ON A MINKOWSKI-TYPE INEQUALITY FOR
MULTIPLICITIES-II

By B. TEISSIER

INTRODUCTION. In the note [M.I), to which this paper is a sequel,
I proved the following Minkowski-type inequality, for multiplicities
of primary ideals in a local noetherian Cohen-Macaulay algebra
over an algebraically closed field; setting d = dim @, we have:

e(n, - )" < e(1,)"? + e(ny)'" (*)
for any two primary ideals 11,, 11, in @, where e(n1) denotes the
multiplicity.

In this paper I will prove:

THEOREM 1. Let O be a Cohen-Macaulay normal complex analytic
algebra. Then, given two ideals 11,, n, of @ which are primary for the
mazximal ideal, we have the equality

e, - )0 = e(n) + e(ny)'
if and only if there exist positive integers a, b such that
= i
(where the bar means the integral closure of ideals, for the properties
of which see [C.E.W.] and [L.T.]).

As will be clear from the proof, the conjunction of this result
and (*) constitutes a generalization to arbitrary dimension of the
classical result asserting the negative definiteness of the intersection
matrix of the components of the exceptional divisor of a resolution
of singularities of a germ of a normal surface (see [DV], [M], [Li]).

This paper also contains two rather different applications of the
above result. The first is a lightning proof of a special case of a
theorem of Rees ([Re]) according to which, given two primary
ideals 11;, 11, in an equidimensional ring @ such that i, c i, and
e(n,) = e(n1,), we have 1?1 = TE
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This result now plays a. rather important role in the study of the
geometry of singularities (¢f. [C.E.W.] and [H.L.]) and is also used
in the proof of the author’s “principle of specialization of integral
dependance’’ (¢f. [D.C.N.] App. I) which is at the source of several
results in the theory of equisingularity. The other application is a
numerical characterization of those germs of real-analytic maps
f:(R2, 0) — (R?, 0) which are isotopic (in a strong sense) to a germ
of a holomorphic map (C, 0) - (C, 0): they are exactly those maps
such that their local topological degree is equal to the square root of
the degree of their complexification (= dimg @,-1(,,). This result,
which is apparently new, makes use of the algebraic description of
the local topological degree, given by Eisenbud and Levine in [E.L.].

REMarks: (1) The equivalence relation: 11, ~ 11, if and only if
there exist a, b € N such that ﬁl' =?g has been studied by Samuel

in [Sa,], from a different viewpoint, under the name ‘projective
equivalence’.

(2) The proof of Theorem 1 above uses only the Cohen-Macaulay
property of @, and the possiblity of resolving singularities of
2-dimensional quotients of @. Indeed it seems to be valid under some
mere “‘excellence’’ assumption on @, (see [Li]) and the assumption
that @ is Cohen-Macaulay and normal. However, I have in this
redaction once again sacrificed generality to geometry, and restricted

the presentation to complex analytic geometry to be able to present '

the ideas in their naivety. In any case, the absence of a base field
would indeed make the proofs a lot more cumbersome.

1. A geometric result. The essential technical ingredient of the
proof of Theorem 1 is the following result, in itself rather useful
(see [T]).

ProrosrrioN: Let O be a reduced Cohen-Macaulay complex
analytic algebra and 1t an tdeal of @ primary for the maximal ideal.
Set d = dim O and let as usual n!*! denote an ideal O generated by i
“sufficiently general” linear combinations of the elements of a fixed
system of generators of 11. Then we have:

(1) =7
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(2) Given f€ 0, fen if and only if
R

with the necessary precision that the meaning of “sufficiently general”
in the notation 14~ occurring in (2) depends on f, in other words,
we have (2) for a Zariski-open dense subset U, of the space of coefficients
of d — 1 linear combinations of generators of 1, and U, depends on f.

Proor. (1), which is due to Samuel [Sa,], is a consequence
of Noether’s normalization theorem.

Let us prove (2): let (W, 0) be a representative of the germ of
complex space corresponding to @, and such that f and 1 are the
germs of a globally defined function and ideal on W. Let 7: Z ->Wbe
the normalized blowing up of 1t in W. It follows from (1) and the
results in ([H,] Lecture 7, [L. T.]) that = is also the normalized
blowing up of an 1% = (f,,..., f;) c n. Let =y :Z—W be the blowing
up of this n/@. Since @ is Cohen-Macaulay, (f}, -.-, f;) is a regular
sequence and hence (Lemma 1.9 of [H,]) we can describe =, as the
restriction of the first projection to the subspace of W x Pé~! defined

gystem of homogeneous coordinates on P4-1. Let us consider the
following diagram:

zZ
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where n denotes the normalization map and o is the section of
G = pry| Z defined by o(P?-!) = {0} x P¢~!, which is in Z since
14 c m, the maximal ideal of @.

ag
Now we consider Z %~ Pd-1 ag g family of germs of curves,
N yolg

G
which like any family of curves admits a simultaneous normalization
([D.C.N.]) over an open-analytic (i.e. complement of a closed analytic
subset) dense subset of its parameter space hence, here, over a
Zariski open dense subset U c P4~ This means that for p e U, the
composed map G: Z — Z — P4-1 ig flat in a neighbourhood of the

finite set n~(o(p)), and the multi-germ ((Z),, n~'(o(p))) where
(Z)? = G—(p), is the union of a finite set of germs of non-singular
curves, each being the normalization of an irreducible component
of the curve (Z,, o(p)), where Z,=G~(p). Furthermore since clearly
Z, is “transversal” to {0} X P4~! which is set-theoretically the

exceptional divisor of =y, (Z,, 2;) will be a germ of a non-singular
curve transversal to the exceptional divisor D of w, for z, € n=(a(p)).
The idea is, that these germs of curves can be used to compute multi-
plicities along the exceptional divisor D of m. Indeed, since n is a
finite morphism, each irreducible component D, of D, which is
purely of codimension 1 in Z by the hauptidealsatz, is mapped
surjectively onto {0} x P4~ by n. Let us consider the decomposition
D = L’J D, of Dinitsirreducible components. Then by the properties
i=1

of normal spaces, for each given fe @ we can find a dense open-
analytic subset U, c D, such that at each point z € U; we have:

(1). (D,),eq is non-singular and coincides with (D;,), 4
(2). Z is non-singular at z.

(3). f. Oz, defines asubspace having areduced associated subspace
which coincides with (D, )4, in other words: the strict
transform by = of f = 0 is empty near z.

By diminishing U if necessary, in a way which depends upon f,
gsince the U, do, we can assume:
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D; an~Yo(V)) c U, (l<i<l).
Now for z € D, nn~!(o(U)) we have by (1), (2), (3):

(i) n.0z, ~v)'. Oz, where

A

(i) Oz, =~ C{v, ..., v} by (2).

(iii) f. Oz, = 5. Oz,
where v,, (resp. ;) is the order with which 11. 07 (resp. [ o) vanishes
along D;. This order being locally constant is constant on U, since
D, is irreducible.

Setting p=G(n(z)), certainly one of the components of the curve
(Z,, o(p)) has a normalization ((Z_)p, z) which goes through z and
is transversal to D, at z. Therefore, since the algebra 0(7)@, is
isomorphic to C {i}, and v, . O, , = a,t +a, 2 + ... with a, € C,
a,# 0, we have, denoting by v the order in ¢ of elements of C {t},
i.e. the natural valuation on 0(7)]”‘1, that

v=on.0g,) (p=GE)2eU)
peo=uf. O0,.)

Since the polar locus of a meromorphic function in a normal
space is either of codimension 1 or empty, and since by ([H,], [L.T.])
fen if and only if f. Oz, cu, Oz, for all zem~1(0), we see that fen
if and only if x, > v, (1 <¢ <) and this is equivalent to the
fact that for some p € U, and any irreducible component Z ; of
Z,= G~Y(p), we have f. 01,,

oty C 1L (Pzp‘l__a(p) for all 7, that is:

£ 0Zp,0(p) cn. ‘sz,a(,;) (by the valuative criterion for integral depen-

dance, see [H,],[L.T.]). But now it is clear that Z,, p € U is isomorphic

to the curve in (W, 0) defined by the d — 1 equationsJ;1 =..= {_"

1 d

fis1t =0 (1<t<d—1), and this means that (Z,, o(p)) is the curve
defined by a n'¥l according to our conventions. This ends the proof

of Proposition 1.

Note. The following diagram may perhaps help the reader.
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REMARK: There is not necessarily a bijection between the
irreducible components of Zﬂ, p € U and those of D. What counts is
that each (p;, v;,) appears at least once as the valuation of (11, f) given
by an irreducible component of Z and that all these valuations
occur in this way. This fact is important in the construction of
invariants; see ([T], proof of Theorem 2).

2. Proof of Theorem 1. The assertion is obvious when d=0,1
since @ is then C, C{!}. We therefore assume d > 2. Let us recall
from [M.1] that given two primary ideals i, and 11, of @, we set
e; = e(ni! + iy~

and showed that (*) was a consequence of inequalities

¢f <e.eg’ (1<i<d) [T.2]
themselves consequences of:

S G 2 <i<d [1.3]

€ €

All this in view of the equality
d

d
et 1) = > () [E.1]
i=0
of ((C.E.W.] Chap. I§ 2).
The idea being that by induction on d it is enough to prove

€ €
d d—
> &

€i—t Gy
and that this is in fact a result on surfaces: setting @ = @/nl¢-2,
ﬁizn .0, i=1, 2 we saw, thanks to the Cohen-Macaulay property of

@, that edzzd,ed_lz eNI, eH:ZO where a = e(ﬁfl"l +ﬁ122—‘1). We con-
sidered a well-chosen resolution of singularities of the germ of

surface S corresponding to 0, say r: 8 — 8, such that in particular

5[121, ﬁllll - Elzll, ?1[22] and the maximal ideal 111 of @ all become
invertible on S, 1 O defining a divisor with normal crossings. Then,

denoting by u, (resp. v,) the order of vanishing of 51 . Oy (resp.
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f{z . 0g) along the k-th component E, of r=1(0), we had, using a
result of C. P. Ramanujam in [R]

eo=— 2 (B, EL ) uu
kK

~

¢

=—Z(E,E,>u v ()
%

ey = — k).:." (CE,E,> v v,

where ¢ , ) denotes the intersection multiplicities of divisors on §
supported in r~1(0), which is easy to define (see [R]).

Now let us remark that, in view of the inequalities mentioned
above, if equality holds in (*) then necessarily we have

b =4,
€31 €y

Let g denote the common value of these ratios. It follows easily

from the results in ([C.E.W.] Chap. I §2) that if we replace 11, by nt
and 11, by 13, ¢ is replaced by a® b3~ ¢,. After this substitution we
see that the proof of Theorem 1 is reduced to proving that if
eg =¢€;_,= ... = €, then ﬁl = Rz.

Now by the theorem of Bertini for normality (see [F]) we have
that O/nl*—2! is a normal analytic algebra if 0 is so, and then by the
classical result ([DV], [Li], [M]) the matrix of the ( E,, E_.> is
negative definite, from which follows immediately in view of (1) that

if':a2 =~e1 =Ne0 we have u, = v, for all k, hence El. O, =?12.@S (since
t~11. 0y and ;12.0 s are invertible on S) and from this follows ;11 =?12
in @/nl¢—2). Let usnowshow that 11, ¢ Ti,in O: given fen,, toshow that

J e'ﬁ; it is sufficient, in view of Proposition 1, to show that f.@/nl—]
cny-0/nP1, but certainly a @/ni*—1 is a quotient of a @/n{*~*!

as above, and since 11, = 11, we have

f-0mP~2 c ny.0miE
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hence a fortior:i
f-omE— c ny om0,

This shows that for any f e n,; f 6-1_12, ie, n, C-HZ whence'ﬁ1 =1‘1_2 by
symmetry. This proves that if e(n,.n,)"d = e(n,)V¢ + e ()¢ we
have E';' =13. The converse is an immediate consequence of the fact
that e(11) = e(n) ([C.E.W.] Chap. 0) and the remark made about
the behaviour of the e, under the operation n — n® This ends the
proof of Theorem 1.

ReEMARE. We have seen in the course of the proof that, thanks
to (1), when d =2, Theorem 1 and (*) together follow from the
negative definiteness of (( E,, E,.>).

3. Applications.
3.1. FIRST APPLICATION: THE THEOREM OF REES (in a special case).

TeEOREM (Rees): Let O be a Cohen-Macaulay normal analytic
algebra, n, and 1, two ideals of @ primary for the maximal ideal and

such that 11, C 1, and e(11,) = e(1,). Then we have = Ny

Proor Tt is easy to see that for any positive integer a, we have
n_1 = Fz < ﬁ = ﬁg (e.g., use the valuative criterion for integral
dependance, [H, ], [L.T.]). Now let us set e(11;) = e(11,) =e. Since for
any two primary ideals, 1 C 1’ implies e(1t) > e(1t’), 1, € 1, implies
e(n,.1,) > e(nZ)=24 e. Using (*) now we see that

2. el ety . N8 < elld felld =2 elld,

hence we have equality, and by Theorem 1 there exist a, be N such
that 11_1 = n—’z’ But we saw that e(11?) = a®e(11) and e(11) = e(n1). Since
e(11,) = e(11y), the above equality therefore implies @ = b, from
which the theorem follows.

3.2. SECOND APPLICATION. Let f:(R", 0) - (R", 0) be a germ of a
real analytic mapping, described by f;, ..., f,inR{#} =R {z,, ..., 2}
and such that Q(f) = 0;_,, , = R {«}/(f}; ---, f,) is a finite
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dimensional vector space over R. Set ¢ = dimy Q(f); g is also the
topological degree of the complexified map f€: (C, 0) - (C=, 0).
Tt was proved in [E.L.] that the topological degree deg f of f
satisfies

|deg f| < gt~

and this inequality was proved as follows: first one proved that
ldeg f | < e(n®—11 + m!)) where 11 is the ideal generated by (f,, ..., f,))
in C{z} and 1 is the maximal ideal, then one used the inequality
[1.2] from [M.I] quoted above to show that

g(n[ﬂ—ll + m[l]) < e(n)l—lln — ql—lln_

Let us consider the special case n = 2. We have | deg f| <¢"/? and
there is at least one case where we have equality: let f be a holo-
morphic map (C, 0) = (C, 0) given by 2+—» 2. Setting z = z, + iz, we
see that the components of f, f,(z,, z,) and f,(z,, ,) are homogeneous
polynomials of degree k. From the additivity of intersection multi-
plicities follows that in this case ¢ = k2. By writing z = p.€® we see
that all the zeroes of f, and f, are real, and the k lines in R? where
f, vanishes alternate with the k lines where fa vanishes, being
obtained from them by a rotation of =/2k. Furthermore each of
the sets of lines divides R? in 2k sectors. One readily checks that
Re 2t — ¢, Im 2* = 0 is a regular fibre of f, at each point of which f
preserves the orientation, and which contains ¥ points, since
Re z¢ =t defines a curve in every second sector among those
defined by Re 2* = 0, which is asymptotic to the walls of this sector
and meets the lines Im z* = 0 transversally. We remark that the
fact that f is orientation preserving comes from the following
property of f, =Im 2%, f, = Re 2*:

(OR) In each sector where f, >0, the sign of f; changes from —
to + as we cross the line f, = 0 circulating in the trigono-
metric direction (counterclockwise).

Having seen this, we have no difficulty in proving

Lemma 1. Let f: (R2, 0) - (R2,0) be given by two homogeneous
polynomials f,, fa of the same degree k. Then we have deg f =k if, and
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only if, f, and f, both have all their roots real, these roots alternate and
the condition (OR) is satisfied.

Indeed, if they do not both have all their roots real, we can find a
regular fibre with less than k points, hence | deg f | < k. if they do not
alternate, then we can find two points in a fibre with % points, where
the orientation is not the same, hence again |deg f| < k and finally
if the first two conditions are satisfied we have deg f = + k, and
condition (OR) implies deg f — % (and conversely). We now prove:

LemmA 2. Lel f=(f}, f;) and f' = (f], ;) be two mappings satisfy-
ing the condition of Lemma 1. Then there is a 1-parameter family
(J )iero,1) of mappings, all satisfying the condition of Lemma 1, such
that fo ~ f and f, ~ f'.

Proor. After a suitable choice of coordinates, we can write
(up to the isomorphism corresponding to a constant factor)

) Ik
fl——‘l_[(“’l““ixz) f2:1—[(x1_ﬁix2) o, B; eR
i=1

i—1

with «; < 8, <a, <... <o, <B,, and similarly

k k
f=T]@—%=)., fH=]]@—8=
e=1 i=1

with o), < 8] <ay <.... <o <B,.

Then the family given by

k
for=] ] @ — e + (1 —t) a) z,)
i=1

k
for =] ] @ —Bi+(1—1)B) )

i=1
for 0 <t < 1, obviously gives the answer.

Treorem 2. Let f: (R? 0) - (R?, 0) be a germ of a real-analytic
mapping with algebraic degree q(q = dimR(Df_l(O)’o). Then f can be

continuously deformed, with degree and algebraic degree both constant,
to a kolomorphic mapping (C, 0) - (C, 0) if and only if deg f = ¢'2.
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Proor. The condition is obviously necessary, after what we have
just seen. Let us prove it sufficient. From what we saw above, the
equality deg f = ¢'/2 implies e(n™ + m!!1) = e(11)"/2 which, since
e(m) = 1, and in view of the equality (E. 1) quoted in § 2, gives
e(n.m)'? = e(n)V2 + e¢(m)"2. From Theorem 1 we deduce the
existence of integers @, b such that 1% = 1’ and from the properties
of multiplicities we deduce that in fact we must have 11 — mF in
C{=,, 2}, where k = ¢'/2 = deg f. We are going to show that this
implies that the components f,, f, of f can be taken (up to isotopy)
to be homogeneous polynomials of degree k. Let 11’ be the ideal in
C {z,, »,} generated by those among ( f1» f,) which are in m* — m*+1:
we have 1" ¢ 1 ¢ n’ + m*+! hence, since 1 — m¥, we have
1 + 1. mF = mt which by the integral Nakayama Lemma, ([C.E.W.]
Chap. 11, 2.4) implies n = m*, which in turn implies that 11’ is
generated by at least two elements, whence i’ = 1. Now we know
Jiem* —m*t, i =1, 2. We can set

f] =Pk+ Pk+] + ...
fz =Qk +Qk+1 + ...

where P; (or @) is an homogeneous polynomial of degree i in z, and
z,. We know furthermore that since 51’ = (P, @) has at its integral
closure mk’ dj'mll R{zl’ xz}/ (P];s Qk) = dimR R{xp xz}/(fp fz) =q *
Consider the family of functions

fl,l:Pk+th+1+--- +th'k_H+...
for =@ 40, + ... +EQ,, + ...

the family of ideals &, = (f, ,, f, ). R{z,, ,} and the family of
algebras @, = Riz,, 2,} /| #,. Forany ¢ + 0, @, is isomorphic to Q(f)
as an R-algebra (change x; to {z; in f, and divide by #), and Q =
Riz;, 2} [ (P, Q).

We now use the main result of [E.L.]: all the @, are isomorphic as
vector spaces; choosing a linear form I: Q, — R such that i{J, >o,
where J, is the Jacobian determinant of (P, @), we can extend
I to ¢, and denoting by J, the Jacobian determinant of ( Jr0 12,0, we
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get 1 (J) >0 for ¢ sufficiently small. According to Theorem 1.2 of
[E.L.], we have:

| (1) the bilinear form on @, defined by { p,q > =1(p.q) is non-
singular for all sufficiently small ¢, therefore its signature is
independent of ¢ near t=0.

(2) This signature is equal to deg f for t#0 and to the degree of
the map f,: (R% 0) — (R?, 0) defined by (P,, @,) for ¢ = 0.

Hence deg f, = k = ¢"/> and Theorem 2 now follows easily from

Lemmas 1 and 2.

Remargs. (1) The key point is to check that the assumption
deg f = ¢/ implies that the tangent cones at 0 of ff=0andf, =0
have the same degree, and no common component. This is what
Theorem 1 does for us in the above proof.

(2) Theorem 2 above is valid also for C® maps f: (R% 0)— (R2,0)
such that dim &,/ (f,.f,) < c where &, is the ring of germs of C®
function on (RZ 0), since the initeness assumption implies that in
those problems we have finite determinacy (see [E.L.]).

(3) Tt is an interesting problem to find invariants of algebras of
the form R{x,, ..., 2}/ (f;,.---, f,) of finite dimension over R which
allow one to determine when two such algebras (or the correspond‘-
ing germs of mappings (R", 0) — (R", 0)) can be continuously
deformed into one another with constant dimension of the algebras

(i.e. algebraic degree) and degree.
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