
SEMIGROUPS OF VALUATIONS ON LOCAL RINGS, II

STEVEN DALE CUTKOSKY, BERNARD TEISSIER

Abstract. Given a noetherian local domain R and a valuation ν of its field of fractions
which is non negative on R, we derive some very general bounds on the growth of the
number of distinct valuation ideals of R corresponding to values lying in certain parts of
the value group Γ of ν. We show that this growth condition imposes restrictions on the
semigroups ν(R \ {0}) for noetherian R which are stronger than those resulting from the

previous paper [4] of the first author. Given an ordered embedding Γ ⊂ (Rh)lex, where

h is the rank of ν, we also study the shape in R
h of the parts of Γ which appear naturally

in this study. We give examples which show that this shape can be quite wild in a way
which does not depend on the embedding and suggest that it is a good indicator of the
complexity of the semigroup ν(R \ {0}).

Let (R,mR) be a local domain, with fraction field K. Suppose that ν is a valuation of
K with valuation ring (V,mV ) which dominates R; that is, R ⊂ V and mV ∩ R = mR.
The value groups Γ of ν which can appear when K is an algebraic function field have been
extensively studied and classified, including in the papers MacLane [10], MacLane and
Schilling [11], Zariski and Samuel [16], Kuhlmann [9] and Moghaddam [12]. These groups
are well understood. The most basic fact is that there is an order preserving embedding
of Γ into Rh with the lex order, where h is the rank of the valuation, which is less than
or equal to the dimension of R. The semigroups

SR(ν) = {ν(f) | f ∈ mR − {0}},

which can appear when R is a noetherian domain with fraction field K dominated by
ν, are not well understood, although they are known to encode important information
about the ideal theory of R and the geometry and resolution of singularities of Spec R.
In particular, after [15], the toric resolutions of singularities of the affine toric varieties
associated to certain finitely generated subsemigroups of SR(ν) are closely related to the
local uniformizations of ν on R.

In Zariski and Samuel’s classic book on Commutative Algebra [16], two general facts
about semigroups SR(ν) of valuations on noetherian local domains are proven (in Appen-
dix 3 to Volume II).

1. For any valuation ν of K which is non negative on R, the semigroup SR(ν) is a
well ordered subset of the positive part of the value group Γ of ν, of ordinal type
at most ωh, where ω is the ordinal type of the well ordered set N, and h is the
rank of the valuation.

2. If ν dominates R, the rational rank of ν plus the transcendence degree of V/mV

over R/mR is less than or equal to the dimension of R.

The second condition is the Abhyankar inequality [1].

The first author was partially supported by NSF and by the University Paris 7-Denis Diderot.
AMS classification: Primary: 13A18, 14 E15, 16W50. Secondary: 06F05.
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In [6], the authors give some examples showing that some surprising semigroups of rank
> 1 can occur as semigroups of valuations on noetherian domains, and raise the general
question of finding new constraints on value semigroups and classifying semigroups which
occur as value semigroups.

The only semigroups which are realized by a valuation on a one dimensional regular
local ring are isomorphic to the natural numbers. The semigroups which are realized by a
valuation on a regular local ring of dimension 2 with algebraically closed residue field are
much more complicated, but are completely classified by Spivakovsky in [14]. A different
proof is given by Favre and Jonsson in [7], and we reformulated the theorem in the context
of semigroups in [6]. However, very little is known in higher dimensions. The classification
of semigroups of valuations on regular local rings of dimension two does suggest that there
may be constraints on the rate of growth of the number of new generators on semigroups
of valuations dominating a noetherian domain. In [4], such a constraint is found for rank
1 valuations. We prove in this paper that there is such a constraint for valuations of
arbitrary rank.

In [4], a very simple polynomial bound is found on the growth of SR(ν) for a rank 1
valuation ν. This bound allowed the construction in [4] of a well ordered subsemigroup of
Q+ of ordinal type ω, which is not a value semigroup of a noetherian local domain. This
example is given in Example 1.2 in this paper. Thus the above conditions 1 and 2 do not
characterize value semigroups on local domains.

•Unless otherwise stated, in this text all local rings are assumed to be noetherian. A
valuation of a local domain is a valuation ν of its field of fractions whose ring Rν contains
R in such a way that mν ∩ R ⊆ mR.

In Section 1 of this paper, we describe a polynomial behavior of valuation ideals Pϕ(R) =
{x ∈ R|ν(x) ≥ ϕ} and P+

ϕ (R) = {x ∈ R|ν(x) > ϕ}. Given a valuation ν with center p on
a local domain R we find very general polynomial bounds on the growth of the sums of the
multiplicities of the finitely generated R/p-modules Pϕ(R)/P+

ϕ (R) when ϕ runs through

growing regions of the value group Γ of ν viewed as a subgroup of Rh. These modules are
nonzero precisely when ϕ is 0 or belongs to the semigroup SR(ν). Our results therefore
also bound the number of elements of SR(ν) in those regions. This last result generalizes
to all ranks the bound given for rank 1 valuations in [4] (restated as Theorem 1.1 in this
paper). The statement and proof for higher rank valuations is significantly more complex.

We give an example (Example 1.3) of a rank 2 semigroup T which satisfies all restric-
tions on the semigroup of a valuation on an s dimensional local domain imposed by our
polynomial bounds for modules over the rank 1 convex subgroup Φ1 of the group Γ gener-
ated by T , but is not a valuation semigroup on an s dimensional local domain. The proof
uses our most general bound, Theorem 1.7, in the case of rank 2 valuations.

Our polynomial bounds are estimates of sums over the intersection of SR(ν) with certain
regions of Γ. These regions are defined by their intersections with the convex subgroups
of Γ and depend on a certain function ϕ̃ whose precise definition is given in Definition 1.1
of Section 1. Given a valuation νi+1 composed with ν and an element ϕ in νi+1(R\{0}) ⊂
Γ/Φi = SR(νi+1), the value ϕ̃ is the smallest element in the semigroup SR(νi) which
projects to ϕ; it is an element of Γ/Φi−1. A lower limit in the sum at level i is determined
by the values traced out by ϕ̃ as ϕ varies in the semigroup SR(νi+1), while the upper limit
is of the form ϕ̃ + yiti, yi ∈ N, where ti is the smallest element of SR(νi). It is interesting
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to consider how close these regions are to being polydiscs. The most desirable situation
is when the value group can be embedded by an order preserving homomorphism into
(Rh)lex in such a way that all of these regions are polydiscs. In the first examples that
one is likely to consider, this is in fact the case. However, the general situation is not
so simple. In Section 2 we give examples showing that the tilde function can exhibit a
rather wild behavior. We show that we can make ϕ̃ decrease arbitrarily fast, and that this
is independent of the embedding. We also show that ϕ̃ can increase arbitrarily fast, and
finally that ϕ̃ can jump back and forth from negative numbers which decrease arbitrarily
fast to positive numbers which increase arbitrarily fast. All these examples are independent
of the embedding of Γ into Rh. In view of the results of Section 1, the behavior of ϕ̃ is an
interesting measure of the complexity of the valuation.

1. Polynomial bounds on valuation ideals

In this section, we derive some very general bounds on the growth of the number of
distinct valuation ideals corresponding to values lying in certain parts of the group Γ.

If G is a totally ordered abelian group, then G+ will denote the positive elements of
G, and G≥0 will denote the nonnegative elements. If R is a local ring, mR will denote its
maximal ideal, and lengthR(N) will denote the length of an R-module N .

Suppose that R is a domain and ν is a valuation of R. Let Γ be the value group of ν.
We will denote the value semigroup of ν on R by

SR(ν) = {ν(f) | f ∈ mR − {0}}.
SR(ν) is a subsemigroup of the nonnegative part, Γ≥0, of Γ, and if ν dominates R, so
that all elements of the maximal ideal mR of R have positive value, then SR(ν) is a
subsemigroup of the semigroup Γ+ of positive elements of Γ.

Suppose that I ⊂ R is an ideal. We will write

ν(I) = min{ν(f) | f ∈ I − {0}}.
Note that ν(I) ∈ Γ≥0 exists since R is noetherian.

Suppose that ϕ is an element of the value group Γ. We will denote by Pϕ(R) the ideal
{x ∈ R | ν(x) ≥ ϕ} and by P+

ϕ (R) the ideal {x ∈ R | ν(x) > ϕ}. When no confusion on

the ring is possible we will write Pϕ,P+
ϕ . We note that Pϕ(R)/P+

ϕ (R) = 0 if and only if

ϕ /∈ SR(ν) ∪ {0}. The associated graded ring of ν on R is

grν(R) =
⊕

ϕ∈Γ

Pϕ(R)/P+
ϕ (R).

This (R/mν ∩R)-algebra is not in general finitely generated; it is graded by the semigroup
SR(ν), which is not finitely generated in general. Our results can be seen as an extension
to these algebras of the classical results on N-graded finitely generated algebras.

Suppose that Γ is a totally ordered abelian group, and a, b ∈ Γ. We set

[a, b] = {x ∈ Γ | a ≤ x ≤ b} and [a, b[= {x ∈ Γ | a ≤ x < b}
The concepts of rank of a valuation, the convex (isolated) subgroups of a valuation

group and the corresponding composed valuations are discussed in detail in Chapter VI
of [16].

Suppose that ν has rank n. Let

0 = Φ0 ⊂ Φ1 ⊂ · · · ⊂ Φn = Γ
3



be the sequence of convex subgroups of Γ. Let νi, for 1 ≤ i ≤ n, be the valuations on the
quotient field of R with which ν is composed. We have ν1 = ν. Let

pn ⊆ · · · ⊆ p1

be the corresponding centers on R of νi. We define pn+1 = (0).
The value group of νi is Γi = Γ/Φi−1. For 1 ≤ i ≤ n, set

ti = νi(pi) ∈ Φi/Φi−1 ⊆ Γ/Φi−1.

Let
λi : Γi = Γ/Φi−1 → Γi+1 = Γ/Φi

be the corresponding maps from the value group of νi to the value group of νi+1. If
pi 6= pi+1, then ti is in the kernel of λi, which is a rank 1 group. When there is no
ambiguity, we denote by ϕi the image in Γ/Φi−1 of an element ϕ ∈ Γ.

Definition 1.1. Given ϕi ∈ Γ/Φi−1, denote by ϕ̃i ∈ Γ/Φi−2 the minimum of νi−1(f) for
f ∈ R such that νi(f) = ϕi.

This minimum exists since the semigroup SR(νi−1) is well ordered. Note that λi−1(ϕ̃i) =
ϕi.

If pi−1 6= pi, we remark that for yi−1 ∈ N and ϕi−1 ∈ [ϕ̃i, ϕ̃i + yi−1ti−1], we have the
inclusions:

p
yi−1

i−1 Pϕi
⊂ Pϕi−1 ⊂ Pϕi

,

Pϕi
= Pϕ̃i

and since Φi/Φi−1 is of rank one, the number of elements of νi−1(R \ {0}) in
the interval [ϕ̃i, ϕ̃i + yi−1ti−1] is finite (see [16], loc. cit.).

Lemma 1.2. Suppose that p1 6= p2. Then for any function A on R-modules with values in
R which is additive on short exact sequences of finitely generated R-modules whose unique
minimal prime is p1, we have for all y1 ∈ N:

(1)
∑

ϕ1∈[ϕ̃2,ϕ̃2+y1t1[

A(Pϕ1/P+
ϕ1

) ≤ A(Mϕ2/p
y1
1 Mϕ2),

where Mϕ2 = Pϕ2/P+
ϕ2

, a finitely generated torsion free R/p2-module.

Proof. For y1 ∈ N, [ϕ̃2, ϕ̃2 + t1y1[ intersects SR(ν) ∪ {0} in a finite set {τ1, . . . , τr}, with

τ1 = ϕ̃2 < τ2 < · · · < τr < ϕ̃2 + t1y1.

We have inclusions of R modules whose unique minimal prime is p1,

Pτr/Pϕ̃2+t1y1 ⊂ Pτr−1/Pϕ̃2+t1y1 · · · ⊂ Pτ1/Pϕ̃2+t1y1 = Pϕ2/Pϕ̃2+t1y1.

By the additivity of A we have

A(Pϕ2/Pϕ̃2+t1y1) =
∑

ϕ1∈[ϕ̃2,ϕ̃2+y1t1[

A(Pϕ1/P+
ϕ1

).

From the inclusion py1
1 Pϕ2 ⊂ Pϕ̃2+y1t1 , we have an exact sequence of R-modules whose

unique minimal prime is p1:

0 → Pϕ̃2+t1y1/(P+
ϕ2

+ py1
1 Pϕ2) → Pϕ2/(P+

ϕ2
+ py1

1 Pϕ2) → Pϕ2/Pϕ̃2+t1y1 → 0.

Since
Mϕ2/p

y1
1 Mϕ2

∼= Pϕ2/(P+
ϕ2

+ py1
1 Pϕ2),

we have that
A(Pϕ2/Pϕ̃2+t1y1) ≤ A(Mϕ2/p

y1
1 Mϕ2),
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and the conclusions of the lemma follow. �

Suppose that p0 is a prime ideal of R such that p2 ⊂ p1 ⊂ p0. Let emi
(N) denote the

multiplicity of an Rpi
module N with respect to mi = piRpi

.
From the above lemma, we immediately deduce the following result.

Theorem 1.1. Let R be a local domain and ν a rank 1 valuation of R. Let p0 be a prime
ideal of R containing the center p1 of ν. Then

∑

ϕ∈[0,yt1[

em0((Pϕ/P+
ϕ )p0) ≤ em0((R/p1)p0)lengthRp1

(Rp1/p
y
1Rp1)

for all y ∈ N. Thus we have
∑

ϕ∈[0,yt1[

em0((Pϕ/P+
ϕ )p0) ≤ em0((R/p1)p0)PRp1

(y)

for y ≫ 0, where PRp1
(y) is the Hilbert-Samuel polynomial of the local ring Rp1.

Proof. This follows from Lemma 1.2, with A(N) = em0(N ⊗ Rp0) for R-modules N . We
take ν = ν1, Γ2 = 0, ϕ2 = 0, and p1 ⊂ p0, so that ϕ̃2 = 0 and Mϕ2 = R, to get for y ∈ N,

∑

ϕ∈[0,yt1[

em0((Pϕ/P+
ϕ )p0) ≤ em0(Rp0/p

y
1Rp0).

The conclusions of the theorem now follow from the associativity formula for multiplicity,
[2], Section 7, no. 1, Proposition 3, which shows that

em0(Rp0/p
y
1Rp0) = em0((R/p1)p0)em1(Rp1/p

y
1Rp1) = em0((R/p1)p0)lengthRp1

(Rp1/p
y
1Rp1).

�

If ν has rank 1, and dominates R, so that p1 = p0 = mR is the maximal ideal of R, we
obtain the inequality of [4],

(2) #(SR(ν) ∩ [0, yt1[ ) < PR(y)

for y ∈ N sufficiently large. This follows from Theorem 1.1 since Pϕ/P+
ϕ 6= 0 if and only

if there exists f ∈ R such that ν(f) = ϕ, and since ϕ = 0 is not in SR(ν).
As was shown in [4], we may now easily construct a well ordered subsemigroup U of

Q+ such that U has ordinal type ω and U 6= SR(ν) for any valuation ν dominating a local
domain R.

Example 1.2. There exists a well ordered subsemigroup U of Q+ such that U has ordinal
type ω and U 6= SR(ν) for any valuation ν dominating a local domain R.

Proof. We let T be any subset of Q+ which has 1 as its smallest element, and

yy < #([y, y + 1[ ) ∩ T ) < ∞
for all y ∈ Z+. Let U =

⋃∞
n=1 nT be the semigroup generated by T . Then U is well

ordered by a result of B. H. Neumann (see [13]), and the function #([0, y[ ∩U) grows
faster than yd for any d ∈ N. Since the Hilbert-Samuel polynomial of a noetherian local
domain R has degree d = dim R < ∞, it follows from formula (2) that U cannot be the
semigroup of a valuation dominating a noetherian local domain. �
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Suppose now that p0 is a prime ideal of R such that p2 ⊆ p1 ⊆ p0. Let emi
(N) denote

the multiplicity of an Rpi
module N with respect to mi = piRpi

.
If p2 = p1, so that t1 is not in the kernel of λ1, let us define

ϕ+
2 = min{ν2(f) | f ∈ R and ν2(f) > ϕ2}.

By [16] (Appendix 3, Corollary to Lemma 4), the interval [ϕ̃2, ϕ̃
+
2 [ contains only finitely

many elements of SR(ν).

Theorem 1.3. Let R be a local domain and ν1, ν2 two valuations of R such that ν1 is
composed with ν2 and the difference of their ranks is equal to one. Let p0 be a prime ideal
of R containing the centers p2 ⊆ p1 of ν1 and ν2. Then we have:
a) Suppose that p1 6= p2. Then there exists a function s(ε, ϕ2) such that for ϕ2 ∈ Γ2, ε > 0
and y1 ∈ N such that y1 > s(ε, ϕ2), we have

∑
ϕ1∈[ϕ̃2,ϕ̃2+y1t1[ em0(Pϕ1(Rp0)/P+

ϕ1
(Rp0))

≤ (1 + ε)
em0 ((R/p1)p0 )

(dim (R/p2)p1 )!
em1(Pϕ2(Rp1)/P+

ϕ2
(Rp1))y

dim (R/p2)p1
1 .

b) If p1 = p2 we have the equalities
∑

ϕ1∈[ϕ̃2,gϕ+
2 [

em0(Pϕ1(Rp0)/P+
ϕ1

(Rp0)) = em0(Pϕ2(Rp0)/P+
ϕ2

(Rp0))

= em0((R/p1)p0)em1(Pϕ2(Rp1)/P+
ϕ2

(Rp1)).

Proof. Assume first that p1 6= p2. Taking A(N) = em0(Np0) in Lemma 1.2, and using the
identities Pϕ1(Rp0)

∼= (Pϕ1)p0, we obtain
∑

ϕ1∈[ϕ̃2,ϕ̃2+y1t1[

em0(Pϕ1(Rp0)/P+
ϕ1

(Rp0)) ≤ em0((Mϕ2)p0/p
y1
1 (Mϕ2)p0).

Since (p1)p0 is the unique minimal prime of (Mϕ2)p0/p
y1
1 (Mϕ2)p0 , by [2], Section 7, no. 1,

Proposition 3, we have

em0((Mϕ2)p0/p
y1
1 (Mϕ2)p0) = lengthRp1

((Mϕ2)p1/p
y1
1 (Mϕ2)p1)em0((R/p1)p0).

Since p2 is the unique minimal prime of Mϕ2 , there exists a function s(ϕ2) such that

lengthRp1
((Mϕ2)p1/p

y1
1 (Mϕ2)p1) = H(Mϕ2 )p1

(y1)

=
em1 ((Mϕ2 )p1 )

(dim(R/p2)p1 )!
y
dim(R/p2)p1
1 + lower order terms in y1

for y1 ≥ s(ϕ2), where H(Mϕ2 )p1
(y1) is the Hilbert-Samuel polynomial of (Mϕ2)p1. This

polynomial bound implies that there exists a function s(ε, ϕ2) such that

lengthRp1
((Mϕ2)p1/p

y1
1 (Mϕ2)p1) ≤ (1 + ε)

em1((Mϕ2)p1)

(dim(R/p2)p1)!
y
dim(R/p2)p1
1

for y1 ≥ s(ε, ϕ2).

If p1 = p2, we have p1(Pϕ2/P+
ϕ2

) = p2(Pϕ2/P+
ϕ2

) = 0, so the first inequality stated in
this case follows directly from the additivity of the multiplicity em0 . The second equality
follows from the first and the associativity formula of [2], Section 7, no. 1, Proposition
3. �

For 1 ≤ i ≤ n − 1, define

ϕ̃+
i+1 = min{νi+1(f) | f ∈ R and νi+1(f) > ϕi+1}.
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Corollary 1.4. Suppose that pn = · · · = p2 = p1. Then
∑

ϕn∈[0,ytn[

∑

ϕn−1∈[ϕ̃n,ϕ̃+
n [

· · ·
∑

ϕ1∈[ϕ̃2,ϕ̃+
2 [

em0((Pϕ1/P+
ϕ1

) ≤ em0((R/p1)p0)lengthRp1
(Rp1/p

y
1Rp2)

for all y ∈ N. Thus we have
∑

ϕn∈[0,ytn[

∑

ϕn−1∈[ϕ̃n,ϕ̃+
n [

· · ·
∑

ϕ1∈[ϕ̃2,ϕ̃+
2 [

em0((Pϕ1/P+
ϕ1

) ≤ em0((R/p1)p0)PRp1
(y)

for y ≫ 0, where PRp1
(y) is the Hilbert-Samuel polynomial of Rp1.

Proof. We will prove the formula by induction on the rank n of the valuation. If n = 1,
this is just the statement of Theorem 1.1. We will assume that the formula is true for
valuations of rank < n, and derive the formula for a rank n valuation ν. Let ν2 be the
rank n − 1 valuation which ν is composite with. Consider the chain of ideals

(0) = qn ⊂ qn−1 = · · · = q1 = q0,

where qn−1 = pn, . . . , q1 = p2 are the centers on R of the successive valuations νn, . . . , ν2

with which ν2 is composed, and q0 = p1. We obtain

(3)
∑

ϕn∈[0,ytn[

∑

ϕn−1∈[ϕ̃n,ϕ̃+
n [

· · ·
∑

ϕ2∈[ϕ̃3,ϕ̃+
3 [

em1(Pϕ2/P+
ϕ2

) ≤ em1((R/p2)p1)PRp2
(y) = PRp1

(y)

for y ≫ 0. We apply Theorem 1.3 to the valuations ν = ν1 and ν2 and p2 = p1 ⊂ p0 to
obtain for ϕ2 ∈ [ϕ̃3, ϕ̃

+
3 [ (or ϕ2 ∈ [ϕ̃n, ϕ̃+

n + tny[ if n = 3),

(4)
∑

ϕ1∈[ϕ̃2,ϕ̃+
2 [

em0((Pϕ1/P+
ϕ1

)p0) ≤ em0((R/p1)p0)em1((Pϕ2/P+
ϕ2

)p1).

Now sum over (3) and (4) to obtain the formula for ν.
�

Corollary 1.5. In the special case where ν1 is a valuation of rank one and ν2 is the trivial
valuation, we have p2 = 0, Γ2 = 0, ϕ̃2 = 0 ∈ Γ1 and the inequality of Theorem 1.3 reduces
to:

(5)

∑
ϕ1∈[0,y1t1[ em0(Pϕ(Rp0)/P+

ϕ (Rp0))

≤ (1 + ε)em0((R/p1)p0)
em1 (Rp1 )

(dimRp1 )!
y
dimRp1
1

for y1 > s(ε).

Corollary 1.6. Taking p0 = p1, we deduce that when p1 6= p2 we have for y1 > s(ε, ϕ2)
an inequality

#(λ−1
1 (ϕ2) ∩ SR(ν) ∩ [ϕ̃2, ϕ̃2 + y1t1[)

≤ (1 + ε)
em1 (Pϕ2 (Rp1 )/P+

ϕ2
(Rp1 ))

(dim(R/p2)p1 )!
y
dim(R/p2)p1
1 .

When p1 = p2, we have

#(λ−1
1 (ϕ2) ∩ SR(ν)) ≤ lengthRp1

(Pϕ2(Rp1)/P+
ϕ2

(Rp1)) < ∞.
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Let

(0) = pn+1 ⊂ pn ⊆ · · · ⊆ p1

be the centers of the valuations with which ν is composed. Define

I = {i ∈ {1, . . . , n} | pi 6= pi+1}
and note that n ∈ I. By [16] (Appendix 3) we know that if i /∈ I, and ϕi+1 ∈ Γi+1, if we
define

ϕ+
i+1 = min{νi+1(f)|f ∈ R and νi+1(f) > ϕi+1},

the intersection SR(νi) ∩ [ϕ̃i+1, ϕ̃
+
i+1[ is finite. Let us agree on the convention that in this

case, for large yi the interval [ϕ̃i+1, ϕ̃i+1 + tiyi[ coincides with this intersection. Remember
also that if i /∈ I we have dim(R/pi+1)pi

= 0 and emi
((R/pi+1)pi

) = (dim(R/pi+1)pi
)! = 1.

Theorem 1.7. Let R be a local domain and ν a valuation of R which is of rank n. There
exist functions sn(ε) and si(ε, yi+1, yi+2, . . . , yn) for 1 ≤ i ≤ n − 1, such that, using the
notations and conventions introduced above, we have

∑
ϕn∈[0,tnyn[

∑
ϕn−1∈[ϕ̃n,ϕ̃n+tn−1yn−1[ · · · ∑

ϕ1∈[ϕ̃2,ϕ̃2+t1y1[ em0((Pϕ1/P+
ϕ1

)p0)

≤ (1 + ε)
Qn

i=0 emi
((R/pi+1)pi

)Qn
i=1(dim(R/pi+1)pi

)!

∏n
i=1 y

dim(R/pi+1)pi

i

for yn, yn−1, . . . , y1 ∈ N satisfying

yn ≥ sn(ε), yn−1 ≥ sn−1(ε, yn), . . . , y1 ≥ s1(ε, y2, . . . , yn).

Proof. The proof of this formula is by induction on the rank n of the valuation ν. We first
prove the formula in the case when n = 1. We apply (5) to the ring Rp0 and observe that
for ϕ1 ∈ Γ1, Pϕ1(Rp0)

∼= (Pϕ1)p0, to obtain

∑

ϕ1∈[0,t1y1[

em0((Pϕ1/P+
ϕ1

)p0) ≤ (1 + ε)
em0((R/p1)p0)

(dim Rp1)!
em1(Rp1)y

dim Rp1
1

for y1 ≥ s1(ε), which is the formula for n = 1.
We now assume that the formula is true for valuations of rank < n. We will derive the

formula for a rank n valuation ν. We apply the formula to the rank n − 1 valuation ν2

which ν is composite with, and the chain of prime ideals

(0) = qn ⊂ qn−1 ⊂ · · · ⊂ q1 ⊂ q0

where qn−1 = pn, . . . , q1 = p2 are the centers on R of the successive valuations νn, . . . , ν2

with which ν2 is composed, and q0 = p1 is the new ”mute” prime ideal. We obtain the
inequality
(6)

∑

ϕn∈[0,tnyn[

· · ·
∑

ϕ2∈[ϕ̃3,ϕ̃3+t2y2[

em1((Pϕ2/P+
ϕ2

)p1) ≤ (1+ε1)

∏n
i=1 emi

((R/pi+1)pi
)∏n

i=2(dim (R/pi+1)pi
)!

n∏

i=2

y
dim (R/pi+1)pi

i

for

yn ≥ sn(ε1), yn−1 ≥ sn−1(ε1, yn), . . . , y2 ≥ s2(ε1, y3, . . . , yn−1).

We apply Theorem 1.3 to the valuations ν = ν1 and ν2, and p2 ⊆ p1 ⊆ p0, to obtain for
ϕ2 ∈ [ϕ̃3 + t2y2[,
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In the case where p2 6= p1

(7)
∑

ϕ1∈[ϕ̃2,ϕ̃2+y1t1[

em0((Pϕ1/P+
ϕ1

)p0) ≤ (1 + ε1)
em0((R/p1)p0)

(dim (R/p2)p1)!
em1((Pϕ2/P+

ϕ2
)p1)y

dim (R/p2)p1
1

for y1 > s(ε1, ϕ2). Since #(SR(ν) ∩ [ϕ̃3, ϕ̃3 + t2y2[ ) < ∞, we may define

s1(ε1, y2, y3, . . . , yn) = max{s(ε1, ϕ2) | ϕ2 ∈ [ϕ̃3, ϕ̃3+t2y2[, ϕ3 ∈ [ϕ̃4, ϕ̃4+t3y3[, . . . , ϕn ∈ [0, tnyn[}.
In the case where p2 = p1 we have by theorem 1.3, b) the equality

∑

ϕ1∈[ϕ̃2,gϕ+
2 [

em0((Pϕ1/P+
ϕ1

)p0) = em0((Pϕ2/P+
ϕ2

)p0) = em0((R/p1)p0)em1((Pϕ2/P+
ϕ2

)p1),

and define s1(ε1, y2) = 1.
Finally, we set

ε1 = 2
1
2
log2(1+ε) − 1,

so that (1+ ε1)
2 = 1+ ε, and sum over (7) and (6) after multiplication by the appropriate

factor to obtain the desired formula for ν. �

As an immediate corollary, we obtain

Corollary 1.8. The sum
∑

ϕn∈[0,tnyn[

∑

ϕn−1∈[ϕ̃n,ϕ̃n+tn−1yn−1[

· · ·
∑

ϕ1∈[ϕ̃2,ϕ̃2+t1y1[

em0((Pϕ1/P+
ϕ1

)p0)

is bounded for y1 ≫ y2 ≫ · · · ≫ yn ≫ 0 by a function which behaves asymptotically as
∏n

i=0 emi
((R/pi+1)pi

)∏n
i=1(dim(R/pi+1)pi

)!

n∏

i=1

y
dim (R/pi+1)pi

i .

Using the notations of Definition 1.1, and the conventions preceding Theorem 1.7, define
the pseudo-boxes

BΓ(y1, . . . , yn) = {ϕ ∈ Γ/ϕ ∈ [ϕ̃2, ϕ̃2 + t1y1[, ϕ2 ∈ [ϕ̃3, ϕ̃3 + t2y2[, . . . , ϕn ∈ [0, tnyn[}.
Then we have:

Corollary 1.9. For y1 ≫ y2 ≫ · · · ≫ yn ≫ 0 the number #(SR(ν)
⋂

BΓ(y1, . . . , yn)) is
bounded by the same function as in Corollary 1.8.

Remarks 1.10. 1) The only centers pi which contribute to the right hand side of the
inequalities are those for which the inclusion pi+1 ⊆ pi is strict.
2) The total degree of the monomial appearing on the right hand side is dim R−dim R/p1,
which is dim R in the case where ν is centered at the maximal ideal mR.

We now give an application of Theorem 1.7. Suppose that ν is a rank 2 valuation
dominating a local domain R. Let Γ2 be the value group of the composed valuation ν2 of
the quotient field of R, and let p2 be the center of ν2 on R, t1 = ν(mR). Theorem 1.3 gives
us a family of growth conditions for ϕ2 ∈ Γ2 on SR(ν) ∩ [ϕ̃2, nt1[ for n sufficiently large.
To be precise, Theorem 1.3 tells us that for each ϕ2 ∈ Γ2, there exist functions d(ϕ2) and
s(ϕ2) ∈ N such that

(8) #(SR(ν) ∩ [ϕ̃2, ϕ̃2 + nt1[ ) < d(ϕ2)n
dim R/p2

for n > s(ϕ2).
9



Example 1.3. For every natural number s ≥ 3, there exists a rank 2, well ordered sub-
semigroup T of the positive part of (Z × Q)lex, which is of ordinal type ω2 and satisfies
the restrictions (8) for all ϕ2 ∈ N, but is not the semigroup of a valuation dominating an
s dimensional local domain.

Proof. Let r = s − 2. Define a subsemigroup of Q≥0 by

S = {(2m + j) + α
2(m+1)r | m, j, α ∈ N,

0 ≤ j < 2m, 0 ≤ α < 2(m+1)r}.
Suppose that n is a positive integer. Then there exists a unique expression n = 2m + j
with 0 ≤ j < 2m. We have

#(S ∩ [n, n + 1[ ) = 2(m+1)r ,

and since 2m ≤ n < 2m+1,

(9) nr < #(S ∩ [n, n + 1[ ) ≤ 2rnr.

For y a positive integer, let f(y) =
∑y−1

n=1 nr. The first difference function f(y + 1) −
f(y) = yr is a polynomial of degree r in y. Thus f(y) is a polynomial of degree r + 1 in
y, with positive leading coefficient. From

#(S ∩ [0, y ) =

y−1∑

n=1

#(S ∩ [n, n + 1[ )

and (9), we deduce that

(10) f(y) < #(S ∩ [0, y[ ) ≤ 2rf(y).

Suppose that c ∈ N. Then #((1
cS) ∩ [0, y[ ) = #(S ∩ [0, cy[ ). Thus

(11) f(cy) < #((
1

c
S) ∩ [0, y[ ) ≤ 2rf(cy).

For i ∈ N, let

(12) c(i) =

{
1 if i = 0
i if i ≥ 1.

Let

T =
⋃

m∈N

{m} × (
1

c(m)
S) ⊂ (Z × Q)lex.

T is a well ordered subsemigroup of (Z × Q)lex, of ordinal type ω2.

Suppose that T is the semigroup SR(ν) of a valuation ν dominating an s = r + 2
dimensional local domain R. Then ν has rank 2. Let ν2 be the composed valuation
ν2(f) = π1(ν(f)) for f ∈ R, where π1 : Z×Q → Z is the first projection. By assumption,
the center of ν on R is the maximal ideal mR of R. Let p2 be the center of ν2 on R.
We see from an inspection of T that t1 = ν(mR) = (0, 1) and t2 = ν2(p2) = 1. Further,
ϕ̃2 = (ϕ2,

1
c(ϕ2)

) for all ϕ2 ∈ Z+. Observe that for all ϕ2 ∈ Z+, and y1 ∈ N,

#(T ∩ [ϕ̃2, ϕ̃2 + y1t1[ ) = #(T ∩ {ϕ2} × [0, y1[ ) = #(
1

c(ϕ2)
S ∩ [0, y1[ ).

From (11), we see that

(13) f(c(ϕ2)y1) < #(T ∩ {ϕ2} × [0, y1[ ) ≤ 2rf(c(ϕ2)y1).
10



Thus T satisfies the growth conditions (8) on a local domain R with dim R/p2 ≥ r + 1.
Since T has rank 2, we must have that dim R ≥ dim R/p2 + 1.

Since we are assuming that R has dimension s = r + 2, we have that dim R/p2 = r + 1
and dim Rp2 = 1. Since ν2 is a discrete rank 1 valuation dominating Rp2, this is consistent.

Theorem 1.7 tells us that there exists a function s(y2) and d ∈ Z+ such that

#([0, y2[×[0, y1[ ∩T ) ≤ dya
1yb

2

for y1 ≥ s(y2), where a = dim R/p2 = r + 1 and b = dim Rp2 = 1. From (13) and (12),
we see that

f(y1) +

y2−1∑

i=1

f(iy1) ≤ #([0, y2[×[0, y1[ ∩T ).

There exists a positive constant e1 such that f(y1) ≥ e1y
r+1
1 for all y1 ∈ N, and thus there

exists a positive constant e such that

f(y1) +

y2−1∑

i=1

f(iy1) ≥ eyr+1
1 yr+1

2

for y1, y2 ∈ N. Thus we have

dya
1yb

2 = dyr+1
1 y2 > eyr+1

1 yr+1
2

for all large y2, which is impossible.
�

2. Wild behavior of the tilde function

The tilde function ϕ̃, defined in Definition 1.1, gives critical information about the be-
havior of valuations of rank larger than one. This is illustrated by its role in the statement
of Theorem 1.7, which shows that there is some order in the behavior of semigroups of
higher rank valuations. However, the sums in this theorem are all defined starting from the
functions ϕ̃. This function can be extremely chaotic, as we will illustrate in this section.

We will give examples of rank two valuations, showing that ϕ̃ can decrease arbitrarily
fast as ϕ increases (Example 2.2), ϕ̃ can increase arbitrarily fast as ϕ increases (Example
2.3), and that ϕ̃ can jump back and forth from negative values which decrease arbitrarily
fast to positive values which increase arbitrarily fast as ϕ increases (Example 2.4). These
properties are all independent of order preserving isomomorphism of the value group.

To construct our examples, we will make use of the following technical lemma, and some
variants of it. This lemma is an avatar of the notion of generating sequences of valuations,
which is well known for regular local rings of dimension 2 (see [10], [14], [7]).

Lemma 2.1. Suppose that σ : Z+ → N is a function. Let K(x, y, z) be a rational function
field in three variables over a field K. Set

P0 = x, P1 = y

and

Pi+1 = zσ(i)P 2
i − P 2i+1

0 Pi−1

for i ≥ 1.
Define, by induction on i, η0 = 1, and

(14) ηi+1 = 2ηi +
1

2i+1

11



for i ≥ 0. Define γ0 = 0 and

(15) γi = −(
σ(1)

2i
+

σ(2)

2i−1
+ · · · + σ(i)

2
)

for i > 0.

1. Suppose that f(x, y, z) ∈ K(z)[x, y]. Then for l ∈ N such that degyf < 2l, there is
a unique expansion

(16) f =
∑

α

aα(z)xα0Pα1
1 · · ·Pαl

l

where aα(z) ∈ K(z) and the sum is over α = (α0, α1, . . . , αl) ∈ N × {0, 1}l.
2. For f ∈ K(z)[x, y], define from the expansion (16),

(17) ν(f) = minα{(0, ordz(aα(z)) +

ℓ∑

i=0

αi(ηi, γi)} ∈ (
1

2∞
Z × 1

2∞
Z)lex.

Then ν defines a rank 2 valuation on K(x, y, z), which is composite with a rank 1
valuation ν2 of K(x, y, z). The value group of ν2 is 1

2∞Z =
⋃∞

i=1
1
2i Z.

The valuation ν dominates the local ring R = K[x, y, z](x,y,z) and the center of
ν2 on R is the prime ideal (x, y).

Proof. We have that degyPi = 2i−1 for i ≥ 1. Suppose that f ∈ K(z)[x, y] and ℓ is such

that degyf < 2ℓ. By the euclidean algorithm, we have a unique expansion

f = g0(x, y) + g1(x, y)Pl

with g0, g1 ∈ K(z)[x, y] and degyg0 < 2l−1, degyg1 < 2l−1. Iterating, we have a unique
expansion of f of the form of (16).

We have

(18) ν(Pi) = (ηi, γi)

and

(19) ν(zσ(i)P 2
i ) = ν(P 2i+1

0 Pi−1) < ν(Pi+1)

for all i.
Observe that for

α = (α0, . . . , αℓ), β = (β0, . . . , βℓ) ∈ N × {0, 1}ℓ,

(20)
ℓ∑

i=0

αiηi =
ℓ∑

i=0

βiηi

implies α = β.
The function ν defined by (17) thus has the property that there is a unique term in the

expansion (16) for which the minimum (17) is achieved. We will verify that ν defines a
valuation on K(x, y, z). Suppose that f, g ∈ K(z)[x, y]. Let

(21) f =
∑

α

aα(z)xα0Pα1
1 · · ·Pαℓ

ℓ

12



and

(22) g =
∑

β

aβ(z)xβ0P β1
1 · · ·P βℓ

ℓ

be the expressions of f and g of the form (16).

f + g =
∑

α

(aα(z) + bα(z))xα0Pα1
1 · · ·P ℓ

ℓ

is the expansion of f+g of the form (16). Since ordz(aα(z)+bα(z)) ≥ min{ordz(a(z)), ordz(b(z))}
for all α, we have that

ν(f + g) ≥ min{ν(f), ν(g)}.
We will now show that ν(fg) = ν(f) + ν(g).
Suppose that

(23) s =
∑

δ

dδ(z)xδ0P δ1
1 · · ·P δℓ

ℓ

is an expansion, with dδ ∈ K(z), and δ = (δ0, . . . , δℓ) ∈ Nℓ+1 for all δ. We define

Λ(s) = minδ{(0, ordzdδ(z)) +
ℓ∑

i=0

δi(ηi, γi)}.

Observe that if s is an expansion of the form (16); that is, δ ∈ N × {0, 1}ℓ for all δ, then
Λ(s) = ν(s).

Let
cε(z) =

∑

α+β=ε

aα(z)bβ(z).

Let

(24) s0 =
∑

ε

cε(z)xε0P ε1
1 · · ·P εℓ

ℓ .

s0 is an expansion of the form (23), and fg = s0. To simplify the indexing later on in the
proof, we observe that we can initially take ℓ as large as we like.

Let α′ (in the expansion (21)) be such that

ν(f) = ν(aα′(z)xα′

0P
α′

1
1 · · ·Pα′

ℓ

ℓ )

and let β′ (in the expansion (22)) be such that

ν(g) = ν(bβ′(z)xβ′

0P
β′

1
1 · · ·P β′

ℓ

ℓ ).

Let ε′ = α′ + β′. Then

cε′(z)xε′0P
ε′1
1 · · ·P ε′

ℓ

ℓ

is the only term in s0 which achieves the minimum Λ(s0). We have that cε′(z) =
aα′(z)bβ′(z) and

(25) Λ(s0) = ν(f) + ν(g).

If ε ∈ N × {0, 1}ℓ whenever cε 6= 0, then we can can compute ν(fg) = Λ(s0) and we
are done. Otherwise, there exists an i ≥ 1 such that there exists an ε with εi ≥ 2 and
cε(z) 6= 0. We then substitute the identity:

(26) P 2
i =

1

zσ(i)
Pi+1 +

1

zσ(i)
x2i+1

Pi−1
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into s0 to obtain an expansion of the form (23), where all terms

cε(z)xε0P ε1
1 · · ·P γℓ

ℓ

with εi ≥ 2 are modified to the sum of two terms

cε(z)

zσ(i)
xε0+2i+1

P ε1
1 · · ·P εi−1+1

i−1 P εi−2
i P

εi+1

i+1 · · · Pεℓ

ℓ +
cε(z)

zσ(i)
xε0P ε1

1 · · ·P εi−1

i−1 P εi−2
i P

εi+1+1
i+1 · · · Pεℓ

ℓ .

Collecting terms with like monomials in x, P1, . . . , Pℓ, we obtain a new expansion

s1 =
∑

dδ(z)xδ0P δ1
1 · · ·P δℓ

ℓ

of fg. From the identities (19), we see that the minimum Λ(s1) is only obtained by the

term dδ′(z)xδ′0P
δ′1
1 · · ·P δ′

ℓ

ℓ , where

dδ′(z)xδ′0P
δ′1
1 · · ·P δ′

ℓ

ℓ =

{
cε′(z)xε′0P

ε′1
1 · · ·P ε′

ℓ

ℓ if ε′i < 2
cε′ (z)

zσ(i) xε′0+2i+1
P

ε′1
1 · · ·P ε′i−1+1

i−1 P
ε′i−2
i P

ε′i+1

i+1 · · · Pε′
ℓ

ℓ if ε′i ≥ 2.

We have Λ(s1) = Λ(s0).
By descending induction on the invariants

n = max{δ1 + · · · + δℓ | some δi ≥ 2 and dδ(z) 6= 0}
and

m = #{(δ1, . . . , δℓ) ∈ Nℓ | δ1 + · · · + δℓ = n, some δi ≥ 2 and dδ(z) 6= 0},
making substitutions of the form (26), we eventually obtain an expression s of fg of the
form (23), with (δ0, . . . , δℓ) ∈ N × {0, 1}ℓ for all ℓ. We then compute ν(fg) = Λ(s) =
Λ(s0) = ν(f) + ν(g). We have thus completed the verification that ν is a valuation.

�

Example 2.2. Suppose that f : N → Z is a decreasing function, and K is a field. Then
there exists a valuation ν of the three dimensional rational function field K(x, y, z) with
value group ( 1

2∞Z × Z)lex, which dominates the regular local ring R = K[x, y, z](x,y,z),

such that for any valuation ω equivalent to ν with value group ( 1
2∞ Z × Z)lex, for all

sufficiently large n ∈ N, there exists λ ∈ 1
2∞ Z ∩ [0, n[ such that π2(λ̃) < f(n), where

π2 : 1
2∞Z × Z → Z is the second projection.

Proof. We choose positive integers σ(i) so that

γi = −(
σ(1)

2i
+

σ(2)

2i−1
+ · · · + σ(i)

2
) < f(i2i+3)

for all positive integers i, and so that γi ∈ Z. Let ν be the valuation dominating R defined
by Lemma 2.1, with this choice of σ. The value group of ν is ( 1

2∞ Z × Z)lex.

Let ω be a valuation equivalent to ν with value group ( 1
2∞ Z × Z)lex. We have ω(x) =

(a, b) for some a ∈ 1
2∞Z+ and b ∈ Z, and ω(z) = (0, c) for some c ∈ Z+ since convex

subgroups have to be preserved under an automorphism of ordered groups. From the
relations (19) we see that ω(Pi) = ηiω(x) + γiω(z) for i ≥ 1, which implies b = 0, since
π2(ω(Pi)) ∈ Z. We also have ω(a(z)) = ordz(a)ω(z) for a(z) ∈ K(z). Let ω2 be the
valuation on K(x, y, z) defined by ω2(f) = π1(ω(f)), where π1 : 1

2∞Z × Z → 1
2∞Z is the

first projection.
Let

e = ⌈a⌉, and n0 = ⌈a⌉2e+2.

Suppose that n ≥ n0. We will find λ ∈ 1
2∞Z ∩ [0, n[ such that π2(λ̃) < f(n).
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There exists i ≥ e such that

⌈a⌉2i+2 ≤ n < ⌈a⌉2i+3.

Let λ = aηi. From ηi = 1
3(2i+2 − 1

2i ), we obtain

λ = aηi < ⌈a⌉2i+2 ≤ n.

Since c ∈ Z+, i ≥ e and f is decreasing, we have

cγi ≤ γi < f(i2i+3) ≤ f(⌈a⌉2i+3) < f(n).

Thus

π2(λ̃) ≤ π2(ω(Pi)) = cγi < f(n).

�

Example 2.3. Suppose that g : N → Z is an increasing function, and K is a field. Then
there exists a valuation ν of the three dimensional rational function field K(x, y, z) with
value group ( 1

2∞ Z×Z)lex, which dominates the regular local ring R = K[x, y, z](x,y,z), such

that for any valuation ω equivalent to ν with value group ( 1
2∞ Z×Z)lex, for all sufficiently

large n ∈ N, there exists λ ∈ 1
2∞ Z∩ [0, n[ such that π2(λ̃) > g(n), where π2 : 1

2∞Z×Z → Z

is the second projection.

Proof. The proof is a variation of the proof of Example 2.2. We outline it here.
We first must establish a modification of Lemma 2.1.
Suppose that τ : Z+ → N is a function. Set

Q0 = x,Q1 = y

and

Qi+1 = Q2
i − zτ(i)Q2i+1

0 Qi−1

for i ≥ 1.
As in Lemma 2.1, define by induction on i, η0 = 1, and

(27) ηi+1 = 2ηi +
1

2i+1

for i ≥ 0. Define δ0 = 0 and

(28) δi =
τ(1)

2i
+

τ(2)

2i−1
+ · · · + τ(i)

2

for i > 0.
Suppose that f(x, y, z) ∈ K[x, y, z]. Then for l ∈ N such that degyf < 2l, there is a

unique expansion

(29) f =
∑

α

aα(z)xα0Pα1
1 · · ·Pαl

l

where aα(z) ∈ K[z] and the sum is over α = (α0, α1, . . . , αl) ∈ N × {0, 1}l. This is estab-
lished as (16) in the statement of Lemma 2.1. We have a stronger statement which is valid
in the polynomial ring K[x, y, z], since the leading coefficients of the Qi, as polynomials
in y, have 1 as their leading coefficient.

For f ∈ K[x, y, z], define from the expansion (29),

(30) ν(f) = minα{(0, ordz(aα(z)) +

ℓ∑

i=0

αi(ηi, δi)} ∈ (
1

2∞
Z × 1

2∞
Z)lex.
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Then ν defines a rank 2 valuation on K(x, y, z), which is composite with a rank 1 valuation
ν2 of K(x, y, z). The value group of ν2 is 1

2∞ Z =
⋃∞

i=1
1
2i Z.

ν dominates the local ring R = K[x, y, z](x,y,z) and the center of ν2 on R is the prime
ideal (x, y).

We have ν(Qi) = (ηi, δi) and

(31) ν(Q2
i ) = ν(zτ(i)Q2i+1

0 Qi−1) < ν(Qi+1)

for all i.
We now construct the example. We choose positive integers τ(i) so that

δi =
τ(1)

2i
+

τ(2)

2i−1
+ · · · + τ(i)

2
> g(i2i+3)

for all positive integers i, and δi ∈ Z for all i. Let ν be the valuation constructed above,
which dominates R. The value group of ν is ( 1

2∞ Z × Z)lex.

Let ω be a valuation equivalent to ν with value group ( 1
2∞ Z × Z)lex. We have ω(x) =

(a, b) for some a ∈ 1
2∞Z+ and b ∈ Z, and ω(z) = (0, c) for some c ∈ Z+. From the

relations (31) we see that ω(Qi) = ηiω(x) + δiω(z) for i ≥ 1, which implies b = 0, since
π2(ω(Qi)) ∈ Z. We also have ω(a(z)) = ordz(a)ω(z) for a(z) ∈ K(z). Let ω2 be the
valuation on K(x, y, z) defined by ω2(f) = π1(ω(f)), where π1 : 1

2∞Z × Z → 1
2∞Z is the

first projection.
Let

e = ⌈a⌉ and n0 = ⌈a⌉2e+2.

Suppose that n ≥ n0. We will find λ ∈ 1
2∞Z ∩ [0, n[ such that π2(λ̃) > g(n).

There exists i ≥ e such that

⌈a⌉2i+2 ≤ n < ⌈a⌉2i+3.

Let λ = aηi. From ηi = 1
3(2i+2 − 1

2i ), we obtain

λ = aηi < ⌈a⌉2i+2 ≤ n.

Since c ∈ Z+, i ≥ e and g is increasing, we have

cδi ≥ δi > g(i2i+3) ≥ g(⌈a⌉2i+3) > g(n).

Thus
π2(λ̃) = π2(ω(Qi)) = cδi > g(n).

�

Example 2.4. Suppose that f : N → Z is a decreasing function, g : N → Z is an
increasing function, and K is a field. Then there exists a rank 2 valuation ν of the five
dimensional rational function field K(x, y, u, v, z) with value group (H×Z)lex, where H =

( 1
2∞ Z+ 1

2∞ Z
√

2) ⊂ R, which dominates the regular local ring R = K[x, y, u, v, z](x,y,u,v,z),
such that for any valuation ω equivalent to ν with value group (H×Z)lex, for all sufficiently

large n ∈ N, there exists λ1 ∈ H ∩ [0, n[ such that π2(λ̃1) < f(n) and there exists

λ2 ∈ H ∩ [0, n[ such that π2(λ̃2) > g(n), where π2 : 1
2∞Z × Z → 1

2∞Z is the second
projection.

Proof. We need an extension of the method of Lemma 2.1 for constructing valuations
which we first outline. Suppose that σ : Z+ → N and τ : Z+ → N are functions. Define

P0 = x, P1 = y and Pi+1 = zσ(i)P 2
i − P 2i+1

0 Pi−1 for i ≥ 1. Define Q0 = u, Q1 = v and

Qi+1 = Q2
i − zτ(i)Q2i+1

0 Qi−1 for i ≥ 1.
16



Suppose that h ∈ K[z, x, y, u, v] and deg h < 2l. Then there is a unique expansion

h =
∑

β

gβ(z, x, y)uβ0Qβ1
1 · · ·Qβℓ

ℓ

where the sum is over β = (β0, β1, . . . , βℓ) ∈ N×{0, 1}ℓ and gβ ∈ K[z, x, y] for all β (since
the leading coefficient of each Qi with respect to y is 1). Each gβ(z, x, y) has a unique
expansion

gβ =
∑

α

aα,β(z)xα0Pα1
1 · · ·Pαℓ

ℓ

where the sum is over α = (α0, α1, . . . , αℓ) ∈ N × {0, 1}ℓ and aα,β(z) ∈ K(z) for all α, β.
Thus h has a unique expansion

(32) h =
∑

α,β

aα,β(z)xα0Pα1
1 · · ·Pαℓ

ℓ uβ0Qβ1
1 · · ·Qβℓ

ℓ

with α, β ∈ N × {0, 1}ℓ, and aα,β(z) ∈ K(z).
Set η0 = 1 and

ηi+1 = 2ηi +
1

2i+1

for i ≥ 0. Set γ0 = 0 and

γi = −(
σ(1)

2i
+

σ(2)

2i−1
+ · · · + σ(i)

2
)

for i > 0. Set δ0 = 0 and

δi =
τ(1)

2i
+

τ(2)

2i−1
+ · · · + τ(i)

2
for i > 0.

Let H = ( 1
2∞Z + 1

2∞ Z
√

2) ⊂ R.
We define from the expansion (32),

(33) ν(h) = minα,β{(0, ordz(aα,β(z))+
∑

αi(ηi, γi)+
∑

βi(ηi

√
2, δi)} ∈ (H × 1

2∞
Z)lex.

We have
ν(zσ(i)P 2

i ) = ν(P 2i+1

0 Pi−1) < ν(Pi+1)

for all i, ν(Pi) = (ηi, γi) for all i,

ν(Q2
i ) = ν(zτ(i)Q2i+1

0 Qi−1) < ν(Qi+1)

for all i, ν(Qi) = (ηi

√
2, δi) for all i. Further, there is a unique term in the expansion (32)

which achieves the minimum (33). We have

ν(h) ∈ 1

2∞
Z × 1

2∞
Z

if and only if h has the form

h = aα,0(z)xα0Pα1
1 · · ·Pαℓ

ℓ + higher value terms,

and

ν(h) ∈ 1

2∞
Z
√

2 × 1

2∞
Z

if and only if h has the form

h = a0,β(z)uβ0Qβ1
1 · · ·Qβℓ

ℓ + higher value terms.

Observe that for all β, we have a0,β(z) ∈ K[z] in the expansion (32).
17



We now construct the valuation of the example. For i ∈ Z+, choose σ(i) ∈ N such that

γi < f(i2i+3)

and choose τ(i) ∈ Z+ so that
g(i2i+3) < δi

for all i ∈ Z+, and γi, δi ∈ Z for all i. Let ν be the valuation constructed above, which
dominates R. The value group of ν is (H × Z)lex.

Let ω be a valuation equivalent to ν with value group (H×Z)lex. There exist α, β, γ, δ ∈
1

2∞Z, b1, b2 ∈ Z, c ∈ Z+, such that

ω(x) = (a1, b1), ω(u) = (a2, b2), ω(z) = (0, c)

where
a1 = α + β

√
2 > 0, a2 = γ + δ

√
2 > 0

and αδ−βγ 6= 0. We have ω(Pi) = ηiω(x)+γiω(z) and ω(Qi) = ηiω(u)+ δiω(z) for i ≥ 1,
which implies b1 = b2 = 0, since π2(ω(Pi)), π2(ω(Qi)) ∈ Z.

Set
e = max{⌈a1⌉, ⌈a2⌉}.

Let n0 = e2e+2.
Suppose that n ≥ n0. We will show that there exists λ1 ∈ H ∩ [0, n[ such that π2(λ̃1) <

f(n) and there exists λ2 ∈ H ∩ [0, n[ such that π2(λ̃2) > g(n).
There exists i ≥ e such that e2i+2 ≤ n < e2i+3. Let λ1 = a1ηi. From ηi = 1

3(2i+2 − 1
2i )

we obtain
λ1 = a1ηi < ⌈a1⌉2i+2 ≤ e2i+2 ≤ n.

Since c ∈ Z+, i ≥ e and f is decreasing, we have

cγi ≤ γi < f(i2i+3) ≤ f(e2i+3) < f(n).

Thus
π2(λ̃1) ≤ π2(ω(Pi)) = cγi < f(n).

Let λ2 = a2ηi. We have

λ2 = a2ηi < ⌈a2⌉2i+2 ≤ e2i+2 ≤ n.

Since c ∈ Z+, i ≥ e and g is increasing, we have

cδi ≥ δi > g(i2i+3) ≥ g(e2i+3) > g(n).

Thus
π2(λ̃2) = π2(ω(Qi)) = cδi > g(n).

�
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