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Introduction

The motivation of this paper comes from the so-called “Local version of the 16-th
Hilbert problem”. Consider a polynomial vector field of degree q

Wa,b = x∂y − y∂x +
∑

2≤i+j≤q

aijx
iyj∂x + bijx

iyj∂y,

the aij and bij being real or complex. This vector field is a deformation of the vector field
x∂y − y∂x whose trajectories are concentric circles around 0. We will prove in this paper a
precise version of the following assertion: for any compact K in the space of the (aij , bij),
there exist a number p(q) and a neighborhood U(q, K) of 0 such that for (a, b) ∈ K :

- either 0 is again a center of Wa,b (i.e., 0 is an elliptic non-degenerate singular point
of W , and W is integrable near 0),

- or Wa,b has at most p(q) limit cycles in U(q, K).

The local 16-th Hilbert problem consists in finding explicit expressions for U(q, K) and
p(q). This problem is solved only for q = 2 by the so-called “Bautin Theorem”,(cf. [B],
[Ya]). Bautin considered the Poincaré first return map around the origin restricted to a line
with coordinate X as a series Fz(X) in X with coefficients depending on the parameters
z = (aij , bij). The limit cycles correspond to the zeroes of Fz(X)−X. Given a series

Sz(X) =
∞∑

k=0

ak(z)Xk

in one variable X with polynomial coefficients ak(z) ∈ K[z1, . . . , zn], K = R or C, Bautin
then considered in [B] the ideal I of K[z] generated by all ak(z); since the polynomial ring
is nœtherian there is a smallest integer d such that a0, . . . , ad generate I. This number
is the Bautin index of the series Sz(X). In special cases Bautin was able to bound the
number of zeroes of Sz(X), hence the number of limit cycles,in function of d, and then to
bound d itself when q = 2. More generally, when the series is an A0-series in the sense of
Briskin-Yomdin (see section 2 and [B-Y]), for each z one can bound by d the number of
zeroes in X of the series Sz(X) which lie inside a disk of radius µ1(1 + |z|)−µ2 centered at
0, where µ1, µ2 are positive constants depending on Sz(X), see [F-Y].

In this paper, following [B-Y], we retain the fact that the Poincaré first return map
(we call it simply the “Poincaré return map” in this paper) is an A0-series, and bound
the number of zeroes of an A0-series in a controlled neighbourhood of 0; as we already
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mentionned, this number is equal to the number of limit cycles in the case of the Poincaré
return map. The bound is given by the reduced Bautin index d, which is the smallest
integer d such that (a0, . . . , ad) generate an ideal with the same integral closure as I.
Similar results are proved in [F-Y], with d̄ replaced by the Bautin index d. Since d ≤ d,
our bound is better. Also our proof is more direct.

In fact, we prove the following result (see Theorem 3.1):
Theorem if the A0-series Sz(X) is not identically zero, for each z ∈ K it is convergent

and the number of its zeroes is bounded by the reduced Bautin index d, in a disk of radius
R(z) with

R(z) = µ1(1 + |z|)−µ2 ,

where |z| denote the usual norm of a vector z ∈ Cn (or Rn) and µ1, µ2 are positive
constants depending only on the series.
Precise estimations of µ1 and µ2 are given in terms of certain parameters of the A0-series
(see (17) and Remark 4.4). When Sz(X) is the Poincaré return map of a vector field Wa,b

we are able to estimate µ2 in terms of q, d, and d, but there remains work to do for the
constant µ1.

The main open question in this context is to estimate d in terms of q. This should a
priori be less difficult for d than for d, since it is much easier to determine whether ideals
have the same integral closure than to determine whether they are equal.

The content of the paper is as follows: in Section 1, we study the integral closure of
ideals in a polynomial ring, which is the tool which permits the replacement of d by d in
the bound for the number of limit cycles. Section 2 introduces A0-series, and proves that
the Poincaré return map of a polynomial vector field is an A0-series. Its parameters are
computed in terms of q. In Section 3, properties of A0-series (in relation to the Bautin
index) are studied, and the main result (Theorem 3.1) is stated, with a sketch of proof. In
Section 4, a proposition due to A. Douady is used to find a lower bound for the absolute
value of a complex polynomial on a circle of controlled radius, in order to apply Rouché’s
principle. The proof of the main result follows and an Appendix gives some precisions
about the Division Theorem needed in the proof.

The present collaboration has been supported by the French-Austrian exchange pro-
gram “Amadeus”.

1. Integral closure of ideals in a polynomial ring

In this section we translate into inequalities the condition of integral dependence over
an ideal in a ring of polynomials with real or complex coefficients. A similar result is
already well known in local analytic geometry (see [L-T], [Li-T]).

Let I be an ideal of a ring A; an element P ∈ A is said to be integral over I if it
satisfies an integral dependence relation:

(∗) P k + b1P
k−1 + · · ·+ bk = 0 with bi ∈ Ii.
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Recall (see [L-T], [Li-T]) that the set of elements integral over I is again an ideal, denoted
here by I and called the integral closure of I. It is contained in the radical of I. If A =
C{z1, . . . , zn} is the ring of convergent power series, P ∈ A is integral over I = (a0, . . . , ad)
if and only if there exist a constant C and a neighborhood U of 0 in Cn such that

(1) |P (z)| ≤ C · supi|ai(z)|, for all z ∈ U,

identifying a germ with a suitable representative.
Let us assume now that A is the polynomial algebra C[z1, . . . , zn], and let (c0, . . . , cr)

be a system of generators for the ideal I. We shall say that (c0, . . . , cr) is a Macaulay
basis of I if the homogenizations c̃i(Z, T ) of the polynomials ci(z) generate the homoge-
nization Ĩ ⊂ C[Z1, . . . , Zn, T ] of the ideal I, i.e the homogeneous ideal generated by the
homogeneizations of elements of I. Let us denote by p the degree of P , βi the degree of bi

and γi the degree of ci. The equation (∗) implies the inequality kp ≤ supi((k − i)p + βi)
or supi(βi − ip) ≥ 0.

Let us denote by ` the smallest integer satisfying the inequality

` ≥ supi

βi

i
− p.

1.1 Proposition Set A = C[z1, . . . , zn], and let P ∈ A. The following conditions are
equivalent :

(a) P is integral over I.
(b) Given a Macaulay basis (c0, . . . , cr) of the ideal I, there exists a constant C > 0

such that
|P (z)| ≤ C · supj

(
(1 + |z|)`+p−γj · |cj(z)|

)
for all z ∈ Cn.

(c) For any system of generators (a0, . . . , ad) of I, there exist constants C1 > 0 and
µ ∈ N such that

|P (z)| ≤ C1 · (1 + |z|)µ · supj |aj(z)| for all z ∈ Cn.

Proof (a) ⇒ (b). We have ` ≥ 0, and if we replace zj by Zj/T in (∗) and multi-
ply the result by T k(`+p), we get a homogeneous integral dependence relation, where for
each polynomial G(z) of degree γ, we denote by G̃(Z, T ) the homogeneous polynomial
T γG(Z1/T, . . . , Zn/T ):

˜(∗) (T `P̃ )k + · · ·+ T i(δ+`)−βi b̃i(T `P̃ )k−i + · · ·+ T k(δ+`)−βk b̃k = 0.

For each i, the homogeneous polynomial b̃i belongs to (Ĩ)i; if (c0, . . . , cr) is a Macaulay
basis of I, any element G ∈ I can be written

G =
∑

j

djcj with deg(djcj) ≤ deg G.

3



Then the homogeneizations of the “monomials” cm = cm1
1 · · · cmr

r of total degree i in the
cj ’s generate the ideal (Ĩ)i and therefore if bi ∈ Ii, we have b̃i ∈ (Ĩ)i. Therefore ˜(∗) is an
integral dependence relation for the homogeneous polynomial T `P̃ over the homogeneous
ideal Ĩ. Viewing this as an integral dependence relation in Cn+1 and using (1) and homo-
geneity, we deduce that, for a Macaulay basis (c0, . . . , cr) of I, for each relatively compact
neighborhood U of 0 there is a constant C(U) > 0 such that for (Z, T ) ∈ U one has

|T `P̃ (Z, T )| ≤ C(U) · supj |c̃j(Z, T )|.

Now we may restrict this inequality to the open set T 6= 0, set zi = Zi/T and restrict
again to the hypersurface T−1 = 1 + |z|; we obtain the existence of a constant C > 0 such
that for all z ∈ Cn we have

(2) |P (z)| ≤ C · supj

(
(1 + |z|)`+p−γj |cj(z)|

)
.

(b) ⇒ (c). This follows upon expressing the generators cj of a Macaulay basis in
terms of the ak, say cj =

∑
mjkak, where the mjk are polynomials, and noticing that for

each mjk, if its degree is djk, there is a positive constant Cjk such that

|mjk(z)| ≤ Cjk(1 + |z|)djk .

(c) ⇒ (a). Let us set zi = T−1Zi. Denote by αj the degree of aj , choose an integer
r ≥ sup(p, supj(µ+γj)), and multiply the inequality of (c) by |T |r; we obtain the following
inequality for T 6= 0:

|T |r−p|P̃ (Z, T )| ≤ C1(|T |+ |Z|)µsupj |T r−µ−αj ãj(Z, T )|.

Since both sides are continuous, this inequality is also valid for T = 0, and from [L-T] or
[Li-T] we deduce that T r−pP̃ (Z, T ) is integral in the ring C{Z, T} over the product of the
ideal (Z, T )µ and the homogeneous ideal J generated by the (T r−µ−γj · ãj(Z, T ))0≤j≤r.
We can write in C{Z, T} an integral dependence relation

(T r−pP̃ )k + A1(Z, T )(T r−pP̃ )k−1 + · · ·+ Ak(Z, T ) = 0

with Ai(Z, T ) ∈ (Z, T )µiJ i. Taking the homogeneous component of degree kr in this
equation, we obtain a homogeneous integral dependence relation for T r−pP̃ over (Z, T )µJ
in C[T,Z1, . . . , Zn], with the same expression.

Setting now T = 1 in this last relation establishes the asserted integral dependence
relation for P over I in C[z1, . . . , zn].

1.2 Remark Observe that (b) also holds in the more general case where (c0, . . . , cr) are
a Gröbner basis of I with respect to a monomial order on Nn defined by positive integer
weights τ1, . . . , τn. The degrees have to be replaced accordingly by the weighted degrees
w.r.t. τ1, . . . , τn. Macaulay bases correspond to τi = 1 for all i.
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In the real case, it is then natural to define the real integral closure I of an ideal
I ⊂ R[x], x = (x1, . . . , xn), as the set of polynomials P for which there exist constants C1

and µ such that
|P (x)| ≤ C1 · (1 + |x|)µ · supj |aj(x)|

for all x ∈ Rn, see [Fe].
Notice that in the real and complex case, it is possible to give an explicit bound for the

constant µ: if q is an upper bound for the degrees p and αi, one can take µ = qβn, where
β is a universal constant. This is proved in [So], Lemma 5, for a continuous semi-algebraic
function f(x), but the same proof works for a locally bounded semi-algebraic function,
which is the case for |P (x)|/supj |aj(x)|. If the coefficients of P and of the ai’s are integers,
it is also possible to estimate the constant C1 by the same kind of bound, where now q
depends also on ‖P‖ and the ‖aj‖’s (see the next section for the definition of the norm
‖P‖ of a polynomial P ).

2. The Poincaré return map and A0-series

For a polynomial a ∈ C[z], a =
∑

aiz
i, i := (i1, . . . , in), we set ‖a‖ =

∑
i |ai|, and

denote by deg(a) the degree of a. Let us recall, after Briskin-Yomdin [B-Y], the following
definition:

2.1 Definition Let
Sz(X) =

∑
k≥0

ak(z)Xk

be a power series with coefficients ak(z) ∈ C[z]. Then Sz(X) is an A0-series if there exist
constants λi ≥ 0, 1 ≤ i ≤ 4, such that

(3)

{
deg(ak) ≤ λ1k + λ2

‖ak‖ ≤ λ3λ
k
4 .

The λi are called the (growth) parameters of the A0-series. Note that if Sz(X) is an
A0-series, its radius of convergence R(z) satisfies the inequality

(4) R(z) ≥ 1
λ4(1 + |z|)λ1

.

The growth conditions on the ak’s are rather natural. They appear also in other circum-
stances, e.g. in Monsky-Washnitzer’s construction of a formal cohomology theory [M-W].

We shall prove, following the classical method (cf. [F-Y]), that the Poincaré return
map associated to a vector field of type :

(5) x∂y − y∂x +
∑

2≤i+j≤q

aijx
iyj∂x + bijx

iyj∂y,
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is an A0-series Sz(X) =
∑

ak(z)Xk, setting z = (a, b) = ((aij), (bij)). Moreover, we will
bound the constants λi in terms of q.

Let us recall how the Poincaré return map is defined. Take a line through 0, e.g. the
x-axis. Then, given a compact set K in the z-space, there exists a positive real number
x0 such that for any z ∈ K and any real X ≤ x0, the trajectory (r(t), θ(t)) of the vector
field starting at (X, 0) has strictly increasing angle θ between 0 and 2π. Therefore θ can
be taken as a parameter along this trajectory, which makes r a function r(θ, X) of θ and
the initial value X. The return map is then defined for X ∈ [0, x0] by Sz(X) = r(2π,X) .

2.2 Proposition In the situation just described, the power series Sz(X) is an A0-series
with the following parameters : λ1 = 1, λ2 = 0, λ3 = 1, λ4 = 33πq4.

Proof In polar coordinates x = r cos θ, y = r sin θ, we have

dr = cos θdx + sin θdy, rdθ = − sin θdx + cos θdy,

and the trajectories of the vector field (5) satisfy

dr

dθ
= r

cos θ(−y +
∑

aijx
iyj) + sin θ(x +

∑
bijx

iyj)
− sin θ(−y +

∑
aijxiyj) + cos θ(x +

∑
bijxiyj)

(6)

= r
cos θ(−r sin θ +

∑
aijr

i+j(cos θ)i(sin θ)j) + sin θ(r cos θ +
∑

bijr
i+j(cos θ)i(sin θ)j)

− sin θ(−r sin θ +
∑

aijri+j(cos θ)i(sin θ)j) + cos θ(r cos θ +
∑

bijri+j(cos θ)i(sin θ)j)

=
∑q

i=2 riPi

1−
∑q−1

i=1 riQi

.

where Pi, Qi are linear forms in z = (a, b), and where for any θ ∈ [0, 2π],

(7) ‖Pi‖ ≤ 2(i + 1), ‖Qi‖ ≤ 2(i + 2).

Moreover, Pi and Qi are homogeneous polynomials in (sin θ, cos θ), with

deg(Pi) = i + 1, deg(Qi) = i + 2.

There exists ρ > 0 such that |
∑

riQi(z, θ)| < 1 for all 0 ≤ r ≤ ρ, z ∈ K, θ ∈ [0, 2π].
Write

(8)
dr

dθ
=

+∞∑
k=2

rkRk.

as a series in r.

2.3 Lemma Rk is a polynomial in z of degree ≤ k − 1, with ‖Rk‖ ≤ (2q2)k. It is a
polynomial in (sin θ, cos θ) of degree ≤ 3(k−1). Moreover, as a polynomial in (sin θ, cos θ),
Rk is homogeneous of degree k + 1 mod 2 .
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Here, ‖Rk‖ is computed for θ fixed, considering Rk as a polynomial in z only.

Proof Let us first prove the assertion on the degree of Rk in sin θ and cos θ. By definition,
we have

∞∑
k=2

rkRk = (
q∑

i=2

riPi)(1 +
(q−1∑

1

riQi

)
+ · · ·+

(q−1∑
1

riQi

)p

+ · · ·).

A monomial of Rk is of the form PiQ
α1
1 . . . Q

αq−1
q−1 , with 2 ≤ i ≤ q, α1 + · · ·+ αq−1 = p for

some p, 1 ≤ p ≤ k− i, and i + α1 + 2α2 + · · ·+ (q− 1)αq−1 = k. Its degree in cos θ, sin θ is

(i + 1) + 3α1 + 4α2 + · · ·+ (q + 1)αq−1 = k + 1 + 2p.

Then the maximum of the degrees of such a monomial is obtained for p maximum, i.e.,
p = k − 2 which gives the bound 3 + 3(k − 2) = 3(k − 1) for the degree in cos θ, sin θ (this
bound is reached for the monomial P2Q

k−2
1 ). The assertion about the homogeneity (mod

2) of Rk is easily proved by induction on k.

Let us now prove the following claim: Let αj,p be the norm of the coefficient of rj in
(
∑q−1

1 riQi)p. Then αj,p ≤ (2q2)p.
This is shown by induction on p, using (7) : For p = 1 we have αj,1 ≤ 2(i+2) ≤ 2(q +1) ≤
2q2 (q ≥ 2). For the induction step write

(∑
riQi

)p+1

=
(q−1∑

1

riQi

)p(q−1∑
1

riQi

)

and get αj,p+1 ≤
∑j−1

j−q+1 αi,p2(j− i + 2) ≤ (2q2)p2(q + 1)(q− 2) ≤ (2q2)p+1, which proves
the claim.

The norm of the coefficient of rk in

1
1−

∑q−1
1 riQi

= 1 + (
∑

riQi) + · · ·+ (
∑

riQi)p + · · ·

is ≤
∑k

1(2q2)i = 2q2 (2q2)k−1
2q2−1 ≤ (2q2)k+1. We now multiply 1

1−
∑q−1

1
riQi

by (r2P2 +

· · · + rqPq). The norm of the coefficient of rk is then ≤
∑k−2

k−q(2q2)i+12(k − i + 1) ≤
(q − 2)(2q2)k−12(q + 1) ≤ (2q2)k.

We want to find the solution of (8) with r(0) = X, expressed as a power series in X:

(9) r = r(θ, z,X) = X +
+∞∑
2

ak(z, θ)Xk, ak(z, 0) = 0.
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The Poincaré return map Sz(X) will then be obtained by setting θ = 2π in (9), say
Sz(X) = r(2π, z, X). For k ≥ 2, we get from (8):

(10)


a′k =

k∑
i=2

Ri ·Gik(a2, . . . , ak−i+1),

ak(z, 0) = 0,

where Gik(a2, . . . , ak−i+1) is the coefficient of Xk in (X + a2X
2 + · · ·+ apX

p + · · ·)i and
where a′k denotes ∂ak/∂θ. Integration of (10) with initial conditions ak(z, 0) = 0 gives the
series (9). Note that a2(z, 2π) = 0 (see Claim 5.4). Proposition 2.2 is then immediate from
the following:

2.4 Lemma With the notations introduced above, ak(z, θ) is a polynomial in z of degree
≤ k − 1, such that for any θ, 0 ≤ θ ≤ 2π, the inequality ‖ak‖ ≤ (33πq4)k holds.

Proof The fact that deg(ak) ≤ k − 1 is easy to prove by induction: use the equations
(17) which appear below, after claim 5.4. Set Mk(z) = (2q2sup(1, |z|))k. We then have
|Rk(z, θ)| ≤ Mk(z), and ‖Rk‖ ≤ Mk(0) (Lemma 2.3). To estimate ‖ak‖ we use the
following lemma.

2.5 Lemma Let Tz(X) = X+
∑

i≥2 bi(z)Xi be the power series defined by the functional
equation

(11) T = X + 2π
∑
k≥2

Mk(z)T k.

Then :
a) The series Tz(X) is a majorizing series for Sz(X), i.e., |ak(z, θ)| ≤ |bk(z)| for all

z and 0 ≤ θ ≤ 2π.
b) ‖ak‖ ≤ bk(1) for k ≥ 2, where 1 = (1, . . . , 1).

Proof of 2.5 Formula (11) gives

X +
∑
i≥2

bi(z)Xi = X + 2π
∑
k≥2

Mk(z)(X +
∑
i≥2

bi(z)Xi)k,

which implies that

(12) bk(z) = 2π
k∑

i=2

Mi(z)Hik(b2, . . . , bk−i+1),

where Hik(s2, . . . , sk−i+1) is the coefficient of Xk in (X +
∑

j≥2 sjX
j)i. Then the two

assertions of Lemma 2.5 follow by induction, comparing (12) with (10), and using the
inequality ‖PQ‖ ≤ ‖P‖ · ‖Q‖.
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Proof of 2.4 We have from (11): X = T − 2π
∑

k≥2 Mk(z)T k. Set c = 2π, Mk = αk,
with α = 2q2sup(1, |z|). We get X = T − (cα2T 2)( 1

1−αT ) for |T | < 1/α, which gives
αT 2(1 + cα)− T (1 + αX) + X = 0, and

T =
1 + αX ±

√
(1 + αX)2 − 4Xα(1 + cα)
2α(1 + cα)

,

where we must take the minus sign in view of (11). Then T is a power series in X,
T = X +

∑
k≥2 bkXk. Let us prove that |bk| ≤ (33πq4)k. Set T = 1+αX−

√
1+u

2α(1+cα) with u =
αX(a+αX) and a = −2(1+2cα). We have (1+u)1/2 =

∑
nkuk =

∑
nkαkXk(a+αX)k,

with binomial coefficients |nk| ≤ 1/2. Now the modulus of the coefficient of Xk in (1+u)1/2

is smaller than αk(1 + a)k ≤ αk(1 + 4cα)k ≤ (33πq4sup(1, |z|))k. This proves Lemma 2.4
and Proposition 2.2, after setting z = 1.

3. A0-series and the Bautin index

Definitions For any series
∑

ak(z)Xk, the ideal I = (ak(z), k ≥ 0) of K[z] is called
the Bautin ideal of the series. This ideal is finitely generated since K[z] is nœtherian. The
least integer d such that I = (a0, . . . , ad) is called the Bautin index of the series (see [B]).

Let us denote by d the least integer such that I and (a0, . . . , ad) have the same integral
closure (resp. the same real integral closure; see Section 1). One clearly has d̄ ≤ d. We
call d the reduced Bautin index of the series. Note that in the real case, d can be smaller
than the reduced Bautin index of the complexification.

The following theorem is the main result of this paper. It generalizes Theorem 2.3.7
of [F-Y].

3.1 Theorem Let Sz(X) =
∑

k≥0 ak(z)Xk be a non-zero A0-series, with polynomial
coefficients ak(z) in C[z] or R[z]. Let d be its reduced Bautin index.
1) There exist positive constants µ1 and µ2 depending on the series such that for z in Cn,
respectively Rn, and setting R(z) = µ1(1 + |z|)−µ2 , the series Sz(X) converges for X in
the disk D(0, R(z)) and has at most d distinct zeroes there.
2) The constants µ1 and µ2 may be taken to have the following form:

µ1 =
(
4 · 52(d+1)C3λ

d+1
4

)−1
, µ2 = λ1(d + 1) + λ2 + α.

Here the λi are the parameters of the A0-series and the new constants C3 and
α essentially describe the growth as |z| → ∞ of the |ak(z)| in comparison to that of
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|ai(z)| , 0 ≤ i ≤ d ; see Corollary 3.3. More precise estimates for the constants µ1 and µ2

are given at the end of the paper in Section 5.

The main idea of the proof is to apply Rouché Theorem to bound the number of zeroes
of Sz(X) in some disk. Write Sz(X) = Pz(X) + Qz(X), with Pz(X) =

∑
k≤d ak(z)Xk,

Qz(X) =
∑

k>d ak(z)Xk.
First, we prove in Section 4, Corollary 4.3, that for given R, 0 < R ≤ 1, there exists a

constant η = η(d) = 5−2(d+1) and a radius R1 with ηR < R1 < R, such that for |X| = R1,
we have:

|Pz(X)| ≥ 1
2
·Rd

1 · sup0≤j≤d |aj(z)|

for any z. In order to apply Rouché’s Theorem on |X| = R1, we need that

|Qz(X)| < 1
2
·Rd

1 · sup0≤j≤d|aj(z)|

for |X| = R1. This is fulfilled if

(13) |ak(z)|Rk−d
1 <

1

2k−d+1
· sup0≤j≤d|aj(z)| for k > d.

Corollary 3.3 proves, using the Division Theorem of the Appendix, that

(14). |ak(z)| ≤ C3 · (1 + |z|)λ1k+λ2+α · λk
4 · sup0≤j≤d|aj(z)|.

We may increase the value of C3 so that 2C3λ
d
4 ≥ 1. A direct computation using (14)

shows that (13) is satisfied for any R1 < R0(z), with

R0(z) =
1

4 · C3 · (1 + |z|)λ1(d+1)+λ2+α · λd+1
4

.

Now we choose R0(z) as our R, and we can apply Rouché’s Theorem on a circle of radius

(15) R1 := R(z) ≥ ηR =
1

52(d+1) · 4 · C3 · λd+1
4 · (1 + |z|)λ1(d+1)+λ2+α

.

This is the value asserted in Theorem 3.1. Note that inequality (13) implies that the series
in X converges in the disk of radius R1.

The key point is the proof of inequality (14); it consists of the following steps:

a) Let cj(z) be a Gröbner basis of the ideal I = (a0, . . . , ad). In Proposition 3.2 we bound
|ak(z)| for k ≥ d + 1 in terms of (c0, . . . , cr) by the Division Theorem.
b) We bound |cj(z)| in terms of (a0, . . . , ad), using the norm of the transformation matrix
M .
c) We bound |ad+1|, . . . , |ad| in terms of (a0, . . . , ad) using Section 1 about the integral
closure.
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Steps b) and c) are carried out simultaneously using Proposition 1.1, c).

Let us now begin the proof of 3.1. We first relate A0-series to the Bautin index. Let
τ = (τ1, . . . , τn) be real numbers ≥ 1 which are linearly independent over Q. Then, for
P =

∑
α∈Nn Pαzα in C[z] and t > 0, we define the norm

|P |t =
∑
α

|Pα| · t<τ,α>.

Let Sz(X) be an A0-series, and let ci denote a generator system or a Gröbner basis
of the Bautin ideal I of Sz(X) w.r.t. the monomial order on Nn given by τ .

3.2 Proposition Let Sz(X) =
∑

k ak(z)Xk be an A0-series with Bautin ideal I =
(a0, . . . , ad). Let c0, . . . , cr be a Gröbner basis of I with respect to τ . There exist constants
C2 > 0 and t0 ≥ 1 such that for |z| ≥ t0 and k ∈ N one has

|ak(z)| ≤ C2 · |z|λ1k+λ2 · λk
4 · sup1≤i≤r |ci(z)|.

Proof We apply the Division Theorem for polynomials to ak(z) ∈ I. There exist con-
stants t0 ≥ 1 and C > 0 and polynomials bki(z) ∈ C[z] such that ak(z) =

∑r
i=0 bki(z)ci(z)

and such that for t ≥ t0 ∑
|bki|t · |ci|t ≤ C · |ak|t.

We may assume ci 6= 0 for all i and get∑
|bki|t ≤ C · |ak|t · (infi|ci|t)−1 ≤ C · |ak|t · (infi|ci|t0)−1.

Set Ct0 = C · (infi|ci|t0)−1 and get
∑
|bki|t ≤ Ct0 · |ak|t. Let z ∈ Cn with |z| ≥ tτ0

0 be
fixed, where τ0 denotes the minimum of the components of τ . Then we can choose t ≥ t0
such that |zi|1/τi ≤ t ≤ |z| for all i (since τi ≥ 1, set e.g. t = |z|). Now,

|ak(z)| ≤
∑

|bik(z)| · |ci(z)| ≤
∑

|bik(z)| · supi |ci(z)|.

One has |bik(z)| ≤ |bik|t, by the choice of t, and
∑
|bik|t ≤ Ct0 · |ak|t, which gives

|ak(z)| ≤ Ct0 · |ak|t · supi |ci(z)|.

But |ak|t ≤ λ3 · λk
4 · tτo(λ1k+λ2) by (3), and t ≤ |z| by the choice of t. Therefore,

|ak(z)| ≤ Ct0 · λ3 · λk
4 · tτo(λ1k+λ2) · supi |ci(z)|

for |z| ≥ t0. Now, τ0 can be chosen arbitrarily close to 1, which proves the proposition,
setting C2 = λ3 · Ct0 .

11



3.3 Corollary Let Sz(X) =
∑

ak(z)Xk be an A0-series with reduced Bautin index d.
There exist constants C3 > 0 and α > 0 such that for z ∈ Cn and k ∈ N,

|ak(z)| ≤ C3 · (1 + |z|)λ1k+λ2+α · λk
4 · sup0≤i≤d|ai(z)|.

Proof By Proposition 1.1 (c), there exist constants Dj > 0 such that

|cj(z)| ≤ Dj · (1 + |z|µj ) · sup0≤i≤d |ai| .

Then set C4 = supjDj , α = sup(µj), C3 = C2C4.

In the case of a principal ideal I, we can give an explicit expression for all the constants
involved in Proposition 3.2, in terms of ‖ad‖ and the constants λi of the series Sz(X).

3.4 Proposition Assume that the Bautin ideal I = (a0, . . . , ad) is principal, generated
by ad. Then d = d, and for all k,

|ak(z)| ≤ 1
‖ad‖

· λ3 · 2dn · λk
4 · (1 + |z|)λ1k+λ2−δ

with δ = deg ad.

Proof By hypothesis, we have ak(z) = ad(z)mk(z), with mk(z) a polynomial of degree

deg ak − deg ad ≤ λ1k + λ2 − δ,

and of norm

‖mk‖ ≤
1

‖ad‖
· 2dn · ‖ak‖,

see [M], Théorème 4 bis, p. 172 (recall that by definition, ‖ak‖ ≤ λ3λ
k
4).

4. Zeroes of A0-series and proof of Theorem 3.1

Recall that

Sz(X) =
d∑

k=0

ak(z)Xk +
∑

k≥d+1

ak(z)Xk := Pz(X) + Qz(X).

For a fixed z ∈ Cn, we will apply Rouché’s Theorem in a disk of radius R1 ≤ R, where
R ≥ 1

λ4(1+|z|)λ1
is the radius of convergence of Sz(X). We want to find a circle Γ1 of radius

R1 such that on Γ1 we have |Pz(X)| > |Qz(X)|. Then Rouché’s Theorem will imply that

12



the number of zeroes of Sz(X) in the interior of Γ1 is less than the number of zeroes of
Pz(X), therefore less than d.

We thank A. Douady for providing the arguments below.

4.1 Proposition (A. Douady) Let P (X) =
∑d̄

i=0 aiX
i be a polynomial with complex

coefficients, let γ ∈ R+, and set η = (2γ + 1)−2(d+1). Then given R > 0, there exist R1,
ηR < R1 < R, and i, 0 ≤ i ≤ d, such that

|ai|Ri
1 > γ ·

∑
j 6=i

|aj |Rj
1.

For the proof we need the following:

4.2 Lemma In the first quadrant R2
+ with coordinates (x, y), consider the lines

Di : y = log|ai|+ i x.

For any positive λ ∈ R+, and any interval I of length λ, there exists an index i such that,
setting yj(x) = log |aj |+ jx, we have for all 0 ≤ j ≤ d and some x1 ∈ I:

yi(x1)− yj(x1) ≥
λ

2(d + 1)
|j − i|.

Proof of 4.2 Let E be the convex subset of R2
+ defined by the inequality

y ≥ supjyj(x).

The set E has at most d + 1 extreme points. Therefore there exists at least one interval
I ′ ⊂ I of length λ

d+1
which does not contain the abscissa of any of these extreme points.

Let x1 be the abscissa of the middle point of such an interval I ′. Then there exists i
such that yi(x1) > yj(x1), j 6= i, since this is true for any x in the interior of I ′. Since
the slope of the line Dj is j, we have the inequality

yi(x1)− yj(x1) ≥
λ

2(d + 1)
|j − i|.

Proof of 4.1 Given R > 0 and a number η < 1, let us consider the interval

I = [log ηR, log R]

of length λ = log(η−1). Applying Lemma 4.2 we obtain an index i, 0 ≤ i ≤ d, and a
number R1 with log ηR < log R1 < log R such that

|ai|Ri
1 > |aj |Rj

1`
|j−i|

2

13



with
` = exp

λ

d + 1
.

This gives ∑
j 6=i

|aj |Rj
1 < |ai|Ri

12
`−1/2

1− `−1/2

provided that ` > 1. Now, in order to have the inequality of Proposition 4.1, it suffices to
have 2 `−1/2

1−`−1/2 ≤ γ−1, that is,
` ≥ (2γ + 1)2,

which is indeed > 1. From ` = exp λ

d+1
= exp( log(η−1)

d+1
) = η

− 1
d+1 , it follows that this is

achieved if
η ≤ 1

(2γ + 1)2(d+1)
,

which is the result.

Corollary 4.3 We have |P (X)| ≥ 1
2 ·sup0≤j≤d|aj | ·Rj

1 for |X| = R1, and ηR < R1 < R,
with η ≥ 1

25d+1
.

Proof We apply Proposition 4.1 to the polynomial P (X): there exists i, 0 ≤ i ≤ d,
such that

|ai| ·Ri
1 > γ

∑
j 6=i

|aj | ·Rj
1.

This implies
|P (X)| ≥ (γ − 1)

∑
j 6=i

|aj | ·Rj
1

and
|P (X)| ≥ (1− 1

γ
) ·Ri

1 · |ai|

for |X| = R1, since we have |P (X)| ≥ |ai| ·Ri
1−

∑
j 6=i |aj | ·Rj

1 for |X| = R1. Taking γ = 2,
we find |P (X)| ≥ 1

2 |aj | ·Rj
1 for any j, 0 ≤ j ≤ d. Therefore |P (X)| ≥ 1

2 supj |aj | ·Rj
1, and

η can be chosen such that η ≥ 25−d−1.

Let us now end the proof of Theorem 3.1. We assume R1 ≤ 1 for simplicity. We have
by the corollary above that

|Pz(X)| ≥ 1
2

sup0≤j≤d|aj | ·Rj
1 ≥

1
2

sup0≤j≤d|aj | · inf(Rd
1, 1) =

1
2
Rd

1 · supj |aj |.
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To apply Rouché’s Theorem on the circle of radius R1 we need that:

Qz(X) =
∞∑

k=d+1

Rk
1 · |ak(z)| < 1

2
Rd

1 · sup0≤j≤d|aj(z)|,

for which it suffices that Rk−d
1 · |ak(z)| < 2−k+d−1 · sup0≤j≤d|aj(z)| for |X| = R1.

We now apply the computations which give us the inequalities (13)-(15). We see that
the series Sz(X) has at most d zeroes in the disk of radius R(z) := R1, R1 > ηR, which
gives

(16) R(z) ≥
(
4 · 52(d+1) · C3 · λd+1

4

)−1 · (1 + |z|)−(λ1(d+1)+λ2+α).

This proves Theorem 3.1, with µ1 =
(
4 · 52(d+1) ·C3 ·λd+1

4

)−1 and µ2 = λ1(d+1)+λ2 +α.

5. Remarks on estimates and questions

We briefly discuss how to control the constants involved. Unfortunately the estimates
depend on the Bautin index and not just on the reduced Bautin index. Let (ci) be a
Gröbner basis of the ideal I for the order described in the Appendix, M the transformation
matrix from the ai’s to the cj ’s, and let g be a bound for the degrees (in z) of the ci’s.

Also, there are other parameters of an A0-series than the λ′is which will enter in the
evaluation of the constants µ1 and µ2 of Theorem 3.1 :

One should try to estimate µ1 and µ2 in terms of the Bautin index d, the reduced
Bautin index d, and the norm of the transformation matrix M with entries in K[z] between
the basis (a0, . . . , ad) of the ideal I they span, and a Gröbner basis (c0, . . . , cr) of I.
The main remaining open question in the local version of Hilbert’s 16-th problem is to
relate the degree q of the original plane vector field (and the size of its coefficients) to these
parameters of the Poincaré return map.
At the end of this section, we compute a lower bound for the absolute value of the non-
zero coefficients of the ak’s (considered as polynomials in z). This should be useful for the
estimation of the constant µ2 in Theorem 3.1.
1) Estimating µ1 and µ2 in terms of the parameters (λ1, λ2, λ3, λ4, d, e, ‖M‖) of
the A0-series, where e is an integer such that aj(z) ∈ 1

eZ[z] for 0 ≤ j ≤ d.
a) Exponents : To estimate the constant α, notice first that we can take the degrees of
the elements of a Gröbner basis g = (sup1≤i≤ddegai + 1)3n2n−1

by ([G-M], Theorem 11).
We then have α ≤ gβn, where β is a universal constant (see Remark 1.2), and n is the
dimension of the z-space. Finally we get:

5.1 Proposition There exists a universal constant β such that for an A0-series with
coefficients in K[z1, . . . , zn] and with parameters λi the constant α is bounded in terms of
the Bautin index d and the number n of variables by:

α ≤ (λ1d + λ2)3βn22n−1
.
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It would be preferable to have an estimate in terms of d instead of d. The behaviour of
Gröbner basis with respect to integral closure is still mysterious.

b) The constant C3 : We have C3 = C2C4. First, we have C2 = λ3Ct0 = λ3C ·(inf |ci|t0)−1.
It is easy to see that we may choose t0 ≥ 1 such that C ≤ 2. The bound e is also valid for
the ci’s, which gives Ct0 ≤ 2

e .

c) The constant C4 : we have C4 = supjDj (Corollary 3.3). Assuming that for 0 ≤ j ≤ d

we have aj(z) ∈ 1
eZ[z], we have by [So] that Dj ≤ hγn, where γ is a universal constant

and h is a function of g, e, and the ‖ci‖’s.

5.2 Proposition For an A0-series such that aj(z) ∈ 1
eZ[z] for 0 ≤ j ≤ d, we have:

C4 ≤ 2e−1hγn,

where γ is a universal constant and h is a function of g, e and the ‖ci‖’s. This follows
from [So] after multiplication of all coefficients by e.

2) Bounding µ1, µ2 in terms of the degree q of the original vector field (5):
open problems. Since the λi’s are bounded in terms of q (Proposition 2.2), we see that
the exponent of 1+ |z| in (15) is bounded in terms of q, d and d ; as noticed above, it is an
open problem to estimate d and d in terms of q only. The constant C2 is also bounded in
terms of q and d (we have C2 = λ3Ct0 with λ3 = 1, Ct0 ≤ 2

ζ ; a lower bound for ζ is given
by Proposition 5.3); the constant C4 is more delicate to estimate : it depends on the norm
of the transformation matrix M (which we do not know how to control in function of q),
and on the constant of Proposition 1.1, c), estimated by Solernó when the coefficients of
the polynomials are in Z. Here the aj(z) have their coefficients in 1

ẽ · Z[π], where ẽ ≤ ρd

according to Claim 5.4 below.

5.3 Proposition Let Sz(X) =
∑

ak(z)Xk be the Poincaré return map for the vector
field

x∂y − y∂x +
∑

2≤i+j≤q

aijx
iyj∂x + bijx

iyj∂y,

of degree q. Set ak(z) =
∑

ak,iz
i. If ak,i 6= 0, then

|ak,i| ≥
βk(q)
ρk

,

with

βk(q) = exp{−2 . 106
[

k−1
2

](
log[(2k − 1)ρk(33πq4)k] +

[
k−1
2

]
log

[
k−1
2

])(
1 + log

[
k−1
2

])
},

and ρk is an effectively computable function of k defined below.

Proof By linearization of a polynomial in (sin siθ, cos tjθ), we mean the replacement of
each monomial (sin s1θ)d1 · · · (sin spθ)dp(cos t1θ)f1 · · · (cos tqθ)fq by a linear term∑

λi sinαiθ +
∑

µj cos βjθ
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with αi, βj bounded by
∑

sidi +
∑

tjfj . Let us first look at the term a2(z, θ). We have
a′2 = R2 = P2; it is therefore a homogeneous polynomial in (sin θ, cos θ) of degree 3, which
gives by linearization a polynomial in z, cos jθ, sin jθ, 1 ≤ j ≤ 3 with coefficients in 1

4Z,
with no term in θ. By integration in θ, we get a polynomial with coefficients in 1

12Z, which
gives ρ2 = 12 (and a2(z, 2π) = 0).
For the induction step, we consider the function ak(z, θ) given by (10). It is a polynomial
in z, θ, cos θ, sin θ. We have seen that its degree in z is ≤ k−1. We first prove the following:

5.4 Claim The degree in θ of ak(z, θ) is ≤
[

k−1
2

]
. After linearization, ak(z, θ) becomes

a polynomial of degree ≤ 1 in sin jθ, cos jθ, with j ≤ 3(k − 1). As a polynomial in
(z, θ, sin jθ, cos jθ), its coefficients belong to 1

ρk
Z, where the integers ρk satisfy the inequal-

ities:

(16) ρk ≤
(
(3k − 3)!

)[k−1
2

]
· 23(k−2) · (ρ2 · · · ρk−1)k, ρ2 = 12.

Proof Let us look at equation (10 ) :

a′k = G2kR2 + · · ·+ Gik(a2, . . . , ak−1)Ri + · · ·+ Rk.

For a term 1d1ad2
2 · · · adk−1

k−1 Ri of GikRi, we have

(17)

{
d1 + 2d2 + · · ·+ (k − 1)dk−1 = k

d1 + d2 + · · ·+ dk−1 = i.

Its degree in θ is, by the induction hypothesis, bounded by
∑k

j=1

[
j−1
2

]
dj ≤ k−i

2 . After
integration, the degree in θ of each term increases at most by one, and it follows from the
homogeneity result of Lemma 2.3 that if i is even, the degree in θ of Gik(a2, . . . , ak−1)Ri

does not increase; therefore, the degree in θ of ak is bounded by[
sup(k−2

2 , k−3
2 + 1)

]
=

[
k−1
2

]
.

By the induction hypothesis, each aj is linear in cos sθ, sin sθ, s ≤ 3(j−1), with coefficients
in 1

ρj
Z and Ri has Z-coefficients, and degree ≤ 3(i− 1) (Lemma 2.3). Linearization of the

terms in (sin θ, cos θ) gives linear terms in (sin αθ, cos αθ), with

α ≤ 3(i− 1) +
k−1∑
j=1

3(j − 1)dj ≤ 3(i− 1) + 3k − 3i = 3(k − 1).

Let us now estimate ρk: by induction hypothesis, each term ad2
2 . . . a

dk−1
k−1 Ri has coefficients

in 1
(ρ1...ρk−1)k Z (each aj being linear in (sin sθ, cos sθ), s ≤ 3(j − 1)). Linearization multi-

plies the coefficients at most by 2−r, 0 ≤ r ≤ 3(k − 1), and integration with respect to θ

multiplies at most by a factor of
(
(3k − 3)!

)[k−1
2

]
.
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To get the Poincaré return map, we have to set θ = 2π in ak(z, θ). The only terms
which give a nonzero contribution are of the form (cos jθ)θl, l ≥ 1, due to the initial
condition ak(z, 0) = 0. We may consider the polynomials ρkãk(z, θ) =

∑
i ãk,i(θ)zi ob-

tained from ak(z, θ) by setting cos jθ = 1, sin jθ = 0 and multiplying by ρk; the ãk,i(θ) are
polynomials with integral coefficients, of degree ≤ k − 1 and size ‖ãk,i‖ ≤ ρk(33πq4)k by
Lemma 2.4. The value ãk,i(2π) is the value for θ′ = π of the polynomial ãk,i(2θ′) which is
integral, of degree ≤ k − 1 and size ≤ (2k − 1)ρk(33πq4)k.

Now, we can apply:

Theorem (Nesterenko-Waldschmidt, Theorem 2 of [N-W])
Given a nonzero polynomial P ∈ Z[X] with ‖P‖ ≤ L,degP ≤ d, and L ≥ 3, then:

|P (π)| ≥ exp{−2 . 106d(log L + d log d)(1 + log d)}.

In our case the size is clearly ≥ 3, and we get

|ãk,i(2π)| ≥ exp{−2 . 106
[

k−1
2

](
log[(2k−1)ρk(33πq4)k]+

[
k−1
2

]
log

[
k−1
2

])(
1+log

[
k−1
2

])
}.

This ends the proof of the proposition.

Let us remark that when the A0-series stems from a vector field, there is an explicit
lower bound ζ on the absolute values of the non zero coefficients of the ai’s, 0 ≤ i ≤ d.
We may, by Proposition 5.3, take

ζ =
1
ρd

exp{−2 . 106
[

d−1
2

](
log[(2d − 1)ρd(33πq4)d] +

[
d−1
2

]
log

[
d−1
2

])(
1 + log

[
d−1
2

])
}.

Solernó’s proof has yet to be adapted to this case, using the evaluation of ζ given above.

Appendix

We give a version of the Division Theorem for polynomials with norm estimates
analogous to the case of convergent power series [Ga, H-M]. Consider a C[z]-linear map
l : C[z]r −→ C[z], say l(b) = b · c =

∑
i bici. The objective is to describe explicitly direct

complements L and J of its kernel K and image I and to give norm estimates for the
induced projections. On the way one constructs a continuous scission σ of l, i.e. a map
σ : C[z] −→ C[z]r with lσl = l, giving an upper bound on its norm.

Let τ = (τ1, . . . , τn) be real numbers ≥ 1 which are linearly independent over Q and
equip C[z] with the norms
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|P |t =
∑
α

|Pα| · t<τ,α>.

The vector τ induces a total ordering on the monomials in C[z] by comparing their
weighted degrees < τ, α >. Let co

i be the initial monomials of ci, i.e. the largest monomial
of the expansion of ci. The map l is then approximated by the monomial C[z]-linear map
lo : C[z]r −→ C[z] given by l(b) = b · co =

∑
i bic

o
i .

Now, the kernel and the image of lo have natural direct complements L and J in C[z]r

and C[z] given by support conditions. Let αi be the exponent of ci and set E =
⋃

i αi+Nn.
Let E =

⋃
i Ei be a partition of E with αi ∈ Ei. Then

J = {a ∈ C[z], supp a ⊂ Nn \ E} and L = {b ∈ C[z]r, supp bi ⊂ Ei − αi}

are direct complements of Io in C[z] and of Ko in C[z]r.

Division Theorem Let l : C[z]r −→ C[z] be a C[z]-linear map, say l(b) = b · c =∑
i bici. Set K = Ker l, I = Im l and let L ⊂ C[z]r and J ⊂ C[z] be direct complements

of K0 and I0 as defined above.

(a) Assume that the ci’s form a Gröbner basis of I = Im l. Then I ⊕J = C[z], K⊕L =
C[z]r.

(b) Let the ci’s be arbitrary. There are constants C > 0 and t0 ≥ 1 such that for all
t ≥ t0 the following holds: For any a ∈ C[z] the unique elements b ∈ L and b′ ∈ J with
a =

∑
bici + b′ satisfy ∑

|bi|t · |ci|t + |b′|t ≤ C · |a|t.

(c) The map l admits a scission σ : C[z] −→ C[z]r with norm estimate |σ|t ≤ C · td for all
t ≥ t0, where d is the highest degree occurring in the minimal monomial generator system
of I0.

Proof We adapt the proof of the Division Theorem for convergent power series, Thm.
5.1 of [H-M], p. 107, to the polynomial context.

The initial monomial of a polynomial is the largest of its monomials w.r.t. the norm
| |t. Assume that the ci are monic and decompose them into ci = xαi + c′i with co

i = xαi .
Let ε > 0 be such that < τ, αi > ≥ < τ, α > + ε for all i and all α in the support of c′i.
There exists a t0 ≥ 1 such that for all t ≥ t0 and all i

t<τ,αi> ≥ tε · |c′i|t.
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The constant t0 depends on an upper bound for the norms of the coefficients of the c′i. Fix
t ≥ t0. Equip C[z]r with the norm |b|t =

∑
i |bi|t. We may assume that all ci 6= 0. The

continuous linear map

u : L⊕ J −→ C[z] : (b, b′) −→ b · c + b′

will be shown to be bijective. Supply the vector space L⊕ J with the norm:

|(b, b′)|t =
∑

i

|bi|t · |co
i |t + |b′|t.

By definition of J and L the map

v : L⊕ J −→ C[z] : (b, b′) −→
∑

bi · co
i + b′

is bijective, bicontinuous of norm 1, and its inverse v−1 has norm 1 as well. Decompose u
into u = v + w where w(b, b′) = b · c′ =

∑
bi · c′i. This yields

|w|t ≤ t−ε and |wv−1|t ≤ t−ε < 1

for t ≥ t0. The geometric series defining the inverse of uv−1 = id + wv−1 is locally finite
(i.e., finite when evaluated on a polynomial) since the monomial order given by τ is a
well-ordering and wv−1 decreases the degree of a polynomial w.r.t. τ . It therefore defines
a map from C[z] to C[z]. Moreover

|(uv−1)−1| ≤ 1
1− t−ε

0

=: C.

Consequently u is invertible and

|u−1| ≤ C for t ≥ t0.

This proves the assertion.
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