PSEUDO-RATIONAL LOCAL RINGS AND A THEOREM OF
BRIANCON-SKODA ABOUT INTEGRAL CLOSURES OF IDEALS

Joseph Lipman and Bernard Teissier

INTRODUCTION

In the notes [23] of C. T. C. Wall, one finds that Mather raised the problem
of computing for each n the smallest integer k2 such that, for any non-unit f
in the ring O, = C{z,,...,2,} (convergent complex power series in n variables),
one has fk € j(f) where

J(f)=(f/d3z,,...,0f/02,) O,

is the jacobian ideal of f. It was known then that f always belongs to the integral
closure j(f) of j(f) (see Section 1 below), a fact which implies the existence for
a given f of an integer k such that f* € j(f). Shortly afterwards, Saito proved
(see [20]) that if one assumes that the origin is an isolated critical point of f,
then the inclusion f € j(f) holds if and only if fis a quasi-homogeneous polynomial
in some coordinate system, and therefore ([15, Section 9]) the monodromy of the
fibration over D — {0} (where D = {¢ € C||¢| <m}) defined by fin a neighborhood
of 0 € C" is finite. More generally, in [21] J. Scherk has shown that the smallest
k such that f* € j(f) is greater than or equal to the exponent of nilpotence of
this monodromy. The first problem, however, is to find a bound on % valid for
any non-unit f. This problem was solved by Briangon and Skoda, who proved:

THEOREM (see [2] for a statement which is slightly weaker, but whose proof
can be modified to give:) If a non-zero ideal I in O, can be generated by d elements,
then for every integer A = 1 we have

I)\ +d—1 g I}\

where “ ” denotes “integral closure” of an ideal, cf. Section 1.

In particular since j(f) is generated by n elements this gives j(f)" C j(f)
and therefore f* € j(f).

The proof given by Brian¢on and Skoda of this completely algebraic statement
is based on a quite transcendental deep result of Skoda in [22]. The absence
of an algebraic proof has been for algebraists something of a scandal—perhaps
even an insult—and certainly a challenge.
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The first remark about the theorem is that if J is a reduction of I (that is,
J C IandJ = I, see [16]) thenJ* C I" and for any 8 > O we have J""° 7' = ""°71,
and so if J***"' C J* then I"**7' C I*. Thus in the statement of the theorem
we may replace d by the “analytic spread” d(I), that is, the least number of
elements which can generate a reduction of I. Clearly d(I) = d; and alsod (I) = n
because d(I) — 1 is the dimension of the closed fibre of the birational morphism
X — Spec(0,,) obtained by blowing up I [ibid, p. 149, Definition 3].

We present here an algebraic proof of the theorem in the case where the ideal
I has a reduction J which is generated by a regular sequence (consisting necessar-
ily of d(I) elements). In fact the proof of this result (and of its generalization
Corollary (2.2)) is valid in an arbitrary regular local ring, and even more generally
in any “reasonable” pseudo-rational local ring R (cf. Section 2), where “reasonable”
means that the localization R, is also pseudo-rational for any prime ideal p in
R. [If a pseudo-rational R has a residual complex (e.g. if R is essentially of finite
type over a Gorenstein local ring) then R is reasonable (cf. Corollary of (iii) in
Section 4).] As in Corollary (2.2), one reduces easily to the crucial case where
R is pseudo-rational and V I =M, the maximal ideal of R; this case is treated
in Section 2. (Note that when VIi=M , any reduction of I is generated by a system
of parameters (cf. [16, p. 154]) so we may assume that d = n, the dimension
of R, and that I = (f,,..., f, )R where (f,,..., f,) is a regular sequence.) The algebraic
proof in Section 2 was inspired by the transcendental argument given at the end
of Section 1, which shows that when R = O, and VIi=M , the theorem is a truly
simple consequence of the theory of residues and local duality as explained in

[3].
In both Sections 1 and 2 we take A = 1; but in Section 3 we reproduce an

ingenious argument of Melvin Hochster which reduces the theorem for any A
to the case A = 1 (always with VI1=M).

In Section 4 we show that every regular local ring is pseudo-rational. Though
the use of Grothendieck duality theory in this general context may make the
proof appear to be rather elaborate, at least the underlying idea is quite simple,
as can be seen by considering any geometric situation where dualizing sheaves
can be described concretely by means of differential forms.

In Section 5 we show that in the special case n = 2 much more is true: among
two-dimensional normal local rings R, the pseudo-rational ones are exactly those
such that for every ideal I primary for the maximal ideal in R, II (the product
of I and I) is integrally closed. Moreover in a two-dimensional pseudo-rational
local ring, for every ideal I and every integer A\ = 1, we have

I)\+1 = I)\I"-.

(For non-principal ideals I, the theorem above gives only I*** C I"). It may be
remarked here that in the two-dimensional case {R pseudo-rational and analytically
normal} < {R rational} (cf. Example (a) in Section 2, and [14, p. 157]).

The main remaining problems are to see to what extent these remarkable
facts in the two-dimensional case can be extended to higher dimensions; and to
determine whether the theorem holds for an arbitrary ideal in a reasonable
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pseudo-rational local ring (possibly by reduction to the case treated here). [In
equicharacteristic “F-pure” local rings, using Corollary (5.3) (ii) in Section 5 and
“reduction to characteristic p,” Hochster has shown (urriblished) that for any
d-generator ideal I, we have I“*' C I Added in proof: The theorem has been
proved for arbitrary ideals in regular local rings [25].]

Another problem of interest in this direction is, given f € I, to evaluate the
minimum degree of an integral dependence equation for f over I.

We wish to express our gratitude to Melvin Hochster for a number of stimulating
conversations.

1. INTEGRAL DEPENDENCE

In this section we recall some of the basic facts concerning integral dependence
on ideals in commutative algebra and in analytic geometry; our sources are [24,
Appendix 4] (algebraic), and [9], [11] (analytic). We then show how the tran-
scendental interpretation of integral dependence ties in with local duality to give
a proof of the theorem of Briangon-Skoda in the special case where VI= M, the
maximal ideal of O,,.

Definition 1.1. ([18]. Let R be a commutative ring and let I be an ideal of
R. An element A € R is said to be integrally dependent on I if it satisfies a
relation

M+ah ' +.. +a,=0 (ag,€I'1l=i=<k).

If we consider the graded subring P (I) = 2 I"T" of the polynomial ring R [T'],
nz=0

we check that A is integrally dependent on I if and only if the element 2T € R [T]
is integrally dependent on the ring P (I) in the classical sense (that is, F (AT) = 0,
where F is a monic polynomial with coefficients in P(I)). From this it follows
at once that the set I consisting of all elements in R which are integral over
Iis an ideal in R. I is called the integral closure of I in R. I is integrally closed

in R if I = I. For any ideal I, Iis the smallest integrally closed ideal in R containing
L

(1.2) This notion of integral dependence can be globalized: if X is a topological
space with a sheaf of rings &, and .# is an Oy-ideal sheaf, then there is an
Ox-ideal sheaf # such that for each x € X, the stalk .Z_is the integral closure
& of Z in .. To see this, one notes that if U is an open neighborhood of
x and h € T'(U, &) is such that the germ A_ € .Z, then an equation of integral
dependence of A  on Z “spreads out” to an open neighborhood U’ C U, and hence
h, € Zfor eachy € U’.

If (X, &) is a locally noetherian scheme and .# is coherent then .Z is coher-
ent (because “integral closure commutes with localization”; that is, if I is an
ideal in a commutative ring R, and S is any multiplicatively closed subset of R, then,
as is easily checked, the integral closure in S 'R of the ideal S™'I is
S7'I). A similar statement holds in the complex-analytic framework, that is, if
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(X, O%) is a complex-analytic space. (The proof is of course less elementary.) In
either case, given 2 € T'(X, &), theset Y = {y € X|h, & £} is a closed subspace
of X, namely the support of the coherent &y-module (& T, + .7)/.7.

(1.3) (Valuative criterion of integral dependence.) With notation as in (1.1)
assume that R is noetherian. Then an element A € R is integrally dependent
on I if and only if, for every homomorphism ¢ : R— V, where V is a discrete
valuation ring, we have ¢ (h) € ¢(I)V, or equivalently: v(h) = v(I) where v is
the order function on R obtained from the valuation of V. (Cf. [24, p. 353, Thm.
3], which treats the case of domains, which is all we need and to which anyhow
the general case is easily reduced.)

The complex-analytic avatar is this:

Let .# be a coherent sheaf of ideals on a complex space X, and & € I'(X,.#).
Then A € I'(X,.#) if and only if for every morphism ¢:D— X (D is the unit
disc in C') we have A o € T'(D, .#&,). In fact as a consequence of the coherence
of Z, given x € X, then A, € .Z if and only if for every map-germ ¢:(D,0) - (X, x)
we have h o¢ € 7, Gy 0.

(1.4) Assume that R is noetherian and normal, and let Z — Spec(R) be a proper
birational map with Z normal and I &, invertible. Then we have

I=H°Z,1I0,) C H°Z,0,) =R.

With the valuative criterion for properness, this can be proved similarly to the
Lemma on p. 354 of [24]. For a proof without valuatioPs, note that I ag,=10,
(because Z is normal and I &, is invertible), and that I= H°(Z,I10,) [12, Prop.
6.2].

The avatar of this in complex-analytic geometry is as follows:

Let # be a coherent sheaf of ideals on a normal complex space X and let
Z — X be a proper bimeromorphic map such that Z is normal and £, is invertible.
Then

I'(X,72 )="T1(Z,70,).

A consequence of this fact is the following transcendental criterion for integral
dependence.

Assume that the subspace of X defined by .7 is nowhere dense in a neighbor-
hood of some point x € X. SetR = 0y, andI= .7 C R.Let (f, .,..., f..) be gener-
ators for I, where the f; generate I'(U,.#) for some open neighborhood U of x.
Then given h € T'(U, &), h, € I if and only if there exists a neighborhood
U’ C U of x and a real constant C > 0 such that for every y € U’ we have

*) lh(y)| = C- St}plﬂ(y)l-

Indeed, denoting now by X a suitable neighborhood of x, consider the normalized
blow up Z — X of .# (blow up .# then normalize), or more generally any proper
bimeromorphic map w : Z— X with Z normal and #&, invertible. Then the inequali-
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ties (*) can be lifted to Z. Since Z is normal and .#&, is locally principal, it follows
from the Riemann extension theorem applied to (#¢&,) ™! - (h o 7) on Z that inequali-
ties such as (*) imply that how € #0,, hence h € #. Conversely, if h € .7,
how € S, and we therefore have locally on Z inequalities similar to (*), which
imply the inequalities (*) on X since = is proper and surjective.

(1.5) Local duality ([3, p. 659]). Take R =0, =C{z,,...,2,} and let f =
(fi,---sf,) be a regular sequence of elements of the maximal ideal M of R. Denoting
by I the ideal of R generated by the f;,, we have V' I=M and there exists a
residue bilinear pairing associated with f:

(1.5.1) Res;:R/I®;R/I— C
induced by the bilinear pairing R ®: R — C given by

dz, A ... ndz,

Res¢(g, h) = S gh
| £(2)] =¢ fl e fn

the orientation on the real n-cycle | f;(z)] = ¢ (1 = i < n) being that given by the
condition d (arg f,) A ... A d(arg f,) = 0. Note that the integral is independent of
e for all sufficiently small € because of Stokes’ theorem.

(1.56.2) The local duality theorem is the assertion that the pairing (1.5.1) is
non-degenerate; that is if Res,(g,hA) =0 forallg € O,, then A € I.

(1.6) A new transcendental proof of the theorem of Briancon-Skoda in
the special case where VI=Mand\ =1.

As already observed in the introduction, we may replace I by one of its reduc-
tions, and therefore assume that I is generated by a regular sequence (f,...,f.).
We are going to use local duality to prove that I” C I; it is enough, then, to
show for any A € I” and g € O_ that Res;(g,h) = 0.

Since gh € I", the transcendental criterion for integral dependence gives an
€, > 0 and a C > 0 such that for any e with 0 <e <e,and z € C" with | f;(2)] =
(1 =i =n), we have

[(gh)(2)| = C - sup | f. )| = Ce®

where f, runs through all the monomials f3' ... fo» with o, = 0 and z a; =n.

(Note that the map C” — C™ with coordinate functions f; is finite near 0, so that
the cycle | f;(z)] = € (1 = i = n) shrinks to the origin as ¢ — 0.) In particular

[(gh) @) /(fy...[)(@] =C

and hence

|[Resc(g, h)| = C S |dz, A ... A dz,|.

12 =e
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The integral on the right tends to 0 with ¢, so indeed Res,(g,h) =0

(1.7) Remark. In the two-dimensional local ring
R=0C{z,,2,,23} /2] + 25 + 233 =C{Z,,2,,2,} (m=1)

the 1ntegral closure of the ideal I = (z,,2,)R is the maximal ideal (z,,z,,Zz;)R;
but 77 &€ I So the Briangon-Skoda result cannot hold with an arbitrary analytic
local rlng in place of O,,.

2. PSEUDO-RATIONAL LOCAL RINGS

In this section we define pseudo-rational local rings, give some examples, and
prove in such local rings the Brian¢on-Skoda result for ideals which are primary
for the maximal ideal.

Let R be an n-dimensional local ring (noetherian and commutative), with maximal
ideal M. We say that R is pseudo-rational if it satisfies all of the following four
conditions:

(i) R is normal.
(ii) R is Cohen-Macaulay.
(iii) The completion R is reduced (i.e. has no non-zero nilpotents).

(iv) For any proper birational map f: W— X = Spec (R) with W normal, if
E = f'{M} is the closed fibre, then the canonical map (an edge-homorphism in
the Leray spectral sequence for cohomology with supports {7, p. 73, Prop. 5.5])

is injective.
Remarks. (a). Let f: W— Spec(R) be as in (iv), let g: W — W be a proper

birational map, and let E’ = g7 (E) = (fg) ' {M}. Then the spectral sequence
for g gives a map

8 : Hy(Gy) = Ho ()
and one chécks that

Oy, = 8,03,
So if 3, is injective, then 3, is too. As in [14, p. 157], using Chow’s lemma and
Rees’ characterization of analytlcally unramified local rings [19], we see then
that an n-dimensional normal Cohen-Macaulay local ring R is pseudo-rational
if and only if it satisfies one of the following equivalent conditions:

(iv)’: For any projective birational map f: W— Spec (R) there exists a proper
birational map g: W’ — W such that W’ is normal and 3, is injective. [Whenever
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we speak of birational maps, it is to be understood that the schemes involved
are reduced and irreducible.]

(iv)’: For any proper birational map f:W— Spec (R), the normalization
g: W' — Wis finite, and 3, is injective.

(b) (Not used elsewhere.) If R is any n-dimensional normal local ring and
f: W— Spec (R) is proper and birational, then for g > 0 the support of Rf, &,

has dimension less than or equal to n—1—¢q (use [5, (4.2.2)]). So
Hby (R°f, Oy) = 0 for p + g = n, ¢ > 0; and hence 3, is always surjective.

Examples. (a). Let R be a two-dimensional normal local ring, and let
f: W— Spec (R) be proper and birational, with W normal. Then R'f . Ow1s support-
ed in the closed point, and the Leray spectral sequence gives an exact sequence

HL(Oy) = Hlypy (Rf, Oo) > HZ(R) 25 H2( ).

I
Hl (W, &)W)

But H,(O,) =0 [14, p. 177, Thm. 2.4]. Hence 3, is injective if and only if
H' (W, &,) =0. Thus for n = 2, our definition agrees with the one on p. 156 of
[14]. In particular any two-dimensional rational singularity is pseudo-rational.

More information about the case n = 2 is given in Section 5 below.

(b). Let R be an excellent regular local ring containing a field of characteristic
zero. Then by Hironaka’s resolution of singularities, R satisfies (iv)’ of Remark
(a), and so R is pseudo-rational. (In fact W’ can be obtained from Spec(R) by
a succession of blow-ups with non-singular centers; then R(fg), &, = 0 for all
g > 0, and the Leray spectral sequence for fg degenerates, so that 3, is bijective.)

More generally, in Section 4 we will show that any regular local ring is
pseudo-rational. For this result, resolution of singularities is not available in the
required generality; instead we mount a massive attack with Grothendieck’s duality
theory. A simpler proof would of course be desirable.

(c). (For getting rid of finite residue fields). Let R be a pseudo-rational local
ring, with maximal ideal M. Let T be an indeterminate, and let R, be the localization
of the polynomial ring R [T'] at the prime ideal MR [T']. Then R, is pseudo-rational.

Sketch of proof. Certainly R, is normal and Cohen-Macaulay. [6, (6.3.6).]
Let us check condition (iv)’ of Remark (a). Any projective birational map
fi: W, — Spec (R,) is obtained by blowing up an ideal I, in R,, and we may assume
that I, is generated by finitely many polynomials in R[T]. Let I be the ideal
in R generated by all the coefficients of these polynomials, and let 2 : W’ — Spec (R)
be obtained by blowing up I and normalizing. Setting Wi = W’ ® . R,, we see
that I, &, is invertible, so there is a proper birational map g, : W; — W,. Now
f18, = h ®x R, ; and one checks that 8§ commutes with ®,R,. Thus 8, , =3, ®,R,
is injective.

THEOREM 2.1. Let R be a pseudo-rational n-dimensional local ring, and let
I be an ideal in R. Then for any integer A = 1, we have
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IA\ +n-—1 g I)\

where “ ” denotes “integral closure.”

COROLLARY 2.2. Assume that the localization R, is pseudo-rational for every
prime ideal p in R. (This is automatically true if R has a residual complex, cf.
Corollary of (iti) in Section 4.) Suppose that I has a reduction J such that dim R, < 3
for every associated prime ideal p of J* (3-some integer, which may be assumed
less than or equal to n). Then

(2.3) ne1cr.

In particular, if J can be generated by a regular sequence (fi,...,f,), then (2.3)
holds for any integer \ = 1.

Proof of 2.2. The first assertion follows easily from (2.1) (replace I by J and
localize at the associated primes of J*). The second assertion holds then because
in a Cohen-Macaulay ring every power of an ideal generated by a regular sequence
is unmixed [24, p. 401., Lemma 5.1].

Proof of 2.1. To begin with we argue as in [2]: suppose (2.1) holds whenever
I =M, the maximal ideal of R; then for any ideal I, and any integer s > 0,
we have

I)\+n—1 g (I+MS))\+n—l g (I+MS)J\ g I)\ +Ms
and therefore

W——i—g n (I)\+MS)=IA.
s>0
So we assume henceforth that \/} =M.

We first treat the case A = 1; the general case is reduced to this one in Section
3 below. By Example (c) above, we may assume that R/M is infinite; and then
(as in the Introduction) replacing I by a reduction allows us to assume that
I=(f,,....f,) R, where (f,,...,f,) is a regular sequence in R.

Let & € I" . We want to show that 4 € 1. There is a natural injective map
¢:R/I— Hy(R)
(cf. [10, p. 49, Lemma 5.10]). With U = Spec(R) — {M}, we also have a natural
surjective (bijective, if n > 1) map H" (U, J,)— Hy(R). Since U is covered
by the affine open sets U; = Spec (R,), we see, using Cech cohomology, that
H""'(U, 0,;) —and hence H}, (R)—is a homomorphic image of
H°U,Nn..NnU,?%) = R ;o r

that is, we have a surjective map

"'J : 'Rﬁfz-n)"n_> HHM(R )
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Following through definitions, we find that

¢(hmodI) =¥t/f f,...[o)

Since ¢ is injective, it will suffice to show that ¢(h/f, f. ... f,) = 0.

Now let f: W— Spec (R) be any proper birational map with W normal and
1, invertible (for instance the map obtained by blowing up I and normalizing).
We will show that y(k/f, f, ... f,) is in the kernel of 3,: H,, (R) — H%(&,,), which,
be definition, is zero when R is pseudo-rational.

With U’ = f"'(U) = W — E, we have a canonical commutative diagram

H* Y (W, ) H" (U, O, )—> Hy(O)
1 18,
H" (U, Oy) — Hy(R)
whose top row is exact. Let V; C W be the open set defined by

Vi={we WI, ,=f 0.}

Then W=V,UV,U..UV, and V,NU =f'U). To say that
8U(h/fifs .- f,) =0 is to say that the Cech n-cocycle

hifife. - f,€H (YUY N ...0O U, Gy)

determines an element A* in H* ' (U’, &,.) whose image in H 7(&,,) is zero; and
for this to be so, it suffices that the cocycle lift to an n-cocycle of the covering
{V.} of W (which implies that A* is the image of an element in H"™' (W, &,,)).
But such a lifting certainly exists, because on V, N ... N V,, I"&,, is generated
by f,f,...f,, and

heI"=H(W,I"G,)

(cf. 1.4).

3. REDUCTION TO THE CASE A =1

Having proved Theorem (2.1) for A = 1, we shall now deduce the result for
any A = 1. The following argument is due essentially to Melvin Hochster, and
is given here with his permission.

As before, we may assume that I=(f,,...,f,) R with a regular sequence
(fis---»f,)- The basic observation is that

I"= n lexz...xn

Ads -0
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with
IJ\I}\Z...,\n =(f1%..s fﬁ")R

where (A\;,\,,...,A,) runs through all n-tuples of strictly positive integers with
AM+A,+...+N,=A+n-—1. Here the non-obvious inclusion, namely
I"'on I, .., can be proved by induction on A; to get from A to A + 1 one needs
the following fact: if a € R is such that

afifer. e (fr et LR (v;=0) (3.1)
then a € I. But (3.1) can be rewritten as
(aft . frirt=Bf) € (1., fix" )R B ER)

1 1 .
and (fi*7, 2211 ..., fo") is a system of parameters, hence a regular sequence, so
that

af P € (YL DR (mod f,).

Since (f4,...,f,_,) is a regular sequence mod f,, we can proceed by induction on
n to conclude that indeed o € I.

It will therefore suffice to show, for A\=1 and A\, + A, + ... + A, =N +n -1,
that I"*"7' C I, , .

Let p = max (\,,..,\,). Ifh € I"™""! then
frMfETre Ty e T

By the valuative criterion (1.3), one sees that, with I, = (f},...,f%)R we have
(Iu)" = I™" ;so by the case A = 1 of Theorem (2.1) we get

I™ c I, = (f's.., LR
Thus

hE (fl o AR AT =1 .,

(the last equality is proved by reasoning as above).

This completes the proof of Theorem (2.1).

4. REGULAR LOCAL RINGS ARE PSEUDO-RATIONAL

We begin with an outline of the proof. Let R be an n-dimensional normal
local ring with maximal ideal M and fraction field K. We assume that R has
a residual complex. (This assumption holds, for example, if R is regular; or more
generally if R is essentially of finite type over a Gorenstein local ring [8, bottom
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of p. 306].) We consider proper birational maps f: Y — X = Spec (R) (with Y a
reduced scheme). Without harm we may assume that f induces the identity map
from the local ring of the generic point of X to the local ring of the generic
point of Y, both local rings being equal to K; then f is uniquely determined by
Y. For the most part what we will be doing is to explicate a portion of Grothendieck
duality theory for such f by defining, for each Y, a “dualizing sheaf” w,, which
is a coherent ¢&,-submodule of the constant sheaf K on Y, with the following
properties (i), (ii), (iii), (iv):

(i) For any point y € Y, the stalk vy , depends only on the local ring Oy,
(and not on Y).

(Note that @y , is an R-subalgebra of K.)

(ii) For any y € Y as in (i), we have

Wy,y = m (wY,y)p

pEPy

where P, is the set of all height one prime ideals in Oy .

Given f: Y— X as above, since R is normal there is a non-empty open set
U C X, with X — U of codimension greater than or equal to 2, such that f induces
an isomorphism f ' (U) > U. For anyy € f~*(U) the corresponding local homomor-
phism &y (., &y, is the identity map. So, in view of (i), the sheaves f, (wy)
and wy have the same stalk at every point of U, that is, their restrictions to
U coincide (as subsheaves of K). Thus there is an inclusion map

Ty H(Y,0y)> H (f (U)o y) = H(U, f,oy) = H*(Uwy) = H* (X0 )

(the last equality because of (ii), since X — U has codimension greater than or
equal to 2).

We set wp, = H°(X, wy).
(iii). (Duality). Let I be an injective hull of the R-module R/M, and for any
R-module H set H = Homy(H,I). There exist R-isomorphisms
H3(R) 5 (o)
Hz‘(ﬁy) —> HO(Y:wy),

via which the map 3, (Section 2) is dual to 7.
COROLLARY (of (iii)). If the normal local ring R is Cohen-Macaulay and

R is reduced, then R is pseudo-rational if and only if for every proper birational
f:Y— X = Spec(R) with Y normal, =y is surjective; that is,
H°(Y,wy) = w,

(equivalently: f, wy = wy).
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Finally, when R is regular, we will have w; = R, and furthermore:

(iv) If R is regular and y € Y is such that Oy, is a discrete valuation ring,
then oy, D Oy ,.

From (ii) and (iv) we deduce that if R is regular and Y is normal, then wy 2 &,
whence

HO(Yamy) 2 HO(Y, &’Y) =R= wp I HO(sty)

that is, H°(Y,»y) = wg; and so by the preceding corollary, any regular R is indeed
pseudo-rational.

Let us then define w, and prove (i), (ii), (iii) and (iv).

Let #% be a normalized residual complex on X = Spec (R) [8, p. 276]. Let
Ry = [H(RPy) [8, p. 318], and set

wy=H " (ZYy).

This w3} is defined only up to isomorphism. Since residual complexes have (by
definition) coherent cohomology, and since 2%, = 0 forj < —n and %2 3" is a sheafified
injective hull of the residue field at the generic point of Y, thatis, # " is isomorphic
to the constant sheaf K, therefore w?% is isomorphic to a coherent &,-submodule
of K. wy, defined below, will be a particular &-submodule of K isomorphic to
.

Furthermore, localized at a point y € Y, the differential d ": # " — £; "
looks—up to isomorphism—Ilike

d;":K— @ J(p)

pEP

where P, is as in (ii) above, and J(p) is the injective hull of the fraction field
of &, ,/p considered as an & ,-module. (Here we need know no more about d ;"
than its source and target.) So, first of all, the generic stalk of w} is isomorphic
to K (i.e. ¥ # 0). Secondly

0% =kernelof d;" = [] (kernel of m,od;")
pEP_y
where ( @ J(g)) — J(p) is the projection. But m, o d " is just the localization

of d ;" at p, so after identifying w3 with the submodule vy of K, we will have

= n ("‘)Y.y)p

PEP,
which is (ii).

Now we specify o . First fix an @y-submodule wy of K such that wy is isomorphic
to w%. Any choice of w, will do; however, when R is regular—or, more generally,
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Gorenstein—we make the natural choice wy = @, [8 p. 229], so that in this
case, (cf. sentence preceding (iv))

wp = H(X,wy) = H°(X, O;) = R.

Next, choose a non-empty open set U C X with X — U of codimension greater
than or equal to 2 such that f maps f~'(U) isomorphically to U. Then w% and
[*wy are isomorphic over f ' (U); and any isomorphism extends to an embedding
Iy:wy— K over all of Y. We set wy = iy (03).

Note that i, is determined only up to automorphisms of w,|U, that is, up
to multiplication by units in H°(U, &,) = R; but wy is uniquely determined. (Actu-
ally there is a natural choice for i, cf. proof of (iii) below).

Having thus fixed oy, we can prove (i) as follows.

The problem comes down to this: given two proper birational maps f, : Y, — X,
f:Y—> X, open sets V, C Y,, VC Y, and an X-isomorphism g: V, — V, show
that

(4.1) &, (wy |V)) = oy|V

Enlarging (V,, V, g) as much as possible, we may assume that there is a non-empty
open set U in X such that X — U has codimension greater than or equal to 2,
f(U) C V, and f maps f "' (U) isomorphically to U. Now g, (wy |V,) is isomorphic
to wy|V; and moreover, by the construction of wy, these two sheaves coincide
on f~'(U) with f*(wy); since R is normal and X — U has codimension greater
than or equal to 2, we see then that any isomorphism from g, (wy, | V,) onto |V
is given by multiplication by an element r of K such that r is in fact a unit
in R; this gives (4.1), and so (i) is proved.

Next we prove (iii).
There is a trace map f, (%) — % x which is a homomorphism of complexes
[8, p. 369]. Taking kernels in degree —n, we get a homomorphism of sheaves

-n
tr . f* (J.)Y—> (!)Xo

Letting U C X be as usual, and taking global sections over X and U, we get
from {r™" a commutative diagram

H°(Y,0y) = H°(X, f,oy) > H°X,0x) = op

Tyl |
Ho(f_l(U)’wY) = HO(U:f*wY) T) HO(Usz) = Wpg

vy is an isomorphism, because the trace map is compatible with the base change
UGS X, and f ' (U)S U is an isomorphism. [There is a unique choice of the
above embedding iy : % — K making v, = identity.}] So in proving (iii), we may
replace 7y by 7%.
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The duality theorem, in the form given in [14, p. 188], yields an isomorphism:

acstt
RT, &, = RT,,(Rf, 0;,) 5 Hom (Rf, Gy, %)’

trace

ural
= RHom(RS, Oy f, %) — RHom(Gy, 2y = Ty#y)

Taking cohomology in degree n, we get one isomorphism H'%(&,) > H°(Y,wy)’
of (iii), and in particular, for Y = X, the other isomorphism H},(R) S (wg)’.

The map 3, of Section 2 is an “edge homomorphism,” gotten by taking cohomol-
ogy in degree n in the obvious map of complexes

RF, (&) = RT,(f, O)) = RT, (RS, O)

The above map 73 is gotten by taking cohomology in degree —n in the map
of complexes

RHom (f, Oy,f, ZY) RHom (f, Oy, % %)

With everything thus made explicit, it is straightforward to check that 3, is
indeed dual to 75, as asserted in (iii).

It remains to prove (iv).

So assume that R is regular, and let y € Y be such that &, , is a discrete
valuation ring. We proceed by induction on n, the case n = 1 being trivial. Let
fly) = p,aprime ideal in R. From the definition of “residual complex,” it is immediate
that Z x ® R, is a residual complex on Spec (R,) (not, however, normalized unless
p=M ) and by compatibility of f* with flat base change (which can be ver1f1ed
easily for the particular base change Spec (R,) — Spec (R)), setting f [®x
we have an isomorphism

foZx®rR,) =R, ®,R,.

Hence our definition of w, “commutes with localization on R”; and so, by the
inductive hypothesis, we may assume p = M.

Since R is universally catenary, the residue field of &5 , has transcendence
degree n — 1 over the residue field of R. Hence by [1, p. 77, Prop. 4.4. (where
the world “algebraic” can be omitted)], if we set X, = X, and (fori > 0) X,
the blowup of X, , along the closure of the image of y in X, _,, then for some
m, Oy, is the local ring of a point on X,,. (Note. Since Oy, is a discrete valuation
ring, there is a neighborhood V; of y in Y and a birational map V— X, _, for

each ¢ > 0.) Because of (i), we may assume that Y = X, ,.

We proceed by induction on m. Assume m > 0 (the case m = 0 is trivial). Suppose
we can show that
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0, = 0y, 2 ﬂxl-
Since X, is obtained by blowing up M, therefore X is regular and so w, is invertible.

Let f,: Y— X, be the obvious map, and set x; = f;(y). Again by localizing at
x,, and by the inductive hypothesis (on m), we see that

wy,®(flw,),' 2 &,
so that
wy,, D (fie,), 2 (fi %), = O,.

Thus we need only consider the case m = 1.

. Soassume that Y = X, and v, = wy. wyis then an invertible sheaf whose restric-
tionto U =Y — Eis ¢,. (Recall that wy = &, and note that U = Spec (R) — {M}.)
Here E is a divisor,

E=f7 (M) =P
(projective (n — 1)-space over the residue field of R), so wy = &, (aE) for some
integer a. By the “adjunction formula” (cf. [8, p. 190, 2) and 3)]), if i: EGSY
is the inclusion, then i* (w, ® & (E)) is a dualizing sheaf on P" ™, that is,
*(Oy((a + 1)E)) = G (—n).
But
*(Oy(E)) = Ox(E) = Og(—1).

Hence a = n — 1, that is,

wy = Oyl(n — VE) 2 &,

5. TWO-DIMENSIONAL PSEUDO-RATIONAL LOCAL RINGS
We begin with a technical lemma. Let Y be a scheme, let F be a locally free

Oy-module of rank d, and let o : F —» &, be an &,-homomorphism. From these
data we obtain a complex of &;-modules (exterior powers of F')

K(F,0):05 A°F5> A 'F— ... 5 A'F=F> 0= 0

where the maps o, : A’F— A’"'F are given locally by

‘i
o;le,ne,...Nn€)= E (—1)"‘_10((3]-)e1 A NEN...AEg
j=1

[{F~E 2]
e

(as usual “é;” signifies “omit e,;”). Locally K (F,o) is a Koszul complex. In particular,
if o is surjective then K (F,o) is exact.
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Now let L be an invertible &,-module generated by finitely many global sections

(fis-- fg) Let
F=L"®oL7'®. ®L! (d times)

and let o : F— &, be the sum of the homomorphisms f,: L™'— &, (i = 1,2,...,d).
Then o is surjective, and so we have an exact complex K (F,s). Note that in this

. d )
case A'F is a direct sum of ( ) ) copies of L™°. [In fact K (F,o) is the tensor

)
product of the d two-term complexes L™* X Iy i =1,2,...,d).]

Tensoring this K (F, o) with L°, we get an exact sequence

K(F,O’)(S):O-—) Lds—) Ld—l,s_) e ™ Lls_) LOs =L 0

d - .
) copies of L',

where L, is a direct sum of (
i

LEMMA 5.1. With preceding notation, assume that L C Oy, and let I be
the H®(&,)-ideal generated by (f,,...,f,). Suppose that

HY L ?)=H*(L**)=..=H'(L""% =0.
Then
H°(L’) =IH°(L*™").
Proof. From K (F,c)(s) we get exact sequences
0-K,»>L,—>K, ,—»0 t=1,2,...,d-1)
with
K,=L,=L, K, ,=L, =L""

Since L,, is a direct sum of copies of L°~*, we see that the resulting connecting
homomorphisms

HY (K,)) > H*(K,)—> ...—» H (K, _,)—» H* " (K,_,)

are all injective. Since H* ' (K,_,) = H* ' (I°~%) = 0, therefore H'(K,) = 0, and
consequently

H°(L,,)— H°(K,) = H°(L®)

is surjective, which gives the stated result.

Remark 5.2. By a similar argument, if we assume that
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H (L ?)=H*L"®)=..=H**L°*") =0
and that
H'@C HY=HL"*=..=H'L"=0
then we get an isomorphism.
H™(L,) = H (L) = HO(L')/IH L°7).

COROLLARY 5.3. Let R be a normal local domain whose completion R is
reduced (i.e. has no nonzero nilpotent elements). Let f,, ..., f, € R, and for each
integer t > 0 let I, be the ideal (f%,....,f))R. Let Y — Spec (R) be obtained by
blowing up I and normalizing. Then, for all sufficiently large t we have (with
I=1I):

Q) H'YO)= IT/L I =17 /LT
and
G) I =190 =r19=1T71"

Proof. Since Risreduced, Y — Spec (R)is a finite-type morphism [19].L, = I &,
is an ample invertible &,-module [4, (4.6.6), (8.1.7), and 5, (2.6.2)], and for
any t > 0, L} is generated by its global sections f7, ..., f5. Since L, is ample, the
hypotheses of remark (5.2) will be satisfied if L = L] for ¢ sufficiently large and
s =d; so in view of (1.3) and (1.4), (5.2) gives (a). (b) is obtained similarly; or
it can be deduced from (a) by using the sequence f,, ..., f;, fo.1 With f,., = fa,
and noting that H?(&,) = 0 (since Y is covered by d affine open subsets).

COROLLARY 5.4. Let R be a two-dimensional pseudo-rational local ring. Then
for every ideal I in R and every integer A > 0 we have

P’ =11 =]

Proof. We assume that R has an infinite residue field (the reduction to this
case is left to the reader; use Example (c) of Section 2 and [13, p. 660, (e)]).
Then I has a reduction generated by two elements, and we may replace I by
this reduction, that is, we may assume that I itself is generated by two elements
(fi,f2)- Let f: Y— Spec(R) be obtained by blowing up I and normalizing. Since
R is pseudo-rational, H 1(ﬁy) = 0 (Example (b), Section 2). Setting L = IJ,, we
have that, for any ¢ =0, L' is generated by its global sections, that is, L’ is a
homomorphic image of ﬁ’,v, for some N >0, and hence H'(L*) = 0. (Note that
H?(K) = 0, where K is the kernel of the surjection (7?5——-) L', since Y is covered
by two affine open subsets.) The first equality in (5.4) follows now from Lemma
(5.1), with d =2, s =\ + 1. The second equality is then obtained by induction
on A.

PROPOSAITION 5.5. Let R be a two-dimensional normal local ring, whose
completion R is reduced. Then R is pseudo-rational if and only if, for_every ideal
I primary for the maximal ideal of R, II is integrally closed (i.e. IT = I?).
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Proof. We have just seen that if R is pseudo-rational then I? =IT for every
ideal I'in R.

For the converse, take d = 2 and ¢ large in (i) of (5.3) to see that H' (Fy) =0
for every Y — Spec(R) obtained by blowing up and normalizing an ideal in R
generated by a system of parameters (f,,f,). It will therefore suffice to show
that every proper birational f: W— Spec (R ) is “dominated” by such a Y — Spec (R),
that is, there exists a commutative diagram

Y ——mW

\ A

Spec (R)
(cf. Section 2, Remark (a) and Example (b)).

Let vy, ..., v, be the discrete valuations centered along components of the closed
fibre f ' {M} (M = maximal ideal of R). For each i, there exist non-zero elements
a;,b; in R such that v;(a;/b;) = 0 and the image of a,/b, in the residue field
of the valuation ring R, is transcendental over the residue field of R. Choose
a non-unit ¢; in R not lylng in any height one prime contalmng (a;, b;)R, so that

= (a;, b;,c;)R is M-primary. Replacing ¢, by some power ¢, we may assume
that v;(c;) = v,;(b;). Now

Ru, 2 R[a,;/b;,¢;/b;]

and hence v; has a one-dimensional center on the scheme obtained by blowing
up J;. Thus if Y — Spec(R) is obtained by blowing up the product o dJ, ... dJ,,
and normalizing, then all of v,, ..., v,, have one-dimensional centers on Y, and
so by Zariski’s main theorem, Y — Spec(R) dominates f. Since J is M-primary,
some power of J has a reduction generated by a system of parameters (f;, f,)
[17, p. 356, Theorem 4]; blowing up ( f,,f,)R and normalizing gives the same
Y — Spec(R).

Added in proof:
‘ 1. The theorem mentioned at the end of Introduction has been proved for
arbitrary ideals in regular local rings [25].

2. The equality ¢(A mod I) = y(h/ f,f,...f,) in the proof of 2.1 can also be
taken as the definition of ¢, and then the injectivity is an early consequence
of the first fact established in Section 3.
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