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Abstract

Let (C, 0) be an irreducible germ of complex plane curve. Let Γ ⊂ N be
the semigroup associated to it and CΓ ⊂ Cg+1 the corresponding monomial
curve, where g is the number of Puiseux exponents of (C, 0). We show, us-
ing the specialization of (C, 0) to (CΓ, 0), that the same toric morphisms
Z(Σ) → Cg+1 which induce an embedded resolution of singularities of
(CΓ, 0) also resolve the singularities of (C, 0) ⊂ (Cg+1, 0), the embedding
being defined by elements of the analytic algebra OC,0 whose valuations
generate the semigroup Γ.

1 Introduction

Some corrections to the original text are made in red.
In the last few years Mark Spivakovsky has proposed a program to prove the

resolution of singularities of excellent schemes. A part of this program is a new look
at Zariski’s local uniformisation theorem for arbitrary valuations. A fundamental
object of study in this approach is the graded ring associated to the filtration of a
local domain R naturally provided by a valuation of R.

In the special case where R is the local analytic algebra O of a plane branch
C, with its unique valuation, this graded ring was studied in detail by Monique
Lejeune-Jalabert and the second author (see [L-T], [T1]), as a special case of the
grIR appearing in their study of the ”νI -filtration” of a ring (roughly, by the
integral closures of the fractional powers of an ideal I of R).
Recall that one calls branch a germ of analytically irreducible excellent curve. We
will in this paper deal only with complex analytic branches.

The following facts which appeared at that time in that special case may be
relevant to the understanding of the role of the graded ring in the general case:

– The graded ring is the ring of the monomial curve CΓ with the same
semigroup Γ as the given plane branch (see definitions below).
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2 Plane branches and toric maps

– The generators of the semigroup are the intersection numbers with the given
plane branch C of a transversal non-singular germ x = 0 and of plane branches
fj(x, y) = 0 with a smaller number j , 0 ≤ j ≤ g − 1, of Puiseux exponents and
having with C maximal contact in the sense defined by M. Lejeune-Jalabert (see
[Z], pp.16-17, [L-J]). In particular the initial forms in the graded ring of the images
in the algebra O of the equations of these branches generate it as a C-algebra.

– There exists a one parameter deformation of CΓ having all its fibers except
the special one isomorphic to C, and this deformation is equisingular in the sense
that it has a simulateous resolution of singularities by normalization; the normal-
ization of the total space of the family is non-singular and induces normalization
for each fiber (see [T1]).

We may therefore hope that a process of resolution for CΓ will induce resolu-
tion for C. In this paper we show that the curve CΓ can be resolved by a single toric
modification of its ambient space Cg+1 (where g is the number of characteristic
Puiseux exponents of the plane branch C) and that some of the toric modifications
which resolve CΓ also resolve the curve C if we view it as embedded in Cg+1 by
g + 1 elements of its maximal ideal whose valuations generate the semigroup Γ.
This is shown by a generalization of the usual non degeneracy argument, which
can be found also in [O2], [O3]. We need more details than in these papers because
we want to show that the toric modification resolves not only CΓ but also C.

From this follows the rather interesting fact that any plane branch with g
Puiseux exponents can be embedded in Cg+1 in such a way as to be resolved by one
single toric modification, i.e., it is in some sense non-degenerate with respect to its
Newton polyhedron. Moreover, if we denote by π : Z → Cg+1 a toric map resolving
C, and by π|S′ : S′ → S the strict transform by this toric map of a non-singular
surface S containing our plane branch C, we can identify π|S′ to the composition
of g toric modifications of non-singular surfaces, thus recovering the known fact
that a plane branch can be resolved by a composition of g toric morphisms. The
first non trivial example, the simplest branch with two characteristic exponents,
is computed in an Appendix.

The description of this composition of toric maps of surfaces obtained in
this way has the advantage over the “static” one of [O1] of showing explicitly its
analytic dependence on the coefficients of the equation or the parametrization of
the curve, in view of the results of [T1], and also of giving a geometric vision of
the relationship with the resolution process of the “singular curves with maxi-
mal contact” of M. Lejeune-Jalabert, and probably also of the approximate roots
à la Abhyankar. Indeed, the embedding of the plane branch C in Cg+1 is ob-
tained by adding to the coordinates x, y the images in O of the equations of plane
branches with < g characteristic exponents having maximal contact with C. The
disadvantage is that the construction given here is for the time being restricted to
irreducible germs.

It is tempting to ask whether in general, given any germ of an algebraic or
analytic space and a valuation of its local algebra, the germ can be embedded in
an affine space in such a way as to be non-degenerate with respect to its Newton
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polyhedron and to the given valuation, in the sense that its strict transform is
non-singular at the point specified by the valuation in a toric modification of the
ambient space subordinate to the Newton polyhedron.

This would be an effective local uniformization theorem and the results of
this paper indicate that perhaps the specialization to the graded algebra is the key
to such a result.

In the general case the graded algebra associated with a valuation is not even
Nœtherian, and as the reader will see, the proofs in this paper rely on the extensive
knowledge we have of the structure of the semigroup of a plane branch, a knowledge
essentially lacking in dimension ≥ 3 (the case of dimension 2 is currently under
study). In the paper “Valuations, Deformations, and toric Geometry ” following
this one the second author begins to prepare the way for a proof of the local
uniformization theorem along these lines. It is worth noting that one of the results
of [L-T] is that the graded algebra associated with the νI filtration, i.e., grIR, is
an R-algebra of finite type. Some very interesting finiteness results on the graded
algebra associated with a valuation and its relation with Abhyankar’s inequality
have recently been obtained by O. Piltant ([P]).

This text is based on a lecture given at the singularities Seminar by the second
author in January 1994, where examples largely stood in for proofs. The ideas are
presented in the framework of complex geometry for simplicity, but the interested
reader will see how to transform this into a characteristic-blind resolution for one-
dimensional excellent henselian equicharacteristic local integral domains with an
algebraically closed residue field.

We are grateful to Tadao Oda and Michel Vaquié for pointing out some errors
and imprecisions in preliminary versions of this text.

2 Puiseux expansion and the semigroup of a curve

Definition. Let (C, 0) ⊂ (C2, 0) be a germ of an irreducible analytic curve (a
plane branch) defined by the equation f(X,Y ) = 0, f ∈ C{X,Y }. We will call
O = C{X,Y }/(f) the local algebra of the curve C, and denote by mO its maximal
ideal. Note that O = C{x, y} where x and y are the residue classes in C{X,Y }/(f)
of X and Y respectively.

According to Newton and Puiseux, there is a parametric representation of C,
called the Newton-Puiseux expansion, i.e an injection of the algebra O into C{t}
described in suitable coordinates X,Y, t by:

X = x(t) = tn (*)
Y = y(t) =

∑
i≥m ait

i with m > n.

The Puiseux expansion of x and y; since the two series converge for small enough
‖t‖, say ‖t‖ < ε. Denoting by D(0, ε) the disk with center 0 and radius ε in C,
the image of the map D(0, ε) → C2 defined by x(t), y(t) is a representative of
the germ (C, 0) ⊂ (C2, 0). From the integer n and the exponents appearing in
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the expansion of y(t) one can extract the Puiseux characteristic exponents, which
characterize the topological type of a small representative of our branch. (see [Z]).
In particular, we may choose the coordinates X,Y in such a way that the exponent
m appearing in the expansion of y(t) is not divisible by the multiplicity n. It is
then generally denoted by β1. We shall do so from now on. More generally, any
analytically irreducible germ of a curve has a normalization isomorphic to C{t},
and its algebra is an analytic subalgebra of C{t}.

Given this parametrization, certain properties of an analytic branch C, plane
or not, can be described using the valuation on the algebra O induced via the
injection O ↪→ C{t} by the t-adic valuation of C{t}.
Definition. Given a branch (C, 0) and its algebra O ↪→ C{t}, let ν be the t-adic
valuation on C{t}. We define the semigroup Γ of O to be

Γ = {ν(ξ) : ξ ∈ O \ {0}}.

We follow here the common usage, which is to denote by the same letter Γ the
semigroup deprived of its zero element, i.e., {ν(ξ) : ξ ∈ mO} We say that the
branch (C, 0) has the semigroup Γ.

The semigroup Γ is finitely generated and has finite complement in N (see
[Zariski, II.1] for the case of plane branches), and if (C, 0) is a plane branch, its
minimal set of generators {β0, . . . , βg} can be uniquely determined by:

(a) β0 = n

(b) βi = min{z ∈ Γ | z /∈< β0, . . . , βi−1 >}

where < β0, . . . , βi−1 >⊂ N is the semigroup generated by {β0, . . . , βi−1} (in

particular, β1 = β1). We then have that

1. {β0, . . . , βg} generates Γ,

2. β0 < · · · < βg, and

3. gcd(β0, . . . , βg) = 1

We call the vector (β0, . . . , βg) ⊂ Zg+1 the weight vector. Of course the datum of
its semigroup Γ does not determine a branch up to analytic isomorphism. In fact,
the datum of the semigroup Γ of a plane branch is equivalent to the datum of its
Puiseux characteristic exponents (see [Z]). Among all the branches, plane or not,
having a given semigroup, one may single out the affine curve CΓ ⊂ Cg+1 defined
by the parametrization:

CΓ : ui = tβi 0 ≤ i ≤ g. (1)

Consider (CΓ, 0) as the germ of a curve. Its algebra

OCΓ,0 = C{tβ0 , . . . , tβg} ⊂ C{t}
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clearly has semigroup Γ. It is shown in [T1] that all branches having a given
semigroup Γ are complex analytic deformations of (CΓ, 0) and these deformations
are in some sense equisingular.

Definition. Given a branch (C, 0) and its semigroup Γ, we call the curve CΓ de-
scribed above by the parametrization (1) the monomial curve associated to C. If
(C, 0) is a plane germ, the monomial curve CΓ is a complete intersection in Cg+1,
where g is the number of Puiseux characteristic exponents of (C, 0).

3 Deforming Curves

The curve CΓ mentioned above, as we shall see, is the center of a finite-dimensional
flat family of branches which contains (up to complex analytic isomorphism of
germs) every germ of analytically irreducible curve (or branch) with semigroup Γ.

We begin by showing (see [T1]) that given any branch (C, 0), one can con-
struct explicitly a one-parameter analytic deformation of (CΓ, 0), whose general
fibres are isomorphic to the curve (C, 0). Let us take for simplicity the case of a
plane branch. Consider the parametric representation of the curve C as in (*).
After a change of coordinates we may assume that it has the form :

x(t) = tβ0

y(t) = tβ1 +
∑
j>β1

c
(1)
j tj .

Note that β0 is the multiplicity n of C. By the definition of the β
′
is, there exist

elements ξi(t) ∈ O = C{x, y} , 2 ≤ i ≤ g such that

ξi(t) = tβi +
∑
j>βi

c
(i)
j tj .

where ξ0 = x(t). Now consider the family, parametrized by v, of curves parame-
trized by t, in Cg+1 ×C:

−χ(v)



x = tβ0

y = tβ1 +
∑
j>β1

c
(1)
j vj−β1tj

u2 = tβ2 +
∑
j>β2

c
(2)
j vj−β2tj

· = ·
· = ·
· = ·

ug = tβg +
∑
j>βg

c
(g)
j vj−βg tj .

Proposition 3.1. The branch (−χ(0), 0) is isomorphic to (CΓ, 0), and for any
v0 6= 0, the branch (−χ(v0), 0) is isomorphic to (C, 0) by the isomorphism ui(t) 7→
v
−βi
0 ui(v0t) (where we set x = u0, y = u1).
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Proof. For v = 0 it is obvious, and for v 6= 0, since O is generated as an analytic
subalgebra of C{t} by x(t), y(t), it follows from the fact that the ξi(t) are in O
(see [T1]). 	

The semigroups of plane branches are characterized by the following arithmetical
properties (see [T1]); let us set ei = gcd(β0, β1, . . . , βi), ei−1 = niei. Then

niβi ∈ < β0, . . . , βi−1 >

niβi < βi+1

The first relation implies the existence of integers `
(i)
j , 1 ≤ i ≤ g , 0 ≤ j ≤ i − 1,

such that

niβi = `
(i)
0 β0 + · · ·+ `

(i)
i−1βi−1

So that on the curve CΓ as parametrized, we have equations:

f1 = un1
1 − u

`
(1)
0

0 = 0

f2 = un2
2 − u

`
(2)
0

0 u
`
(2)
1

1 = 0
· · · (**)
· · ·
· · ·

fg = u
ng
g − u

`
(g)
0

0 · · ·u`
(g)
g−1

g−1 = 0.

It is shown in [T1] that these equations define the curve CΓ, which is therefore a
complete intersection in Cg+1. Now using the theory of miniversal deformations
(see [T3]), we have:

Theorem 3.2. [Teissier] There exists a germ of a flat morphism

p : (−χu, 0)→ (Cτ− , 0)

endowed with a section σ such that (p−1(0), 0) is analytically isomorphic to (CΓ, 0),
and for any representative of the germ of the morphism p and any branch (C, 0)
with semigroup Γ, there exists vC ∈ Cτ− such that (p−1(vC), σ(vC)) is analytically
isomorphic to (C, 0). Moreover, (−χu, 0) is embedded in (Cg+1 ×Cτ− , 0) in such a
way that p is induced by the second projection.

Proof. See [T1]; this is the miniversal constant semigroup deformation of CΓ, and
it corresponds to the part of the base of the miniversal (equivariant) deformation
of CΓ which is spanned by the coordinates with negative weight. It is shown in
[T1], 4.4 that τ− ≤ #(N \ Γ).

More precisely the miniversal constant semigroup deformation of CΓ is a map
p : −χu → Cτ− , where −χu is embedded in Cg+1 × Cτ− in such a way that p is
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induced by the second projection, and defined by the equations

F1 = f1 +
∑τ−
r=1 vrφr,1(u0, . . . , ug) = 0

· · = ·
· · . ·
· · . ·
Fg = fg +

∑τ−
r=1 vrφr,g(u0, . . . , ug) = 0

where the φr,j are polynomials and each monomial in (u0, . . . , ug) appearing in
φr,j is of weight > njβj when each uk is given the weight βk; the equation fj
is then homogeneous of weight njβj . In fact one may choose the vectors φr to
have only one nonzero coordinate which is a monomial φr,j . Moreover, the images
vectors φ1, . . . , φτ− in C[CΓ]g+1/N , where N is a certain jacobian submodule of
C[CΓ]g+1, are linearly independant over C.

The basic property of the miniversal deformation is that for any deformation
d : (Y, y)→ (S, 0) of the germ (CΓ, 0) such that all the fibers have a singular point
with semigroup Γ there exists an analytic map germ h : (S, 0)→ (Cτ− , 0) such that
d is isomorphic to the deformation obtained from p by pull-back by h. Moreover,
since CΓ is quasi-homogeneous, it is also the case for p in the sense that there
are weights on the vi such that the equations Fj are homogeneous of degree njβj .
These weights are negative, which is the reason for the notation Cτ− ; in fact the
weight wr of vr is njβj minus the weight of φr,j , this difference being independent
of j.

The recipe to find vectors φr making the deformation miniversal is due to
J. Mather; it is the following (see [T1]): Consider the ring of algebraic functions
C[CΓ] on the monomial curve, and the submodule N of C[CΓ]g generated by the
vectors ∂uif where f = (f1, . . . , fg). The quotient C[CΓ]g/N is a finite dimensional
vector space over C, and so we may choose vectors ψi ∈ C[u0, . . . , ug]

g, each having
a single nonzero coordinate which is a monomial, such that the natural images of
the ψi in C[CΓ]g/N form a basis of this vector space. The φr are those among the
ψi = (0, . . . , 0, uqi,j , 0, . . . , 0) such that if uqi,j is at the j-th line, the weight of uqi,j

is > njβj , so that in the corresponding deformation the only equation modified,
fj + viu

qi,j is modified by a term of weight greater than that of fj .

In particular, the one-parameter specialization of a branch C to CΓ which
we have seen above can be obtained in this way, up to isomorphism, by a map
h1 : (C, 0) → (Cτ− , 0). The map p is equivariant with respect to the action of

the group C∗ on −χu (resp Cτ−) which is described by uk 7→ λβjuk, vr → λwrvr
(resp. only the action on the vr). If vC ∈ Cτ− is a point corresponding to a branch
isomorphic to (C, 0), the image of h1 is contained in the orbit of vC under this
action of C∗. The action of C∗ on Cτ− ensures that any branch with semigroup Γ
appears up to isomorphism as a fiber in any representative of the germ p : (−χu, 0)→
(Cτ− , 0). 	
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4 Resolution Using Toric Morphisms

We produce toric morphisms π(Σ): Z(Σ) → Cg+1 to resolve the singularities of
CΓ ⊂ Cg+1, and then show that the same morphisms which resolves CΓ resolve
any fibre of the miniversal constant semigroup deformation p : −χu → Cτ− . In
particular, since all curves with semigroup Γ are represented as fibers of this de-
formation, Theorem 3.2 implies that π(Σ) resolves (C, 0). The toric resolution of
the curve CΓ will be a consequence of a generalization of the work of Varchenko [V]
(expounded also in [M]) for “convenient” or “commode” functions, whose Newton
polyhedron intersects each axis and which are non-degenerate.

4.1 The Toric Morphism

For the notions and basic results of toric geometry used in this section, we refer to
[C]. A toric morphism is locally described by monomial maps π(a) : Cg+1 → Cg+1

where a = (a0, . . . , ag) with aj ∈ Ng+1
0 . for all j and span{a0, . . . , ag} = Rg+1:

u0 = y0
a0

0 · · · ·yga
g
0

u1 = y0
a0

1 · · · ·yga
g
1

· ·
· ·
· ·
ug = y0

a0
g · · · ·yga

g
g

More precisely, a fan (see [Oda], Chap. 1) Σ with support Rg+1
+ is a decomposition

of the positive quadrant Rg+1
+ into rational simplicial cones σα with the properties

that any face of such a cone is also a part of the fan and that the intersection of
two of them is a face of each. A fan is non-singular if the primitive integral vectors
of the 1-skeleton of each cone σ of dimension g + 1 form a basis of the integral
lattice Ng+1

0 . We have set N0 = N ∪ {0}.
To a fan Σ are associated a toric variety Z(Σ) and a toric (equivariant) map

π(Σ): Z(Σ) → Cg+1. The variety Z(Σ) is obtained by glueing up affine varieties
Z(σ) corresponding to each cone of maximum dimension, and if the fan is non-
singular, so is Z(Σ); in this case, for each cone σ of maximal dimension Z(Σ) is
isomorphic to Cg+1 and the map π(σ) induced by π(Σ) is equal to π(a0, . . . , ag)
where the aj are the primitive integral vectors of the 1-skeleton of the cone σ. An
upper convex map (see [C], [Oda] A.3 p. 182-185) m : Rg+1

+ → R+ taking integral
values on the integral points and linear in each cone σ ∈ Σ determines a divisor
on Z(Σ), which in the chart π(a0, . . . , ag) : Z(Σ)→ Cg+1 has the equation

y
m(a0)
0 . . . ym(ag)

g = 0.

We will call it the exceptional divisor of the toric map π(Σ) corresponding to the
upper convex function m. Just like in the absolute case, the datum of such a map
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is equivalent, in the case where the function m is strictly convex, to the datum of
an embedding Z(Σ) ⊂ Cg+1 × PN such that the exceptional divisor is the pull
back of a hyperplane section of PN . Such an upper convex map is called a support
function .

The Newton polyhedron of a function f : Cg+1 → C can be used to define
fans and a support function.

Definition. For a function f =
∑
p∈Ng+1 fpu

p, let supp f = {p ∈ Ng+1 : fp 6= 0}
and N+(f) = boundary of the convex hull of ({supp f}+ Rg+1

+ ) in Rg+1
+ . We call

N+(f) the Newton polyhedron of the function f . Note that N+(f) has finitely
many compact faces and that its non-compact faces of dimension ≤ g are parallel
to coordinate hyperplanes.

Define the function m by:

m(q) = inf
p∈N+(f)

< q, p >

and define an equivalence relation: two vectors are equivalent if and only if the
same elements of N+(f) minimize the inner product with each vector. In other
words,

q ∼ q′

m
{p ∈ N+(f) |< q, p >= m(q)} = {p ∈ N+(f) |< q′, p >= m(q′)} (***)

The function m is homogenous and piecewise linear, thus the equivalence classes
(***) form a fan; to each class (and corresponding set of p ∈ N+(f)), we associate
a cone σ which consists of those vectors whose inner product is minimized by (and
only by) these p. We obtain a convex rational fan Σ0 in Rg+1

+ with vertex 0. By
construction, the function m is linear on each cone σ ∈ Σ, and it is easy to verify
that it is strictly upper convex. The non-compact faces of the boundary N (f)
of N+(f) correspond to cones σ in the fan which are contained in a coordinate
hyperplane of Rg+1. Moreover, given a subset J ⊂ {0, . . . , g}, we can consider
the projection of the Newton polyhedron to the subspace RJ = {p ∈ Rg+1 |
pk = 0 for k /∈ J} of Rg+1. If that projection contains the origin, then for all
a ∈ Řg+1 | ak = 0 for k /∈ J , we have m(a) = 0, and therefore we may assume that
the cone RJ

+ is in the fan, so that the basis vectors of RJ
+ are in the 1-skeleton of

the fan.
By a theorem of Kempf, Mumford, et al. (see [TE], pp. 32-35, [Oda], p.23),

any fan can be refined into a non-singular fan, still containing as faces the spaces
RJ

+ such that m(a) = 0 for a ∈ RJ
+. The function m is of course linear in each

cone of the finer fan and upper convex (but not strictly so in general), and we are
in the situation described above.

If we now consider several functions fj ; 1 ≤ j ≤ k, to each of them corresponds a

Newton polyhedron, and therefore a fan Σ
(j)
0 and a support function mj .
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Definition. Let Σ0 be the fan consisting of the intersections of the cones of the

fans Σ
(j)
0 . The fan Σ0 is the least fine common refinement of all the Σ

(j)
0 .

It is also the fan associated in the manner we have just seen to a single
Newton polyhedron, which is the Minkowski sum of the Newton polyhedra of the
fj and is also the Newton polyhedron of the product f1 . . . fk.

Recall that the Minkowski sum N1 + N2 of two Newton polyhedra N1, N2

is the convex domain spanned by vector sums {p1 + p2 | p1 ∈ N1, p2 ∈ N2}. It is
a commutative and associative operation. If Nk is the Newton polyhedron of fk,
N1 +N2 is the Newton polyhedron of f1f2.

All the functions mj are linear in each cone of Σ0. Taking a non-singular
refinement Σ of Σ0 as described above, we finally have a non-singular fan with
support functions mj and thus, since this fan is also a refinement of the “trivial”

fan of Rg+1
+ , we get a proper toric map π(Σ): Z(Σ)→ Cg+1 where Z(Σ) is a non

singular toric variety, and each function fj ◦ π(Σ) defines a map from Z(Σ) to C.
To study the effect of the modification π(Σ) on the functions fj , we restrict

ourselves to a chart Z(σ) of Z(Σ) corresponding to a cone σ whose primitive
integral vectors are denoted by a = (a0, . . . , ag). We assume that they form a basis
of the integral lattice, and we shall write σ =< a0, . . . , ag > for the convex cone
spanned by the vectors (a0, . . . , ag). If we write the function

fj =
∑

p∈Ng+1

f (j)
p up ,

where up = up0

0 u
p1

1 · · ·u
pg
g , then the composition

fj ◦ π(a0, . . . , ag) =
∑

p∈Ng+1

f (j)
p y<a

0,p>
0 · · · y<a

g,p>
g , (2)

where <,> is the standard inner product, can be written

fj ◦ π(a) = y
mj(a

0)
0 . . . y

mj(a
g)

g
∑
p∈Ng+1 f

(j)
p y

<a0,p>−mj(a0)
0 · · · y<a

g,p>−mj(ag)
g

= y
mj(a

0)
0 . . . y

mj(a
g)

g f̃j(y0, . . . , yg) .

The function f̃j is called the strict transform of fj ; it satisfies f̃j(0) 6= 0.
We use the following fact, which is obvious from the definitions:

For each j, 1 ≤ j ≤ k, there is a unique p(j) ∈ N+(fj) such that < ai, p(j) >=
mj(a

i), 0 ≤ i ≤ g, and the strict transforms take the form

f̃j = f
(j)

p(j) +
∑

p∈N+(fj)\{p(j)}

f (j)
p y

<a0,p>−mj(a0)
0 · · · y<a

g,p>−mj(ag)
g .

Moreover we can compute the critical locus of critπ(Σ) of π(Σ), which locally is
the critical locus of π(σ) for each σ =< a0, . . . , ag >∈ Σ.
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By direct inspection we find the following relation for the jacobian matrix jacπ(σ)
of π(σ):

y0 · · · yg jacπ(σ) = u0 . . . ug det(a0, . . . , ag),

setting αj =
(∑g

i=0 a
j
i

)
− 1 this means since det(a0, . . . , ag) = ±1,

jacπ(σ) = ±yα0
0 . . . yαgg .

So the divisor yj = 0 is contained in the critical locus of π(σ) if and only if aj is
not a coordinate vector.

Note that the divisor yj = 0 is contained in π(σ)−1(0) if and only if the vector aj

has all its coordinates different from zero.

5 Existence of a toric resolution

In this section, we study a germ at 0 of a complete intersection X ⊂ Cg+1 defined
by a set of equations {f1 = f2 = · · · = fk = 0} with fj ∈ C{u0, . . . , ug}, j =
1, . . . k. We assume that the series fj have no constant term. We use the notations
introduced above and consider a toric map of non-singular spaces π(Σ): Z(Σ) →
Cg+1. We make our computations in a chart corresponding to a regular simplicial
cone σ =< a0, . . . , ag > of Σ.

Definition. Given a family of functions {fj}1≤j≤k as above, and a toric morphism
associated to a regular fan Σ such that all the support functions (mj)1≤j≤k are
linear in each cone σ of Σ, for each map π(σ) : Cg+1(σ)→ Cg+1, we will call the

divisor y
m(a0)
0 . . . y

m(ag)
g , where m(a) =

∑k
j=1mj(a), the toric exceptional divisor

of π(σ) associated to the support functions mj. This definition globalizes to π(Σ).

From what we have seen one deduces for each π(σ) with σ =< a0, . . . , ag >
the following statements:

Proposition 5.1. The fiber π(σ)−1(0) ⊂ Cg+1 is the union of the intersections
yi1 = · · · = yit = 0 over all minimal families J = (i1, . . . , it) of indices such that
for each ` , 0 ≤ ` ≤ g, there is an i ∈ J such that the `-th coordinate of ai is 6= 0.
In particular the divisorial part of π(σ)−1(0) is the union of the divisors yi = 0
for those i such that the vector ai has no zero component.
The critical locus crit(π(σ)) is the union of the divisors ys = 0 for those s such
that as is not a coordinate vector of Zg+1.

For any set of functions {fj}, we label the compact faces ofN+(fj) by γj . Any com-

pact face of the Newton polyhedron N+ =
∑k
j=1N+(fj) which is the Minkowski

sum of the Newton polyhedra of the {fj} will be of the form γ = γ1 + · · · + γk.
Each face γj in turn is of the form

γj = γj(I) = {p ∈ N+(fj) |< ah, p >= mj(a
h) for h ∈ I} ,
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where I is a subset of {0, . . . , g}. If the face γj(I) is not compact, it contains a
line parallel to a coordinate axis, say the `th, so that there is an `, 0 ≤ ` ≤ g, such
that for all h ∈ I we have ah` = 0.

Definition. We call the set of functions {fj}1≤j≤k non-degenerate if for all compact

faces γ = γ1 + · · ·+ γk of N+ =
∑k
j=1N+(fj), denoting by fj |γj , the sum

fj |γj =
∑
p∈γj

f (j)
p up,

the k × (g + 1) matrix 
∂u0f1|γ1 · · · ∂ugf1|γ1

∂u0
f2|γ2

· · · ∂ugf2|γ2

· ·
· ·
· ·

∂u0fk|γk · · · ∂ugfk|γk


has maximal rank k on (C∗)g+1. This means that the equations

f1|γ1
= · · · = fk|γk = 0

define a non singular complete intersection in (C∗)g+1. For example a single func-
tion f is non-degenerate if for each compact face γ of N+(f), the (g + 1)-vector
(∂uif |γ)i does not vanish in (C∗)g+1; this is the original definition of Varchenko
[V].

Definition. The morphism π : X̃ −→ X is a resolution if the following conditions
hold:

• π is a proper morphism,

• X̃ is non-singular, and

• X̃ \ π−1(SingX) −→ X \ SingX is an isomorphism.

If the morphism π is a toric morphism π(Σ), the last condition is a consequence
of the inclusion

X̃ ∩ crit(π(Σ)) ⊂ π(Σ)−1(SingX).

However, this condition is difficult to check if X is not itself a toric subvariety,
which motivates the following definition of a toric pseudo-resolution, after recalling
that the strict transform X̃ of X ⊂ Cg+1 by π(Σ) is the closure in Z(Σ) of
π(Σ)−1(X) \ crit(π(Σ)).

Definition. A toric morphism π(Σ): Z(Σ) → Cg+1 is a toric (embedded) pseudo-
resolution of a subvariety X ⊂ Cg+1 if the strict transform X̃ of X by π(Σ) is
smooth and transversal to a stratification of the critical locus of π(Σ).
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Note that a toric pseudo-resolution is not necessarily a resolution of singu-
larities in the usual sense since it may not induce an isomorphism

X̃ \ π(Σ)−1(SingX)→ X \ SingX.

A toric pseudo-resolution only induces an isomorphism

X̃ \ crit(π(Σ))→ X \ disc(π(Σ)),

where disc(π(Σ)) is the image by π(Σ) of crit(π(Σ)), and since X̃ is non singu-
lar, the inclusion SingX ⊂ disc(π(Σ)) holds. In the case of a single function f ,
Varchenko introduced in [V] the condition of being commode which is equivalent
to asking that if a primitive vector ai of a cone σ (of a fan compatible with the
Newton polyhedron of f) is contained in a hyperplane (which means that if in the
chart Cg+1(σ) the divisor yi = 0 is not contained in π(σ)−1(0)), then we have
m(ai) = 0; it follows then from the conditions satisfied by our fans that ai must
in fact be a basis vector, so that yi = 0 is not in the critical locus. For com-
mode functions, in fact, the toric exceptional divisor and the critical locus of π(Σ)
both coincide set theoretically with π(Σ)−1(0) so that a toric pseudo-resolution of
f(u0, . . . , ug) = 0 is also a resolution in the usual sense.

For complete intersections, Oka introduced in [O3] a notion of convenient
generalizing Varchenko’s definition. It is much too strong for our purposes. Our
monomial curve is only 1-convenient in the sense of [O3], and the product of its
equations is far from being commode in the sense of [V].

However, in the case of a curve, a toric embedded pseudo-resolution is an
embedded resolution in the usual sense unless the curve is contained in a coordinate
hyperplane.
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5.1 The Inverse Image of X by the Morphism π(Σ).

Theorem 5.2. If the set of functions {fj}1≤j≤k defining the complete intersection
X ⊂ Cg+1 is non-degenerate at the origin, there exists a neighborhood U of 0 in
Cg+1 such that in π(Σ)−1(U) the strict transform of X by π(Σ) is non-singular
and transversal in Z(Σ) to the strata of a stratification of the divisor π(Σ)−1(0) .

Proof. We consider for each π(σ) a natural stratification of Cg+1(σ) such that
π(σ)−1(0) is a union of strata, as follows: For each I ⊂ {0, . . . , g}, define SI to be
the constructible subset of Cg+1(σ) defined by yi = 0 for i ∈ I, yi 6= 0 for i /∈ I.
The sets SI form a partition of Cg+1(σ) by non-singular varieties.

If the subset I is such that for each ` , 0 ≤ ` ≤ g, there is a j ∈ I such that
the `-th coordinate of aj is 6= 0 (see 5.1), the stratum SI is contained in π(σ)−1(0),
and conversely, so that π(σ)−1(0) is a union of strata. This stratification of each
Cg+1(σ) is compatible with the chart decomposition of Z(Σ) and so gives a strat-
ification of Z(Σ). Moreover, this stratification satisfies the Whitney conditions,
so that to check the transversality of a non-singular subspace to every stratum
in a neighborhood it is sufficient to check transversality to the strata contained
in π(σ)−1(0); as we have seen, these strata correspond to compact faces of the
Newton polyhedra. Now we can compute in each chart Cg+1(σ) the restriction of
each f̃j to SI :

f̃j |SI =
∑

p|<ai,p>=mj(ai) for i∈I

f (j)
p y

<aj1 ,p>−mj(aj1 )
j1

. . . y
<aj` ,p>−mj(aj` )
j`

,

where {j1, . . . , j`} = {0, . . . , g} \ I.
The set {p |< ai, p >= mj(a

i) for i ∈ I} is by definition a face γj,I of the Newton
polyhedron N+(fj), and this face is compact by the assumption on I.

The function f̃j |SI is the restriction to SI of a function on Cg+1(σ) which
is independent of the yi ; i ∈ I. Moreover, this last function differs from the
composition with π(σ) of the function

fj,γj,I =
∑
p∈γj,I

f (j)
p up

by multiplication by a monomial in (y0, . . . , yg). Since on SI the coordinates yk; k /∈
I are 6= 0, the behavior of the functions f̃j |SI is determined by the behavior
of the fj,γj,I ◦ π(σ) at points where all the yi are 6= 0. It follows that if the
jacobian determinant of the functions f1,γ1,I

, . . . fk,γk,I has a k × k minor which

does not vanish on (C∗)g+1 then the functions f̃1|SI , . . . , f̃k|SI define a non-singular
subspace of codimension k in SI (in particular it is empty if k > dimSI). This
implies that the strict transform of X by π(Σ) is non-singular and transversal to
all the strata SI in a neighborhood of π(σ)−1(0); in particular it is transversal to
the critical locus of π(σ). 	
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Applying this to each chart of π(Σ) gives:

Corollary. If the set of functions {fj}1≤j≤k defining the complete intersection
X ⊂ Cg+1 is non-degenerate at 0, there exists a neighborhood U of 0 in Cg+1 such
that the strict transform X̃ → X of X by π(Σ) induces in π(Σ)−1(U) an embedded
toric pseudo-resolution of singularities of X ∩ U .

5.2 The Toric Resolution of the Monomial Curve

Let CΓ be the monomial curve derived from C. In this section, we study the embed-
ded resolution of the curve CΓ by a toric morphism from two different viewpoints,
which correspond to its parametric and equational presentations respectively.

First, the monomial curve is the closure in Cg+1 of an orbit of C∗ described
by

t 7→ (tβ0 , tβ1 , . . . , tβg ).

By the theory of toric varieties (see [O], Chap 1) this orbit is described combi-
natorially by the linear map Z → Zg+1 such that the image of 1 is the weight
vector

w = (β0, β1, . . . , βg) ∈ Zg+1.

This means that the corresponding morphism of semigroup algebras

C[u0, . . . , ug]→ C[t]

obtained from the dual map Žg+1 → Ž by restriction to Ng+1 is the morphism of
algebras which corresponds to our parametrization of the monomial curve.

We use the notations of §4. Now if we take a regular fan Σ in Rg+1
+ which is

compatible with the weight vector w, in the sense that w is contained in an edge
of any simplicial cone it meets outside 0, we obtain a toric map

π(Σ): Z(Σ)→ Cg+1.

To compute the strict transform of CΓ by π(Σ), we need to find out first which
charts Z(σ) of Z(Σ), corresponding to (g+ 1)-dimensional simplicial cones σ of Σ,
have an image which contains CΓ. Seeking solutions of the form yi(t) = cit

αi + · · ·
to the equations y

a0
i

0 . . . . .y
agi
g = tβi , we see that the vector (α0, . . . , αg) must satisfy

M.α = w where M = (aji ) is the matrix of the column vectors (a0, . . . , ag) which
are the generators of the simplicial cone σ. Since we want the α’s to be positive, this
implies that σ contains w, so that by our assumption that the fan is compatible
with w, the vector w must be equal to one of the aj . We see that we need to
consider only those simplicial cones σ = < a0, . . . , ag >, where up to reordering
we have w = a0. Then, w is the image of the coordinate vector (1, 0, . . . , 0) by
the linear map p(σ) : Zg+1 → Zg+1 described by the matrix M , i.e., sending the
i-th basis vector to ai. The strict transform of CΓ by the map π(σ) is again a
monomial curve, but its weight vector is the pull back of w by p(σ), which is
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the basis vector (1, 0, . . . , 0); in fact, the simplicial cone σ is the image by p(σ)
of the cone generated by the basis vectors. So the strict transform of CΓ has the
parametric representation

y0 = t, y1 = · · · = yg = 1,

and it is indeed non singular and transversal to the exceptional divisor.

Remark. 1) The regular simplicial fan compatible with w is by no means unique;
however, there are, at least in the case of plane branches, algorithms which produce
such fans. Their description is beyond the intent of this text, but the reader can
get some idea of the problem by looking at the example which concludes it.
2) This resolution process works for any monomial curve: the embedded toric reso-
lution reduces entirely to the combinatorial problem of finding a regular simplicial
fan Σ in Rg+1

+ compatible with the weight vector. We can summarize this in:

Theorem 5.3. Let CΓ ⊂ Cg+1 be a monomial curve with weight vector w ∈
Ng+1. For any regular simplicial fan Σ in Rg+1

+ compatible with w, the toric map
π(Σ): Z(Σ)→ Cg+1 has the property that the strict transform of CΓ is non singu-
lar and transverse to the exceptional divisor. In fact, it appears only in the charts
corresponding to simplicial cones containing w and there it is defined parametri-
cally, up to reordering of the coordinates, by y0 = t, y1 = · · · = yg = 1. 	

This construction of the resolution is simpler than the following one, but not
as easily adaptable to the study of the effect of the toric map π(Σ) on deformations
of CΓ such as our curve C ⊂ Cg+1. The other viewpoint is to explore the implica-
tions of the previous section on CΓ. We reprove the result above from this view-
point. As specified in Equations (**), CΓ is defined by equations {fj = 0}1≤j≤g,
where each fj = uαj −Mj and Mj is a monomial in u0, . . . , uj−1. Note that suppfj
has exactly two elements, corresponding to the exponents of the two monomials
in fj , and each Newton polyhedron N+(fj) has only one compact face, which is

a segment. For each function fj , let Σ
(j)
0 be the fan representing the equivalence

classes derived from the function mj . Let Σ be a non-singular fan obtained by

refining Σ0 =
⋂
j Σ

(j)
0 , and N+ be the corresponding Newton polyhedron. We refer

to the compact face of the Newton polyhedron N+(fj) as γj .

Proposition 5.4. The curve defined by {f̃1 = f̃2 = · · · = f̃g = 0} intersects the
divisor π(σ)−1(0) only in the charts Cg+1(σ), σ =< a0, . . . , ag >, in which for
some b the vector ab is the weight vector (β0, . . . , βg). If ab is the weight vector,

then (Πg
i=0yi = 0)

⋂
{f̃1 = f̃2 = · · · = f̃k = 0} is contained in {yb = 0} but not in

any other hyperplane yi = 0 for i 6= b.

Proof. Each strict transform f̃j has only two terms

f̃j = f
(j)

p
(j)
0

+ f
(j)

p
(j)
1

y
<a0,p

(j)
1 >−mj(a0)

0 . . . y
<ag,p

(j)
1 >−mj(ag)

g
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since each equation fj has only two terms. The only possibility for the g equations

f̃j = 0 to have a common root with yi = 0 for some i is that < ai, p
(j)
1 >=

mj(a
i) =< ai, p

(j)
0 >. But this implies that ai is constant on the Minkowski sum

of the g segments constituting the Newton polyhedra of the fj . By the structure
of the equations, this sum is of dimension g; ai is uniquely determined as the
primitive normal vector of this face, and it has to be the weight vector ab.
Indeed, the monomial map π(σ) : Z(σ) → Cg+1 maps the strict transform C̃Γ

to CΓ; if the coordinate yb corresponds to the weight vector, we see that yb must
be a coordinate on the strict transform of CΓ, and all other coordinates equal
to 1. In other words, the equations in Z(σ) of the desingularization of CΓ are
(yi = 1, for i 6= b); they are the strict transforms of the equations of CΓ, which
have only ±1’s as coefficients. 	

Theorem 5.5. Let CΓ be a monomial curve defined by {fj}1≤j≤g as above. The
strict transform of {f1 = · · · = fg = 0} ∩ (C∗)g+1 by the morphism π(Σ) is
non-singular and transversal in Z(Σ) to the strata of π(Σ)−1(0).

Proof. This follows directly from Theorem 5.2 if we can prove the fact that the
family of functions {fj}1≤j≤g is non-degenerate.

But there is only one compact face for the Newton polyhedron
∑g
j=1N+(fj);

it is the (Minkowski) sum
∑g
j=1 γj . By Proposition 5.4, this compact face cor-

responds to the subset I = {j} ⊂ {0, . . . , g} such that aj is the weight vector.
Moreover, for each j, the function fj is equal to fj,γj , so that we only have to
check that the equations of the monomial curve define a non-singular complete
intersection in (C∗)g+1 and we have

df1 ∧ · · · ∧ dfg = n1 . . . ngu
n1−1
1 . . . ung−1

g du1 ∧ · · · ∧ dug + · · ·

so the differential form does not vanish outside of the coordinate hyperplanes: the
set of equations f1, . . . , fg is non-degenerate.
Note that unlike the first proof, this one encounters a (minor) difficulty if we work
over a field of characteristic dividing one of the ni. 	

6 Simultaneous Resolution

We will now show that some toric morphisms not only resolves CΓ, but simulta-
neously resolves all curves in the miniversal deformation with constant semigroup
−χu of CΓ which we saw in section 3.

Definition. Let f : (X, 0)→ (Y, 0) be a flat map with reduced fibres and Y reduced.
We say (see [T2] ) that f admits a very weak simultaneous resolution if, for all
sufficiently small representatives, there exists a proper morphism π : X̃ → X such
that:

1. The composition q = f ◦ π : X̃ → Y is an analytic submersion, i.e., q is flat,
and for all y ∈ Y , the fiber X̃(y) = q−1(y) is non-singular.
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2. For all y ∈ Y , the induced morphism X̃(y) → X(y) is a resolution of the
singularities of X(y). Let Y1 be the image of a section σ : Y → X.

We say that f admits a weak simultaneous resolution along Y1 if it also
satisfies the condition:

1. The morphism qY1
: (π−1(Y1))red → Y induced by q is locally topologically

a fibration, in the sense that every point x̃ ∈ π−1(Y1), has an open neigh-
borhood U ∈ (π−1(Y1))red such that UY1

' V × Ỹ0, where V is an open set
in Y , Ỹ0 is an open neighbourhood of x̃ in the fibre of qY1 passing through
x̃, and ' is a Y -homeomorphism.

We say that f admits a strong simultaneous resolution along Y1 if it also
satisfies the condition:

The morphism qY1
: (π−1(Y1)) → Y induced by q is locally analytically trivial

(before reduction), in the sense that every point x̃ ∈ π−1(Y1), has an open neigh-
borhood U ∈ (π−1(Y1)) such that UY1

' V × Ỹ0, where V is an open set in Y , Ỹ0

is an open neighbourhood of x̃ in the fibre of qY1
passing through x̃, and ' is a

Y -isomorphism.
An embedded resolution for −χ ⊂ CN is a bimeromorphic map π : Z → CN

where Z is smooth, the exceptional locus E of π is a divisor with normal crossings
in Z and the strict transform of −χ is smooth and transversal to the canonical
stratification of E. As usual, CN stands for an open subset of CN .

Recall from Section 3 that the miniversal deformation of the curve CΓ yields
a family of curves, p : −χu → Cτ− , embedded in Cg+1 ×Cτ− in such a way that p
is induced by the second projection, and where −χu is defined by the equations

F1 = f1 +
∑τ−
r=1 vrφr,1(u0, . . . , ug) = 0

· · ·
· · ·
· · ·
Fg = fg +

∑τ−
r=1 vrφr,g(u0, . . . , ug) = 0

where the φr,j are polynomials and each monomial in (u0, . . . , ug) appearing in
φr,j is of weight > njβj when each uk is given the weight βk; the equation fj is

then homogeneous of weight njβj . We have −χu(0) ' CΓ. Let π(Σ): Z(Σ)→ Cg+1

be the toric modification associated to a regular fan in Rg+1
+ compatible with the

sum of the Newton polyhedra of the equations fj of CΓ. By construction, CΓ is
resolved by the morphism π(Σ).

Theorem 6.1. If Σ is a regular fan compatible with the Newton polyhedra of the
equations (∗∗) of CΓ, the morphism

Π(Σ) = π(Σ)× IdCτ− : Z(Σ)×Cτ− → Cg+1 ×Cτ−
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induces by restriction to the strict transform −̃χu a resolution of singularities of
−χu, which is a strong simultaneous resolution for p : −χu → Cτ− with respect
to the subspace Y1 = {0} × Cτ− . In addition, it is an embedded resolution for
−χ ⊂ Cg+1 ×Cτ− .

Proof. Consider in a chart Cg+1(σ)×Cτ− the composition

Fj ◦Π(σ) = fj ◦Π(σ) +

τ−∑
r=1

vr(φr,j ◦ π(σ)).

Since for each support function m(a) and fixed q the function < a, q > /m(a) is a
continuous function of a, and since the φj,r are polynomials, after possibly refining
the fan Σ (this is where we have to impose conditions on the toric morphisms
which resolve CΓ), we may assume that for each cone σ =< ab, a1, . . . , ag >
containing the weight vector ab, for each j, 1 ≤ j ≤ g, and for each monomial
appearing in one of the polynomials φj,r, the inequality < ab, q > > mj(a

b), which
is equivalent to the weight inequalities mentioned above, implies the inequalities
< as, q > ≥ mj(a

s) for 1 ≤ s ≤ g. We can therefore write the composition Fj◦Π(σ)
as follows:

Fj ◦Π(σ) = y
mj(a

0)
0 . . . ymj(a

g)
g (f̃j +

τ−∑
r=1

vrφ̃r,j),

where φ̃r,j =
∑
q φ̃r,j,qy

<ab,q>−mj(ab)
0 . . . y

<ag,q>−mj(ag)
g . From this follows, since

it is true for the f̃j , that at least for small ‖v‖ the F̃j = f̃j +
∑τ−
r=1 vrφ̃r,j de-

fine a non-singular complete intersection −̃χu in Z(σ) × Cτ− : the strict trans-
form of −χu; moreover, each fiber over a point v ∈ Cτ− for sufficiently small
‖v‖ is the resolution of the corresponding fiber of −χu(v). Let us now consider

Ỹ1 = (π(σ) × IdCτ− |−̃χ
u

)−1(Y1). Its equations are yb = 0, F̃j = 0; by the Implicit

Function theorem, it is non-singular and admits at least for small ‖v‖ the coor-
dinates v1, . . . , vτ− ; the morphism Ỹ1 → Y1 is not only a homeomorphism, but a
local analytic isomorphism. Since there is an equivariant action of C∗, all this is
in fact true for all v.
Let us now consider a cone σ not adjacent to the weight vector. Let uq be a
monomial appearing as a φr,j , set Gj = fj + vru

q, and let Kj ⊂ {0, . . . g} be the
set of those indices s such that < as, q > < mj(a

s). Set nj(a
s) =< as, q > for

s ∈ Kj . Then Gj ◦Π(σ) equals

Πs/∈Kjy
mj(a

s)
s Πs∈Kjy

nj(a
s)

s

(
f̃jΠs∈Kjy

mj(a
s)−nj(as)

s + vrΠs/∈Kjy
<as,q>−mj(as)
s

)
.

By our choice of σ we know that the f̃j do not vanish together on the exceptional
divisor. The common zeroes of the strict transforms

G̃j = f̃jΠs∈Kjy
mj(a

s)−nj(as)
s + vrΠs/∈Kjy

<as,q>−mj(as)
s



20 Plane branches and toric maps

constitute in the chart Cg+1(σ) × Cτ− the strict transform −̃χu of the space −χu,
therefore this strict transform meets the exceptional divisor only for vr = 0 and
then it coincides with the union of some components in Cg+1(σ) × {0} of the
exceptional divisor of π(σ). However, these components do not meet the strict
transform (see 5.4) of the curve CΓ, and therefore the inverse image of {0} in
−̃χu is not connected. Since −χu is the total space of an equisingular deformation
of CΓ it is analytically irreducible at the origin and by Zariski’s main theorem
the inverse image of {0} must be connected. We therefore obtain a contradiction,
which shows that for each cone σ =< a0, . . . , ag >∈ Σ all the monomials uq

appearing in the miniversal equisingular deformation of CΓ satisfy the inequalities
< as, q > ≥ mj(a

s) for 0 ≤ s ≤ g. We are in the situation described at the
beginning of the proof, and this shows that the map −̃χu → −χu induced by the
toric modification Z(Σ)×Cτ− → Cg+1 ×Cτ− is a weak embedded simultaneous
resolution along Y1.

Finally we remark that a refinement Σ′ of our original regular fan corresponds
to a birational toric map Z(Σ′) → Z(Σ) which is an isomorphism outside the
exceptional divisor. Moreover, in a chart corresponding to a cone σ adjacent to
the weight vector, it is an isomorphism outside Πg

s=1ys = 0; this open set contains
the strict transform of CΓ since we saw that it meets only y0 = 0 (see 5.4). It
follows from this that if the strict transform of −χu in Z(Σ′)×Cτ− is a simultaneous
resolution of −χu, such was already the case for the strict transform in Z(Σ)×Cτ− .
This concludes the proof. 	

Corollary. For a plane branch (C, 0) with g characteristic exponents, with semi
group Γ =< β0, . . . , βg > and given parametrically by x = x(t), y = y(t), with

ν(x) = β0, ν(y) = β1, let ξi(t) ∈ OC,0 = C{x(t), y(t)} ⊂ C{t} for 2 ≤ i ≤ g be
series such that

(ν(x), ν(y), ν(ξ2), . . . , ν(ξg)) = (β0, . . . , βg),

where ν is the t-adic valuation. Then the embedding (C, 0)→ (Cg+1, 0) given by

u0 = x(t), u1 = y(t), u2 = ξ2(t), . . . , ug = ξg(t)

has the property that its image is resolved by one toric modification.

7 The transforms of plane curves

Let us return to the construction of the miniversal constant semigroup deforma-
tion in §3. It is easy to check that the vectors φj ∈ C[CΓ]g , 1 ≤ j ≤ g − 1,
containing uj+1 at the j-th line and zero elsewhere, are independent modulo N
with the notations of §3. In the miniversal constant semigroup deformation, the
plane curves appear as those for which the coefficients of all these vectors are 6= 0
(see [T1]). For each point v0 in the corresponding open set of Cτ− , the equation
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of the corresponding plane branch is obtained as follows, in a small neighborhood
of 0 :

One uses the first equation F1 to express u2 as a series in u0, u1, using the
implicit function theorem. Then one substitutes this value in F2 and uses this
equation to express u3 as a function of u0, u1, and so on. Finally the equation
Fg−1 = 0 allows us to express ug as a series in u0, u1, and at this point we have
the equations of a non-singular surface Sv0

containing our branch, thus explicitly
shown to be planar.

The next step is to consider the strict transform S̃v0
of Sv0

in Cg+1×{v0} and
the induced map S̃v0

→ Sv0
induced by Π(Σ). One shows that, in a neighborhood

of the point of the exceptional divisor picked by the strict transform of C, it factors
through the toric map S1

v0
→ Sv0 which on Sv0 with the coordinates u0, u1 resolves

the singularities of the branch un1
1 −u

`
(0)
1

0 = 0. One then takes the strict transform
of this equation as a new coordinate on S1

v0
and then the strict transform of C

appears as a branch on S1
v0

with one less characteristic exponent; its equations are
the strict transforms of F2, . . . , Fg on S1

v0
, in the new coordinates. Again one must

look at the toric map (in the new coordinates) which resolves the first characteristic
pair and show that it is dominated by S̃v0 , and so on; finally we have factored the
map S̃v0

→ Sv0
into the composition of g toric maps. This is similar to the process

described by Spivakovsky in [S] of approximating a given valuation by a sequence
of monomial valuations. However we see that if we allow a change in ambient space,
the uniformization of a single monomial valuation, namely the t-adic valuation on
the monomial curve, gives the uniformization of the t-adic valuation of C.

On the surface S, each of the coordinates ui, 2 ≤ i ≤ g is expressed as a series
in u0, u1. For each i, 2 ≤ i ≤ g, the equation ui = 0 on S defines a curve with
i characteristic exponents having at the origin maximal contact with our original
plane branch; this is a consequence of what we have seen in Corollary 6, and gives
a geometric construction of curves (singular or not) having maximal contact in
the sense of [L-J] with our plane branch; they are the curves on Sv0

defined by
the equations ui = 0, i ≥ 1. Remark that for i ≥ 2 they can also be written
fi−1(u0, . . . , ug) + higher degree, and with a little more work we find the structure
of the approximate roots.

The construction just outlined needs to be detailed but we will not do it here
since it is not part of the main purpose of this text. It is performed in the first
non trivial special case (two characteristic exponents (3/2, 7/4), i.e., semigroup
< 4, 6, 13 >) at the end of the example to which we now turn.



22 Plane branches and toric maps

8 Appendix : An example

Example. Suppose we have a plane branch C with semigroup < 4, 6, 13 >. The
corresponding monomial curve CΓ is described (see [T]) by the polynomials

f1 = u1
2 − u0

3 = 0
f2 = u2

2 − u0
5u1 = 0.

As specified above, we construct N+(f1) and N+(f2), the Newton polygons, by the
convex hull of the union of positive quadrants beginning at points corresponding
to the exponents of the {ui}’s . Thus,

N+(f1) = convex hull of {{(3, 0, 0), (0, 2, 0)}+ R3
+}

N+(f2) = convex hull of {{(5, 1, 0), (0, 0, 2)}+ R3
+}

and the corresponding fans are defined, respectively, by

Σ
(1)
0 = the first quadrant of R3 cut by the plane 3x = 2y, and

Σ
(2)
0 = the first quadrant of R3 cut by the plane 5x+ y = 2z.

Then the equivalence class fan of f1 and f2 together is the intersection

Σ0 = Σ
(1)
0 ∩ Σ

(2)
0

which has four maximal dimension cones:

1. 〈(2, 3, 0), (0, 1, 0), (4, 6, 13), (0, 2, 1)〉

2. 〈(0, 2, 1), (0, 0, 1) (4, 6, 13)〉

3. 〈(2, 0, 5), (1, 0, 0), (2, 3, 0), (4, 6, 13)〉

4. 〈(0, 0, 1), (2, 0, 5), (4, 6, 13)〉

We build here by an inductive method a refinement which resolves the fan Σ0 =

Σ
(1)
0 ∩ Σ

(2)
0 . Notice that each maximal dimension cone spans Z3 (since the ma-

trix of the spanning skeleton is unimodular). For each cone, we have listed the
corresponding morphism π(σ) in terms of the resulting {ui}, the composition
fi ◦ π(σ)(y0, y1, y2) for i = 1, 2, and the exceptional divisor π(σ)−1(0). We show
that the two surfaces are transverse to each other and to the exceptional divisor.
We start from a refinement for the fan in two dimensions associated to the first
equation u2

1− u3
0 = 0. The weight vector is (2, 3) and from the geometric interpre-

tation of the continued fraction expansion we find that a regular fan subdividing
it is composed of the following four 2-dimensional cones and their faces:

1. σ
(2)
1 =〈(1, 0), (1, 1)〉

2. σ
(2)
2 =〈(1, 1), (2, 3)〉
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3. σ
(2)
3 =〈(2, 3), (1, 2)〉

4. σ
(2)
4 = 〈(1, 2), (0, 1)〉

Now we have to lift the vectors of the 1-skeleton to R3 in such a way that they
form the 1-skeleton of a regular fan subdividing Σ0. It suffices to show that in each
cone of this fan both functions m1 and m2 are linear, i.e., that all linear forms
take their minimum at a vertex of the sum N of the Newton polyhedra of f1 and
f2. This Newton polyhedron has four vertices: (3, 0, 2), (8, 1, 0), (0, 2, 2), (5, 3, 0), so
we are especially interested in finding four cones having the weight vector as one
of their faces.

Let us begin by lifting the weight vector (2, 3) :
We seek integral vectors of the form (2k, 3k, z) with k > 0, z > 0; we know that
they take their minimum value on the compact segment of the Newton polyhedron
of f1. On N+(f2) they take their minimum at ((5, 1, 0) if 13k ≤ 2z, at (0, 0, 2) if
13k ≥ 2z, at both if 13k = 2z. Remembering that we seek primitive vectors, we
find three natural possibilities: k = 1, z = 6, giving the vector a1 = (2, 3, 6), which
takes its minimum at (0, 0, 2), k = 1, z = 7 giving a2 = (2, 3, 7), which takes its
minimum at (5, 1, 0), and of course the weight vector a0 = (4, 6, 13) itself. We
remark that a0 = a1 + a2.
Let us now try to lift (1, 1); we seek vectors of the form (k, k, z); on N+(f1) they
take their minimum value at (0, 2, 0), and on N+(f2) at (5, 1, 0) if 3k ≤ z, at
(0, 0, 2) if 3k ≥ z. In this case we can take k = 1, z = 3, which gives the vector
a3 = (1, 1, 3) which takes its minimum on the compact segment of N+(f2).
Finally take (1, 2); we seek vectors (k, 2k, z) and there is one taking its minimum
on the compact face of N+(f2): it corresponds to k = 1, z = 3, giving the vector

a′
4

= (1, 2, 3). We remark that a0 = a2 + a3 + a′
4
, and it is therefore tempting to

take a′
4

as our fourth vector. However, it is not on the hyperplane 5x+ y = 2z so
that the support function m2 will not be linear on a cone spanned by {a0, a2, a′

4}.
A better choice is to take a4 = a0 − a3 = (3, 5, 10).

Now we check that the four cones (which we have decorated with the points
of the Newton polyhedra of f1 and f2 where the support functions m1(a), m2(a)
take their minimum for a ∈ σi):

1. σ
(3)
1 = 〈a0, a1, a3〉; p

(1)
0 = (0, 2, 0); p

(2)
0 = (0, 0, 2)

2. σ
(3)
2 =〈a0, a2, a3〉; p

(1)
0 = (0, 2, 0); p

(2)
0 = (5, 1, 0)

3. σ
(3)
3 =〈a0, a2, a4〉; p

(1)
0 = (3, 0, 0); p

(2)
0 = (5, 1, 0)

4. σ
(3)
4 =〈a0, a1, a4〉; p

(1)
0 = (3, 0, 0); p

(2)
0 = (0, 0, 2)

are unimodular and such that their union is a neighborhood of R+a
0 in R3; the

second fact is obvious since the weight vector is in the interior of the convex hull
of the σi , 1 ≤ i ≤ 4, and to check the first it suffices to check that one of them is
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unimodular. Now we can complete this subfan into a regular fan of R3
+, either by

the same method or by invoking a general theorem, but we do not much care about
it, since we have seen that the only charts where something interesting happens
are those which correspond to a cone containing the weight vector in its 1-skeleton,
and we have those above. Moreover, the projections in R2 of the σi form part of

a regular subfan of the σ
(2)
i .

Let us now study the behavior of f1, f2 under the monomial maps corre-

sponding to the σ
(3)
i , 1 ≤ i ≤ 4. For economy we write σi for σ

(3)
i .

1. The cone σ1 spanned by {(4, 6, 13), (2, 3, 6), (1, 1, 3)}

π(σ1) : u0 = y0
4y1

2y2

u1 = y0
6y1

3y2

u2 = y0
13y1

6y2
3

Then,

f1 ◦ π(σ1)(y0, y1, y2) = y0
12y1

6y2
2(1− y2)

f2 ◦ π(σ1)(y0, y1, y2) = y0
26y1

12y2
6(1− y1)

and

π(σ1)−1(0) = {y0 = 0} ∪ {y1 = 0} ∪ {y2 = 0}.

Here the strict transforms are

f̃1 = 1− y2

f̃2 = 1− y1.

It is clear that the equations f̃1 = f̃2 = 0 define a non-singular complete
intersection meeting the exceptional divisor transversally at the point y0 =
0, y1 = y2 = 1.

To make the same computation for the other charts π(σi) is in fact super-
fluous, since by construction of the toric modification, we will only observe
the same phenomenon in a different chart.

For verification’s sake let us compute for π(σ3):

2. The cone σ3 spanned by {(4, 6, 13), (2, 3, 7), (3, 5, 10)}

π(σ3) : u0 = y0
4y1

2y2
3

u1 = y0
6y1

3y2
5

u2 = y0
13y1

7y2
10

Then,

f1 ◦ π(σ3)(y0, y1, y2) = y0
12y1

6y2
9(y2 − 1)

f2 ◦ π(σ3)(y0, y1, y2) = y0
26y1

13y2
20(y1 − 1)
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And indeed it is the same situation viewed in another chart.

The miniversal deformation with constant semigroup of CΓ is computed in [T1]:
here τ− = 2 and −χu is defined in C3 ×C2 by the equations

F1 = u2
1 − u3

0 + v1u2 + v2u0u2 = 0
F2 = u2

2 − u5
0u1 = 0

If we compose F1 and F2 with Π(σ1) = π(σ1)×IdC2 : Cg+1(σ1)×C2 → Cg+1×C2

we get

F1 ◦Π(σ1)(y0, y1, y2) = y0
12y1

6y2
2(1− y2 + v1y0y2 + v2y

5
0y

2
1y

2
2)

F2 ◦Π(σ1)(y0, y1, y2) = y0
26y1

13y2
20(1− y1)

The strict transform of −χu is defined in this chart by

F̃1(y0, y1, y2) = 1− y2 + v1y0y2 + v2y
5
0y

2
1y

2
2 = 0

F̃2(y0, y1, y2) = 1− y1 = 0

It is indeed a simultaneous resolution for −χu. There remains to check that the
strict transform of −χu does not meet the charts corresponding to cones that are
not adjacent to the weight vector. This depends on our construction of a regular
fan and will not be done here.

Let us now consider the plane branch with equations in C3 (for v = v0 6= 0):

F1(v0;u0, u1, u2) = u2
1 − u3

0 − v0u2 = 0
F2(u0, u1, u2) = u2

2 − u5
0u1 = 0

It lies on the non-singular surface Sv0
with equation F1(v0;u0, u1, u2) = 0. Let S̃v0

be the strict transform of Sv0 by the toric map Z(Σ)→ Cg+1. As before we need
to examine the situation only in a chart Z(σ) where σ is adjacent to the weight
vector. We take a0 = (4, 6, 13), a1 = (2, 3, 7), a2 = (3, 5, 10). So π(σ) is described
as:

π(σ) : u0 = y0
4y1

2y2
3

u1 = y0
6y1

3y2
5

u2 = y0
13y1

7y2
10

and we have

(u2
1 − u3

0 + v0u2) ◦ π(σ) = y12
0 y6

1y
9
2(1− y2 + v0y0y1y2)

so that the equation of S̃v0
in this chart is

y2(1− v0y0y1) = 1,
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and the mapping S̃v0 → S is described by

u0 = y0
4y1

2( 1
1−v0y0y1

)3

u1 = y0
6y1

3( 1
1−v0y0y1

)5

All computations are made in a neighborhood of the exceptional divisor, i.e., for
|y0| small.

Now the toric map S1
v0
→ Sv0

which resolves the plane branch with one
characteristic pair u2

1 − u3
0 = 0 has a chart:

u0 = x0x
2
1

u1 = x0x
3
1

and we can check that there is a factorization S̃v0 → S1
v0

given as follows in the

coordinates y0, y1 on S̃v0
:

x0 = 1− v0y0y1

x1 = y2
0y1( 1

1−v0y0y1
)2

and we can view this factorization itself as composed of the maps

x0 = w0

x1 = w2
0w1

and
w0 = 1− v0y0y1

w1 = y2
0y1

Now this last map is monomial after a change of the coordinates w0, w1 and more-
over the substitution of the w’s in the x’s gives a monomial map S2

v0
→ Sv0

described as follows
u0 = w5

0w
2
1

u1 = w7
0w

3
1

which is again a monomial map, so that we have factorized our map S̃v0 → Sv0

as a composition of two monomial maps, up to a change of variables (essentially a
translation w0 7→ w0−1). Note the fact that it was convenient to refine part of the
fan of the plane branch u2

1−u3
0 = 0 from (1, 1), (2, 3) to (5, 7), (2, 3) before writing

the translation, but that we could also have made a change in the variables y0, y1

(for |y0| small) to bring directly the map S̃v0 → S1
v0

into monomial form.

Finally, note that the strict transform on S̃v of our plane curve Cv0
⊂ Sv0

has
equation y1 − 1 = 0 In the general case, since we do not deform the last equation
fg of the monomial curve, the last equation of the strict transform of Cv0

, in the
proper chart will still be of the form yk − 1 = 0.
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