SEMIGROUPS OF VALUATIONS ON LOCAL RINGS, II

STEVEN DALE CUTKOSKY, BERNARD TEISSIER

ABSTRACT. Given a noetherian local domain R and a valuation v of its field of fractions
which is non negative on R, we derive some very general bounds on the growth of the
number of distinct valuation ideals of R corresponding to values lying in certain parts of
the value group I' of v. We show that this growth condition imposes restrictions on the
semigroups v(R\ {0}) for noetherian R which are stronger than those resulting from the

previous paper [4] of the first author. Given an ordered embedding I' C (R")}4, where

h is the rank of v, we also study the shape in R" of the parts of I" which appear naturally
in this study. We give examples which show that this shape can be quite wild in a way
which does not depend on the embedding and suggest that it is a good indicator of the
complexity of the semigroup v(R \ {0}).

Let (R,mp) be a local domain, with fraction field K. Suppose that v is a valuation of
K with valuation ring (V,my) which dominates R; that is, R C V and my N R = mg.
The value groups I' of ¥ which can appear when K is an algebraic function field have been
extensively studied and classified, including in the papers MacLane [10], MacLane and
Schilling [11], Zariski and Samuel [16], Kuhlmann [9] and Moghaddam [12]. These groups
are well understood. The most basic fact is that there is an order preserving embedding
of T into R with the lex order, where h is the rank of the valuation, which is less than
or equal to the dimension of R. The semigroups

STw) = {v(f) | f € mp—{0}},

which can appear when R is a noetherian domain with fraction field K dominated by
v, are not well understood, although they are known to encode important information
about the ideal theory of R and the geometry and resolution of singularities of Spec R.
In particular, after [15], the toric resolutions of singularities of the affine toric varieties
associated to certain finitely generated subsemigroups of Sf(v) are closely related to the
local uniformizations of v on R.

In Zariski and Samuel’s classic book on Commutative Algebra [16], two general facts
about semigroups S (v) of valuations on noetherian local domains are proven (in Appen-
dix 3 to Volume II).

1. For any valuation v of K which is non negative on R, the semigroup S%(v) is a
well ordered subset of the positive part of the value group I' of v, of ordinal type
at most w”, where w is the ordinal type of the well ordered set N, and A is the
rank of the valuation.

2. If v dominates R, the rational rank of v plus the transcendence degree of V/my
over R/mp is less than or equal to the dimension of R.

The second condition is the Abhyankar inequality [1].
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In [6], the authors give some examples showing that some surprising semigroups of rank
> 1 can occur as semigroups of valuations on noetherian domains, and raise the general
question of finding new constraints on value semigroups and classifying semigroups which
occur as value semigroups.

The only semigroups which are realized by a valuation on a one dimensional regular
local ring are isomorphic to the natural numbers. The semigroups which are realized by a
valuation on a regular local ring of dimension 2 with algebraically closed residue field are
much more complicated, but are completely classified by Spivakovsky in [14]. A different
proof is given by Favre and Jonsson in [7], and we reformulated the theorem in the context
of semigroups in [6]. However, very little is known in higher dimensions. The classification
of semigroups of valuations on regular local rings of dimension two does suggest that there
may be constraints on the rate of growth of the number of new generators on semigroups
of valuations dominating a noetherian domain. In [4], such a constraint is found for rank
1 valuations. We prove in this paper that there is such a constraint for valuations of
arbitrary rank.

In [4], a very simple polynomial bound is found on the growth of Sf(v) for a rank 1
valuation v. This bound allowed the construction in [4] of a well ordered subsemigroup of
Q. of ordinal type w, which is not a value semigroup of a noetherian local domain. This
example is given in Example 1.2 in this paper. Thus the above conditions 1 and 2 do not
characterize value semigroups on local domains.

e Unless otherwise stated, in this text all local rings are assumed to be noetherian. A
valuation of a local domain is a valuation v of its field of fractions whose ring R, contains
R in such a way that m, "N R C mg.

In Section 1 of this paper, we describe a polynomial behavior of valuation ideals P, (R) =
{z € Rlv(z) > ¢} and PL(R) = {x € R|v(z) > ¢}. Given a valuation v with center p on
a local domain R we find very general polynomial bounds on the growth of the sums of the
multiplicities of the finitely generated R/p-modules P,(R)/PS (R) when ¢ runs through
growing regions of the value group I' of v viewed as a subgroup of R”. These modules are
nonzero precisely when ¢ is 0 or belongs to the semigroup Sf(v). Our results therefore
also bound the number of elements of Sf(v) in those regions. This last result generalizes
to all ranks the bound given for rank 1 valuations in [4] (restated as Theorem 1.1 in this
paper). The statement and proof for higher rank valuations is significantly more complex.

We give an example (Example 1.3) of a rank 2 semigroup 7" which satisfies all restric-
tions on the semigroup of a valuation on an s dimensional local domain imposed by our
polynomial bounds for modules over the rank 1 convex subgroup ®4 of the group I' gener-
ated by T', but is not a valuation semigroup on an s dimensional local domain. The proof
uses our most general bound, Theorem 1.7, in the case of rank 2 valuations.

Our polynomial bounds are estimates of sums over the intersection of ST(v) with certain
regions of I'. These regions are defined by their intersections with the convex subgroups
of I and depend on a certain function ¢ whose precise definition is given in Definition 1.1
of Section 1. Given a valuation v;41 composed with v and an element ¢ in v;41(R\ {0}) C
/®; = S%(v;y1), the value ¢ is the smallest element in the semigroup S¥(v;) which
projects to (; it is an element of I'/®;_;. A lower limit in the sum at level i is determined
by the values traced out by (% as ¢ varies in the semigroup S¥(v; 1), while the upper limit
is of the form @+ y;t;, y; € N, where t; is the smallest element of SR(VZ'). It is interesting
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to consider how close these regions are to being polydiscs. The most desirable situation
is when the value group can be embedded by an order preserving homomorphism into
(Rh)lex in such a way that all of these regions are polydiscs. In the first examples that
one is likely to consider, this is in fact the case. However, the general situation is not
so simple. In Section 2 we give examples showing that the tilde function can exhibit a
rather wild behavior. We show that we can make ¢ decrease arbitrarily fast, and that this
is independent of the embedding. We also show that ¢ can increase arbitrarily fast, and
finally that ¢ can jump back and forth from negative numbers which decrease arbitrarily
fast to positive numbers which increase arbitrarily fast. All these examples are independent
of the embedding of ' into R". In view of the results of Section 1, the behavior of ¢ is an
interesting measure of the complexity of the valuation.

1. POLYNOMIAL BOUNDS ON VALUATION IDEALS

In this section, we derive some very general bounds on the growth of the number of
distinct valuation ideals corresponding to values lying in certain parts of the group I.

If G is a totally ordered abelian group, then G4 will denote the positive elements of
G, and G>¢ will denote the nonnegative elements. If R is a local ring, mg will denote its
maximal ideal, and lengthz(N) will denote the length of an R-module N.

Suppose that R is a domain and v is a valuation of R. Let I" be the value group of v.
We will denote the value semigroup of v on R by

Stw) ={v(f) | f € mr —{0}}.
SE(v) is a subsemigroup of the nonnegative part, I'>p, of I, and if v dominates R, so
that all elements of the maximal ideal mp of R have positive value, then ST(v) is a
subsemigroup of the semigroup I'; of positive elements of T'.
Suppose that I C R is an ideal. We will write

v(I) = min{v(f) | f € I —{0}}.

Note that v(I) € I's¢ exists since R is noetherian.

Suppose that ¢ is an element of the value group I'. We will denote by P,(R) the ideal
{z € R|v(z) > ¢} and by P} (R) the ideal {z € R | v(z) > ¢}. When no confusion on
the ring is possible we will write Py, Pf. We note that P,(R)/P(R) = 0 if and only if
© ¢ S®(v) U {0}. The associated graded ring of v on R is

=D P.(R)/PL(R).

pel’

This (R/m, N R)-algebra is not in general finitely generated; it is graded by the semigroup

S (v), which is not finitely generated in general. Our results can be seen as an extension

to these algebras of the classical results on N-graded finitely generated algebras.
Suppose that I' is a totally ordered abelian group, and a,b € I'. We set

[a,b] ={z €T |a<z<b}and [a,b[={z el |a<z<b}

The concepts of rank of a valuation, the convex (isolated) subgroups of a valuation
group and the corresponding composed valuations are discussed in detail in Chapter VI
of [16].

Suppose that v has rank n. Let

0=¢gCcPyC---C®,=T
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be the sequence of convex subgroups of I'. Let v;, for 1 < i < n, be the valuations on the
quotient field of R with which v is composed. We have v; = v. Let

PnC - Cp
be the corresponding centers on R of v;. We define p,,+1 = (0).
The value group of v; is I'; =T'/®;_1. For 1 < i < n, set
ti = vi(pi) € ©;/Pi1 CT/Pj_.
Let
Ai: Dy =T/®; 1 =Ty =T/
be the corresponding maps from the value group of v; to the value group of v;4q. If

Di # Ppit+1, then t; is in the kernel of A;, which is a rank 1 group. When there is no
ambiguity, we denote by ¢; the image in I'/®;_; of an element ¢ € T'.

Definition 1.1. Given ¢; € I'/®;_1, denote by ¢; € T'/®;_5 the minimum of v;_;(f) for
f € R such that v;(f) = ¢;.

This minimum exists since the semigroup S R(Vi_l) is well ordered. Note that \;_1(@;) =
Pi-
If p;—1 # p;, we remark that for y;—1 € N and ¢;—1 € [@;, @i + yi—1ti—1], we have the
inclusions:
Py Pp; C Py,y C P,
Py, = Pg, and since ®;/®;_; is of rank one, the number of elements of v;_;(R\ {0}) in
the interval [@;, @; + yi—1t;—1] is finite (see [16], loc. cit.).

Lemma 1.2. Suppose that p1 # ps. Then for any function A on R-modules with values in
R which is additive on short exact sequences of finitely generated R-modules whose unique
minimal prime is p1, we have for all y; € N:

(1) > APy, [PL) < A(My, /i My,),
01€[P2,P2+y1t|

where My, = Py, /73[;2,

Proof. For y; € N, [@a, P2 + t1y1] intersects ST(v) U {0} in a finite set {r,..., 7}, with

a finitely generated torsion free R/ps-module.

TI=@a<Tg<: <7 <@2+tiy.
We have inclusions of R modules whose unique minimal prime is pq,
PTT/P¢2+t1y1 - PTT-—l/PS52+tlyl - CPry /Ps52+t1y1 = P /P¢2+tlyl'
By the additivity of A we have
APy /Popttryn) = Z A(Py, /'P:;l ).
P1€[P2,02+y1ta |

From the inclusion p{'P,, C Pz,4y,t,, We have an exact sequence of R-modules whose
unique minimal prime is p;:
0— P¢2+t1y1/(’]3$2 +pZ1/1,P502) - @2/(7);_2 +pZ1/1,Pg02) - @2/P¢2+t1y1 — 0.
Since
M@z/pzlllMsoz = @2/(734—;2 +pZ1/1Ps02)a
we have that

A(P¢2/P¢2+t1y1) < A(sz /pll/lMsﬂz),
4



and the conclusions of the lemma follow. O

Suppose that pg is a prime ideal of R such that ps C p; C po. Let e, (IN) denote the
multiplicity of an R,, module N with respect to m; = p; R, .
From the above lemma, we immediately deduce the following result.

Theorem 1.1. Let R be a local domain and v a rank 1 valuation of R. Let py be a prime
tdeal of R containing the center p1 of v. Then

Z emo((,Pw/P;_)po) < emo((R/pl)po)lengtthl (Rp, /PiRp,)
Pe[0,yts ]
for all y € N. Thus we have
Z emo((,RP/P;_)po) < emg((R/pl)po)PRpl (y)
Pe[0,yt1]
for y> 0, where Pr, (y) is the Hilbert-Samuel polynomial of the local ring Ry, .

Proof. This follows from Lemma 1.2, with A(N) = €5, (N ® Rp,) for R-modules N. We
take v =11, I's = 0, 2 =0, and p; C po, so that P =0 and M., = R, to get for y € N,

Z emo((Pso/P;)po) < emo (Rpo /D1 By )-
©€[0,yta
The conclusions of the theorem now follow from the associativity formula for multiplicity,
[2], Section 7, no. 1, Proposition 3, which shows that

€mg (Rpo/p?lJR;Do) = emy ((R/P1)po)ems (B, /pzllR;Dl) = emo((R/pl)po)lengtthl (Rp, /pzllRpl)'
g

If v has rank 1, and dominates R, so that p; = py = mp is the maximal ideal of R, we
obtain the inequality of [4],

(2) #(S" ()N [0,yt1]) < Pr(y)

for y € N sufficiently large. This follows from Theorem 1.1 since P,/ 77;' # 0 if and only
if there exists f € R such that v(f) = ¢, and since ¢ = 0 is not in ST(v).

As was shown in [4], we may now easily construct a well ordered subsemigroup U of
Q. such that U has ordinal type w and U # ST (v) for any valuation v dominating a local
domain R.

Example 1.2. There exists a well ordered subsemigroup U of Q4 such that U has ordinal
type w and U # SE(v) for any valuation v dominating a local domain R.

Proof. We let T be any subset of Q4 which has 1 as its smallest element, and
y <#(ly,y+1[)NT) < o0

for all y € Z. Let U = |J;2; nT be the semigroup generated by 7. Then U is well

ordered by a result of B. H. Neumann (see [13]), and the function #([0,y[ NU) grows

faster than y? for any d € N. Since the Hilbert-Samuel polynomial of a noetherian local

domain R has degree d = dim R < oo, it follows from formula (2) that U cannot be the

semigroup of a valuation dominating a noetherian local domain. O
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Suppose now that pg is a prime ideal of R such that po C p; C pg. Let e, (V) denote
the multiplicity of an R,, module N with respect to m; = p;R,,.
If po = p1, so that 1 is not in the kernel of A1, let us define

¢y =min{ra(f) | f € R and v2(f) > pa}.

By [16] (Appendix 3, Corollary to Lemma 4), the interval [@a, ¢3 [ contains only finitely
many elements of ST(v).

Theorem 1.3. Let R be a local domain and vi,vs two valuations of R such that vy is
composed with vy and the difference of their ranks is equal to one. Let py be a prime ideal
of R containing the centers ps C py of v1 and vo. Then we have:
a) Suppose that p1 # pa. Then there exists a function s(g,p2) such that for g € Ta, & > 0
and y1 € N such that y; > s(e, p2), we have
Zcple[gﬁg,cﬁg-‘ryltl[ €myg (Pﬂol (RPO )/PL;_1 (RPO))
dim (R/pZ)m

emg (R
< (Ut &) i ey (Pey (B ) [P, (B )

b) If p1 = pa we have the equalities
Zcme[@z,c;f[ €myg (P<P1 (Rpo)/Pg-oi_l (Rpo)) = €myg (sz (Rpo )/,P;g (Rpo))
= €my ((R/pl )po)eml (P<P2 (Rm )/Pg-pi_g (R;Dl ))
Proof. Assume first that p; # ps. Taking A(N) = e, (Np,) in Lemma 1.2, and using the
identities P, (Rpo) = (Pcm )pov we obtain
Z €myg (Psm (Rpo)/,ngl (Rpo ) < €mg ((Mcpz )po /1711/1 (Msoz )po)'
P1€[P2,P2+y1t1|

Since (p1)p, is the unique minimal prime of (Mg, )p, /P (Mg, )pe» by [2], Section 7, no. 1,
Proposition 3, we have

emo (M )po /P (M, ) ) = lengtthl (Mopy)py /P (Ms )p1 ) emo (R/P1)po)-

Since ps is the unique minimal prime of My, , there exists a function 5(y2) such that

lengtthl ((MsDQ )101 /p?lJ1 (Msoz )p1) = I_I(Mw2 )p1 (y1) )
emy (Mgy)p,)  dim(R/p2)
(dim(R/p2)p, )1 71

"1 + lower order terms in y;

for y1 > 3(p2), where Hyy,,), (y1) is the Hilbert-Samuel polynomial of (My,)p,. This
polynomial bound implies that there exists a function s(g, p2) such that

emy (M, dim(r
lengtthl((Mw)pl/pzln(Mw)pl) <1 +5)%91 (B/p2)p,
p1/:

for Y1 2 8(67902)‘

If p1 = pa, we have p1(Py,/P/,) = p2(Py,/Pg,) = 0, so the first inequality stated in
this case follows directly from the additivity of the multiplicity e,,,. The second equality
follows from the first and the associativity formula of [2], Section 7, no. 1, Proposition
3. O

For 1 <i<n—1, define

@iy = min{vig i (f) | f € Rand vi1(f) > @iga1}.
6



Corollary 1.4. Suppose that p, = --- = ps = p1. Then
Z Z T Z emo((lpsol /,Pg—oi_l) < emo((R/pl )po)lengtthl (R;Dl /pzllsz)
Spne[()’ytn[spnfle[@nv@;’t[ 5016[@27@;[
for all y € N. Thus we have
> Yoo Y emo(Po/PL) < emo(R/p1)pe) Pr,y, (4)
Spne[()’ytn[spnfle[@nv@;’t[ 5016[@27@;[
fory >0, where Pg, (y) is the Hilbert-Samuel polynomial of Ry, .

Proof. We will prove the formula by induction on the rank n of the valuation. If n = 1,
this is just the statement of Theorem 1.1. We will assume that the formula is true for
valuations of rank < n, and derive the formula for a rank n valuation v. Let v5 be the
rank n — 1 valuation which v is composite with. Consider the chain of ideals

(0) =¢n Cgn-1=""=q1 = qo,

where ¢,—1 = pn,...,q1 = po are the centers on R of the successive valuations vy, ...,
with which vy is composed, and gy = p;. We obtain

(3) Z Z T Z ema (Pis /,P;_z) < em1((R/p2)p1)PRp2 (y) = Pr, (y)
en€l0ytnlpn_1€[@n, @[ 2€[@s,07]
for y > 0. We apply Theorem 1.3 to the valuations v = v1 and v and py = p; C pg to
obtain for s € (@, 31| (or @ € [Fn, G + tuyl if 1. = 3),
(4) Z emo((Psm /P;rl Jpo) < emO((R/pl)PO)eml((P<P2/P;_2)p1)‘
©1€[P2,85

Now sum over (3) and (4) to obtain the formula for v.
O

Corollary 1.5. In the special case where vy is a valuation of rank one and vy is the trivial
valuation, we have po =0, 'y =0, @9 = 0 € I'1 and the inequality of Theorem 1.3 reduces
to:

Zgale[o,yltl[ €mo (Psa(Rpo)/PJ(Rpo))

emq (R, dlmR
< +€)emo((R/p1)po)(d#R:11))!yl "

(5)
for y1 > s(e).

Corollary 1.6. Tuaking py = p1, we deduce that when p; # pa we have for y; > s(e,¢2)
an inequality
#(AT (02) N ST (W) N[22, G2 + y1ta])

emy (Poy (Rpy )/ Py (Bpy))  AIM(R/p2)p
< 1pa Utpy )/ Fp (g 1
<(1+e) (dim(R/p2)p, )! ! ’

When p1 = pa2, we have
#(A1 " (92) N 87(v)) < lengthp, (Py,(Rp,) /P, (Rp,)) < 0.
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Let
0)=pPrt1CPrC---Cp
be the centers of the valuations with which v is composed. Define

I'={ie{l,....,n}|pi # pit1}
and note that n € I. By [16] (Appendix 3) we know that if ¢ ¢ I, and ¢;41 € T'iqq, if we
define
¢ = min{vip (f)If € R and vig1(f) > i}

the intersection S™(1;) N [@it1, @] [ is finite. Let us agree on the convention that in this
case, for large y; the interval [@;+1, @i+1 + t;y;] coincides with this intersection. Remember
also that if ¢ ¢ I we have dim(R/pi+1)p, = 0 and ey, ((R/pit1)p;) = (dim(R/pit1)p;)! = 1.

Theorem 1.7. Let R be a local domain and v a valuation of R which is of rank n. There
exist functions sp(g) and $;(€,Yit1,Yitr2,---,Yn) for 1 < i < n —1, such that, using the
notations and conventions introduced above, we have

+
Z‘Pné[ovtnyn[ ZSD'nfl 6[¢ny¢n+tnflynfl[ e Es@1€[¢27¢2+t1y1[ emo ((Pgol /PQO1 )PO)

g em; (B/pis1)p) vyn . AIM(R/Pit1)p,
é (1 + 6) H?:lo(dim(R/piJrl)Pi)! Hi:l i

fOT’ YnryYn—1,---,Y1 eN Sat?sfylng
Yn = Sn(€)ayn—1 > Sn_1(€,yn), ce Y1 > 81(6,3/2, - ,yn).

Proof. The proof of this formula is by induction on the rank n of the valuation v. We first
prove the formula in the case when n = 1. We apply (5) to the ring R, and observe that
for o1 € T'1, Py (Rpy) =2 (Py, )pos to obtain
S (P /PE o) < (14 g)weml (1
im Ry,)!
p1€[0,t1y1]

for y1 > s1(e), which is the formula for n = 1.

We now assume that the formula is true for valuations of rank < n. We will derive the
formula for a rank n valuation v. We apply the formula to the rank n — 1 valuation vo
which v is composite with, and the chain of prime ideals

0)=¢, Cqn-1C--Cq Cqo

where ¢,—1 = pp,...,q1 = p2 are the centers on R of the successive valuations vy, ...,
with which 15 is composed, and gy = p; is the new "mute” prime ideal. We obtain the
inequality

(6)
Z Z em1((7)<p2/7);2)p1) < (1+¢1) Hz 1 em, (( R/pz—i-l H m (R/pi+1)p

d R
on€l0tnyn|  p2€[P3,P3+t2y2] HZ 2(dim (B/pita)p =2

for
Yn > 8n(€1),Yn—1 = Sn—1(€1,Yn)s - - Y2 = 52(€1, Y35+ -, Yn—1)-
We apply Theorem 1.3 to the valuations v = v and o, and py C p1 C pg, to obtain for

2 € [P3 + taya],
8



In the case where py # py

(7)

emo ((/D1)p, dim (R
S el (Po/Phm) < (1 el Gk e (P P
P1€[P2,P2+y1t1| 2
for y1 > s(e1, p2). Since #(ST(v) N [P3, P3 + taya|) < oo, we may define
31(617y27y37 cee ayn) = max{s(el, (102) | ©2 € [(1537 9534‘7521/2[, ®3 € [(1547 ¢4+t3y3[7 - Pn € [07tnyn[}

In the case where p, = p; we have by theorem 1.3, b) the equality

Z emo((Pgm/P;l)po) = emo(( 4,02/ )po) = emo((R/pl)PO)eml((PQO2/P;’_2)P1)7
s01€[¢27;2:[
and define s1(e1,y2) = 1.

Finally, we set
g1 = 2%10g2(1+6) _ 17

so that (1+¢1)? = 1+¢, and sum over (7) and (6) after multiplication by the appropriate
factor to obtain the desired formula for v. d

As an immediate corollary, we obtain

Corollary 1.8. The sum

Z Z e Z emo((Psm /77;_1 )po)

Pn€l0tnyn]  Prn—1€[@n,Pnttn_1yn—1]  P1€[P2,P2+t191[
is bounded for y1 > ya > - >y, >0 by a functz'on which behaves asymptotically as

[Tio em; (R/pis1)p,) H dim (R/pis1)p,
Hz 1(dlm(R/pz+1 pz '

Using the notations of Definition 1.1, and the conventions preceding Theorem 1.7, define
the pseudo-boxes

Br(yi,...,yn) = {p €T/p € [@2, P2 + iy, 02 € [@3, 03 + tayal, ..., ¥n € [0, tnyn[}.
Then we have:

Corollary 1.9. For y1 > yo >> -+ > y, > 0 the number #(S%(v) N\ Br(yi,...,yn)) is
bounded by the same function as in Corollary 1.8.

Remarks 1.10. 1) The only centers p; which contribute to the right hand side of the
inequalities are those for which the inclusion p;+1 C p; is strict.

2) The total degree of the monomial appearing on the right hand side is dim R—dim R/p;,
which is dim R in the case where v is centered at the maximal ideal mp.

We now give an application of Theorem 1.7. Suppose that v is a rank 2 valuation
dominating a local domain R. Let I'y be the value group of the composed valuation vy of
the quotient field of R, and let py be the center of 5 on R, t; = v(mp). Theorem 1.3 gives
us a family of growth conditions for ¢y € T'y on SE(v) N [Pg, nty| for n sufficiently large.
To be precise, Theorem 1.3 tells us that for each o € I'y, there exist functions d(p2) and
s(¢2) € N such that

(8) #(STW) N (@2, p2 +nty]) < d(gpg)ndim R/p2
for n > s(¢pa).



Example 1.3. For every natural number s > 3, there exists a rank 2, well ordered sub-
semigroup T' of the positive part of (Z x Q);,,, which is of ordinal type w? and satisfies
the restrictions (8) for all 3 € N, but is not the semigroup of a valuation dominating an
s dimensional local domain.

Proof. Let r = s — 2. Define a subsemigroup of Q>¢ by
S = {@"+J)+ 53 Mm@ €N,
0<j<2m0<a<20mthry,
Suppose that n is a positive integer. Then there exists a unique expression n = 2™ + j
with 0 < j < 2™. We have
#(S N [n,n+1[) = 20m 0,
and since 2™ < n < 2m*1
9) n" <#SNn,n+1[) <2"n".

For y a positive integer, let f(y) = %;11 n”. The first difference function f(y + 1) —
fly) = y" is a polynomial of degree r in y. Thus f(y) is a polynomial of degree r + 1 in
y, with positive leading coefficient. From

-1

#(SN[0,y) =) #(SNnn+1[)
1

<

3
Il

and (9), we deduce that

(10) fly) <#(SN0,y) <27 f(y).
Suppose that ¢ € N. Then #((15) N [0,y[) = #(SN [0, cy[). Thus

() Fley) < #(8) 1 [0,y]) < 2 F(e).
For ¢ € N, let
12 =11 iz
Let )
7= U fm) X (58 € (2% Qe
T is a well ordered subsemigroup of (Z x Q)jay., of ordinal type w?.

Suppose that T is the semigroup S%(v) of a valuation v dominating an s = r + 2
dimensional local domain R. Then v has rank 2. Let vo be the composed valuation
vo(f) =m(v(f)) for f € R, where m : Z x Q — Z is the first projection. By assumption,
the center of ¥ on R is the maximal ideal mpi of R. Let py be the center of 15 on R.
We see from an inspection of 1" that ¢; = v(mpg) = (0,1) and ty = va(p2) = 1. Further,
P2 = (2, @) for all o € Z . Observe that for all o € Z, and y; € N,

AT OV (B2, G2 + i) = (T 0 {2} % [0,31]) = (5 1 [0,311]).

c(¢p2)
From (11), we see that

(13) flelp2)yr) < #(T N {p2} x [0,y1[) < 2" fe(p2)y1)-
10



Thus T satisfies the growth conditions (8) on a local domain R with dim R/ps > r+ 1.
Since T has rank 2, we must have that dim R > dim R/ps + 1.

Since we are assuming that R has dimension s = r + 2, we have that dim R/ps =7+ 1
and dim R, = 1. Since v5 is a discrete rank 1 valuation dominating R,,,, this is consistent.

Theorem 1.7 tells us that there exists a function s(y2) and d € Z, such that

#([0,y2[ x[0,91[ N T) < dy§yb

for y1 > s(y2), where a = dim R/p; = r+ 1 and b = dim R,, = 1. From (13) and (12),

we see that
y2—1

fly) + Z fiyr) < #((0,y2[ x[0, 1 [ N T).
i=1
There exists a positive constant e; such that f(y;) > ely{H for all y; € N, and thus there
exists a positive constant e such that

y2—1
Flp) + > fliyn) > ey Hypt!
i=1
for y1,y2 € N. Thus we have

dyfys = dy T yo > ey Hyst!

for all large yo, which is impossible.

2. WILD BEHAVIOR OF THE TILDE FUNCTION

The tilde function @, defined in Definition 1.1, gives critical information about the be-
havior of valuations of rank larger than one. This is illustrated by its role in the statement
of Theorem 1.7, which shows that there is some order in the behavior of semigroups of
higher rank valuations. However, the sums in this theorem are all defined starting from the
functions ¢. This function can be extremely chaotic, as we will illustrate in this section.

We will give examples of rank two valuations, showing that ¢ can decrease arbitrarily
fast as ¢ increases (Example 2.2), ¢ can increase arbitrarily fast as ¢ increases (Example
2.3), and that ¢ can jump back and forth from negative values which decrease arbitrarily
fast to positive values which increase arbitrarily fast as ¢ increases (Example 2.4). These
properties are all independent of order preserving isomomorphism of the value group.

To construct our examples, we will make use of the following technical lemma, and some
variants of it. This lemma is an avatar of the notion of generating sequences of valuations,
which is well known for regular local rings of dimension 2 (see [10], [14], [7]).

Lemma 2.1. Suppose that o : Z. — N is a function. Let K(x,y, z) be a rational function
field in three variables over a field K. Set
PO =, Pl =Y
and
: i+1
Py =2"0P - P3Py
fori>1.
Define, by induction on i, ng = 1, and

1
(14) M1 = 20+ 5
11



for i > 0. Define v =0 and

(15) Yi = —(

fori>0.
1. Suppose that f(x,y,z) € K(2)[x,y]. Then forl € N such that deg,f < 2', there is
a uNique expansion

(16) f=2aa(z)z®PM ... P

o(1) , o(2) o (i)
i +2i—1 +"'+T)

where aq(2) € K(2) and the sum is over o = (ag, 1, ..., 0a;) € N x {0, 1},
2. For f € K(2)[x,y], define from the expansion (16),
)4
. 1 1
(17) v(f) = mina{(0, ord.(an(2)) + Y _ ci(ni, %)} € (5%2 % 3 Dler
i=0
Then v defines a rank 2 valuation on K(x,y,z), which is composite with a rank 1
valuation vy of K(x,y,z). The value group of v is 2%.0Z =2, %Z.
The valuation v dominates the local ring R = K|x,y, z] (z,y,2) and the center of
vy on R is the prime ideal (x,y).

Proof. We have that deg,P; = 2'~! for i > 1. Suppose that f € K(z)[z,y] and ¢ is such
that deg, f < 2¢. By the euclidean algorithm, we have a unique expansion
f=90(z,y) +g1(z,y) P

with go, 91 € K(2)[z,y] and deg,go < 2l=1 deg, g1 < 2/=1 Tterating, we have a unique
expansion of f of the form of (16).

We have
(18) v(P) = (mi,7)
and
(19) (" P?) = v(P§" Piy) < v(Pip1)
for all 1.

Observe that for
o = (Oé(),...,aé),ﬁ: (ﬁ(b"'aﬁé) € N x {071}67

¢ ¢
(20) > ami=>_ Bimi
i=0 i=0

implies a = .

The function v defined by (17) thus has the property that there is a unique term in the
expansion (16) for which the minimum (17) is achieved. We will verify that v defines a
valuation on K (x,y,z). Suppose that f,g € K(z)[z,y|. Let

(21) F=> aa(z)z* P P

12



and
(22) 9= ag(z)a™pP... P}
B8

be the expressions of f and g of the form (16).

F49= " (aa(z) + ba(2))a™ P - Ff

07

is the expansion of f+g¢ of the form (16). Since ord;(aq(2)+bq(2)) > min{ord,(a(z)), ord,(b(2))}
for all o, we have that

v(f +9) 2 min{v(f),v(g)}-
We will now show that v(fg) = v(f) + v(g).
Suppose that

(23) s=Y ds(z)z™P - P
J
is an expansion, with ds € K(z), and § = (dg,...,d;) € N for all §. We define
¢
A(s) = ming{ (0, ord.ds(2)) + Y _ (1, 7))}
i=0

Observe that if s is an expansion of the form (16); that is, § € N x {0,1}* for all §, then

A(s) = v(s).
Let
ce(z) = Z aa(2)bs(2).
a+fPB=e
Let
(24) S0 = Z ce(z)x™ Pyt - Pt

€
S0 is an expansion of the form (23), and fg = sp. To simplify the indexing later on in the
proof, we observe that we can initially take ¢ as large as we like.
Let o (in the expansion (21)) be such that

!
Xy

V(f) = V(ag (2)z0 P ... P
and let 3’ (in the expansion (22)) be such that
v(g) = v(bg ()z% P ... P,
Let ¢ =o' + . Then
cef(z)xaéPlal Pyt

is the only term in sy which achieves the minimum A(sg). We have that c.(z) =
ao (2)bg () and

(25) A(so) = v(f) +v(g).

If ¢ € N x {0,1}* whenever c. # 0, then we can can compute v(fg) = A(so) and we
are done. Otherwise, there exists an ¢ > 1 such that there exists an ¢ with ¢; > 2 and
ce(z) # 0. We then substitute the identity:

1 1 2i+1

Pig1+ —=2° P

2 _
(26) pP? = 0

v 20(2‘)
13



into sp to obtain an expansion of the form (23), where all terms
ce(z)a° Pyt - P

with ; > 2 are modified to the sum of two terms

Ce(z) e0+2tt1 pey Ei— 1+1 £i—2 pPEit1 £ Ca(z) €0 PE1 Ei—1 pei—2 pEit+1+1 )
o) " Pt BB P P T Pt BOPT TP P

Collecting terms with like monomials in x, P, ..., Py, we obtain a new expansion
s1 = Zd(;(z)x‘sOPfl ---Pf“
of fg. From the identities (19), we see that the minimum A(s;) is only obtained by the
/ ! 5/
term d(;/(z)x‘sOPfl .- P,*, where

/ /
’ op°l...pot e
dy(z)xé(’)pl‘si...pfz: cer(2)z P+1 Pg 1 ; if el <2
Cwle) et 2 i pE T PR TP L el > 0,

We have A(s1) = A(so).
By descending induction on the invariants

n = max{d; + -+ + dy | some ¢; > 2 and dg(z) # 0}

and
m = #{(61,...,0¢) € N¢ | 61+ -+ 0y = n,some §; > 2 and ds(z) # 0},
making substitutions of the form (26), we eventually obtain an expression s of fg of the
form (23), with (do,...,d,) € N x {0,1} for all £. We then compute v(fg) = A(s) =
A(so) =v(f) + v(g). We have thus completed the verification that v is a valuation.
]

Example 2.2. Suppose that f : N — Z is a decreasing function, and K is a field. Then
there exists a valuation v of the three dimensional rational function field K (x,y, z) with
value group (s L7 x Z) which dominates the regular local ring R Klz,y, z](x,%z),
for all

lex>

such that for any valuation w equivalent to v with value group ( Z x Z)jex
Sufﬁmently large n € N, there exists A € 557 N [0,n[ such that m(\) < f(n), where

7o 5= Z x Z — 7 is the second projection.

Proof We choose positive integers (i) so that

o(l)  o(2) o(i) g
V= gt ) < F(i27F3)
for all positive integers i, and so that v; € Z. Let v be the valuation dominating R defined

by Lemma 2.1, with this choice of 0. The value group of v is (55 Z x Z)iex-

lex: We have w(z) =
(a,b) for some a € 5%Z and b € Z, and w(z) = (0,c) for some ¢ € Z, since convex
subgroups have to be preserved under an automorphism of ordered groups. From the
relations (19) we see that w(P;) = nw(x) + vw(z) for ¢ > 1, which implies b = 0, since
mo(w(P;)) € Z. We also have w(a(z)) = ord,(a)w(z) for a(z) € K(z). Let ws be the
valuation on K (z,y,z) defined by wa(f) = m1(w(f)), where m1 : 5%Z x Z — 527 is the
first projection.
Let

Let w be a Valuatlon equivalent to v with value group (557 x Z)

e = [a], and ng = [a]2°F2.

Suppose that n > ng. We will find A € 2-Z N[0, n[ such that mo(N\) < f(n).
14



There exists ¢ > e such that
[a]2772 < n < [a]273.

Let A = an;. From n; = £(2772 — 212) we obtain

A=an; < |a] 212 < .
Since ¢ € Z4, i > e and f is decreasing, we have

oy < i < f(i27F°) < f([a]2770) < f(n).
Thus B
m(A) < m(w(h)) = ey < f(n).
]

Example 2.3. Suppose that g : N — Z is an increasing function, and K is a field. Then
there exists a valuation v of the three dimensional rational function field K (x,y, z) with
value group ( 2; Z x7Z)] x> which dominates the regular local ring R = K[z,Y,2](2,,7), such

that for any valuation w equlvalent to v with value group ( Zx7) for all sufficiently

lex>
large n € N, there exists A € 5% Z N[0, n[ such that mo(A) > g(n), where my : o ZXxZ—Z
is the second projection.

Proof. The proof is a variation of the proof of Example 2.2. We outline it here.
We first must establish a modification of Lemma 2.1.
Suppose that 7: Z, — N is a function. Set

Qo=z,Q1=y

and
2'L+1

Qi1 = QF — Qi1

for ¢ > 1.
As in Lemma 2.1, define by induction on %, g = 1, and

1
(27) Ni+1 = 2n; + pYES)
for ¢ > 0. Define g = 0 and

(28) 51':7;})4-72—2,(_224_...4_%

for i > 0.
Suppose that f(x,y,2) € K[x,y,2]. Then for [ € N such that deg, f < 2!, there is a
unique expansion

(29) F=> aa(z)a® P ... P

where a,(z) € K[2] and the sum is over a = (g, v, ...,07) € N x {0,1}. This is estab-
lished as (16) in the statement of Lemma 2.1. We have a stronger statement which is valid
in the polynomial ring K|z,y, z], since the leading coefficients of the @;, as polynomials
in y, have 1 as their leading coefficient.

For f € K|[z,y, 2|, define from the expansion (29),

(30) v(f) = min, {(0,ord,(aq(z —i—Zal (73, 6 —Z X ! Z)lex

15



Then v defines a rank 2 valuation on K (x,y, z), which is composite with a rank 1 valuation
vy of K(x,y,2). The value group of 15 is 3Z = ;2 5 Z.

v dominates the local ring R = K|z, y, 2] (z,y,2) and the center of 12 on R is the prime
ideal (z,y).

We have v(Q;) = (n;,0;) and

; i+1
(31) V(@) =v(TQF Qi) < (Qiv)
for all <.
We now construct the example. We choose positive integers 7(i) so that
1 2 j .
5 = %Jr;(_f +~-+¥ > g(i2"t?)

for all positive integers i, and d; € Z for all i. Let v be the valuation constructed above,
which dominates R. The value group of v is (%Z X Z)lex

Let w be a valuation equivalent to v with value group (552 x Z)1ex- We have w(z) =
(a,b) for some a € 5%=Z; and b € Z, and w(z) = (0,c) for some ¢ € Z;. From the
relations (31) we see that w(Q;) = niw(x) + d;w(z) for ¢ > 1, which implies b = 0, since
mo(w(Q;)) € Z. We also have w(a(z)) = ord,(a)w(z) for a(z) € K(z). Let ws be the
valuation on K (z,y,z) defined by wa(f) = m1(w(f)), where m1 : 5%Z x Z — 527 is the
first projection.

Let

e = [a] and ng = [a]2°"2.

Suppose that n > ng. We will find A € 2Z N[0, n[ such that mo(X) > g(n).
There exists ¢ > e such that

[a]272 < n < [a]27F3.
— 37), we obtain

A =an; < [a]22 < n.

Let A = an;. From n; = %(

Since ¢ € Z4, i > e and g is increasing, we have
co; > 6; > g(i2173) > g([a]213) > g(n).
Thus ~
ma(A) = ma(w(@i)) = cdi > g(n).
O

Example 2.4. Suppose that f : N — Z is a decreasing function, g : N — Z is an
increasing function, and K is a field. Then there exists a rank 2 valuation v of the five
dimensional rational function field K (,y, u,v, z) with value group (H X Z)qy, where H =
(%Z + 2%,oZ\/ﬁ) C R, which dominates the regular local ring R = K[z, y, 4, v, 2] (2 y,u,0,2)»
such that for any valuation w equivalent to v with value group (H x Z)|oy, for all sufficiently
large n € N, there exists \; € H N [0,n[ such that m()\;) < f(n) and there exists
Ao € H N [0,n] such that m(X2) > g(n), where my : 7Z x Z — %7 is the second
projection.

Proof. We need an extension of the method of Lemma 2.1 for constructing valuations
which we first outline. Suppose that o : Z; — N and 7:Z; — N are functions. Define
Py=x, PL=yand Py = za(i)lDiZ — POQZHPi_l for ¢ > 1. Define Qyp = u, 1 = v and

Qi—l—l = Q? - ZT(i)QgiJrl Qi—l for ¢ > 1.
16



Suppose that h € K[z, z,y,u,v] and deg h < 2!. Then there is a unique expansion
h=> gs(z,yu®Qy - Qff

where the sum is over 8 = (8o, 31, .. .,8¢) € N x {0,1} and g5 € K|z, ,y] for all 3 (since
the leading coefficient of each @; with respect to y is 1). Each gg(z,z,y) has a unique
expansion

95 = aap(z)x® P - P
(e}

where the sum is over a = (ag, a1, ...,a7) € N x {0,1}* and a, 5(2) € K(z) for all a, 3.
Thus h has a unique expansion

(32) h=aap(2)a® P Pru QY - Q)

with o, 8 € N x {0,1}¥, and a, g(z) € K(2).
Set ng =1 and

1
Nit1 = 2n; + pYEs)
for ¢ > 0. Set 79 = 0 and

, o(l)  o(2) o (i)
e (22 2i—1 T )
for i > 0. Set g = 0 and
71 | 7(2) (i)
0i = ST 2

for ¢ > 0.
Let H = (552 + #Zv?2) CR.
We define from the expansion (32),

(33) v(h) = ming s{(0,0rd(aa,s(2)) + Y ai(mi,vi) + > Bi(niV2,6:)} € (H ! 35 Llex:

We have ‘ X
v(z°D P2y = (P Pi_y) < v(Pigq)
for all 4, v(P;) = (n;,~;) for all i,

v(Q%) = v(z" Q3" Qis1) < v(Qis1)

for all 4, v(Q;) = (1;1/2, 6;) for all i. Further, there is a unique term in the expansion (32)
which achieves the minimum (33). We have

27,+1

1 1
v(h) € ZT“’Z X 2TOZ

if and only if A has the form

h = aa,0(2)z° P --- P;** 4+ higher value terms,
and

v(h) € 2%02\/5 X 2%02

if and only if A has the form

h = ao,ﬁ(z)uﬁonl e Q?‘Z + higher value terms.

Observe that for all 3, we have ag g(2) € K|[z] in the expansion (32).
17



We now construct the valuation of the example. For i € Z, choose o(i) € N such that
v < f(i27F7)
and choose 7(1) € Z4 so that
g(i2173) < 6;
for all ¢ € Zy, and v;,d; € Z for all i. Let v be the valuation constructed above, which

dominates R. The value group of v is (H X Z)]qy-
Let w be a valuation equivalent to v with value group (H xZ)

2%.0Z, bi,bas € Z, c € Z,, such that
w(m) = (alvbl)vw(u) = (a27b2)7w(z) = (O,C)

Jex- There exist a, 3,7, €

where
ar=a+8V2>0a=~v+5V/2>0
and ad — vy # 0. We have w(FP;) = niw(z) +viw(z) and w(Q;) = niw(u) + d;w(z) for i > 1,
which implies by = by = 0, since mo(w(F;)), m2(w(Q;)) € Z.
Set
e = max{[a1 ]|, [az]}.
Let ng = e2¢+2.
Suppose that n > ng. We will show that there exists A\; € H N[0, n[ such that m(\;) <
f(n) and there exists Ay € H N [0,n[ such that mo(Xs) > g(n).
There exists i > e such that €212 < n < €23, Let A\; = a;n;. From n; = %(2i+2 — 2—11)
we obtain
A= arm; < [a1]2772 < €22 < m.
Since ¢ € Z4, i > e and f is decreasing, we have
ey <y < fi2173) < f(e2773) < f(n).
Thus ~
ma(A1) < mo(w(F)) = v < f(n).
Let Ao = aom;. We have
Ao = agn; < [a2]2772 < 2712 < .
Since ¢ € Z4, i > e and g is increasing, we have

& > 6; > g(i2"13) > g(e2?) > g(n).

Thus B
7T2()\2) = Fg(w(Qi)) = 0(52' > g(n)
]
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