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INTRODUCTION TO EQUISINGULARITY PROBLEMSB
B. TEISSIER

"Better a house without roof thon a house without view”

Hunaa saying

ABSTRACT

A short journey info the range of equisingularity. In § 1 classical
material is presented, in § 2 equisingularity is studied from a numerical
view point, by associating to a hypersurface with iselated singularity a
generalized multiplicity which has an algebraic definition, but can alseo
be defined topologically with the Milnor numbers of the generic plane
sections of X in all dimensioss, The results lead to a general conjecture
concerning the behaviour of equigingularity with respect to projections
and plane sections. In § 3, the general problem of reiating the topolopgy
of a hypersurface to that of a generic plaone section is studied, and new
invariants are introdunced, which sgem to link together many numericai
invariants of sgingularities : ¢.g. for hypersurfaces with isclated singu-
larities, the Milnor number of the hypersurface and of its generic hyper-
plane section, the smallest possible exponent & in the Fojasiewicx in-
equality |grad f{z)|;gcif(z)|9, and the vanishing rates of certain gra-~
dient cel}ls in the nearby non gingular fibher.

e

1.1. In these notes T shall present some features of the theory of equi?
singularity in characterisiic zerc which is gradually emerging after the
fundamental work of Zariski (cee [Zi}, i=1,2,...). The basic guestion is
to find algebraic criteria toc decide when a space X, algebraic aver £,
or complex analytic, can be said to be equisingular along a non siagular
subspace Y X at a point O¢g ¥, the idea being that the singularities of X
at all points of Y near O are alilke in some sense, Roughly speaking, we
would like ecguisingularity to be a condition as strong as pomsibie,

subject to the reguirement of openness
#
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5%4 B. TEISSIER

{0.E.) The set of points y€ Y such that X is equisingular along Y at y

is the comntement of a nowhere dense closed subspace of Y.

Pais sort of question arises immediately when one tries to give a precise
feomulation to the intuitive idea that if you take a germ of reduced com-'

n+l ,0), or a germ of curve

flex analytic hypersurface (X Yo (T
n+l
(T,0) (@ ,0),
i imost all" sections of (X ,0) by hyperplanes through the or1g1n in m
+1
- (€? ,0) are

aralyticelly iscmerphic, still, almest all these sections or 1mageslmust

then although it wiil not be true in general that
+1

10 Yalmost all" images of E by linear projections (E

fitaey plike! in some way, near 0.

i3 -a examvle, take the coene x44‘y4q-zx2y:=0 in Ea, cut it by hyperplanes -

s oo by, and see how the craoss-ratio of the four lines you gét

Lay ¢ & 3.r =perial values of a and b) varies with a and H; Now the )
sross.retic im an inveriant of the analytic type, ‘ 7 L ';.  }_,
‘p Dotk fosecs, ase can reduce +o the basic question : for’hyperplaﬁe'ééCQ'
Lions, v chopse ar open vea® in which an equation f(z ,..;,z } =0

defining ?{ is convergent, homogeneous coordinates (a :"..an)‘on the .
- ¥

af hynerplanes, and consider the subspace X of Ux P" defined by the

I R
faeal (f{® ,...,7 Y, X a, 2.). The fiber of the 1nduced proJectIQn 1—3.
D n? g i :

c
T3 Xé__qaﬂﬁa abeve a hypersurface (a Y- | ) is precisely K r]H and n_

has a section o "X picking the origin in each fiber, So 1f we set
¥ o(®) _ox P X we see that what we really want te do is to study '
equisingularity of X along ¥, i.e. we would like to Bay that {here is a
Zariski open dense v = ®P" such that X is equisingular along 0X_Pn ﬂét
every point of 0%V, and understand what this means for the fibérs Qf'n.
There is a similar construction for projections, R i
Now suppose that we are given in general a situation n: X 2 el such that
the fibers of =, (Xy ,6{y)} are reduced hypersurfaces {and n is flat).

There is a simple way of saying that two fibers of n "look alike™ :

Definition : Two germs of reduced complex analytic hypersu?faces
(x 1%y ) and (& ,%.,) of the same dimension n are said to be oT-the“sgme i
topologlca] tvgn ;f there exist representatives (X Xy )<:(U X LY where
U, is open in EzAj, i=1,2, and a homecmorphism of pairs (Ul,x Y (U %, )
mapping E1 to Xgﬂ
%) -

In facl, given = : X 73Y such that Y is reduced and the fibers of =

are reduced hypersurfaces one can show with thq.stratifiéétion arguments

0f Thom-Whitney and Mather, to which I will come back below (fee [Ma 1),
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that there exists a nowhere dense closed Analytic subset FcY such that
for all ye Y-F the fibers (Xy,c(y)) have the same topological type, so
that the condition "topological type of the fibers locally constant"”
almost satisfies (0.E.). It is however a priori rather far from being

algebraic !

Now it seems that Zariski's algebraic approach to equisingularity
did not quite arise from such problems, but rather from his work on reso-
lution of singularities.
The inductive procedure proposed by Zariski to resolve singularities of
a {pure-dimensional} variety X (séy, a hypersurface in some non-singular
projective variety) was to lock at a generic map from X to a non-sinéular
projective variety of the same dimension say m: X8, n a finite map,
then look atlihe branch Jocus Dc 8 of n, and by the inductive assumption,
{embedded resolutions ; see Lipman's lectures), obtain a map h: 8" .5
with §' non-singular and h"1(D) a divisor with normal crossihgs in 81,
(See Lipman's lectures in this volume). By pull-back we get a finite map
";t: X'L58', the branch locus of which has only normal crossings, and
therefore one can hope that the singularities of X' are casier to resolve.
(On the other hand the map X' X is not toc hard to analyze). Therefore,
the first thing to look at is a finite map such as »' : X', 8", the hranch
locus of which is non singular (I shall say smooth). Here several Beauti¥
ful‘things happen simultaﬁgously, which I shall try to condensate, at

least in the special case of hypersurfaces.

- In fact, from now‘on, I shall examine the basic problem only‘in the
case where X is a complex analytic hypersufface’(andiof course in a
. neighborhood of a given peoint O¢ X) ; hypersurface because in the general
case.i know too little, and complex anaiytic because there will be trans-

eendental avatars of the algebraic problems occasionnally.

Warning <+ -While not writing the gtructure sheaves,the inverse images
will always be méant ideal-theoretically, and Zred will mean the space 2
with reduced structure ; furthermore, everything being local, (Z,z) will
usually stand for a small enough representative of a germ. I think

'small enough” will have a clear meaning in each situation.
1.2 Now for the properties of hypersurfaces with smooth branch locus.

Theorem 1 {Zariski [Z; 57) : Let (x,O)c:(EN+1,0) be a reduced hypersurfa-
lheorem 1 o - ‘
ce, and 7 : (EN*1,O)_4(CN,0) a holomorphic projection such that = 1(0)QEX.
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By the Weierstrass preparation theorem we can describe this situation by

choosing as equation for X '

WY } v+1 _ :
F o= AN+14-Al(zl,...,aN)zN+14-...4—Av(zl,...,zN) = 0. A€ EEZl’""zN}'
Let RegE{zl,...,zH} be the zN;l—discriminant of F, The following condi-

tions are eguivalent _
i} The branch locus Y of ;IX is smooth at 0 (i.e., by an analytiec

change of the coordinates 249 we can write in_m{zl;n.,zﬁ}:

.,ZN,

H(zl,...,zN) = zﬁ.s(zi,...?zN) ; {0,...,0) A0 ; A€eN).

is smooth at 0, n induces an isomorphism
@0 L (x,00 -
there exists a neighborhood U of O in Y such that

‘s -1 . )
i) Y= TN A0
(Y,O)SQ(YK,O), and for any retraction r:

for all y e U, the germs

(r—l(y)rlx,y)c:(r (y),y) are germs of reduced (plane} curves,
and have the same topalogical type (In particular, if X is sin-
gular at 0, Y is the entire singuiar locus of X.)

jii) For every projection n': (EN+1 0)-a(E ,0) which is transversal
to X,(i.e. not enly ﬂ'-l(O)ﬂfX, but the tangent space

Kerdm = T & C , the tangent cone of X at 0) the
,—1 X,0
(0,0
branch locus of x'ix is smooth at 0.

(Note that transversality implies Kerdx n Ty . = (0) since
¥
Yo X.)
iv) The normalization n: X.X of X is such that

@) ¥ is smooth at every point of nnl(O).

N+1 ;
$) The Ideal ¢ ggl. Oi is invertible in a neighborhood of
1 :

1(0)'iﬂ . (n_l(O) is a finite get of poihts, one fuh
each irreductible component of X at 0.)
v} n is the composition of a finite number of permisgible

blowing ups [in the sense of Hironaka, i.e.

. { i
PR B S S oy (1 1) bt 1) X(1) is the

blowing up of a non singular subspace Y(1) of X(l)
(i)

such that X , which is actually a thersurface 1n a non

singular space, is locally equimultiple along Y ], (0)
(i+1) (1)

is the singular locus of X, the klowing ups X

(i+ 1) (1), (i.e. (1+1) . (1)-

induce local 1som0rph1rmq Y =Y

and (b(i) { LL))) (1+1)

is etale) O (If X is reduc-
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(i)

tible, the ¥ are not necessarily connected.)

Comments : (T shall give some hints for a proof later.)

1) " The first part of condition ii) is the very important nonsplitt-
ing phenomenon which waé emphasized by Abhyankar in his talk at the
Woods Hole conference (see [Abg]) (but in characteristic p>0, where it
is extremely delicate). It says in view of iv), v) that if the bfanch lo~ .
cus is_smooth, the singular locus Y of K”itself is smooth and the multi- -
plicity of X is locally constant an Y, whick is the same as &aying that

(1).¢X of ¥ is a finite map, and iv) tells us that X(l)

the blowing up X
has along the reduced inverse image of Y the same properties as X along Y,
and we can go on until we reach X which is smooth.

T will show below a generalization of the nonsplitting phenomenon.

2) If we view X as a family of plane curves parametrized by ¥, with
the help of a retraction as in ii), what iv) tells us is that the process
of resolution of singularities for all the curves (rdl(y)[]x,y) is thre
same feor y¢ V,a nheighborhood of ¢ in Y (see [ZI])'

3) The equivalence of i) and iii) is very important for the follow-
ing reason ': in the inductive approach to resolution mentionned above,
even if we start with a transversal projection = : X—+S: after simplifica-
tion of the branch locus, the map =': X' .. S' obtained will in general no
ionger be transversal. But often the assumption of transversality makes
proofs easier. i) o iii) shows that in fact we lose nothing,

1.3 Zariski proposed a general algebraic definition of eguisingularity

for hypersurfaces, by induction on the codimension, as follows

T Definition (Zariski [Z,])

{Z) Let (X,O)CZ(EN+1,O) be a reduced hypersurface and (Y,0) = (X,0)
a non singular susbspace of X. X is equisingular along ¥ at ¢ if there
N1 oy . (8Y,0) suen that

1) Kerdn p TY,O = (0), i.e. n maps isomorphically (Y,0) to a non

exists a projection n: (C

singular subspace (YK,O)c:(EN,O), and n"1(0}¢EX.
2} The bhranch locus (BR,O)C:(EN,O) of z]X (vhich is a reduced hyper-
surface) is equisingular along Yﬂ at 0 (in particular .
LAY 0y (B_,00).
ks by

When ¥ is of codimension O in ¥, equisingularity is just ¥ =X, and the
Theorem 1 above is a list of characteristic properties of equisingularity
in cedimension 1, some of them independent of the mention of any projec-—
tion. 7

Remark also that it follows inductively from this definition that the
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condition (0.E.) is satisfied.

Now we have of course

Problem : Compare (Z} with the other (pessibly non-algebraic) defini-

tions of equisingularity, for example

1) Topological equisingularity {see KD

(T.E.) : In the same situation as in (Z), X is topologically equisingu-
jar along ¥ at 0 if for any reiraction r: (EN+1,0)_,(Y,0)

there exists a neighborhood U of O in ¥

such that for all yg U, the germs (rﬂl(y)(}X,y)c:(r—l(y);y) are germs of
reduced hypersurfaces with the same topological type. In other words, the
topological type of a section of X by the non sinmgular subspaces in gh+1
(r'l(y),y) transversal to ¥ is constant along Y.

2

We can add the extra condition that the topelogical type thus obtained is

ro.

algo independent of the choice of the retraction r.

{T.E.,) + extra conditiocn will be noted (8.T.E.).

(T.T.) X is topologically trivial along Y at 0 if there exlst a re-
traction r: (EN+1,O)_.(Y,0) and a germ at O of homeomorphism of pairs

N+1

(@ 7,%) = "toxy, ="ty nx) x ¥

compatible with r i.e. such that

commutes.

3) Whitney conditions
Whitney's stratification theorem (see [ Ma ], [W 1 1mp11es the exis-
tence of a (locally) finite partition ef X into non-singular locally
closed subspaces Ya with the properties that :
i) Ta and ? - Y, are closed subspaces of X, dim(fa-Ya)< dim ¥,
Y [']Y ;éﬂ:aYBc_Y
ii) If ¥ C:Ya’ the following cond1t10ns of 1n01dence (Whitney condi-
tions) hold

a) TFor any seguence of points yiE Ya-converging to a point
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ye Yﬁ and such that the directions of the tangent spaces

T, g, converge {(in the grassmannian of dimY -planes in
a’'i

N+1) to a plane T, we have : T cT.

Yp:y
b) Given a sequence of points ¥ EYQ converging to y and a
sequence of points uie YB, also converging?to ¥, and such

that again TY y converges to a plane T, and also the direc-
a’’i
. PR | .
tion of the secant u,y, in € +t converges (in P") to £, we

have : £T.

(If v is fixed we will speak of "Whitney conditions at yU.)
iii) The set X° of smooth points of X is a stratum (we do not ask
strata to be connected) and so of course all other strata are in
its closure. 7

Define Whitney equisingularity of X along Y at 0 to he :

(W) Y is a stratum of some Whitney stratification of X (in a neigh-

borhood of 0O}.

Now the situation in gemeral is this : Varchenko ([V]) gave a topologi-
cal proof of (Z) » (T.T.). Thom and Mather ({Mé ], [Thy]) gave differen-
tial-geometric proofs of (W) = (T.1.), and of course (T.T.) = (T.E.).
Speder [5p] modified. Zariski's definition by reguiring that the progect1on'J
n appearing in (Z) should satisfy in.addition a certain condition, which ' .
is satisfied by "almost all" projections, and implies transversality. .
With this different definition {8p), he proved inductively that if X sa-
tisfies (Sp) along Y at O, then the pair x°,Y) satisfies Whitney condi-
tions, at every, point of a neighborhood of 0 in Y.

{(Sp) is unfortunately lost when we apply imbedded resolution to the dis-
criminant. '

This brings us to a question which is anyway cruciai when one tries to
compare (Z) with other definitions.

Here, in first analysis, I shall assume for the sake of simplicity that

the coordinates are so chosen that Y is a linear subspace in EN+1 and
. . N

consider only linear projections n: @ +1_+EN.

Question A : (This is essentially Zariski's question I in [ZS]).

Assuming that X is equisingular along ¥ at O (in some sense, and in par-
ticular of course (Z)), is the set of those linear projections
¥ gV satisfying

1) Kernn ¥ = (0
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2) The branch lecus B of =n|X is equisingular along erzn(Y) at 0,

a dense @ariski}constructible subset of the space of linear projections ’
Here I will venture the following :

Conjecture 1 : 1In the situationuof question A, for a linear projection
T EN+1—aEN such that KernNY = {0)  the following conditions are equi-
valent
a) BJr is equisingular along Y at o
B} For all i,dim Y<i <N, there exists a (Zariski) open dense sub-
set U(i) of the Grassmannian of i-planes of EN confaining Y .,
such that for all Hg;U(i), the hypersurface’ ' i

(nﬁi(H)nx)red c ﬂ_l(H) is equisingular along Y at 0 %
Notice that for i=dim Y, B) is just the nonsplitting of n (Y )nx.
This conjecture is proved in the codimension 1 case, where we have :

Theorem 2 {Zariski [2,]) : Assume xcgh+! (Z)-equisingul ar along'Y at
Oc¢Y. If dim ¥ =N-1, ther for a linear projection x: mN“l.amN with

Kerdm 0 T = {(0) the following are equivalent

a) Tzéobranch locus B_ is equisingular along Y at 0 (i.e.
(B ,0)=(Y_ 0))

B Settlng ﬁy = (n(y)) for yc Y, the intersection number
(Ey.X)y of the line Ey with X at y, is independent of yf;: {lo-
cally around @), ‘ '
Now it is clearly equlleent to say that & X) is 1ndependent
of yec ¥, and to say that (m (Y ynx) red = Y and if dimY =N-1
the only dimension we have to look at to check p) is

i= dimY:N‘-‘ll

)

Even if one can prove conjecture 1, it does not help much to answer
question A unless cne car also answer
Question B : Assume (X, 0)(:(EN+1 0) is equisingular at 0 along
{Y,0) c (X,0) (here agaln for simplicity we assume Y linear in EN+I) "Is
it true that for each i, dim Y <i <N+1, there exists a dense Zarlskl -open
subset U(i) of the grassmannian of i-planes of EN+1 containing Y, such
that He}U(i) = XN H is equisingular along Y at 0 {or, better, a construc-

tible C(l) such that He C(l) e XN H equisingular along ¥y ?

4 priori, question B looks much simpler that question A, and even

rather simple-minded. However, except of course when Y is of codimension
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1 in X, there is no answer, for any notion of equisingularity. Zariski
proved, however, that (Z) implies equimultiplicity, and Hironaka [HG}
proved that in the most general case, Whitney conditions implie equimulti-
plicity. Therefore there are affirmative answers to question B fer
i=dimYsi. But the point in guestion B is of course the case i =N, the

opposite extreme.

Anyway, I think an affirmative answer to question B and conjecture 1

would settle question A.

Now if &e want to study cquisingularity in codimension > 1, the
first thing to look at is the case where Y is the singular locus of‘X,
but not necessarily of cedimension 1. Then we can view X as a family of
hypersurfaces with isolated singunlarities, parameirized by Y. 80 we turn
to

§ 2. ISOLATED SINGULARITIES OF HYPERSURFACES AND THE NUMERICAL APPROACH

2.1 Let me first recall some facts from asymptotic algebra in the sense
of Samiel [Sa]. For details I refer to [L.T.], [Se], [P.T.], [T2].
Let (3 be the local analytic algebra of a reduced complex analytic space 4
at a point z. Given an ideal I in @ an element h¢ O is said to be inte-
gral over I if it satisfies an integral dependence relation

hk4—alﬁk_1+ ceo+a = 0 wilthoa, € Tt
The gpt of such elements is an ideal I in @, the integral closure of I
in @; '
This purely algebraic notion due to Priifer [P] has the following trans-
cendental interprectation, the idea of which is due to Hironaka : If we
choose generators gl,...,g‘2 for I, then heg i if and only if there exists
a neighborhood U of z in Z and a constant C¢ m+ such that for all =7 £ U
]h(z'}|5;C.Sup’gi(z')|.
In the same vein, let me define the Fojasiewicz exponent SI(h) of h with
respect to I as the greatest lower bound of those 95,m+ such that there

exists a neighborhood U of 2z in 4 and a C¢ Iﬂr (depending on U) such that
|h(z.')‘e < C.Suplgi(z')! for all =z' £ U.

Then (see [L.T.]) we have the following
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Proposition : BI(h) =2 1h) where ;I(h) = Lim ————
I Kom
with v (g) =max{v € N/ge1”}, (ana 9, {h) is attained for some U and C¢ R)
If hx I, we set @, €h) = 4. (3 was 1ntroducod in [Sa”, and Nagata [N]
proved ;I(h) €f), so that Mojasiewicz exponents are always rational num-
bers.) We see that integral dependence will be very useful to study alge-
braically geometrical incidence (or limit) relations, such as the Whitney
conditions, a viewpoint in fact pioneered by Hironaka in [Hq]. Another
aspect of integral dependence will be useful for our numerical viewpoint :
suppose now that I is primary for the maximal ideal W of ¢. Then the
application HI: N _IN defined by HI(v) = dimE (_‘}/Iv+1 coiqcides when v is
large enough with a pelynomial in vy of degree d= dim @ and the highest

degree term of this polynomial can be written e(I) X , where e(I)él\]’

ar
is by definition the multiplicity of the primary ideal I in (3.- '.I‘he result

T will use is : e(1) = e(1).

2.2 For example, let fcO ey = ﬂi{? TR N 1 be such that f 0. def1nes.a
germ of hypersurface with isolated suxgularlty (X,0) (n: 0). By the

nullqtcllensatz, this means that the ideal in 0 ‘1 generated: by

il .
(f, ———52 yaans 5—7——) is primary for the maximal ideal. Define p(X,0) to bhe
o “n :

the multiplicity of this primary ideal, and remember the very useful
Fact (sce [Ta}) : For any choice of the coordinates (z: ,...,zn), f is in-

of z .--—-—) {which

tegral in & T ey
o azo n gz

he1 OVer the ideal generated by (=

depends on the choice of coordinates). In particular, f is 1ntegra1‘ over
the product ideal M. j(f) where T is the maximal ideal of On+1 and i(f) .
the ideal generated by (-aa-gf— s -y sa-zi-). (. j(f} does not depend upon the H
cheoice of coordinates).AndOa fortiorril, f isintegral over j{f.) (All this
is true in general, i.e. for any fcTl.)

8o the multiplicity ‘of a(ff,;j(f)) i; equal to that of j(f), which must bé

also primary, whence (S'E— yeres 3a ) is a regular sequence in Cy
. 4

b1’ and
tacn by a theoren oﬁ'{Samuel, p(X,O) = dimg Gml/j(f) , the Milnor number
of the singularity,. ’

Note that the ideal ( , aazf yeees -éa?f—) depends only on the qd'otient
) n

On+1/(f) , so p(X,0) is an analyticinvariant, but better still, an attent-

ive reader of Milanor's book fMi] will remark that

Ir (X ,0) and (X ,0) are two germs of hypersurfaces with isolated singu-

larltv of the same topologlcal type we have p(X ()) _p,(x

This follows from the 1nterpretat10n of p(X,O) as "number “of vanishihg
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cycles" of the singularity (X,0)}. See [Mi] and Brieskorn's lectures in
this volume. (For a 'proof of the remark", see {sz, and {Ls] for genera-

lization to non-isolated singularities.}

2.3 Now we have a topological invariant defined algebraically, so we _
should be in good position to study some of the questioné of § 1 in the
special case considered here. First, a few remarks on the semi-continuity .
properties of the Milnor number. Given a family of complex hypersurfaces,

i,e. a commutative diagram

(x,0) ('—>-((l‘. x "

\/

(m ,0)

where (x,o)c-»(mk-x m“*l,O) is defined by F=0, FET{y ,..-5¥ s 2 5052}
Assume F(0,...,0, Zrnee ,zn) =0 is a hypersurface with isolated singulari-
ty. Then the subspace P of (@N*1o). (m“*k”l 0) defined by the ideal J gene-

rated by (-aa—zF—,..., ¥ ) is finite over ((E ,0) {by the Weierstrass prepara-
4]

tion theorem) and (—-~—-, caes aazr) is a regular sequence, so that in fact
0

n
ﬂ:{yl, R P T ,z }/;J{ is a free ﬂl{yl,“. ,yk}-module This means also
that if we take any yc €, p:l (y)ﬂP is a finite set of points LT

the local rings GP,x

; - i
and :: dim_ (3 ) is independent of yé& (Ek,O), and is there-
-1 o "P,x. :
x;€p, (FINP i

are artinian, i.e. finite dimensional vectorspaces

fore equal to the Milinor number of the hypersurface

(x_,0) = - (x710),0) < (€1,0) defined by F(0,...,0, z_,...,2 ) =0. The
smgular points of X, € =" Hy) are the points of nhl(y)ﬂP, which are
some of the X, € p'il(y) NP, and if x € n_l(y) ne, dimmc‘}P,Xi is just the
Milnor number of the iscolated singularity of hypersurface

(rt_l(y),xi)c (pzl(y),xi). So we have

2.3.1 For any y & (ﬂlk,O) if the x, are the singular peints of the fiber

X of n
¥
L0 = O B(X X))
x.6X ¥
1y
and equality holds for all y, if and only if Predcx’ i.e. +: there

existe an integer r such that Fre J.



604 B. TEISSIER

A . k !
Assume now that we are given a section ¢ : (€ ,0) - (X,0) of n. By a change
of the coordinates (.e. - ..,in), we may assume that the image of ¢ is
(€% x {03},0) i.e. is deflned by the ideal S= (zo,...,zn). Then, hy the

semi-continuity preperty of the fibers of coherent sheaves, we have

2.3.2 1) For all ye (€%,0), B0 2 X LY .
2) In view of the preceding remark, equality holds for all
Y& (mk,o) if and only if (Pred’o) = o(ﬂik,O) = (Ekx‘-{O}') i.e,
iff there exists an integer 1 such that S <J. '
3) Given (V,00cC (X,0)c (&"*",0) with (Y,0) smooth, and a retrac-

tion r: (z¥*! ,0) = {Y,0) Such that

(XO,O) = (r~ (O) nNx,0)c(r (0),0) is a hypersurface with iso-

lated singularity, the condition ~
£E,EEE§§§'}El : the Milnor number of (r-i(y)nx,y) = '(Xy,y)

is -locally constant on Y,

satisfies the condition (0.E.) of § 1.

2.4 Applying this iast result to the family of sections of a glven hyper—

surface ("\ ,0) = (En+1 ,0)}, with isolated singularity, we obtain, for each

(1) (i)

i (0(15n+1) an integer p( )(X ,0) and a Zariski- open dense U
(= the grassmanaian of 1-p1anes) such that H¢ U{ i)
].t(n+1)(}(0,0) is p(X%,0), p 0 (X ,0) = m(X ,0) = 1 where m(X ,0) is the mul-

tiplicity of X at 0, and }1( (X »0) =1, Set

%
I (XO,O) = (p(n+1)(xo,0),.,.,p{l)(XO,O),p(O)(XO,O)). Again, for a situa-
tion as in 2.3.2, the condition

o

‘-
(p* constant) L/’p*(xy,y) is locally constant,

satisfies (0.E.). !

2.5 In order to state the results which motivate the next questions, I
need to introduce still another not_joil of eqguisingularity, to add to our!
collection of § 1. This section owesimuch to reminiscences of (unpublish-
ed) lectures of Hivronaka,

Let (¥,0) c (X,0) ¢ (8"*"1,
usual. Choose coordinates (yl,...,yk N ..,zn) (N = n+k) so that Y is

d¢cfined by the ideal S-= (zo,.. P )o (§1+1:E[y1,...,yk, zo,...,zn}).

¢) be a smooth space in a hypersurface in {I:N+1 as

N+i N
let F(yl,...,yk , B ""’Zn) =0 he an eguation for X, and J be the ideal
—ai,..., )C} . The new condition of equisingularity is
azo a? +1

' aF | = . .
(c) --ayi € 8.J (in @N+1) tejsk .

2 (X NH,0)=p (1)(x ,0).

a
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To throw some light on it, let us see that it implies thaﬁ the smooth
part x° of X satisfies Whitney's conditions a) and b) along Y, near O.

In fact, condition {¢) implies that if we take any sequence of points
p__,ye Y in EN+1, not necessarily in X, such that the level hypersurface
F(yl""’yk’ RETE N ) = F(p ) is non singular at 1 the limit position
of the tangent hyperplanes, of homogeneous coord;nates'

(ayl (p. ). ..... (p ) e aazFo (pg) ievvig— azn {p, )} is of the form

{0:.:0: a e an), i.e. contains Y (or T

), because cundition c)
Y.y

implies : filE-(p.)’s;C. dist{(p,,Y} . Sup 1312-{p.)| , in view of 2.2,
oy. i i k azk i

The proof for condition'b) ig similar, if more delicate. One has to use
the important fact, due to Whitney,[w, ] that the pair of strata (X° (0
satisfies condition b), Remark finally that in choosing coordinates as we

N+1

have done, we have in fact chosen a retraction r: (T ,0) 5 (¥,0),s0 the

following makes sense

2.6 Theorem 3 : Given (v,0) C(X,O)(:(EN+1,0) as above, and a retrac-
tion r: (EN+1,0)-e(Y,0) such that
1} (X0,0)= (rnl(ﬂ)(]X,O) is a hypersurface with isolated singulari-
ty ( and Y is the entire singular Locus of X)
2) dimY = 1.
Then : jp* c¢onstant) & condition {(c).
(and the p* is actually independent of the choice of the retraction.)
~ The proof of (=) goes as follows : first, condition (c) satisfies
{(0.E.) of § 1. (The proof of the lemma in 2.7 of [T,] extends easily.)
Second, (p* constant) is actually a condition qf eguimultipiicity for the
family of ideals induced by 8.J in the fibers of r : with the notations
of 2.2, given an isclated singularity of hyperqurface, we consider the
) = dimg @mi/‘mvz'a(f) !
and v, are bhoth sufficiently large, K takes the same values as a

application K: Nx N~ N defined by K(vl,v
When vy

polynomial in Vs v of degree n+1, the highest degree part of which is:

2!
— 1 {(n+1) n+l nely {n+1-1) pei-i i (0) n+k
K(vl,vz) = TE:ITT (p Vo Teeet ( i )H vy Vg et u Vo Y,

n 1

and in particular, e(k. j{f)) = %
(¢}

family of ideals indaced by S.J on the fibers of r is equimnitiple if

(.n+1) }«i-(i)- (}l(i)

i 00y, S0 the
(1* constant)is realized.
In that case, provided dimY =1 {this is the eonly place where this unna-

tural assumption is needed) one can prove ([Tq], prop. 3.1) that S can
&
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be computed at the genéric point of Y". But condition ¢) is :

;SJ(gip) =1 (1<i<k) and as mentionned in the beginning, it is realized
i

at the generic point of Y. Equimultiplicity implies that it is also reali-

zed at 0. The proof of (¢) does not use dimY¥ =1, One shows that
(c):;p(n+1)(Xy,0) constant (n=N-aimY) : since Y is the singular locus

of X, there exists an integer r such that
aF ay v
r F oF oF BF)GN

5 c (&=— But {c) implies that a power of

R Y - T AN B
Byl ayk azc EEN

this last ideal is contained in J. So a power of 5 in contained in J,

+1 "

which means p(n+i) constant (2,3.2). One concludes by proving
Prapositinn : For (c)~equisingularity, the answer to question B of § 1

is yes. w
I will not give the proof here, but only remark that (c)»equiéingu—

larity is in fact an ad-hoc definition for this proposition to hold.

2.7 8o if we could prove that p*(XO,O) is in fact also an invariant of
the topological type as p(XO,O) is, we would have, at least in the special
case where Y is the singular locus of X, {(and dimY=1) a completely alge-
braic interpretation of topological equisingularity (and in fact (5.T.E.D
thus extending Theorem 1. Of course, from the algebraic viewpoint, it is.

P-(ﬂ+ 1) (x

enough to prove y,y) constant = p(n)(xy,y} constant. Then,

we can take a hyperplane H in EN+1 containing Y and suech that

p(n)(xo{1ﬂ,0) = p(")(xo,o) and by the semi-continuity properties :

{

p(n){xoﬂH,O) =R n)(Xé,O) by our choice of H

Vl “ by assumption
{n) (n)
H ’
B (Xyﬂ 3¥Y = B (}(y y)

So that XNH again satisfies (| constant) along Y, and we can go down the
staircase of dimensions to prove () constant) = (p* constant) which is
enough to prove the equivalence of all definitions of equisingularity
given in § 1 (except Zariski's) with condition (c), in the special case
we are considering here., So let me state the :

p(ﬂ+1)

Conjecture B‘}I constant = p(n) constant,

which, as we have just seen, is only question B:for {(p-constant)-eguisin-
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gularity.

2.8 1t might scem that we have moved very far away from Zariski's discri-
minant (branch locus)} condition.
Let me show that this is not the case : suppose we want to compare theo-

rem 3 with

Theorem 4 (L& Dﬁhg Tréng and C.P. Ramanujam [L.R ]) : In the situation
N+1 N
(¥,0)c (X,0) @ 1

1) (XO,O) is a hypersurface with isolated singularity.

,0), with a retraction r: (@ ,0) 5 (Y,0) assume

2) The codimension of Y in X is £ 2,

3) X satisfies the condition (U constant) along Y at O,'with res—
pect to r.
Then,X is topologically equisingular along Y at 0, with respect

to r.
Using this result, and a deep theorem of topelogy, Timourian [Ti] proved :

Theorem 4' (Timourian) : Under the same assumptions, topological trivia-
lity holds.

2.8.1 Afﬁer theorems 3 and 4, we find ourselves in an embarrassing si-
tuation. Since we know that the Milnor number is an invariant of the topo-
logical type ; theorems 4 and 4' do provide us with an algebraic interpre-
tation of topological equisingularity and topological triviality when Y
is~ smooth and is the entire singular locus of X

(i constant) « (topological equisingularity) & (topelogical triviality),

: excepf when Y ?s of codimensipn 2 in X. ,
On the other hand, if we could prove conjecture B  and remove the dimY =1
assumption, werwould have a complete equivalence .

(p* constant) & (cendition c¢) « (Whitney conditions} = {topological *tri-

viality) = (topological equisingularity) < () constant}.

The moment is well chosen to analyze the difference between Whitney condi-
tions and topoleogical equisingularity.

Let us, by a choice of retraction, view (X,0) as a hypersurface in
(Y)(En+i,0). As usual, (X ,y) will be the intersection of X with
(yxmm'l,yxo). ¥

One of the main points of Whitney conditicns (see [H{},and Lemma 5.1 of
[Ma ]) is that if they are satisfied by {x°,Y), then we can find a real

number (permissible radius) such that for any yc {¥,0) {i.e. y is
Po
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sufficiently close to 0) the spheres Spc;{y}x e or radins p {real-
analytic manifolds of dimension 2n+1) are all transversal to the smooth
part of X v’ for 0« px p Roughly speaking, this means that if we congi-
der the cvllnder Cp: pr Y, and the tube T =B xY in the ambiant space,
Xf}Tp is "cone like over its bgundary Xf?Cp" (a cone with vertex Y).

So theorem 3 implies that if §” is constant, we cannot have the situation

described by the following picture

(&)

&

4And the gist of theorem 4 is that even if we did have such a situation,
if (p constant) holds, we can, by using the h-cobordism’ theorem, (thlS is
the reason of the restriction on codimension) and the properties of
Milnor fibrations ({Mi ] and Brleskorn 8 lectures), build a homeomorphlsm
(B WX )ﬁ.(Bp' ,X ) where p' is a radius permissible foar the fiber Xy’
and p is permlsclble for XO

2.8.2 A few words on discriminants. In what follows we will often consi-
der the following situation

N
(x,0) < (41:‘1+1 o)

N/

(e* 0
. . . N+l .
where (X,0) is s hypersurface in (@ ,0), and n is flat. If we choose
coordinates (yl,...,yk, ZO,...,zn) on EN+1 {N=n+k) such that p is des-

eribed by (yl""’yk’ zo,...,zn)»a(yi,...,yk) and an equation
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F(yl,...,yk, z ,...,Zn): 0 for X, the critical subspacc C of 7 is defined
oF . k S . .

by {az gy az )@ . If G, is proper over L, which in our local situation

means it is ilnlte, i.e. —1(0) 0) = (X_,0) has an isolated singularity,

we can define the dlscrlmlnant (D 0)c:(E ,3) of = as the analytlc direct
lmdge of C_, the underlying set nf which shall be the set of points of
(E ,0) such that the fiber has singularities. To be brief, I will

just recall the following : ({(see [T ] or Brleskorn's lectures), Since

(X,,0) has an isolated singularity, = : (X,0) - (€& 0} comes by basc change
from the miniversal deformation of (XO 0) : '

(X,0) — (1,0)

S

(€*,0) — (5,0)

Now G has a discriminant DG which is a reduced hypersurface in the non-
singular space (S,0). The formation of the discriminant commutes with
base extension, -so the discriminant D, of = is (h_l(D ),0), which is de-

fined by a principal ideal in G' Thc branch locus B of n 15 D

n,red

We will want to speak of the mu1t1p11c113 at 0 of the discriminant

i Bn£ E , it is just the multiplicity at 0 of the hypersurface (D .00,

By convention, if B -Ek "the multiplicity of the discriminant! w111 be
the Milnor numher of the fiber (XO,O). For cxample, in this case we will
say that "the discriminant is cquimultiple -along (mk,o)" if we are in the
equality case of 2.3.1.

Let me also remark that when D is a hypersurface, given (Y,O)c:(Dn;O),
it is equivalent to say that Dﬁ is equimultiple along Y, or to say that

B_is so

x s provided Y is smooth.

- .

2.8.3 The conncction bhetween theorems 3 and 4, conjecture Bp and Zaris-

ki's discriminant condition is due to the following

nbl,O) he a hypersurface with isclated

Proposition ([T,]) : Let (X,0)<(C

singularity, and p: (m"*l,o)ﬁe(m,o) a projection such that the fiber

{X ,0) of ©= p|X again has an isolated singularity. Then, the uitiplici-
° . . {ns1) (n) -

ty of the discriminant D_ of 7 is 4=p K,00 + J (xn’O)Lffwfe that

the assumptions imply that Bn: (0), i.e. if we tauke a coordinate z in

A

(C,0), an equation for D is =z = O.

o

#
£
There are generalizations of this foyéﬁla to complefe intersections
(see Brieskorn's lectures), and L& [ka] gencralized the "vanishing cycles"

aspect of it to arbitrary singularities of hypersurfaces. We will see
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more about this propesitien in § 3, but what I need here is the

1
Corollary : Let X, < (EN+* o)

N/

{mk,o)

he as in 2.8.2, and assume that (XO,O) has an isclated singularity and DH
is a hypersurface in (mk,o).

Let (L,0) by any smooth curve in (Ek,O) transversal to (Dﬂ,o) (i.e,
(DH.L)O = mO(DH), the multiplicity of D_ at 0). Then

mb(Dx)l: p(xo,0)4-p(xL,o) where X "1(L)nx . B

=P
Proof : The formation of discriminant commutes with base change, sd

DH{\L is the discriminant of the induced map X, - L, to which we can apply

the proposition. b
Since L is transversal to_Dﬂ; the multiplicity of Dnr]L is thé muitiplif
city of D at 0. .

Notice that when k= N+1, the discriminant is X 1tself X is a p01nt L a
line transversal to X and we recover : m (X)_ 1+ p(l)(X)

At the other extreme, if k=0, there is no L, So we are tempted to set
the multiplicity of the discriminant equal to p(Xo,O), as 1 did in 2.8;2.

(There are, however, more serious reasons to do that !)

2.8.4 Now, back to Bp' We take the usuwal sitwation, choose a retraction,

etc., so we are looking at a family of hypersurfaces X = U X,

n+1 yex

(x, 0)c (Yx €™ ,0), defined by F(yl,...,y Zyseeer2y ) =0, and we assumé

(n+1) constant along Ox Y. Let us look at the projection
n 1 x
:(yx@t*,0) - (Yx &,0) defined by (zo,...,zn, 1);,(20,1). o ;
p]X—-n: (x, 0)-.(Yx €,0) has a diseriminant (D 0)c:(¥><m 0), contaiding’
Y =0x Y, By the corollary ahove, the multiplicity of n. at a point i
ye Y is my(Dx) = p‘"*l)(x ) I (n)(X NH), where H is the hyperplane !
z =0, H
0 .
So to prove Bp is just the same as to prove that for a sufficiently gene-
ral hyperplane H containing Y, the discriminant I}’T of the corresponding '
projection is equimultiple along Yﬂ, i.e. the branch locus 81 coincides
4 .
with Yn. And thus we find something very similar to Zariski's diserimi-
nant condition ! In fact, if Y is of codimension 1 in X, it is exactly

Zariski's discriminant condition.
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Remark that if X satisfies (U constant) along Y. the singular locus of X
is ¥, and if there are points of B outside Y _, they are the images by =

aF gF . .
521: . :azn::O, i.e., where the tanggpt
hyperplane to X is parallel to the hyperplane 5, =0.

of points of X outside Y where

If ° {X. NH,y) is not constant, we have in X a curve of such cints,
K ¥ ’ 3 P

which T like to call the curve of vanighing folds of X along Y with res-

peet to H. The picture above can also be deemed to represent vanishing
folds. If we agrce to say that "X has no vanishing fold along Y" if it
~has no vanishing folds with respect to a generic hyperplane H containing

Y, B“ becomes the slogan : M(p constant) = no vanishing folds".

2.8.5 As an application of the numerical viewpoink, let us stop a while
to sketich the proof of theorems 1 and 2, and in fact of the equivalence
of all definitions of equisingularity, in the case where (Y,0) is
(smooth) of codimension 1 in X, and alsc of dimension 1 since we will use
theorems 3 and 4: (The resulis here are due to Zaviski, and although what
follows does offer some alternative proofs in the special case dimY =1 B
it is given mostly as an informal introduction to the reading of [2
(2410

We have therefore, after choice of retraction, a l-parameter family of

21

reduced plane curves, described by F(§ 22017y )=0, F& E[yl,z 7y 1,
F(yl,O 0)—-0 ‘The firgt point is that when (Y 0) is of codlmen810n 1in
(X,O), conjecture B is proved, thanks to theorem 4 and to the well known
" fact that the multiplicity of a reduced plane curve is an invariant of
the topological type : (see the appendix at the end of this secction).
Indeed, here, n= 1, so Xy is the curve F(y,zo.z )=0, (y::@i,0,0D and
(1}(X ,¥Y=m (X ) -1 : by theorem 4, ali the (X ,¥) have the same to-
.pologlcal typz 1? p( )(X ,¥) is constant, hence m (X } is constant. {See
appendix at the end of thls section}, .
Let us now take a projection p : (@3,0)49(E2,0} such that pni(o);tx, and
Kerdp[WTY 0._(0) Choose coordinates so that p is written
(yi,z 23 )"a(yl,d ). (YR,O) is defined by z,=0. Then, the following are
equivalent
1) (DX,O) is equimultiple along (YK,O), i.e. (Bn’O): (Yﬂ,O).
p(z)(X

;¥) and the intersection number (£ ,X) arec independant

of y€ (¥,0), where Ey is the line pml(p(y}).

Proof : Using 2.8.3, and the fact that if there are several critical
points in the same Tiber, the multiplicity of the discriminaat is the sum .

of the multiplicities corresponding to each critical peint, we find
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¥

m (D) = : (u(Z)(xy,x)+p(1)(xynH,x)) {#)

=y ”;' xeﬂ.ynx ;J
where H i? the plane zo=:0. (0f course, for a small enough representat%ée
of (X,0); and in parti?ular we consider only the points in Ey{}X which
tend to 0 as y—0.) :

Remark that p{i)(xy{)ﬂ,x)::p(l)kxyriﬁy,x)= (£ .X)x-kl. So by the semi-
continuity properties of 2.3, if my(Dn)= mO(Dﬂ) for ali ye {Y,0), we must

have
p(z)(XO,O) = : }1(2)(}{ s X) for all y € (Y,0)
xEL_ X ¥
y
(2 .X) -1 = § , ((E Xy -1
e e x€L X

On the other hand, the basic properties of intersection numbers imply

(zo.x)o = § (1 -X)_ , so 1) implies zynx = [y} for all y¢ (Y,0),
xeﬂynx

and therefore 2) by the two egualities above. Conversely,'if.we have 2}
the equality (#) shows that I)Jt is equimultiple along Yﬂ at 0.
At this point, we have proved theorem 2, and the fact that (Z)-equisingu-
larity = {(p constant). But as mentionned above, we know in this case that
(P:constant) = {p* constant) and 1 have alrcady said that (p* constant) =
(c&f; {Whitney conditions) = (Topological triviality) = (Topological eguni-
singularity) (p constant). So all that remains to prove is.that
(p Con%tept) =» (Z)-equisingularity, and that (p gonstant) =~ assertion
iv) of theorem 1. The proof of the first 1mp11Cdt10n will also prove i) =
iii) of theorem 1 if we do it as follows (p constant) = for any pro-
jection = X €% transversal to X, (DH,O)zz(Yﬂ,O). But to say that = is
tranqversal means (ﬂ XD -mG(X) (with the notations introduced above),
and if p is constant, (X,O) is equimultiple along (Y,0), and
mO(X)=mo(XO), so that (,ta XD amy(}i):m (X) =m (X o) =8 .X)  which implies
(£y.X)y: (£ X) by - seml—cont1nu1ty, and then the equallty (w) 1mplles
that (D 0) is equlmultlple along (Y ,0). Q.E.D. _ .
To see that (p constant) = assertlon iv} of theorem 1, we can f1r§t
reduce to the case where the (Xy,y) are irreducible plané curves
indeed, since we have topological equisingularity,

the number of irreducible components of the fibers
(K ., ¥) is independent of y, and in fact each irreducible component of X
JS a (1° constant)-family of irreducible plane curves iseelthe appendix).
The proof of the blowing-up part of iv) follows from the following fact :

if you hlow up the origin in an irreducible curve (XO,O),'there is only
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one point lying over 0 in the blown-up curve (X' 0')—»(X ,0), and
(2)(X' 0‘)-—p{X ,0) —m{m - 1) (see [24], prop. 5.1 or'[T }, lemma 5.16.1)
where m~‘m (Y Y, 8o if X is irreductible, p* constant, when we blow up ¥
in X, say b : X'—ax, we find that since X is equimultiple along Y and
irreducibie, b 1(Y)red=Y' is smooth aver ¥, and b~ (x ,¥) is just the
curve obtained by blowing wp ¥y in Xy ' therefore X' {s again a family
of irreducible curves with Milnor number constant along Y' and equal to
p(Z)(XO)-m(m-i). So we can go on, blow up ¥' in X', etc.. bui as the
Milnor number strictly decreases at each step, eventually we will reach
an X which is smooth. By equimultiplicity, each blowing up in the sequen-
ce is finite (and bimeromorphic) so % .L.X is finite and bimeromorphic,
and since X is smooth, n is the normalization of X. Of course this sketch
of proof can be read backwards to show that iv) = (p constant),
From the same numerical view p01nt it is possible to prove that if (y,o
is the entire singular locus, (p constant) o (1v,ﬁ) of theorem 1 using
[T2], chap. 1I, prop. 3.1) and the fact that (p* constant) is alse in

this cabe a condition of equimultiplicity fer the ideals generated by

(ggl, Bz =) in the local rings of the fibers (X ,¥), since we have in ge-
neral
Proposition ([sz, chap. I1, cor. 1.5) : Let (XO,O)C:(EH+1,O) be a gernm
of hypersurface with isolated singularity, say with equation
f{z ,...,2_)=0. Then the multiplicity in OX o of the jacobian ideal j°’
o I o?
‘(:j(f).ﬁx 0) generated by the images of (ggl) G=<ix<n, is

{

In our case thlS glves pre01sely p(z)(xy,y)-+p( )(X ,y)

I emphasxze however that it is proved in [/g] that when Y is of codimen-
sion 1 in X, and is the entire singular locus of X, condition (iv), p) of
theorem 1 is in itself a necessary and sufficient condition of (Z)-equi

singularity.

Appendix . ¢ Numerical invariants of reduced plane curves.

Attached to a germ of reduced and irreducible plane curve (XO,O),
there is a sequence of integers, the characteristic of the curve
(m Bi""’B } —C(X ,0), m is the multiplicity of X at O, and the p, are
the characterl stic exponents of the curve {see [Zﬁj [P5]) this charac-
teristic can be quickly, if not very informatively, described by saying
that (XO,O) has the samc topolegical type as the curve given parametrical—)

1y by
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= g .
zlﬂt +t T4l 2t (m<ﬁ_1<...<Bg)

and does not haYe the same topological type as any cﬁrve given similarly
]

20=tm', 212t61+---+tﬂ' &' with m'<|3;:'l-<...<ﬁ‘gI , and g' < g. So the

characteristic is a complete set of topological invariants for irreduci-

ble plane curves {see [sz, [ZG])'

The situation for reducible plane curves is described by

Theorem (Zariski) : Two germs of reduced plane curves (XI,O)_and (ké,o)

have the same topological type if and only if there exists a bijection B

from the set of irreducible components of Xl to the set of irreduéﬁbié‘;

components of X2, which respects topological types and intersectiop multi-

plicities, i.e. B(X 0) has the same topological type (or characterls-

tie) as (x 0) and (x ’i.xl’j) (B(X ) B(x1 )) .

Zariski proved the "if" part using his theory of saturati;n (geé«;
[24], theorems 2.1 and 6.1). I cannot, however, find a reference for ‘the
Y“only if" part, except perhaps [H5]. (The only problem, of course, con-
cerns intersection multiplicities, and they can be defined topologically
as linking number of the knots obtalned by intersecting X o 2md Xj o
with a sufficiently small sphere $ in E2 centered at 0O, éee Brieséorn's.
tectures and [Hc1.) ' )

Anyhow, the mu1t1p11c1t o$ a reduced plane curve, sum of the multipllcl-.

ties of its irreducible komponents, depends only on its topological type!.

2.9 I want now to explain what looks fo me as a set of "éxioﬁé" for équi—
singularity from the view point of plane sectioms, discriminants, and the
nonsplitting phenomennn; . ' - ot

In what follows equisingular will mean : any definition, and when‘I

write discriminants I assume they exist, i.e. the corresponding'fiﬁer has

an isolated singularity. First a definition : (X,O)CZ(EN+1,B), a hyper—‘
surface, is said to be (i)-equisingular along a smooth (Y,0)c (X,0)

(i>dimY) if, assuming as usuwal Y linear in EN+1, there exists a dense

Zariski open U(l) in the grassmannian G(l) of i-planes containing Y. such
that ne vl s

Now, I think a good theory of equisingularity should sat;sfy the follow-

(XN H,0) is equisingular along (Y,0),

ing

1) Going up : Given a prejection (linear, for simplicity)
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x,0) « @7 o

@, 0

and a {YI,O)ﬁ:ﬁEW,O) whera BJT is the branch locus of 7, if (Y ,0) is a
linear sonbspace of (Ek G) and (B »0) is (i}-equisingular along (Y ,0)
(ﬁmYI+1sigkL then Y= (p~ (YJPC %ad Efmmﬂh(WMHecﬂlsthe
critical locus of =), p induces zn 1Som)rphism (Y,G)ci(ET,O), and (X,0)
is (N+1-k+i)-equisingular along {V,0). "

2) Geing down : Assume (%,0) is {i)-revisingnlar along a linear
(Y,00 c{X,0) (dim¥ < j <N+1),
Then; for any linear projectinn »n: (&

a)l Kerpn¥Y = (0)

B} Setﬁing (Y :0) = {p{"7,0), for every i-planc H in some dense

k1 0y " *.0) such that

Zerisiti open subset of the grassmannian of 1~p1ane5 in
{E »0) comtainirg En? (i+¥. 1-K = 3), Xnp~ (H) is equisin-
gelar along (Y,0)
we have that BT is (j+k—ﬁ~1)-eqvisingular along Yﬂ at 0.
¥e can alterna{ively asi
29 Generic moing down :  There exis's a lonse Zariski-open subset
of the set of Zinear projeciions p: (EN+1,D)-a(Ek,O) such that this con-

clusion holds.

Remark : If i=zdim¥+1, X (il-equisingular along ¥ means X is equimul-
tiple along Y. (0Qf course I asi. al} definiticns af equisingularity to

give ¥=X in codimension ¢,) It may happen that BR::EE, In this case we
will say that {Bﬂ,O) is (k)-equisingular aiong {@k,e} if we are in the
equality ease of 2,3.1.

Remark alsce that any definition of equisinguiarity which goes up ang down
has to be equivalent to Zariski's definiticn. {indeed, it needs only to

go up and down for k=N.) To show that this is not just a formality, let
me at least prove the nensplitting part of the going up, assuming D is
(dle’-Fl) -eguisingnlar along ¥ i that i=s, eguimultiple., Here the basic

result is

Theorem 5 (see {E51, [La 7, [Tz} chap. IIL}) : BSuppose that we havg a

projection
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(mk,o)

such that (BR,G)::(EK,O) and B is (k)~equisingular along (Ek,o)

} § ?
any y¢ (E(,O), -—:T—J p(Xy,x):=p(X0,O). Then the induced map
Xew

s I.e, for

7o (fored,e)‘¢(ﬁk,0} is an isomorphism (ang xy has only oue.singular
point), ‘

This non splitting result has many algebraic translations; for example
going back to tho notations of 2.3.1 and 2.3.2 '

1o Frc:J = Ji: Stc:J, which is a priori rather odd (see also ETQJ chap.
111}, but not algebraic proof., I think it is a very good problem to secek

an-algehraic proof of i+, Anyway, it has the

Corallary : Given a projection as in 2.9, 1), Suppose there is a linear

subspace (Y ,0) < (B_,0) sunch that (B ,0) is equimultiple along (¥ ,0).

w
Then if (CH,O)C:(X,O) is the ecritical susbpace, (n_l(Yn)r]Cn)red is smooth
and isomorphic to'YJr by #. {Compare with 2.8.5. This feneralizes unpubli-
shed results of Zariski, and was also noticed by Le.)
Proof : As we have already remarked, Bx is equimultiple along ¥ if and
only if B is so. Then (thig is dhnYn-pluequisingularity) we can find a
{dimy + 1)-plane H containing v jnp (mk,o) such that (D_nH) =Y . We

b4 n Kk 7T red 7
make the hase charge of 7 by the inclusion (,0) - (g s0), i.e. restrict

everything over H and thus we obtain a situation

X005 Ly o)

vhere now B_ = Y , Dn is equimultiple aleng ¥ . We can choose a retrac-
v 1 "
tion p: (H,G).Q{Ey »0) and by 2.8.3 we have
i

~ ~ -1, -1
mo(DﬂH) = P(XO,O)*-H(Xoio) where Xo =7 {p T(0))
~ > -1, ~1,

= = X, (; X =
= my(D;: ) };‘:}I(Xy,h) + 1 ~‘{y,\) Xy 5 (p r))

H

the sum being over the points of ngi(y)r}CHH
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By 2.3.1, we know

s

p(Xg,O) > ¥ ]J.(Xy,x)

p(Xo,O)

EN

b3 P(Ey,x)

so both must be equalities, which implies that if we now restrict over Y_,

(XY ,O)ﬂa(Yn,O) satisfies the assumptions of theorem 5, from which we
s

deduce the desired result.

Notice that we have proved much more, namely that XH satisfies (p cons-

-1 i .
tant) along Y= (nH (Yﬁ)r]cxﬂ)red and even has a hyperplane section con-

taining Y which also satisfies {3 constant}, which gives some hope for

the going up.

Problem : Take any of the definitions of equisingularity given in § 1
{(or (c)) and prove it goes up and down.

All we know in general is that topological triviality goes up {(Varchenko).

2.16 With the idea that any good definition of equisingularity has to go
up and down, one can give a purely topological equisirgularity problem,
as follows

Given a reduced hypersurface (X,O)cz(EN+1,O),tﬂke a non singular subspace
{Y,0) c (X,0), and for simplicity, I will assume dimY = 1. Then we can de-
fine the |.‘\Jranishing cycles” of X along ¥ at 0 with respect to a retrac-
tion r: (€1 004 (Y,0) like this (see [Hz]) : If as nsual

X = r_l(y)(1x, one can prove that there exists g ¢ ®", and a wonotone in-
creasing function n: [0,80]—am+ (depending on (X,0), (¥,0) and r) such
that, if we call y, a coordinate on {Y,0), the topological type of

Xyn ﬁa is independent ol & and y provided 0< e<.£_, 0<:|y11‘:1(e), and
independent of the choice of r, provided r is "sufficiently generait". The
reduced wulogy groups Hi(Xynﬁe,Z) will be called the "groups of
vanishing cycles" of X atong Y at 0. We will say that X "has no vanishing
cycled'along ¥ at 0 if they are all 0.

Problem : Show that the condition "no vanishing cycle along Y' goes up
and down, thét is =

1)} Given a linear projection p: ($N+1,0)~4(EN,0) with
Kerclnr]TY’o =(0), set m=p X,land Y o= pé¥). If the branch locus B:t has
no vanishing cycles along YE, X has no vanishing cycles along Y.

2) If X has no vanishing cycles along Y, show that there exists a
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{Zariski) open Jdense subset U in the space of lincar projections such that

it peu, DT has no vanishing cycles along Y .

This problem is settled by what we have scen above at least in the

case where Y is of codimension 1'in X, since we have (using theorem 5) =

Proposition {Hironaka [Hg]) : 1f Y is the entire singular locus of X,

"¥ has no vanishing cycles along Y = (p constant) holds, and of course,
if ¥ is of codimension 0 in X, no vanishing cycles mcans Y= X. |

By the way, Bp becomes thus a better slogan : 'Ne vanishing cycles = no
vanishing lolds'". It seems to me that this problem is very attractive for
the following reason : its solution in the large requires the construc-
tion of what I like to call "the ultimate Morse theory in the compiex do-
main“, namely a theory which tells us that under suitable gemericity ‘
assumptions on x, we cap lift {vanishing) cycles from the branch iocus to
X itself . Of course, we can put a similar problem for projections to ¢k

k<N, and for k=dim¥ + 1, it would prove BP (see 2.8.4).

2.11 I'1l now try te add a little +to our experience with the nu~
merical view point. .

Certainly, from a differential-geometric view point, the aim of a
theory of equisingularity is to obtain a partition of a given complex ana—.
lytic space X, K:lJXa with the following properties ’

1) each point x¢ X has a neighborhood which meetls only finitely many
Xa.

2) each Xa is a smooth and locally closed subspace in X, and
ia— Xa and ia are closed subspaces of X, and dim(i&-xa)< ainX, . .

3) ianxﬁ?gﬂ = XBCXa and for any xe){l3 azflan{ imbedding of a
small enough neighborhnod U of X in an affine T °, Xar]U is "cone~like
over its boundary, with respect to X " in the sense of 2.8.1.

These conditions are precisely what was achieved by Whitney [Wq], and -
what allows one to do some differential geometry on singular Varietiés.
Apart form the motivations given in § 1, the construction of Whitney

offers a challenge to algebraic geometers, namely

Challienge : To describe in many algebraic (i.e. complex analytic 1)
ways a partition of a singular space which has the properties listed

- I
above.

The [irst thing to do is to describe algebraically what cone like" can

= . . N
mean. Lot me italke the case where X=X is a hypersurface in & %1, and set
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- l
Y._Xﬁ.

Then we can deseribe this as usnal by F(yl,-..,yk, zO,...,zn):zo (n+le = N).
Then, an algebraic geometer has a normal come of X along Y obtained as
follows : expand F into homogenecus polynomials in Brererfy with coef-
ici s i . . F = 4+ B
ficients in E{yl, ,yn] I Fm mel ¥
in (zo,...,zn). Then the normal cone is defined by

e s Fi homogeneous of degree i

Fm(yl,...,yk; zo,...,zn)::o, which can be viewed as a family of cones pa-
rametrized by Y : CX,Y_*Y’ (see {Hs]). It turns out that it is hopeless
to look only at the normal cone to see if X is cone-like over its bounda-
ry with respect to Y, simply because youn can find two hypersurfaces with
the same normal cone, ore of which is cone-like, and the other not. e.g.

. 3 2 7 . . .
in € (yl,zﬂ,zl) 2y 2,=0 {a product of a curve by the ¥y axis} and

z?—-zZa—yIzzzzo. S0 to understand what "cone like'" might mean algebraical -
ly, we have to look further into the expansion of F. Now there are two
ways of doing this indirectly.

1) Blow up, ¥ in X and lonk again {compare thecrem 1, iv)).

. _ (OF aF
2) Look at the ideal J = (—-—nazo,...,a————zn) m{yl,...,yk, zo,...,zn] .

Now J is the ideal that comes into Whitney conditions and condition (c),
and the first point I want to make here is the following : What theorem
3 says, (going backéa.ﬁ.l) is that to ensure that X is "cone-like over its
boundary" we can replace the {pon-complex analytic) tube Bp><Y by the
(complex analytic) "gemerie flag of plane sections through Y" which comes
into (p* constant), for the study of 4 (or of limit positions of tangent
hyperplanes at smooth points of X as they tend to ¥, which is the same as
the study of J).

The second point is something akin to the problems considered in [Hlj

and which throws some new light on what "cone-like'" may mean algcbraical-

1y

Definition : Given F(yi,...,yk, zo,...,zn) as aboﬁe, let me say that

the t~jet of F along Y is strongly sufficient if the following holds
it .
For any t'>1 and any Ge 8 (S = (zo,“.,zn)m{yl,".,yk, z@,".,zn}) there

. v(tt) : i ;
exists e, £ 5 (depending on G) such that
1) F(yl,...,yk, ZO,...,zn)rrG(yl,...,yk, Zo""’zn) =
F(yl,...,yk, 204-60....,zn4~sn).
v(t'y 1
2) =3
Then
Theorem 6 (with J.P.G. Henry, see [H.T 1) : For F as above, such that -

Jo S, the following are equivalent
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1} there exists a t such that the t-jet of F along Y is strongly
sufficient. ’

2) F=0 satisfies (p constant) along Y, near 0.
S0

8¢ the existence of a strongly sufficient Jet along Y may be a
subtle way to soy algebraically in this case, that X is "cone like" with

respect to Y {at least if we assume Bp is true),

§ 3. POLAR VARIETIES

3.1 This iz a presentation of some algebraic ways to investigate the
relationship between a hypersurface, say, and its generic hyperpiane
section, (The details will appear in [T3}.) We have many motivations to
do this from § 1 and 2, but let me add a few morec.

First, remark that the topological type of a generic hyperplane sec-
tion of a given hypersurface is well defined, as can be seen by applying
the Whitney stratification theoorem (1.1) to the family of hyperplane sec-
tions constructed in § 1, and then using (W)= (T.E.). (This works for
plane sections of any dimension).

Question B I two germs of complex analytic hypersurfaces have the

top
same topological type, does it imply that their generic hyperplane sec-

tions also have the sume topological type ?

(By convention, for a plane curve, the "topological type" of the
generic hyperplane scction is the multiplicity of the curve. The answer
to the guestion above is known only for curves, see 2.8 App.) An affirma-
tive answer to this question would imply in particular that if two hyper-
surfaces with isolated singularities have the =ame topological type, they
have the same p%, and in general, it would imply that same tapological
type » same multiplicity, thus answering a question of Zariski [25]

{by descending induction).

I want to relate Btop« to the following, inspired by a guestion of

Thom in [ThZ]'

Question € @ Is it truc that any germ of complex analytic hypersurface

has the some topological type as a merm of algebraic hypersurface »

Of course, i¥ (X,0) has an isolated singularity, it is known that

(X,0) is even analyvtically isomorphic to a germ of algebraic hypersurfa-
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ce ;5 in fact (see e,g. [Mi]) given an equation f(? o2y })=0 for a germ
of hypersurface with isolated S1ngu1ar1t3, there ex1sts an integer t de-
pending only on j(f) such that if ge'm , then we can find a change of
coordinates zimau(z.): z; + &y (& L ) E; EWF such that

f{z) + glz) = t{ul{z)), and in prautlce, 11 s is the smallest intcger such
that J(f):am?, which exists since [ =0 has an isolated b1ngular1ty, we
can take t=2s+ 1. Thus £=0 is analytically isomorphic to the hypersur-
face obtained by forgetting all the terms of degree » t in the Taylor ex-
pansion of f. This method will not work, at least directly, for the non-
isolated singularities, even if we want only to preserve the topological
type. Look at the Whitney example ([wﬂ) of a hypersurface in t? which is
not lecally analytically isomorphic to an algebraic hypersurface : it
is defined hy‘F::zo.zf(zo- 21)(20— (3+ yl)zl)(z y(y Yz ).‘Oyhhere

V(yl) is any transcendental function with vi0) =4 e.g. yv=4.0 1

This is an equisingular family of curves, each curve consisting of 5
lines., From the fact that equisingularity implies topological triviality,
we know that it has the same topological type as an algebraic hypersurfa-
ce, Eamely E::zdzf(zo—-zl)(zo—-321)(20-421)::0. However, for any t- 1,
F4-y1::0 has an isolated singularity at 0 and therefore does not have the
same topological type as F=0, as one can check by uwsing for example the
first theorem in [Ly]. Please compare all this with Theorem 6.

So we set ourselves the following

Problem :* Define algebraically a complete set of invariants for the to-

pological type of a germ of complex hypersurface.

Ideally, this set of invariants should enable me 1o play the follow-

L ing #

Game : Given a hypersurface (X,O)c:(&N+1,O),I fill a bag with invariants

arranged in layers according to dimensions 1< i<N+1, the top layer cor-
responding to i=1. Then I give somebody the first layer of invariants,
and he constructs a germ of plane curve, the invariauts of which are pre-
cisely those in the first layer, and which has the same topological type
as the section of my hypersurface by a generic 2-plane. I then give him
the second layer, and from this and the curve h; constructed before he
builds a surface, which has the same topological type as the section of
(X,0) by a generic 3-plane, and a generic plane section of which has the
same topelogical type as the curve constructed hefore, etec. When the bag
is empty he has built a hypersurface (X',0) with the same topological

type as {X,0). Of course, for shcer ecounomy, at each step he will build
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an algebraic hypersurface !
Now the invariants constructed holow fron polar curves should, I think,

be at least part of what one necds to put in the hag,

3.2 Where to lnok for invariants' 7 an answer is suggested by the follow-

ing, which is an improvement on a theorem of L& and Ramanujam ([L.R. ]) -

(EN+1 N+1

Theorem 6 (see [T,]) : Let (x_,00 < ,0) and (xi,o)c(m ,0) be two
germs of hypersurfaces with isolated singularity, defined respectively by
(= o1t z) =0, q(z reeea? ):() if ﬂ . /ET}T-H e, /ETET are isomor-
phic as nnalytla algehra& (ﬂOf&thDh oi 2 1 and 2, 2) then there exists a
one parameter family of complex hypersurfaces X____5D where say
D={y¢ct/ |yl <2} such that (Xg,0(0)) = (x_,0, (Xl,o(l))—(x ,0) and X
is Whitney equisingular (even (c) equlblngular) along o(D) =Y at every
point. In such a case, we will say that (XO,O) and (Xl’O) are (¢c).cosecant .
In particular, they have the same topological type. Since j(f) is deter-
mined by {£,j{r)) as we saw in 2.2, and (£f,3(f)) determines the singulari
subspace of (X, 0)(*(mn+1 0) we have for isolated singularities of hyper-
surfaces, the following i
"The analytic type of the singular subspace determines the topological
type". (We will see bélow how false the converse is.)
Therefore, we look for topological invariants in the jacobian 1dea1 J(f),
even for non isclated slngularltles where a result similar to the one
above is not known., In the isolated singularity case, we have already the
sequence p (X 0) of the Milnor numbers of generic plane sections, which
can easily be shown, by its algebraic definition as generalized multipli-
city (2.8), to depend only on ETTT.(Perhaps it is time to point out the
difference between j(f) and ETEr For example the only isolated s:ngularl—
ties of hypersurfaces such that J(f) is a power of the maximal ideal are
those which have the same topolegical type as their tangent comne ([T2])
On the other hand, the only isolated singularities of hypersurfaces such

that j(f)=3(%) are those of type A i.e. which can be defined in suit~

1{’
able coordinates by zk+1+ zi+ et zﬁ = 0.) There are however other geome-

tric ways of studying j{f), in the general case

3.3 Proposition-Defimition : Let (X, 0y (! 20 be a germ of complex
hypersurface, defined by f(z yeses 2y ) =0. Let H(jh( i) be a directicn of
N+1

i-plane in . Consider the set PH of points pc¢ (EN+1,O) suech that
1) f(zo,...,zN)z £{p) (Xp, the level hypersurface of f through pis

smooth at p
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2) TX >H {(i.e. T contains a i-plape parallel to H).
D,P XP,P Nl
The closure QH of this set in (£ -~ ,0) is a closed complex analytic subset
of (EN+1 0). In faet, QH can be defined as an analyiic subspace of
(EN+1,O), as follows : choosing coordinates so that H is defined hy
Zoz ceemzy =0, Q is the subspade defined by the ideai

[( )ON 13 N-i+l<k<N}. The unicn of those irreducible components of

(.
f=0 with respect io H, and noted S

O) which are of dimension N+1-i will be called the polar subspace of
W

Theorem 7 ([T3]) : If (X,0) has an isolated singularity, for each
0<i<N+l, there exists a Zariski open subset V(l) of the Grassmannian

¢ N+1 0), such that if Hegv(l) 8, is redm-

H
ced, mO(SH):iJ and the plane (H,0) is transversal to (SH’O) at 0 in
the sense that p(l) is also the intersection multiplicity (S H) . For

i=0, we set S =:EN+1, and for i=N+1, Sy is the subspace deflned by j(£),

i
which is of multiplicity p ™1

of i-planes through 0 in (&
(i)

*® .
{X,0). Hence p (X,0) is also the sequence

of multiplicities at 0 of the generic polar varieties,

3.4 For i=N, SH is a curve, called the polar curve with respect to the
hyperplane direction H, and its consideration has been advocated by Thom
for the study of monodromy problems. It also comes into the proof of the
proposition in 2.8l3., as follows : (please go back to 2.8.3) : by

the projéction formula for multiplicities ([Se ]}, A is the multiplicity
‘of the critical subspace of = : (X,0)-(€,0). We can always suppose that

N+1l
Nt

the projection p: ,0) . (E,0) 1nduc;ng nis a coordlnate function =z .

Then p is the moltiplicity of the ideal ( seens az )o— if X is defi-
1

ned by F[z ,...,z ) =0. But that is precisely ([Se ]) the interseetion

multlpllclty of the polar curve S {§§1,..., gg; in (EN+1’0) with our
‘ N
hypersurface (X,0) at 0 . Since we assume (X,0) to be with isolated sin-
gularity, ggl,..., ;f‘) is a regular sequence, and hence all the compo-
o N
nents of —— oF =, e — 2F =0 are of dimension 1. Let us decompese S in irre-
dz, 1 dey H
ducible curves {( not necessarily'reduced, since we do noi assume the hy-

perplane H: z, = 0 is in the open V(N) of theorem 7, but only that

(InX,0) has an isolated singularity). Let this decomposition be written
H UI’ . Now to each Fq is attached an integer n(T ) such that for any
hypersurface (x1,0) = (8N*1,0) we have (Fq.X ) =n(r Q- (rq.X }  where

Now we remember that F can be narametrlzed i.e, the norma-

I‘:r
4q q,red_ N+1 =
,0) 15 such that (? ,0) = (L,0) since Fq is

lization (F O)wa(fq,O)cz{E
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[}
i

reduced and irreducible. TLet us choose a local coordinate uq_on (F ,0).

h
The composed map above (F ,0) — LN+t »0) can be described by N+1 hoelomor-

phic functions ﬁ(~ z {u ) Then the intersection number of (x,0} w1th

(Tq »0} is the order in u of f(/ (u ) (u ))_ foh . But we have
q ; q
dlz oh )
d __aF o : ™ ar .
Eﬁ; foh = BZO o hq' —M~EE;~E» since on quall azi {1<i<N+1) are 0,

Taking orders gives
(T X)) =1 =(F .x1). (tr .m -1
9 "o q o q o

and adding afior mult1plv1ng by n(r } cives A-(S X) (S X0 o (S H)
af

dz
theory {([SeD) that (s Xty
(S )= ( UmH 0)

where X' is = @, But it follows from Clﬂ%blcal results on 1nterscction

H(N+1)()§,O) and it is easy to see that

3.3 All this was done for a given hyperplane H such that X H has an iso-

lated singnlarity. Now we have

3.5.1 Proposition ([TSJ) : Given a hypersurface (X,O)::(EN+1,O) with
equation =0, theve is a Zariski-open dense W(N)C:PN such that : the

polar curve SH is reduced, the number £ of its irreducible components,

£
&h]:qul F) and the sets of 1nteger? {mq: (iqu)o}, {eq: (Fq.X)O-(Fq.H)O}
are independent of fi,provided Heg W N). Notice eq;:O by the computation in

3.4, Ef (X,G) has an isolated singularity, we have furthermore -

2 £ :

- ] N

Ze = _u(N“)(X,O) ;T m o= p( )(X,O) by 3.4 .

r 1 1 4
Remark : 1In the goneral case, it can happen that (Fq,O)c:(X,O), in which
case we set cq: +em, '
Then we have

re
3.5.2 Proposition : The set of quotients L;ﬁl » Where "red" means
— q+4 red

that each raticenal number, or to, appearsronly once, depends only upon
the integrul clesure J{E3 {(i.e. can be computed from the ideal 3(£)), ana

therefore only on the local algebra Ox 0" We will denote this set by
N 1)f\ o). ’ !

Let me give an oxample showing that we have to reduce the sequence
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if we hope to get topological invariants in this way : consider the fa-
mily of plane curves : z4¢—zg+ y z5 22

. 1 o i 01 1
curve has only one irreducible component, giving e=24, m= 3. For y1£(L

= 0, For y =0 the generic polar

it has two irreducible components giving e1=:8, m, = 1 and e, = i6, m2:=2
respectively ! (This is related to the phenomenon-discovered by Pham, that
equisingularity does not imply "jacéﬂian equisingularity" see (3, (P35l
In this example, the analytic type of 02/31?3-varies although the family
is equisingular, as can be quickly checked with Zariski's discriminant
criterion,)

At least when the singularity is isolated, I can prove that all the inva-
riants F(i)(x,o) of generic i-plane sections of X are well defined and

depend only on j{fJ hence on .0 (0<i<Net). (F(1)= ﬂi(l)], F(°)= {1}.)
3

3.5.3 Problem : 8how that the F(l)(X,O) are always well defined, and

. . B N
are invariants of the topolegical type, of (X,0)c (€ +1,0).

The answer 'is now known for irreducible plane curves

Theorem B8 (M. Merle [Me]} : For an irreducible plane curve (X,O), the
(1) (2) ! Sl . .

datum of (F ~"(X,0);F “'(X,0)) = mele L, is equivalent by a uni-

1 g8
versal algorithm to the datum of the characteristic (m,ﬁi,...,ﬁg) of the
curve,
. . (1) (2> -
So in this case, F "' (X,0) and F "'(X,0) arec enough to fill the bag of

invariants,

3.6 I want to quote some results in support of the claim that the
F(l)(X,O) should go inte the bag, the proofs are in [T3].

N+1

3.6.1 Propesition : Given a hypersurface (X,0)c (T ,0) with eguation

f(zo,.. ) =0 and isolated singularity. A necessary and sufficient

s 2y
condition for (X,0) to be (c)-cosecant with a hypersurface
(X‘,O);g(zl,...,zN)a-zakl = 0 such that H: z =0 is a generic section in

0
the sense that p(X'r)H,O)::p(N)(X',O) is that F(N+1)(X,O)= {a}l, ac N,

e
i.e, all Eﬂ are equal to the same integer a. In particular this gives in-

9
ductively a purely algebraic sufficient condition for a hypersurface to

have the same topological type as a hypersurface of the Pham-Brieskorn

ao 2y
type, i.e. B, Frosh By = 0.

N+1

3.6.2 Proposition : Given a hypersurface (X,0) ¢ (€ ,0). Assume the
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siuvguinr locus ¥ of X is of dimension 1 and smooth. A necessary and suffi-
cient condition for (¥,0) to satisfy "u constant" along (Y,0) is :
F(x*l)(x,o) = {4+=}. {This follows from 2.3.2.)
3.6.3  Proposition

For a bypersurface {X,0) (f=90) with isolated singularity, set

= Ru ;( . Theon the smallest possiblc exponents for the Fojasiewicz ine-

8
qualities ggan f(/r|\,c i;(z)i s igrnd f(z)fg 02|zl 2 to hold in some
neighborhaod of the n:agln in the ambiant space are elzzﬁgT y 92: M-
at o drl
{What onc actually shows is p A1) = , mm _—-,where i=3(r), see 2.1),

‘T‘.
S0 a positive answer to 3,5.73 wole 1n part1cular show that these Fojasie-

witr exponcnts are in fact topelogical invariants.

3.6.4  If we go back to the geometric definition of the polar curve, we
e .
obtain the follrwing transcendantal interpretation of (Eﬂ)’ which I
q
explain only in the isoloted singularity casce, for simplicity : let us

choose a gencral hyperplanse H {sce theorem 7,{3.3) and look at the polar

curve S, = i Iq ; by theorem 7,83.3) we can parametrize Tq as follows <

H
it . .
A = q’ Z.=oa,.mn l’q-F,,b, where k. 2m o, 1gigN+l, if g : 2 =0. In
4] q i Ty ) 1,67 Ns 1 [
a sufficiently small necighborhood of O in C ; the set of points where

the tangent space to a level hypersurface X, - f(zo,...,zm)= t (t£0, suf-

ficiently small) is parallel to H is preciszly SHr]Kt. {(Recall that Xt is
smooth for £ 0.) Furthermore, ecach Fq is smooth outside 0 and meeis Xt
transversally. The number of these points is
(SH.X)O::#{N+1)(X,O)+~F(N)(X?0) by Proposition 3.5.1.

Now we can also view these poinis as the eritiecal points of the functioen
1?0} {"distance™ to H) restricicd o Xt’ so that we can attach 4o ecach of
these poinis a gradient cell of dimension N, which originates at the cri-
tical point and ends in X, NH. {See [M]’[Thzj and [L4] wherg Lg indepen-
dently introduces rationnal numbers which are actually the Eﬂ , from a

a
topological viewpoini.) In the isolated singularity case the exact sequen-

ce of relative homology reduces to (gee Brieskorn's lectures)

O uM(xi,m)‘A}i (\ x NI ﬁlr (x 1H, T) -0

(Mt .
and dim HN(Xt’E} :p"N'ij{X,O)? dim M, (X {HH,E)::N(N}

17t
Ny . (i‘ . .
goneral, Hente, our H{V{i)(ﬁ,0)1 p'x)(K,O) gradient cells, which generate

(X,0) since H is

H,(X X ﬂH3 are in facl a basis. the ides in in the following picture,

(hl!n? is mizgleading becausc the indices of the critical points are not
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properly described 1). fot

{l.ess mi-leading picture)
g/

The douthle lines picture gradirab ce}lsj and we can gee them generating
the relative homology HN(xt’thH’ €)

Now these gradient cells do no! gfl vanisk at the same reote aszs t -0, To
see this let us compute the value of & own ra « By the devinition of in-
tersection numbers, we have on fq am cxpoension f!{q: cu 309,

" . a9 ’
{cqe €Y. Now we want %o cempule the distence %o H of a peint of Tqﬁ, X

17

t !
i.e. the "height' of the corrpeponding gradient cell, as a function of t,

to see how fast it vanishes when .. 0. Since znlf = uqq, we find a
Puiseux expansion )
il
.. T
I ¢ \ql*m“i
z |1 g:—j d v
i

which represents the z, coordirnies a2 the eqa‘m intersection points
th1Fq. Thus we have, with th. ebwicns delirition of "vanishing rata'

Proposition : The vanishing viie nf {fle height of a gradient cell atta-

fe ~1
ched to a point of qu]xt is equd to {;1 4 4] .
e’ b q !
So our seguence (Eg) in fact corwxesponds to all vanishing rates of the
glred o

gradient cells, or if you prefcp, {t indexes a certain filtration on the

vanishing homology group Hn(xf,kf‘.ﬂ,m) {(by the "rate of vanishing")



628 . B. TEISSIER

which a priori depends on I, but can be seen to be in fact independent of

the choice of a sufficiently general H. This gives further reasons to put

-4

e
(m ) in our bag of invariants : it describes an important feature of
q/red

the "vanishing Morse theory" whlch builds X from th}H by attaching gra-
dient cells,

Problem : Show that F(l)(X,O) are constant in a p~constant family of
J‘hypersurfaces.
s
o
Post-scriptum : On the real analytic case : it is proved in 2.8,5 that

a family of reduced nlane complex curves topological equisingularity e
Whitney conditions, Although Whitney conditions imply topological equisin-
gularity also in ihe real- ~analytic (and even differentiable) - case, see
[Mal, the converse ig not true in general. Here is an example : the sur-
face X : xi-—vltg-x? = 0 in,IR3 is easily seen to be topologically trivial
along Y x1= x}.vo hut dogg not even satisfy Whitney's condition a) alohg
Y. Also, after conversationa with Merle and Risler, I became convinced

that if F{x ,...ﬂhn)\,ﬂktm gy X }, the KOJ&HIGWlCZ exponents I compute

in 3.6.3 for #he cemiplexification of f (assumlng it has an isolated singu-
larity) sre in general larger than the smallest exponents for the correspon-—

ding inequalities in the real-analytic case.

e . . )
Post-sriptum 2+ Important ; See after the references for recent

developments.
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.- (Added in February, 1975). It has turned out that many proﬁléms wére teo
optimistic. Zariski has communicated to me a counterexample to conjecture
1, p. 600 : X is defined in 54 by zs-(xz-xlz)zxs = 0 and Y is the lihe
X2 = X3 = Z, along which X is even analytically trivial. The branch
locus of the projection of X to the (xl’XQ’XS) space is not equisingular,
although condition PB) is satisfied. Briancon and Speder of Nice, Compte
rendu notes, Feb. (1975) have given a counterexample to Conjecture B

. . . 4 5 6 7 13 : Ry
Yy o. —
(p. 606 ) : X is defined in € by 2ot Y7 2]+ 202, 420 = 0, and Y is

z, =7, =%, =0, Xis a family of quasi-homogencous {weights (zo,zl,zz) =

0
(f% ,f% ,f%)) hypersurfaces with isolated singularity (Xy,O), all with

the same topelogieal type, and p(Xy,O) is constant (= 364). However, the

section of X by a general hyperplane zg = 3204-bzl does not satisfy

(pp constant), so X does not matisfy (p*constant). Furthermore, (X-y,Y)

does not’ satisfy Whitney conditions, and worse still, as noted by

Henry. X is {Z)~cquisingular along Y (the branch locus of the
‘:’projcction to (Zo’ Zf,y) is equisingular along Y . This example and !

HESp]..ur other ex2mples of Briancon-Speder, show that the answers to
question A (p.599)quesgtion I of [ZS}, question Btop (p. 620) and the secohd
~ preobiea of p. ($} are negative. In the last problem, also, p.628 replace
oo (g constant) by (p* constant).

On the posgitive gide. I have been able to remove the dimY¥ = i
”aS$umption in theorem 3 (p. 605, and Briancon-Speder (to appear) have
‘adapted the proof of the proposition p. 0 to show the answer to

questicn B is yes for Whitney—equisingularity when Y the singular

locus of X, i.e. in this case (p* constant} ®» {(Whitney equisingularity)®

s condition (C). Also I have learnt that Mr. A. Nobhile (State U. of

Louisiana, Baton Rouge , Louisiana) has given, in his 1970 M.I.T. Thesis,

a positive answer to guestion (£} p., 620 in dimension 2. Zariski

communicated to me that the reference needed p., 614 is [ZS,II, proof of
lemme 7.1, page D42-43 '




