C[t],(

∂fi/∂uj

)
is homogeneous of degree niβi−βj and must therefore equal βij · tniβi−βj

for some βij ∈ C∗. By homogeneity, it then follows that αij = γij · tµ+βj for some
γij ∈ C∗. Thus, dividing by tµ we conclude

si = αi · tniβi =
g∑

j=0

γij · tβj

(
∂fi/∂uj

)
.

But since, in fact, tβj ∈ C[CΓ], the same equation must be valid in C[CΓ], which
shows that s ∈ N . �

2.9. Corollary. Fixing once and for all a choice for sj that is homogeneous,
and thus an equivariant miniversal equivariant deformation of CΓ as in 2.5, we can
then define a partition of {1, . . . , τ} :

{1, . . . , τ} = P+

∐
P− ,

where P+ = {j ∈ {1, . . . , τ} : deg wj > 0}, P− = {j ∈ {1, . . . , τ} : deg wj < 0}.
Setting τ± = #P±, then gives a decomposition Cτ 
 Cτ− × Cτ+ .



2. THE MINIVERSAL CONSTANT SEMIGROUP DEFORMATION OF CΓ 15

2.10. Theorem 3. In the setting of 2.5, 2.9, the deformation of CΓ, obtained
by applying the base change Cτ− × {0} ↪→ Cτ to the miniversal deformation
G : (X, CΓ)→ (Cτ ,0), is a miniversal constant semigroup deformation of CΓ, i.e.
is miniversal for the deformations of CΓ with reduced base such that each fiber has
a singular point with semigroup Γ. (This remains valid whether we deform CΓ as an
affine curve or branch (CΓ,0).) Thus, we have the following commutative diagram:

(XΓ, CΓ) inclusion−−−−−→ (X, CΓ)

GΓ

� G

�
(DΓ,0) =def (Cτ− ,0) inclusion−−−−−→ (Cτ ,0) =def (S,0).

(By writing DΓ for Cτ− × {0}, this is the assertion 2.1 ).
Moreover, there exists a section ΣΓ of GΓ such that GΓ

∣∣
XΓ−ΣΓ(DΓ)

is nonsingular
(i.e. ΣΓ picks out the unique singular point of each fiber, which must be a singular
point with semigroup Γ).

2.11. Proof. We first show that any flat deformation H : (Z, CΓ)→ (Y,0) of
CΓ with reduced base, each of whose fibers (for a sufficiently small representative
of H) is irreducible at a singular point with semigroup Γ, satisfies the property that
in the following commutative diagram, whose existence is due to the versality of G,

(Z, CΓ) −−−−→ (X, CΓ)

H

� G

�
(Y,0)

ϕ−−−−→ (S,0),

one has ϕ(Y ) ⊂ DΓ.
To do this, we first note that since (DΓ,0) = (Cτ−×{0},0) ⊂ (Cτ−×Cτ+,0) =

(S,0) is a (germ of) a closed analytic subspace, it suffices to prove this assertion
when Y = D = {v ∈ C : |v| < 1}. Indeed, the deformations obtained from H
by base changes (D,0) → (Y,0) have constant semigroup since H does. Thus,
since DΓ is closed in S, to show that ϕ(Y ) ⊂ DΓ, it suffices to show that any
composed morphism (D,0) → (Y,0) → (S,0) has its image in DΓ. This follows
because if ϕ−1(DΓ) 	= Y then one can find a path κ : (D,0) → (Y,0) such that
κ(D− {0}) ⊂ Y − ϕ−1(DΓ) (for sufficiently small representatives of G, H, κ...).

Now, if O is the analytic algebra of a branch (C,0) and O(
 C{t}) its nor-
malisation (1.1), one can define an integer δ(C,0) = δ(O) = dimCO/O that is an
analytic invariant of (C,0).

2.11.1. Lemma. δ(C,0) = δ(Γ) (= #(Z+ − Γ)), where Γ is the semigroup of
(C,0).

Proof. Let i1, . . . , iδ denote the elements of Z+−Γ. Identifying O with C{t},
one first notes that ti1 , . . . , tiδ are linearly independent modulo O because for any
choice of αk ∈ C, ν

(∑δ
k=1 αktik

)
= ik0 where k0 = min {k : αk 	= 0}. Thus, since

ik0 /∈ Γ,
∑δ

k=1 αktik ∈ O =⇒ αk = 0, 1 ≤ k ≤ δ.
Furthermore, if ϕ(t) ∈ C{t}−O is such that ν(ϕ) ∈ Γ, one can find an element

η0 ∈ O such that ν(ϕ − η0) > ν(ϕ); if ν(ϕ − η0) ∈ Γ one can then find η1 ∈ O
such that ν(ϕ − η0 − η1) > ν(ϕ − η0) > ν(ϕ). As a result, since Z+ − Γ is finite,
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after a finite number of steps, one has either constructed ζ0 =
∑

ηi ∈ O such that
ν(ϕ− ζ) /∈ Γ, or one has exceeded the conductor c of Γ and ϕ− ζ0 ∈ O, from which
it follows that ϕ ∈ O, in contradiction to our hypothesis.

Therefore, ν(ϕ− ζ0) = ik /∈ Γ. One can then find αk ∈ C∗ such that
ν(ϕ− ζ0 − αktik) > ν(ϕ − ζ0). As above, one can find ζ1 ∈ O such that
ν(ϕ − ζ0 − ζ1 − αktik) /∈ Γ, and since the valuation strictly increases at each step,
one inductively constructs in this way a finite sequence of elements ζi ∈ O, and
αk ∈ C such that

ν

(
ϕ−

∑
ζi −

δ∑
k=1

αktik

)
> c, c = conductor of Γ (1.1) .

Thus,

ϕ =
δ∑

k=1

αktik mod O,

which is what we needed to show in order to prove that the images of the tik , 1 ≤
k ≤ δ, generate O/O. Since we also saw at the beginning of the argument that they
were C independent, this completes the proof of 2.11.1. �

2.11.2. Application. Any deformation H : (Z, CΓ) → (Y,0) with constant
semigroup is also “δ constant” in the sense that each fiber Zy contains a singular
point z(y) such that δ(Zy, z(y)) = δ(Γ) = δ(CΓ,0).

I can now cite the following result.

2.11.3. Theorem ([T-3], théorème 1′). Among all the deformations with
base D of a reduced affine curve C ⊂ CN (resp. of a germ of reduced analytic curve
(C,0) ⊂ (CN ,0)), those that are obtained by a deformation of the parametrisation,
i.e. from a morphism C → CN whose image is C (where C is the (necessarily
nonsingular) normalisation of C), are characterized by the condition that the sum
of δ invariants of each fiber is constant.

2.11.4. In the case that interests me here, that of germs of irreducible curves,
and more precisely, of CΓ, this implies the following. Let H : (Z, CΓ) → (D,0)
be a deformation of CΓ such that for any sufficiently small representative, y →∑

i δ(Zy, zi(y)) is constant (= δ(CΓ,0) = δ(Γ)), where zi(y) are the singular points
of Zy. Then H is obtained by a deformation of the parametrisation ui = tβi for
CΓ ⊂ Cg+1. This means that H is isomorphic to the restriction of the projection
Cg+1 × D → D to some Z ′ ⊂ Cg+1 × D, where Z ′ is the image of a morphism
C× D→ Cg+1 × D (a “deformation of a parametrisation”) defined as follows:

(H.A)′
{

ui = ui(t, v) = tβi +
∑

j aij(v) · tj 0 ≤ i ≤ g, aij(v) ∈ (v) · C{v}
v = v .

Moreover, by ([T-3], §2), the sum of the δ invariants of the fibers is an upper
semi-continuous function of v (in the analytic sense). Therefore, if each fiber Zv

possesses a singular point with semigroup Γ, it must then have the same δ invariant
as the special fiber (CΓ,0), and is, necessarily, the unique singular point of Zv.
Moreover, in this case (loc.cit.), the critical locus of a sufficiently small representa-
tive of H : (Z, CΓ)→ (D, 0) is analytically isomorphic to D in a neighborhood of 0.
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In other words, the set of points of Z that are singular in their fiber is the image
of a section σ; D → Z of H. One can then assume, by a coordinate change of the
variables ui depending upon v, that the unique singular point of the fiber curve Zv

is the origin ui = 0 (0 ≤ i ≤ g) of Cg+1(= Cg+1 × {v}).
As a result, one may assume in the parametrisation (H.A)′ of H that each

ai0 = 0 (0 ≤ i ≤ g).
Even better, after an additional suitable coordinate change, we may assume,

for each i, 0 ≤ i ≤ g, that aij(v) = 0 for each j ≤ βi. This is justified by using the
following three observations:

i) we may assume that the deformation leaves unchanged the semigroup, i.e.
each curve parametrized by ui = ui(t, v0), |v0| < ε, has Γ as its semigroup;

ii) the valuation in t of ui(t, v0) is at most βi for |v0| sufficiently small;
iii) the βi form a minimal generating set of Γ.

From these facts, it follows that ν(ui(t, v0)) = βi, (0 ≤ i ≤ g) can be achieved by a
coordinate change of the ui that depends upon v. As a result, aij(v) = 0 for j < βi

for each i. Finally, by means of a second coordinate change of the ui of the form
ui = u′

i + aiβi
(v) · tβi , one may assume aiβi

(v) = 0. Thus, we can write

(H.A)

{
ui = ui(t, v) = tβi +

∑
j>βi

aij(v) · tj 0 ≤ i ≤ g, aij(v) ∈ (v) · C{v}
v = v .

2.11.5. We next recall the fact that our deformation H comes from a miniversal
deformation G via a base change. By the definition of G, this means that one can
describe H as the restriction of the projection Cg+1 × D → D to a subspace Xh

defined by the ideal (Fh
1 , . . . , Fh

g ) ⊂ C[v][u0, . . . , ug] where

(H.B) Fh
i = fi(u0, . . . , ui) +

τ∑
j=1

wj(v) · sij(u0, . . . , ug) (1 ≤ i ≤ g)

and the wj(v) ∈ C{v} (1 ≤ j ≤ τ) specify the base change map h : (D, 0)→ (Cτ ,0).
Since H is a deformation with constant semigroup, what we then want to prove is
that wj(v) = 0 if j ∈ P+ (2.9).

2.11.6. The parametrisations (H.A) and (H.B) provide two ways of describing
the algebra of Z (in the following, we will do this for the deformation of the branch
(CΓ,0) and not the “affine algebra C{v}[Z] above D”):

(A) OZ,0
∼= C{v}{u0(t, v), . . . , ug(t, v)} ⊂ C{t, v},

where the ui are those from (H.A), or

(B) OZ,0
∼= C{v, u0, . . . , ug}

/
(Fh

1 , . . . , Fh
g ),

where the Fh
i are those from (H.B).

The description in (A) gives us a filtration F of OZ,0, that is, the restriction
to OZ,0 from the (t)−adic filtration of C{t, v}, thus : Fi = (ti) ·C{t, v}⋂OZ,0.

The description in (B) gives us a filtration G of OZ,0 induced from the canonical
surjection C{v, u0, . . . , ug} → OZ,0 and the filtration G̃ of C{v, u0, . . . , ug} where
G̃i is the ideal generated by the set of monomials {uα0

0 · · ·uαg
g :

∑g
0 αkβk ≥ i}.

Thus, an element ξ ∈ OZ,0 belongs to Gi if and only if there exists ξ̃ ∈ G̃i whose
image is ξ.

One can now make three observations.
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2.11.7. Gi ⊂ Fi for each i (because ui(t, v) ∈ tβi · C{t, v}). Thus, we have a
graded morphism of graded algebras:

g : grG OZ,0 −→ grF OZ,0.

2.11.8. grF OZ,0 = C{v}[tβ0 , . . . , tβg ] (by the same proof as in 1.2.3, the point
being that the t−adic valuation of the ui(t, v) is the same for v = 0 and v 	= 0).

2.11.9. Lemma. g is a graded (C{v}−) isomorphism.

Proof. We first show the following.

2.11.10. Lemma. Let O be a ring and F ,G any two filtrations of O. We as-
sume that for each i, Gi ⊂ Fi and let g : grG O → grF O the corresponding (graded)
homomorphism.

(α) If g is injective, then g is an isomorphism.
(β) If the completions of O with respect to F and G are the same, and if⋂

i Fi = (0), (thus
⋂

i Gi = (0)), then g surjective =⇒ g is an isomorphism.

Proof of (α). Let ξ 	= 0 ∈ Fi/Fi+1. We need to find ξ̂ ∈ Gi/Gi+1 such that
g(ξ̂) = ξ. To do this, it suffices to choose any ξ ∈ Fi −Fi+1 whose F initial form is
ξ. Now, if ξ /∈ Gi, then g(inGξ) = 0, contradicting the injectivity of g. Thus, ξ ∈ Gi

and g must map ξ̂ = inGξ to ξ, as was needed. �

Proof of (β). By hypothesis, one can assume that O is separated and com-
plete for the filtration F since passage to the completion does not change the
associated graded algebra (cf. [Bourbaki, ref. of 1.1.1]). We must show that g is
injective. To this end, let ξ̂ ∈ Gi/Gi+1 satisfy g(ξ̂) = 0. Since there exists ξ ∈ Gi

such that inG ξ = ξ̂, it must be the case that ξ ∈ Fi+1. Since g is, by assumption,
surjective, there exists η1 ∈ Gi+1 such that ξ − η1 ∈ Fi+2, and also η2 ∈ Gi+2 such
that ξ− η1− η2 ∈ Fi+3, etc. ... By induction, one constucts a sequence of elements
ηk ∈ Gi+k ⊂ Fi+k such that for each �, ξ −∑�

1 ηk ∈ Fi+�+1. Since O is complete
for F , we have

∑∞
1 ηk ∈ O, and since O is separated, ξ =

∑∞
1 ηk ∈ Gi+1, which

verifies that ξ̂ = 0, completing the proof of (β). �

end of proof of 2.11.9. We will first show that g is surjective, i.e. any ele-
ment ξ ∈ OZ,0 with (t)−adic valuation i is the image of an element a(v)uα0

0 · · ·uαg
g

with
∑g

0 αkβk = i. Let ξ = a(v)ti = b(t, v)ti+1 ∈ OZ,0 be such an element. Since
i must belong to Γ, there certainly exist αk ∈ Z+ such that i =

∑g
k=0 αkβk. The

form of the ui(t, v) (2.11.4) then allows us to write

ξ = a(v)u0(t, v)α0 · · ·ug(t, v)αg mod Fi+1,

which suffices to show the surjectivity of g.

We note as well that this argument showsFi ⊂M[i/βg ], whereM = (u0, . . . , ug)OZ,0.

Moreover, since any element ofM[i/β0]+1 is certainly in Gi we have:

M[i/β0]+1 ⊂ Gi ⊂ Fi ⊂M[i/βg],

which shows that F and G define the same topology as the M−adic filtration of
OZ,0.
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2.11.10 then shows that g is an isomorphism. �

2.11.11. In the notations from 2.11.6, we therefore have a graded isomorphism:

g : C{v}[u0, . . . , ug]
/
in (Fh

1 , . . . , Fh
g ) g−−→ C{v}[tβ0 , . . . , tβg ],

where C{v}[u0, . . . , ug] = grG̃ C{v, u0, . . . , ug}, and in (Fh
1 , . . . , Fh

g ) is the ideal gen-
erated by the G̃ initial forms of elements of the ideal (Fh

1 , . . . , Fh
g )C{v, u0, . . . , ug}.

By looking at the fibers over 0 and using the fact that the fi(u0, . . . , ug) form a reg-
ular sequence, one concludes without difficulty, as in 2.3, that the in Fh

i (1 ≤ i ≤ g)
generate in (Fh

1 , . . . , Fh
g ). Since the quotient must equal C{v}[tβ0 , . . . , tβg ], one sees

that no term of degree < ni · βi can appear in Fh
i . By 2.8, one can then con-

clude that in Fh
i = fi(u0, . . . , ug), which precisely means, by the definition of the

filtration G̃, that wj(v) = 0 if j ∈ P+.
2.11.12. To finish the proof of Theorem 3 (2.10), we must verify that the

deformation GΓ of 2.10 is a constant semigroup deformation. Recall that GΓ can be
defined as the restriction to X− ⊂ Cg+1×Cτ− of the projection Cg+1×Cτ− → Cτ− ,
where X− is defined by the ideal generated by the elements

F−
i = fi(u0, . . . , ui) +

∑
j∈P− wj · sij(u0, . . . ug), 1 ≤ i ≤ g,

of the ring C{u0, . . . , ug}[{wj}j∈P− ].
Defining the filtration G̃ on C{u0, . . . , ug}[{wj}j∈P− ] in the same way as before

so that G̃i is the ideal generated by the {uα0
0 · · ·uαg

g :
∑g

k=0 αkβk ≥ i}, one sees
that the definition of P− and (2.8) imply:

inG̃ F−
i = fi(u0, . . . , ug)

and therefore, for every point w = (wj) ∈ Cτ− , the quotient filtration Gw of the
filtration G̃ in the algebra OXw ,0 of the fiber G−1

Γ (w) has, as its associated graded
algebra (in which one always uses the fact that f1, . . . , fg is a regular sequence):

grGw OXw,0
∼= C[u0, . . . , ug]

/
(f1, . . . , fg) = C[CΓ].

As a result, the associated graded algebra of OXw,0 with respect to the filtration
Gw is an integral domain. This implies that OXw,0 is an integral domain and,
in particular, that the function ξ → νGw(ξ) (cf. (1.1.1)) is a (discrete) valuation
of OXw,0. The valuation ring V ⊂ Tot (OXw,0) (the fraction field of OXw ,0) can
therefore only be the normalisation of OXw,0, and thus, Gw must coincide with the
filtration by the Mi

of 1.1. It follows that grMOXw,0 = C[CΓ], which shows that
(Xw,0) has Γ for its semigroup.

Finally, it is clear that the section Σ̃ of Cg+1 × Cτ− → Cτ− , given by Σ̃(w) =
(0,w), has its image inside X− since if j ∈ P−, then sij(u0, . . . , ug) of degree > niβi

cannot be constant; Σ̃ therefore induces a section Σ : Cτ− → X− of GΓ, which, by
2.11.12, has the desired property : Σ(w) is the unique singular point of Xw and
has Γ as its semigroup. This completes the proof of 2.10. �

3. First applications

3.1 Miniversal equisingular deformations.
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3.1.1. Corollary 1 (of 2.10). Any (plane or not) branch (C,0), whose semi-
group Γ is such that CΓ is a complete intersection, possesses a miniversal constant
semigroup deformation with nonsingular base.

In particular,

3.1.2. Corollary 2 (Wahl [Wa], also see [T-1] exp. II, [T-2] ch. III). Any

plane branch possesses a miniversal equisingular deformation GE : XE

ΣE
�−−→ SE

whose base SE is nonsingular, and which has a section ΣE that picks out the unique
singular point of each fiber.

Proofs of 3.1.1 and 3.1.2. It suffices to apply the openness of versality
in the form of the product decomposition theorem (Addendum 2.1) in order to
verify that the base of the miniversal deformation of a branch (C,0) with constant
semigroup Γ is the product of a nonsingular space of dimension 2δ(Γ) − τ(C,0)
(where τ(C,0) is the dimension of the base of the miniversal deformation of (C,0),
and, by 2.7, 2δ(Γ) = τ(CΓ,0)) with the germ of Cτ− at points w of Cτ− such that
(G−1

Γ (w), Σ(w)) ∼= (C,0). Such points w exist by Theorem 1. This shows 3.1.1;
and 3.1.2 follows immediately from this and (II, §3), since two plane branches are
equisingular if and only if they have the same semigroup Γ. �

3.1.3. Remark: The description of GΓ : XΓ → DΓ, given in 2.11.12, only
exhibits linear terms in the wj (j ∈ P ). This is in contrast to Theorem 8.2 of
[Wa], which displays a certain intrinsic nonlinearity in the product decomposition
theorem, relative to the point of view adopted here. �

3.1.4. Remark: Let D ⊂ Cτ be the discriminant (cf. Addendum) of the
miniversal deformation X → Cτ of CΓ, where Γ is the semigroup of a plane branch.
We first note that Cτ− = DΓ ⊂ D. In fact, we can be more precise as follows. At
a point w of Cτ− such that (Xw, Σ(w)) is a plane branch, the multiplicity of D
(as a hypersurface) is the Milnor number of (Xw, Σ(w)), which equals 2δ(Γ) ([Mi,
[Ri]). Like the embedding dimension of a fiber, the multiplicity is also an upper
semicontinuous function. Since DΓ is nonsingular, the fact (cf. [T-3], Th. 2) that
constancy of the Milnor number in a deformation of plane branches insures their
equisingularity then implies:

DΓ = Dµ ,

where µ = 2δ(Γ) is the Milnor number of (Xw, Σ(w)) (cf. II, No. 2 and [T-2]),
and Dµ denotes the set of points s ∈ D such that the multiplicity of D at s is ≥ µ
(compare with [T-2] chap. III). �

3.2 Characterization of semigroups of plane branches.

3.2.1. Proposition. Let Γ =< β0, . . . , βg > be a semigroup such that Z+−Γ
is finite and satisfying (cf. 2.2.2):

(1) ni · βi ∈< β0, . . . , βi−1 > (1 ≤ i ≤ g)
(2)� � of the indices i, 1 ≤ i ≤ g − 1, are such that niβi < βi+1.

Then there exists a branch (C,0) ⊂ (Cg+1−�,0) such that Γ is the semigroup of
(C,0). In particular, if all the indices i(1 ≤ i ≤ g) satisfy niβi < βi+1, then Γ is
the semigroup of a plane branch (the converse was proved in 2.2.2).
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(The last result4 can also be easily verified by using (*) of 2.2.1 to define the
βq inductively (β0 = β0) and by verifying that the branch

x = tβ0 , y = tβ1 + tβ2 + · · ·+ tβg

has Γ as its semigroup. However, I prefer the proof given here.)

Proof. One first verifies without difficulty that the vectors (u2, 0, . . . , 0),
(0, u3, 0, . . . , 0), . . . , (0, 0, . . . , ug, 0) are C−independent modulo N in C[CΓ]g (cf.
2.5.2). Let i1, . . . , i� be the � indices referred to in (2). Condition (1) implies that
CΓ is a complete intersection (2.2.3), and therefore that we can apply Theorem 3
(2.10). This shows us that the deformation, obtained by restricting the projection
Cg+1 × C� → C� to X ′, defined by the ideal (F ′

1, . . . , F
′
g), where{

F ′
i = fi(u0, . . . , ui) if i ∈ {1, . . . , g} − {i1, . . . , i�}

F ′
i = fi + λiui+1 if i ∈ {i1, . . . , i�} ,

(the λi are among the wj of 2.5.2)
is a constant semigroup deformation since if i ∈ {i1, . . . , i�}, then

deg fi = niβi < βi+1 = deg ui+1.

Now, if λ ∈ C� is such that each λi 	= 0, (i ∈ {i1, . . . , i�}), the fiber (X ′
λ,0)

is contained in the (transversal) intersection of � nonsingular hypersurfaces F ′
i =

0 (i ∈ {i1, . . . , i�}). Up to isomorphism, therefore, (X ′
λ,0) ⊂ (Cg+1−�,0), and the

semigroup of (X ′
λ,0) must be Γ since it is independent of λ. This proves 3.2.1. �

3.2.2. Remark: By eliminating the ui, 2 ≤ i ≤ g, the above method allows
one to construct quite easily the equation of a plane branch with given semigroup
(or equivalently, a given set of Puiseux exponents). �

3.2.3. Remark: There exist semigroups Γ such that CΓ is a complete inter-
section but Γ cannot be the semigroup of a plane branch, i.e. satisfying (1) but not
(2)g−1 of 3.2.1. For example, let Γ =< 9, 21, 22 > . One has e0 = 9, e1 = 3, e2 =
1, n1 = n2 = 3, and

n1β1 = 63 = 7 · 9 ∈< 9 >

n2β2 = 66 = 5 · 9 + 21 ∈< 9, 21 > ,

which imply that CΓ is the complete intersection (cf. 2.2.3):

CΓ :
{

u3
1 − u7

0 = 0
u3

2 − u5
0u1 = 0 ,

but n1β1 > β2 = 22, so that Γ is not the semigroup of a plane branch (cf. 2.2.2).�
3.3 On the branches whose module of differentials has maximum

torsion (a second look at Zariski’s article [Z]).

In this part I apply the “jump” property of τ (Addendum 2.9) to prove a
theorem that generalizes the main result of Zariski’s article [Z].

4MM. J. Bertin et Carbonne (Toulouse) have recently informed me that the characterization
of semigroups of plane branches was proved in an article of Brezinsky, Proc. A.M.S. No. 2 (1972)
pg. 381.
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3.3.1. Theorem 4. Let O be the algebra of a branch (C,0) whose semigroup
Γ is such that CΓ is a complete intersection. Let T be the O−torsion submodule of
Ω1

O , the module of differentials of O. Then
(A) dimC T = τ(C,0) ≤ 2δ(Γ)
(B) dimC T = 2δ(Γ) if and only if (C,0) is isomorphic to (CΓ,0),

where τ(C,0) denotes the dimension of the base of the miniversal deformation of
(C,0).

Proof. Since CΓ is a complete intersection by assumption, so too is (C,0)
(proof of 2.3). In particular, (C,0) is therefore Gorenstein. One can then apply
the theorem of local duality to show

dimC T = dimC H0
M(Ω1

O) = dimC Ext1O (Ω1
O,O) = τ(C,0)

(cf. Pinkham [Pi], ch. III, 10.4). Since (C,0) is a deformation of (CΓ,0), it now
follows from the product decomposition theorem (Addendum 2.1) that

τ(C,0) ≤ τ(CΓ,0) = 2δ(Γ) (cf. 2.7).

This proves (A).
To prove (B), we note that in the one parameter deformation provided by

Theorem 1 (1.3), each fiber, except possibly the special fiber, is isomorphic to (C,0).
If (C,0) is not isomorphic to (CΓ,0), one can then apply the “jump property” of τ
(Addendum 2.9) to conclude that τ(C,0) < τ(CΓ,0) = 2δ(Γ). (In place of Theorem
1, one could use the fact that in the miniversal deformation G : (X, CΓ) → (S,0)
of CΓ, the analytic type of the fibers Xs remains constant when s varies in an orbit
of the C∗ action on S (2.5). Of course, X0 = CΓ.)

This completes the proof of 3.3.1. �

3.3.2. Remark: In the article of Zariski [Z], the integer 2δ(Γ) is replaced by
the conductor c of Γ. The two quantities are equal since O is Gorenstein. Zariski
shows by very different methods that if (C,0) is a plane branch such that dimC T =
c, then (C,0) is isomorphic to a branch defined by the equation Y n −Xm = 0. Of
course, any monomial curve in the plane must be of this type. �



Chapter II: Application to
the study of the moduli space

1. An example: the moduli space associated to Γ =< 4, 6, 2s + 7 >.

1.1. I want to begin this chapter with an example showing how one can apply
the results of the preceding chapter in order to recover a result of the Course (IV,
§3): the moduli space associated to the characteristic (4, 6, 2s + 1) consists of a
single point whenever the integer s is at least 3.

We therefore fix an integer s ≥ 3. The formula (II, 3.11) shows us that the
semigroup of a plane branch with characteristic (4, 6, 2s + 1) is generated by β0 =
4, β1 = 6, β2 = 2s + 7, i.e. Γ =< 4, 6, 2s + 7 > . Thus, the curve CΓ lies in C3 and
is parametrized by:

CΓ :




u0 = t4

u1 = t6

u2 = t2s+7

and the calculations done in Ch. I, 2.2.3 give us the equations5

CΓ :
{

u2
1 − u3

0 = 0

u2
2 − us+2

0 u1 = 0 .

We will now determine the miniversal deformation of CΓ. To do this, we are helped
by the fact that we know (ch. 1, 2.7)

τ(CΓ,0) = dimC C[CΓ]2
/N = 2δ(Γ),

where N is the submodule of C[CΓ]2 generated by the images of (cf. ch. 1, 2.5.2)

γγγ0 =
( −3u2

0

−(s + 2)us+1
0 u1

)
, γγγ1 =

(
2u1

−us+2
0

)
, γγγ2 =

(
0

2u2

)
.

Now, since CΓ is a complete intersection, and in particular, Gorenstein, 2δ(Γ)
equals the conductor c of Γ (II, §1), which equals 2s + 10 (because Γ contains all
even integers ≥ 4, and thus, all odd integers ≥ 2s + 11 = β0 + β2). We therefore
need 2s + 10 C−linearly independent vectors in C[CΓ]2 modulo N , and it is not
difficult to verify that the equivariant miniversal deformation of CΓ is described by

5For 0 ≤ s ≤ 2, CΓ is a complete intersection, but Γ is not the semigroup of a plane branch.
This gives us a simpler example than Ch. I, 3.2.3.

23



24 APPLICATION TO THE STUDY OF THE MODULI SPACE

the following pair of functions, using the notations of ch. 1, 2.5.2:

(
F1

F2

)
=

(
u2

1 − u3
0

u2
2 − us+2

0 u1

)
+ w1

(
1
0

)
+ w2

(
0
1

)
+ w3

(
u0

0

)
+ w4

(
0
u0

)
+ w5

(
u1

0

)

+ w6

(
0
u1

)
+ w7

(
u2

0

)

+ w8

(
u2

0

0

)
+ w9

(
u0u1

0

)
+ w10

(
u0u2

0

)
+ w11

(
0
u2

0

)

+ w12

(
0

u0u1

)
+ w13

(
0
u2

1

)

+
s+1∑
j=4

w10+j

(
0
uj

0

)
+

s∑
k=2

w10+s+k

(
0

uk
0u1

)
.

(I take the opportunity here to include a remark of M. Merle, who has indicated
to me that the calculation of the miniversal deformation done in ([T-1], exp. II,
Remark 5.6) is false. This however does not affect the validity of that Remark.)

The only vectors sj appearing on the right side of the above equation whose
coefficient wj has negative degree, i.e. such that j ∈ P−, are easily seen to be(

u2

0

)
and

(
u0u2

0

)
. Indeed, j ∈ P− means that each component sij of sj satisfies

deg sij > niβi = deg fj , where deg u0 = 4, deg u1 = 6, and deg u2 = 2s + 7. Here,
deg (u2

1−u3
0) = 12, deg (u2

2−us+2
0 u1) = 4s+14, and deg us

0 = 4s, deg us
0u1 = 4s+6,

which are both < 4s + 14, while deg u2 = 2s + 7 ≥ 13 > 12 when s ≥ 3.
We therefore know, thanks to Theorem 3 (ch. 1, 2.10), how to write the

miniversal constant semigroup deformation of CΓ:

where XΓ ⊂ C3 × C2 (with coordinates (u0, u1, u2, w7, w10)) is defined by:

(*)
{

u2
1 − u3

0 + w7u2 + w10u0u2 = 0

u2
2 − us+2

0 u1 = 0 .

Since each fiber has exactly one singular point, u0 = u1 = u2 = 0, those that
are plane branches are exactly those for which w7 	= 0, and by Theorem 1, up to
isomorphism, any plane branch with characteristic (4, 6, 2s+1) appears in this way.
A simple calculation shows that whenever w7 	= 0, one can then change variables
as follows:

u′
0 = (w7 + w10u0)

4
2s−5 · u0

u′
1 = (w7 + w10u0)

6
2s−5 · u1

u′
2 = (w7 + w10u0)

2s+7
2s−5 · u2
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so that (*) becomes:

(*′)
{

(u′
1)

2 − (u′
0)

3 + u′
2 = 0

(u′
2)2 − (u′

0)s+2 u′
1 = 0 .

In this way, we have shown that any plane branch which appears in the miniversal
constant semigroup deformation of CΓ, thus, any plane branch with semigroup Γ,
is isomorphic to the branch defined by (*′), or more simply, by the equation (in
C[u0, u1])

(u2
1 − u0)3 − us+2

0 u1 = 0,

by eliminating u2, as suggested by ch. 1, 3.2.2. Evidently, this shows that the
moduli space is indeed reduced to a single point in this case.

But we can also observe here, in addition, that when w7 = 0 and w10 	= 0, that
the following change of variables:

u′
0 = w

4
2s−1
10 · u0

u′
1 = w

6
2s−1
10 · u1

u′
2 = w

2s+7
2s−1
10 · u2

transforms (*) into the pair of equations:{
(u′

1)
2 − (u′

0)
3 + u′

0u
′
2 = 0

(u′
2)

2 − (u′
0)

s+2 u′
1 = 0 ,

which shows that any two fibers of GΓ such that w7 = 0, w10 	= 0 are isomorphic
branches.

By Addendum 2.7, we have therefore proved (since CΓ is not isomorphic to any
other fiber of GΓ) the following.

1.2. Proposition. The quotient space of C2 (with coordinates w = (w7, w10)),
defined by the equivalence relation

w ∼ w′ iff (G−1
Γ (w),0) ∼= (G−1

Γ (w′),0),

and given the quotient topology, consists of three points PI , PII , and PIII , corre-
sponding respectively to w7 	= 0, w7 = 0, w10 	= 0, and w7 = w10 = 0 (i.e. CΓ).The
closure of {PI} is {PI , PII , PIII}, that of {PII} is {PII , PIII}, and PIII is the only
closed point. Moreover, PI corresponds to the plane branches.

We will study other moduli spaces from this point of view in the following
sections.

2. Compactification of the moduli space of plane branches

2.1. Let Γ ⊂ Z+ be the semigroup of a plane branch, and DΓ 
 Cτ− the

base of a representative GΓ : XΓ

ΣΓ
�−→ DΓ of the miniversal constant semigroup

deformation of CΓ (see ch. 1, 2.10), where ΣΓ is the section that picks out the
unique singular point of each fiber. One can define an equivalence relation on DΓ

as follows:
w ∼ w′ (w,w′ ∈ DΓ) iff the germs (G−1

Γ (w), Σ(w)) and (G−1
Γ (w′), Σ(w′)) are

analytically isomorphic.
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2.2. I will call the moduli space associated to the semigroup Γ the quotient
space DΓ/ ∼ (with quotient topology). I will denote the space by M̃Γ, or by M̃

for simplicity and set m : DΓ → M̃Γ to be the canonical mapping.

2.3. Theorem 5.
1. M̃Γ is quasi-compact (i.e. a quotient of a compact space that is not neces-

sarily separated) and connected.
2. The moduli space MΓ of plane branches, corresponding to the equisingularity

class with semigroup Γ, is an open, dense, and connected subset of M̃Γ.
3. MΓ = M̃Γ is and only if Γ is generated by two elements (i.e. g = 1).

Proof. M̃Γ is a quotient of the quotient space of DΓ determined by the natural
action of C∗ (cf. ch. 1, 2.5, 2.10), which is clearly compact, thanks to ch. 1, 2.8. An
alternative argument one might prefer is to note that the mapping m : DΓ → M̃Γ

assigns to each point w ∈ DΓ the equivalence class modulo isomorphism of the
fiber (G−1

Γ (w), Σ(w)). By Theorem 1, m therefore satisfies the property that its
restriction to any open neighborhood U of 0 in DΓ is surjective. Since DΓ is locally
compact, M̃Γ must be quasi-compact.

The proof of (2) uses the semicontinuity of the embedding dimension of fibers
of a morphism, which itself follows from two facts. The first is the upper semicon-
tinuity of the dimension of fibers of a coherent sheaf of modules. The second is the
existence of a coherent sheaf P1

XΓ/DΓ
on XΓ (the sheaf of relative jets) such that

dimC P1
XΓ/DΓ

(x) = im dimx (G−1
Γ (GΓ(x)), x),

where im dimx denotes the embedding dimension at x6, which equals the dimension
of the Zariski tangent space (M/M2)∗ at x. (For more details, see Seminar Cartan
60-61, fasc. 2, exposés of Grothendieck, and [L-T-1].)

In particular, D
(3)

Γ = {w ∈ DΓ : im dim (G−1
Γ (w), Σ(w)) ≥ 3} is a closed

analytic subset of DΓ whose complement is nonempty. This is due to the fact
that Γ is the semigroup of a plane branch. Thus Theorem 1 (ch. 1) insures the
existence of w ∈ DΓ such that (G−1

Γ (w), Σ(w)) ⊂ (C2,0), i.e. im dim G−1
Γ (w) = 2.

Moreover, each fiber of GΓ is singular unless Γ = Z+, in which case DΓ = {0}, and
therefore im dim G−1

Γ (w) ≥ 2 ∀w ∈ DΓ. As a result,

(2.3.1) DΓ −D
(3)
Γ = D

(2)
Γ = {w ∈ DΓ : (G−1

Γ (w), ΣΓ(w)) is a plane branch}
is an open dense subset of DΓ. I observe that the image set m(D(2)

Γ ) ⊂ M̃Γ is the
moduli space of plane branches with semigroup Γ. Moreover, the fact that DΓ is
nonsingular implies D

(2)
Γ is connected.

Thus, to complete the proof of (2), it suffices to verify that the quotient topology
on m(D(2)

Γ ) agrees with the topology on the space MΓ that comes from the Puiseux
series expansions (III, 2.2). The first point is that it is certainly true that set
theoretically

m(D(2)
Γ ) = MΓ ⊂ M̃Γ.

The fact that the topologies agree follows from the “continuity of zeroes of an ideal
defining a flat deformation as a function of its coefficients”, and the theorem cited
in (ch. 1, 2.11) and used as in 2.11.4.

6minimal dimension of a smooth space into which the singular germ embeds.
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2.3.2. Part (3) follows from these facts: i) the embedding dimension is an
analytic invariant; ii) D

(2)
Γ and its complement D

(3)
Γ are unions of orbits of the

C∗ action on DΓ; iii) MΓ = M̃Γ if and only if D
(2)
Γ = DΓ (i.e. if and only if the

embedding dimension of CΓ equals 2). Now, to say that β0, . . . , βg form a minimal
generating system for Γ (ch. 1, 1.1.2) is equivalent to saying that the embedding
dimension of CΓ, which is a priori at most g + 1, in fact equals g + 1 (arguing as in
ch. 1, 1.10). Thus, MΓ = M̃Γ ⇐⇒ g = 1, completing the proof of (3). �

2.4. Remark: M̃Γ is a “natural compactification” of the moduli space MΓ

of plane branches, but it is not a minimal compactification. For example, we have
seen in the preceding section when Γ =< 4, 6, 2s + 7 >, that MΓ is compact since
MΓ = {PI}, but MΓ 	= M̃Γ. However, it was shown in the Course (Chap. IV) that
this was the only example where MΓ is compact and g > 1.

3. The generic component of the moduli space

3.1. In the preceding section, we have only used the semicontinuity of the
embedding dimension of fibers of a morphism, applied to the miniversal constant

semigroup deformation GΓ : XΓ

ΣΓ
�−→ DΓ of CΓ of a plane branch (or more generally,

such that CΓ is a complete intersection, in which case one should replace MΓ by the
moduli space of branches with semigroup Γ and of minimal embedding dimension).

In this section, we will use, in addition, the semicontinuity of the dimension
τ(Xw,0) (0 = ΣΓ(w)) of the base of the miniversal deformation of the fibers Xw.
In fact, I will redo a part of the constructions given in Chapter VI §1 -3 of the
Course by applying the ideas developed in the discussion above. The fact that I
am not able to write explicitly a miniversal deformation of CΓ (g > 1) forces me to
use the language of exact sequences. In addition, since I was not able to preserve
all the notations of (VI) for various reasons, I included a small summary of the
differences (see 3.5) to help the reader compare the discussion below with that of
the Course.

3.2. Let Γ be a semigroup of a plane branch, and let GΓ : XΓ

ΣΓ
�−→ DΓ be

the miniversal constant semigroup deformation of the monomial curve CΓ. By the
Addendum, §2, 2.5, the set of points w ∈ DΓ such that τ(Xw,0) assumes its
minimal value is an open analytic subset V0 of DΓ. (In fact, this set is algebraic
since it is also stable under the C∗ action on DΓ.) Furthermore, as we noted in the
preceding section, the set D

(2)
Γ (of w ∈ DΓ such that (Xw,0) is a plane branch)

is an open, dense, and analytic (in fact, it is, of course, algebraic) subset of DΓ.

Setting V = V0

⋂
D

(2)
Γ (actually, it seems quite likely that V0 ⊂ D

(2)
Γ ), and τmin =

min τ(Xw,0), it follows that:

w ∈ V ←→ (Xw,0)is a plane branch and τ(Xw,0) = τmin.

3.3. By the product decomposition theorem (Addendum 2.1), the germ of DΓ

at any w is a product:

(DΓ,w) 
 (Cτ0−τw ×Dµ,w,0)
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where τw = τ(Xw,0) and Dµ,w is the base of the miniversal equisingular de-
formation of the branch (Xw,0) ( equisingular = either constant semigroup or
equisingular in Zariski’s sense if (Xw,0) is a plane branch).

We will use the notation: q(w) = dim Dµ,w (q(0) = dim DΓ = τ−, see ch. 1
§2).

3.4. The isomorphism in 3.3 implies the following about the dimensions:

q(0) = τ0 − τw + q(w) (τ0 = 2δ(Γ), ch. 1, 2.7).

3.5. It is this equation that is cited in the Course (VI, 2.7) (with g = 1), where
CΓ (the curve Y β0 − Xβ1 = 0) is denoted C0, DΓ is identified as Eqs Defr C0,
τ = τ0 is denoted N ′, τ− = q(0) is denoted N, τw is denoted q′ when w ∈ V, q(w)
is denoted q when w ∈ V, Xw is denoted Cv, and Dµ,w is denoted Eqs Defr Cv.

3.6. Since w ∈ V implies τw = τmin, we see that q(w) is independent of w ∈ V.
Setting q(w) = q for w ∈ V, it follows that 3.4 can be rewritten as follows:

q = q(0)− (τ0 − τmin) = τ− − (2δ(Γ)− τmin).

3.7. Definition. We will say that a branch (Xw,0) is general if w ∈ V =
D

(2)
Γ

⋂
V0.

In the case g = 1, this definition coincides with that of (VI, §3). �
Theorem 6. The dimension of the generic component M1 of the moduli space

M̃Γ of branches with semigroup Γ is:

dim M1 = q = q(w) (w ∈ V ),

and the intersection of the generic component with MΓ ⊂ M̃Γ is Zariski open and
dense.

Theorem 7. The set of general points of MΓ (corresponding to the set of
general branches) is contained in the generic component of MΓ and contains a
Zariski open subset of MΓ.

I only want to summarize the procedure of the proof in the language of this
Appendix (see VI, §3). With help from the theorem of Rosenlicht (VI, §1), one
shows that the moduli mapping m : DΓ → M̃Γ induces a rational dominant
mapping

ϕ∗ : V −→M1

where M1 is the generic component of M̃Γ.
The product decomposition theorem, applied to the morphism GΓ, now implies

the following. In a neighborhood of a point w ∈ V where ϕ∗ is defined and coincides
with m, we have an induced mapping

mw : Dµ,w −→M1

where Dµ,w is the base of the miniversal equisingular deformation of (Xw,0). By
3.3 and 3.4, since w → τw = τmin is constant along Dµ,w, we are allowed to
apply (Addendum 2.9.2) with S1 = Sτw

⋂
Dµ,w in order to conclude that w is an

isolated point in its fiber (ϕ∗)−1
(
ϕ∗(w)

)
. Thus, ϕ∗ : Dµ,w →M1 is (locally) a finite

morphism, from which Theorem 6 follows. Theorem 7 is verified similarly, using
the same argument as in (VI, §3).
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3.8. As a result, to calculate the dimension of the generic component of the
moduli space, 3.6 tells us that it suffices to calculate τ− and τmin (given that 2δ(Γ)
is easy to compute).

In (VI, §2, calculation of N when g = 1), Zariski showed without too much
difficulty that τ− = (β0−3)(β1−3)

2 + β1

β0
− 1 . However, it turned out to be quite

difficult to compute q, therefore τmin, even when Γ =< β0, β0 + 1 >7

One can, however, perhaps view the computation in 3.1, which showed q = 0
when Γ =< 4, 6, 2s+ 7 > (i.e. we were able to show: τ− = 2 and τ0− τmin = 2), as
a procedure that might be capable of extending these results to g > 1.

3.9. The “τ constant strata” of the moduli space.
According to (Addendum 2.5), there exists a finite partition of DΓ, DΓ =⋃

DΓ,t, where each DΓ,t is a locally closed subspace of DΓ , defined by the condition
w ∈ DΓ,t ↔ τ(Xw,0) = t. Their images Mt = m(DΓ,t) ⊂ M̃Γ will be called “τ

constant strata” of M̃Γ.
Mumford asked if the Mt are separated (in the quotient topology). I will show

here a considerably weaker property that follows from the jumping behavior of τ .

3.9.1. Proposition. Each Mt satisfies the property (T0), that is, given any
two points m1 	= m2 ∈Mt, there exists an open set containing m1 but not m2.

Proof. Assume that any open set containing m1 must also contain m2. This
means that there exist fibers in XΓ with analytic type corresponding to m2 arbi-
trarily close to a fiber with analytic type corresponding to m1. Thus, there exists a
one parameter family of branches whose generic fiber (i.e. all but the special fiber,
cf. ch. 1, §1, thm. 1) has the analytic type of m2 while the special fiber has the
analytic type of m1. Since m1 	= m2, the “jump property” of τ (Addendum 2.9.1)
implies τm1 > τm2 , which contradicts the assumption that τm1 = τm2 = t. �

4. A connection between the moduli space of projective curves and
Weierstrass points with semigroup Γ

4.1. Here I only want to remark that DΓ(= Cτ−) is precisely that part of the
miniversal deformation G : (X, CΓ)→ (Cτ ,0) of CΓ that Pinkham ([Pi], ch. IV, No.
13) was forced to avoid in order to apply the theory of “negatively homogeneous”
deformations. His result is that there exist:

i) G̃+ : X̃+ → {0} × Cτ+ 
 Cτ+ , X̃+ containing the Zariski open set X+ =
G−1({0} × Cτ+), and such that G̃+

∣∣
X+ = G

∣∣
X+ ,

ii) a section WΓ : Cτ+ → X̃+ whose image is X̃+ −X+,
iii) a Zariski open dense subset U ⊂ Cτ+ ,

such that for each w ∈ U, the fiber X̃+
w is a projective nonsingular curve with genus

γ = δ(Γ) and WΓ(w) ∈ X̃+
w is a Weierstrass point with semigroup Γ.

[4.1.1. The semigroup Γ of a point p on a nonsingular irreducible projective
curve C is the set of orders of poles at p of rational functions on C that are regular
on C−{p}. The point is ordinary if the smallest nonzero element of Γ is γ+1 where
γ is the genus of C. It is a Weierstrass point if it is not ordinary.]

7This computation has been done in general, when g = 1, by Ch. Delorme : Sur la dimension
d’un espace de singularité, C.R.A.S. t. 280, mai 1975, pgs. 1287-89.
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From Pinkham’s result, one deduces the existence of a morphism U → Mγ,1,
the moduli space of pointed nonsingular projective curves of genus γ(= δ(Γ)), where
the point in question is, evidently, a Weierstrass point with semigroup Γ. Moreover,
Pinkham shows that the fibers of the morphism U →Mγ,1 are exactly the orbits
of the C∗ action on U described in ch. 1, §2.

4.2. This contrasts with the fact, observed in the example calculated in §1 of
this chapter, that the fibers of m : V → MΓ (in the notations of the preceding
subsection) can be of dimension 2.

4.3. In any case, one can detect a geometric relation between the singularities of
branches with semigroup Γ and Weierstrass points with the same semigroup inside
the base of the versal deformation G : X → Cτ of CΓ, whenever Γ is the semigroup
of a plane curve and Cτ = Cτ+ × Cτ− , where:

1. Cτ− contains a Zariski open set V such that XV

ΣΓ
�−→ V has a section, and

ΣΓ(w) is a singularity of a plane branch with semigroup Γ. (In fact, ΣΓ is
defined on all of Cτ− and ΣΓ : Cτ− → X− (cf. ch. 1, 2.11.12.)
One uses this to define the morphism m : V →MΓ (cf. §2 of this chapter).

2. Cτ+ contains a Zariski open set U such that XU → U can be extended to

X̃U

WΓ
�−−→ U, where WΓ(w) is a Weierstrass point with semigroup Γ on the

nonsingular X̃w .

4.4. Remark: Since w→ δ(Xw,0) is constant along Cτ− × {0} (ch. 1, 2.10,
2.11), an argument of the type “geometry of the discriminant”, like that given in
([T-4], §3), shows that τ− < δ(Γ), and therefore, that τ+ > δ(Γ) (assuming always
that CΓ is a complete intersection).
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4.5. In fact, Pinkham shows that every smooth projective curve, having a
Weierstrass point with semigroup Γ, appears, up to isomorphism, as the fiber of
G̃+ over each point of an orbit of the natural C∗ action on Cτ+ in such a way that
the Weierstrass point is picked out by WΓ (cf. [Pi], §13, 13.11).

4.6. This geometric relation provided by CΓ between Weierstrass points with
semigroup Γ and singular points with semigroup Γ is not really so surprising because
on C̃Γ = CΓ ∪ {∞}, the origin is a singular point with semigroup Γ, and ∞ is a
“Weierstrass point with semigroup Γ”, due to the fact that each function tβi has a
pole at∞ of order βi, and these g +1 functions generate the rational function field
on C̃Γ. The only surprising point is the precise complementary nature of these two
points of view, a feature brought out by our focus upon the miniversal deformation.
A certain part of all of this continues to make sense even when CΓ is not a complete
intersection.



Addendum

This addendum contains no new result, but does collect together, for the
reader’s convenience, some well known facts about miniversal deformations from
([G], [S], [Tj], [T-1], [T-2], ch. III) that were used in Chapter VI of the Course, as
well as the Appendix.

0. Notations and an existence result.

0.1. Let (X0,0) ⊂ Cn+k,0) be a germ of a complex analytic space of dimension
n with isolated singularity. A miniversal deformation of (X0,0) then exists ([Tj],
[G]), that is, a commutative diagram of germs of analytic spaces

(X0,0) inclusion−−−−−→ (X,0)� G

�
{0} inclusion−−−−−→ (S,0)

where G is a flat morphism, which is versal as a deformation and satisfies a certain
minimality property. Versality means that for any other deformation of (X0,0),

(X0,0) inclusion−−−−−→ (Z,0)� H

�
{0} inclusion−−−−−→ (Y,0)

such that H is flat, there must be a base change morphism h : (Y,0) → (S,0)
such that Z ∼= X ×S Y . The minimality property is expressed by imposing the
property that the tangent map of h is uniquely determined by H, which implies
that the dimension of S is minimal among all bases of deformations G that satisfy
the versality condition (whence the terminology). We will often be sloppy and refer
to the miniversal deformation G. In fact, such a deformation is only unique up to
a (nonunique) isomorphism.

0.2. Proposition ([Tj], [S]). If (X0,0) ⊂ (Cn+k,0) is the germ of a com-
plete intersection isolated singularity, the base (S,0) of the miniversal deformation
is nonsingular, and any versal deformation of (X0,0) with nonsingular base is iso-
morphic to G× id (Ct) : (X × Ct,0)→ (S × Ct,0). Moreover, to any deformation
H : (Z,0)→ (Y,0) of (X0,0) there is a coherent OZ module T 1

Z/Y and morphism of
coherent OY modules ΘH : (Ω1

Y )∧ → H∗(T 1
Z/Y ) that satisfy the following properties:

1. the construction of T 1
Z/Y is compatible with base changes h : Y ′ → Y, i.e.

if Z ′ = Z ×Y Y ′ p→ Z, then T 1
Z′/Y ′ 
 p∗ T 1

Z/Y ;

32
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2. T 1
Z/Y (0) = T 1

Z0,0 = T 1
X0,0 is a finite dimensional C−vector space (“vec-

tor space of infinitesimal deformations of (X0,0)”); one sets τ(X0,0) =
dimC T 1

X0,0. A description of T 1
X0,0 as Ok

X0,0

/N is used in (ch. 1, 2.5.2)

(see [Tj]). One also has T 1
X0,0 
 Ext1OX0,0

(
Ω1

OX0,0
,OX0,0

)
.

3. Since (X0,0) is a complete intersection, a deformation G : (X,0)→ (S,0)
with nonsingular base is versal (resp. miniversal) if and only if
ΘG(0) : ES,0 → T 1

X0,0 is surjective (resp. an isomorphism), where ES,0 is
the (Zariski) tangent space of S at 0.

0.2.1. Remark: In the particular case where k = 1, i.e. (X0,0) ⊂ (Cn+1,0)
is a hypersurface with isolated singularity, T 1

X0,0 is nothing other than the under-
lying vector space of the analytic algebra for the singular subspace of (X0,0), that
is, T 1

X0,0 
 OX0,0

/
j′ · OX0,0, where j′ is the nth Fitting ideal of the module of

differentials Ω1
X0,0 (cf. [T-2], ch. III). This follows from the classical presentation

of Ω1
X0,0 as the cokernel of

(f)/(f2)
(d)−→ Ω1

Cn+1

⊗
O

Cn+1

OX0

(where f ∈ C{z0, . . . , zn} is such that f = 0 defines (X0,0) and (d)(gf) =
class of d(gf) in Ω1

Cn+1

⊗
O

Cn+1
OX0), and from the definition of the nth Fit-

ting ideal as
j′ = (∂f/∂z0, . . . , ∂f/∂zn)OX0,0.

0.2.2. We recall that by parts (2), (3) of the Proposition, one can associate
to any complete intersection isolated singularity (X0,0), a miniversal deformation
with nonsingular base G : (X,0)→ (S,0) such that dim (S,0) = τ(X0,0).

If (X0,0) is a hypersurface {f(z0, . . . , zn) = 0}, then

τ(X0,0) = dimC C{z0, . . . , zn}
/

(f, ∂f/∂z0, . . . , ∂f/∂zn) ,

which implies that τ(X0,0) ≤ µ(X0,0) = dimC C{z0, . . . , zn}
/

(∂f/∂z0, . . . , ∂f/∂zn)
is the Milnor number (cf. [Mi]) (compare with ch. 1, 3.3).

1. The discriminant (cf. [T-2], ch. III) and the µ−constant stratum.

Let G : (X,0)→ (S,0) be the miniversal deformation of a complete intersection
isolated singularity (X0,0).

There exists a germ of a reduced hypersurface (D,0) ⊂ (S,0), satisfying the
following property:
For any sufficiently small representative of G, s ∈ D if and only if the fiber Xs

has at least one singular point.
In other words, D is the image by G of the critical subspace C ⊂ (X,0) (a

subspace defined by a Fitting ideal, with underlying point set the set of points that
are singular in their fiber). The Preparation theorem then tells us that
G

∣∣
C

: C → S is a finite morphism (for a sufficiently small representative). In
the case where (X0,0) is a hypersurface, the multiplicity of (D,0) at 0 equals the
Milnor number µ(X0,0) (0.2.2), which is a topological invariant of (X0,0). This
fact led me to introduce in [T-1, exp. 2] a closed analytic subspace (Dµ,0) ⊂ (D,0),
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Dµ = {s ∈ D : ms(D) = µ} (for a sufficiently small representative of D), where
ms(D) denotes the multiplicity of the hypersurface D at s, and to conjecture that
this space is nonsingular.

This conjecture is proved in ch. 1, 3.1 of the Appendix, when (X0,0) is a plane
branch, and in general for germs of reduced plane curves by using the theorem µ
constant ⇔ equisingularity (cf. [T-3], Th. 2) to identify the germ (Dµ,0) with an
analytic representative of the formal miniversal equisingular deformation, which is
known to be nonsingular by Wahl [Wa].

2. Summary of results about the miniversal deformation.

2.1. Product Decomposition Theorem ([T-2], ch. III, §1, 2.1). Let
(X0,0) be the germ of a complete intersection isolated singularity. Any sufficiently
small representative of the miniversal deformation G : (X,0) → (S,0) of (X0,0)
satisfies the following property:

For any s ∈ S, let xi(s) (1 ≤ i ≤ �) be the singular points of the fiber
Xs = G−1(s). Then there exists a product decomposition (non canonical) of S
in a neighborhood of s

S 
 S1 × · · · × S� × Ct , where t = τ(X0,0)−
�∑

i=1

τ(Xs, xi(s)),

wuch that in some neighborhood of each xi(s), G is isomorphic to

id (S1 × · · · × Si−1)×Gi × id
(
Si+1 × · · · × S� × Ct

)
:

(S1 × · · · × Si−1)×Xi ×
(
Si+1 × · · · × S� × Ct

) −→ (S1 × · · · × Si−1)× Si ×
(
Si+1 × · · · × S� × Ct

)
,

where Gi : Xi → Si is the miniversal deformation of the germ of the complete
intersection isolated singularity (Xs, xi(s)).

2.2. Remark: The assertion in 2.1 is only interesting, of course, when s ∈ D,
the discriminant locus of G. Otherwise, t = τ(X0,0). However, one should observe
that the conclusion is still meaningful even when � = 1 since it asserts that G is a
versal (though not necessarily miniversal) deformation in the neighborhood of each
point xi(s). �

2.3. Corollary. Let Σ ⊂ X be a closed analytic subspace of the critical locus
C of G that is defined by conditions concentrated at each singular point of a single
fiber G−1(s) of G. Defining ∆ = G∗(Σ) (∆ ⊂ D), there is a neighborhood of s in
which a decomposition of ∆ exists

∆ =
�⋃

i=1

∆̃i , where ∆̃i = (S1 × · · · × Si−1)×∆i ×
(
Si+1 · · · × S� × Ct

)
,

and ∆i ⊂ Si is the image of a subspace Σi ⊂ Xi , defined by the same conditions
that define Σ. (One version of this occurs with the condition “has Γ as semigroup”.
This was used in ch. 1, 3.1.)

2.4. The preceding result motivates us to decompose the base S (of a suffi-
ciently small representative) of the miniversal deformation into τ constant strata
as follows:
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2.5. Proposition. For any sufficiently small representative of the miniver-
sal deformation of a complete intersection isolated singularity, there exists a finite
partition S =

⋃
Sτ of S into (locally closed) analytic subspaces such that:

s ∈ Sτ ⇐⇒
∑

x∈Sing Xs

τ(Xs, x) = τ.

(Recall that since C → S is finite, Sing Xs is a finite set.)

Proof. In fact, this decomposition is just the stratification of S by the dimen-
sion of the fibers of the OS coherent sheaf G∗T 1

X/S (cf. Séminaire Cartan 60-61).�

2.6. In the rest of the discussion, I will use the notation τ0 = τ(X0,0), and
denote by Sτ0 the stratum of the partition from 2.5 that contains 0. Defining τs to
denote

∑
x∈Sing Xs

τ(Xs, x), one concludes that τ0 ≥ τs for each s ∈ S (applying,
as usual, the upper semicontinuity of dimension principle of the fibers of a coherent
sheaf), and that Sτ0 is a closed subspace of S.

2.6.1. One observes therefore that by 2.1, if s ∈ Sτ0 is such that the fiber Xs

has exactly one singular point x(s), then the germ of G at x(s) is the miniversal
deformation for (Xs, x(s)). �

2.7. Theorem (“efficiency of the miniversal deformation”) ([T-1], exp. 1
§1). Let (X0,0) be the germ of a complete intersection isolated singularity. Then
any sufficiently small representative of the miniversal deformation G : (X,0) →
(S,0) satisfies the following property:

the set of points x ∈ X such that the germ (Xs, x) of the fiber of G containing
x (i.e. s = G(x)) is analytically isomorphic to (X0,0) is precisely {0}.

2.8. Corollary 1. (first proved by Seidenberg [Sg] when (X0,0) is a plane
curve) The following properties are equivalent for any deformation H : (Z,0) →
(Y,0) of a complete intersection isolated singularity (X0,0) :

1. there exists a representative of H so that each fiber Zy contains a point z(y)
such that the germ (Zy, z(y)) is analytically isomorphic to (X0,0);

2. H is isomorphic to the trivial deformation (X0×Y,0)
pr2−−→ (Y,0), and there

exists a germ of a section σ : (Y,0)→ (Z,0) of H such that σ is isomorphic
to the section y → (0, y).

In other words, any deformation of (X0,0) whose fibers are all isomorphic is locally
analytically trivial.

2.9. Corollary 2. (the “jump theorem for τ”)

2.9.1. First version:. Let H : (Z,0) → (Y,0) be (a representative of ) a
deformation of the complete intersection isolated singularity (X0,0) satisfying the
following condition:

there exists a dense open analytic set V ⊂ Y such that the fibers (Zy, z(y)) are
all analytically isomorphic whenever y ∈ V.

Then, if (Zy, z(y)) is NOT isomorphic to (X0,0) one must have:

τ(Zy, z(y)) < τ0 = τ(X0,0).
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Proof. It clearly suffices to prove the assertion when Y = D(= {v ∈ C :
|v| < 1}) and V = D − {0} since Y − V is then a closed nowhere dense analytic
subspace of Y. Our deformation H can then be understood to be the pullback of
the miniversal deformation (X,0) → (S,0) of (X0,0), induced by a base change
map h : (D, 0)→ (S,0).

We will assume τ(Zy , z(y)) = τ0 and deduce a contradiction.
The first point is to observe that h(D) 	= {0} since if this were the case, then

(Zy, z(y)) 
 (X0,0) would follow, which cannot be according to our hypothesis.
Thus, h(D) is indeed an arc contained entirely inside the τ constant stratum Sτ0

(2.5, 2.6), and 2.6 then implies that z(y) is the unique singular point of the fiber
Zy. We can now apply the Product Decomposition Theorem 2.1 to conclude that
G is the miniversal deformation of the germ (Zy, z(y)).

As a result, we can therefore apply 2.7. This gives an open neighborhood
Uy ⊂ D − {0} of any point y ∈ D − {0} such that for each u ∈ U, h(u) = h(y)
(since (Zu, z(u)) is isomorphic to (Zy, z(y)) by our hypothesis). Thus, h(Uy) = {y}.
However, this clearly contradicts the fact that h : D→ S is a nontrivial arc. �

2.9.2. Second version:. Let S1
τ0
⊂ Sτ0 be an analytic subspace such that for

each s ∈ S1
τ0

, the fiber Xs of the miniversal deformation has a unique singular point
x(s) (so that τ(Xs, x(s)) = τ0 necessarily follows). Then:

“the analytic type of the fibers (Xs, x(s)) varies continuously as a function of
s, s ∈ S1

τ0
”

in the sense that for each s ∈ S1
τ0

there exists a neighborhood Vs such that for any
v ∈ Vs − {s}, (Xv, x(v)) � (Xs, x(s)).

Proof. This follows immediately from 2.1 and 2.7. �

2.9.3. Remark: 2.9.1 has been generalized recently in the context of formal
geometry by Washburn [Ws], without assuming that the fibers have an isolated
singularity. �

Question: Does 2.8 remain true when one no longer assumes that the fibers
have an isolated singularity? nor complete intersection?
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Polytechnique) (1973-74).
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Cargèse 1972, Asterisque, vol. 7-8, Société Mathématique de France, 1973.
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