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1 Basic properties of hereditary categories

For the whole series k denotes a field, which later we will assume to be alge-
braically closed. We are going to investigate k-linear categories, k-categories
for short, that are small abelian, Hom-finite, hereditary and satisfy Serre
duality.

1.1 Abelianness

(H1) H is an abelian k-linear category.

Recall that k-linearity of H means that the morphism groups are k-
vector spaces, and that composition Hom(Y, Z)×Hom(X,Y ) → Hom(X, Z),
(g, f) 7→ g f , is k-bilinear for all objects X, Y and Z from H.

Next we deal with the concept of abelianness: By definition a sequence
of 0 → A

u−→ B
v−→ C → 0 is called short exact if for each object X from

H the induced sequence 0 → Hom(X, A)
u◦−−→ Hom(X, B)

v◦−−→ Hom(X, C) is

exact and dually for each object Y of H the sequence 0 → Hom(C, Y )
−◦v−→

Hom(B, Y )
−◦u−→ Hom(C, Y ) is exact.

Abelianness of H now requests two things:
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(1) For every every morphism A
f−→ B there exist two short exact se-

quences 0 → K
α−→ A

β−→ C → 0 and 0 → C
γ−→ B

δ−→ D → 0 such that
f is obtained from the commutative diagram below:

0

ÂÂ@
@@

@@
@@

@ 0

C

>>~~~~~~~~

γ

ÃÃ@
@@

@@
@@

A
f

//

β
??~~~~~~~

B
δ

ÃÃ@
@@

@@
@@

K

α
>>~~~~~~~

D

ÂÂ?
??

??
??

?

0

??ÄÄÄÄÄÄÄÄ
0

(2) Further we request that H has finite direct sums, implying unique-
ness of the additive structure, see Keller’s course.

1.2 Hom-finiteness and the Krull-Schmidt property

Our next requirement (H2) is an important finiteness assumption:

(H2) H is (skeletally) small and Hom-finite, that is, all morphism spaces
Hom(X,Y ) from H are finite dimensional over k.

Properties (H1) and (H2) already implies that H is a Krull-Schmidt cat-
egory, so that we are already in a setting close to representation theory.

Proposition 1.1 Each abelian Hom-finite k-categoryH is a Krull-Schmidt-
category, that is,

(i) Each indecomposable object from H has a local endomorphism ring.
(ii) Each object from H is a finite direct sum of indecomposable objects.

Proof (i) Let E be the endomorphism ring of an indecomposable object U .
Then E is a finite dimensional algebra with 0 and 1 as the only idempotents,
since idempotents split in H. It follows that E viewed as a right E-module is
a finite dimensional indecomposable module over E, and hence — by funda-
mental properties of modules over finite dimensional algebras — has a local
endomorphism ring E = End(EE).
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Concerning (ii), assume that X is any object of H. Clearly, the number
of summands s of any direct decomposition X = X1⊕· · ·⊕Xs into non-zero
summands is bounded by the k-dimension of End(X). Choosing s maximal,
hence yields a decomposition of X into a finite number of indecomposable
objects. ¤

As for modules the theorem of Krull-Schmidt states that the decom-
position X = X1⊕· · ·⊕Xs of X into indecomposable objects is unique up to
order and isomorphism of summands. In order to understand the category H
it is therefore sufficient to understand the full subcategory ind-H of indecom-
posable objects of H, which however is no longer abelian. Similarly, if we are
interested in classifying objects, it suffices to do this for the indecomposable
ones. Also the quiver ΓH whose vertices consist of (a representative system
of) indecomposable objects of H, where the number of arrows from U to V
is derived from radH(X,X)/rad2

H(X, Y ) with X, Y from ind-H can now be
formed.

1.3 Heredity and the Euler form

We call an abelian category H hereditary if the extensions Extn
H(X, Y )

vanish in degrees n ≥ 2 for all objects X, Y from H. It is equivalent to
assume that all first extension functors Ext1(X,−) and Ext1(−, Y ) are right
exact, that is, send short exact sequences to right exact sequences. Our next
requirement (H3) requests that H is hereditary.

(H3) The category H is hereditary.

Remark 1.2 (i) The most prominent example of a hereditary category is
the category H = mod-Λ of all finite dimensional right modules over a finite
dimensional hereditary algebra Λ. Recall that this means that all submod-
ules of projective modules are again projective. For that it is sufficient to
establish that all maximal submodules of indecomposable projective modules
are again projective.

This method is used, in particular, to show that the path algebra k[Q] of
a finite quiver Q without oriented cycles is hereditary.

(2) If k is algebraically closed, assume conversely that H = mod-Λ with
Λ finite dimensional hereditary. With Q the quiver of the full subcategory of
indecomposable projectives, it follows that mod-Λ is equivalent to mod-k[Q].
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Thus the study of finite dimensional modules over finite dimensional heredi-
tary algebras is reduced to study k-linear representations of quivers if k = k̄.

Exercise. Assume Λ is a finite dimensional algebra. Prove that submodules
of projective right Λ-modules are projective if and only if the same assertion
holds for left modules.

[Hint: Show first that factor modules of injective right modules are injec-
tive, and then invoke duality D = Homk(−, k) from left to right modules.]

The assumptions (H1), (H2) and (H3), introduced sofar, are very useful
as we will see now.

Recall that the Grothendieck group K0(H) of a small abelian category
H is obtained by taking the free abelian group on the set of objects of H
modulo all relations A − B + C given by short exact sequences 0 → A →
B → C → 0 in H. We denote the class of an object A in K0(H) by [A].

A linear form λ : K0(H) → Z on the Grothendieck group may thus be
viewed as a mapping λ : H → Z, defined on the set of objects of H, which
is additive on short exact sequences, that is, for each short exact sequence
0 → A → B → C → 0 we assume λ(B) = λ(A) + λ(C).

The next assertion gives a very useful construction of hereditary abelian
categories from existing ones. Recall that a full subcategory H′ of an abelian
category H is called an exact subcategory if it is closed under kernels,
cokernels and direct sums formed in H. It is obvious that H′ is again an
abelian category, with the short exact sequences inherited from H.

Proposition 1.3 Let H be a small abelian hereditary category. For each
λ : K0(H) → Z the full subcategory H(λ) consisting of all objects satisfying

(i) λ(X) = 0,
(ii) We have λ(X ′) ≤ λ(X) for each subobject X ′ of X,

is an exact abelian subcategory of H which is closed under extensions. In
particular, the category H(λ), called the subcategory controlled by λ, is
again hereditary abelian.

Proof. We have to show that H(λ) is closed under kernels, cokernels and
extensions. We show closedness under kernels, the other proofs are similar.
So let 0 → K → A

u−→ B be exact with A and B in H(λ). Let I be the
image of u, such that η : 0 → K → A → I → 0 is exact. Since I is contained

4



in B we have λ(I) ≤ 0, on the other hand λ(K) ≤ 0, so exactness of η shows
λ(I) ≥ 0. This proves λ(I) = 0; invoking η again we find λ(K) = 0 as
claimed. We have established that H(λ) is an abelian category in its own
right.

To see that H(λ) is hereditary, we use that for any two objects A and
B from H(λ) we have Ext1

H(λ)(A, B) = Ext1
H(A,B), since H(λ) is extension-

closed in H. Here, we use the interpretation of first extensions as equivalence
classes of short exact sequences. It follows that the functors Ext1

H(λ)(A,−),
with A in H(λ), are right exact, proving the claim. ¤

The easiest way to produce appropriate linear forms on K0(H) is by means
of the Euler form which is the bilinear form 〈−,−〉 : K0(H)×K0(H) → Z
given on classes [X] of objects X from H by the homological expression

〈[X], [Y ]〉 = dimk Hom(X, Y )− dimk Ext1(X, Y ).

In order to make this work we have to assume that H is actually Ext-finite,
meaning that all extension spaces Extn(X, Y ) are finite dimensional. (Here,
of course, only n = 0, 1 matter.) Heredity of H and the long exact Hom-Ext-
sequences induced by short exact sequences 0 → X ′ → X → X ′′ → 0 and
0 → Y ′ → Y → Y ′′ → 0 are used in order to see that a bilinear form with
the above properties indeed exists. Exercise: Check this!

1.4 Strengthening heredity: Serre duality

For a finite dimensional hereditary algebra we have Auslander-Reiten duality
D Ext1(X, Y ) = Hom(Y, τX), without passage to the stable category, see
Lydia Angeleri’s lectures, where τ denotes the functor D Tr = D Ext1(−, Λ).
Note that τ annihilates exactly the projective modules. In order to get some
new phenomena we assume that H satisfies the corresponding property
where τ is now assumed to be an equivalence of H.

(H3∗) (Serre duality) We assume the existence of an equivalence τ :
H → H and of natural isomorphisms

Ext1(X, Y )
∼−→ D Hom(Y, τX)

for all objects X, Y from H.

Two consequences of Serre duality are of major importance:
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Proposition 1.4 Assume that H is an abelian k-category which is Hom-
finite and satisfies Serre duality. Then the following holds:

(i) H is an Ext-finite hereditary category without nonzero projectives
or injectives.

(ii) H has almost-split sequences with τ acting as the Auslander-
Reiten translation.

That is, for each indecomposable object X there is an almost-split sequence
0 → τX → E → X → 0.

Since τ is an equivalence, observe that by the above each indecomposable
object also occurs as the left hand term of an almost-split sequence.

Proof (i): By Serre duality, the first extension functor Ext1(X,−) is right
exact as the dual of the left exact functor Hom(−, τX). HenceH is hereditary

Next assume that X is projective. It follows that Ext1(X,−) = 0, hence
Hom(−, τX) = 0 and thus τX and therefore X must be zero. A similar
proof shows that H does not admit nonzero injectives.

(ii) Assume, simplifying, that k is algebraically closed. (The general
proof is similar.) We are going to show that for each indecomposable object X
from H there is an almost-split sequence 0 → τX → E → X → 0. By Serre

duality we have an isomorphism of functors Ext1(X,−)
∼=−→ D Hom(−, τX),

yielding an isomorphism ψ : Ext1(X, τX)
∼=−→ D End(τX). Note that τX is

indecomposable since X is indecomposable and τ is an equivalence. Hence
End(τX) is a local ring with residue class field k, since k is algebraically
closed.

This yields a natural k-linear form End(τX) → k, whose kernel is the rad-
ical of End(τX) and corresponding via ψ to a member µX from Ext1(X, τX).
It is now straightforward to show that µX : 0 → τX → E → X → 0 is
almost-split in H. ¤

The following properties of the Euler form will be used over and over
again. Note that properties (ii) and (iii) are only valid in a hereditary
context.

Lemma 1.5 Assume the above setting (H1), (H2) and (H3∗) then we have:
(i) We have 〈y, x〉 = −〈x, τy〉 for all x, y ∈ K0(H)
(ii) If 〈[X], [Y ]〉 > 0 there is a non-zero morphism X → Y .
(iii) If 〈[X], [Y ]〉 < 0 there is a non-split exact sequence 0 → Y → Z →
X → 0.
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Proof. (i) It suffices to check this on classes of objects from H, where it
follows from Serre duality.

Properties (ii) and (iii) are an obvious consequence of the heredity of
H. ¤

1.5 Hereditary length categories

In order to get closer to the case of a module category mod-Λ, Λ finite
dimensional over k, we assume additionally to (H1), (H2) and (H3’) that H
is a length category, that is, each object of H has finite length.

Example 1.6 [Jordan normal form] Let k[X] be the polynomial ring in one
variable over a field k. The category H = mod0-k[X] of finite dimensional
k[X]-modules is a hereditary abelian k-category which is Hom-finite and
satisfies Serre duality with τ the identity functor.

If k = k̄ the indecomposables have the form S
[n]
λ = k[X]/(X−λ)n. Further

each S
[n]
λ is uniserial, that is, its submodules are linearly ordered and form

a finite chain, here the chain 0 ⊆ S
[1]
λ ⊆ S

[2]
λ ⊆ · · ·S[n]

λ .

There are natural monomorphisms ιn : S
[n]
λ → S

[n+1]
λ and epimorphisms

πn : S
[n+1]
λ → S

[n]
λ , unique up to scalars. The almost-split sequences have the

form
0 → S

[1]
λ

ι1−→ S
[2]
λ

πn−→ S
[1]
λ → 0

and

0 → S
[n]
λ

(ιn,πn)−→ S
[n+1]
λ ⊕ S

[n−1]
λ

πn−→ S
[n]
λ → 0.

Hence the quiver ΓH decomposes into a one-parameter family (Tλ) of homo-
geneous tubes (we have τX ∼= X for each member), indexed by the points λ

of the affine line k, where Tλ consists of all S
[n]
λ , n ≥ 1.

Our next result is closely related to the above example. It is an instance
of classification by homological algebra — as opposed to other clas-
sification principles, like combinatorial ones (knitting!) or classification by
linear algebra.

As for modules an object U of an abelian category is called uniserial if
the subobjects of U are linearly ordered by inclusion and form a finite chain
0 = U0 ⊆ U1 ⊆ · · · ⊆ U`−1 ⊆ U` = U . If all indecomposables in an abelian
length category U are uniserial we call U a uniserial category.
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Theorem 1.7 (Gabriel) Let H be a Hom-finite hereditary length category
with Serre duality. Then H is uniserial.

Moreover, ind-H =
∐

λ∈I Tλ, where the quiver of Tλ is of the form ZA∞/(τn),
where n = 0, 1, 2, · · · .
Therefore the quiver of H decomposes into stable tubes, where for conve-
nience ZA∞ is also viewed as a tube (of infinite period).

Proof. Let S and T be a simple objects. Then Ext1(S, T ) is nonzero if and
only if Hom(T, τS) 6= 0 hence, by Schur’s lemma, T ∼= τS, and in this case
Ext1(S, T ) is one-dimensional. By a theorem of Gabriel [2] this implies that
starting with any simple object S we obtain a chain of inclusions

S = U1 ⊆ U2 ⊆ U3 ⊆ · · · ,

where each Un is uniserial of length n and Un+1/Un
∼= τnS and, moreover,

all indecomposables in H are obtained this way. ¤

Further examples of hereditary length categories with Serre duality are
given next. They show that the homological classification from the above
theorem is also useful to classify in module categories.

Example 1.8 Let Λ = k[◦ ⇒ ◦] be the Kronecker algebra or more gen-
erally a tame hereditary algebra.

Then the full subcategory reg-Λ of mod-Λ consisting of all modules without
an indecomposable preprojective or preinjective module is an abelian heredi-
tary length category with Serre duality. Hence reg-Λ =

∐
λ∈I Tλ, where each

Tλ is a connected uniserial category whose associated quiver is a tube of finite
period.

One proves the above statement by establishing a linear form δ, called
defect, on K0(Λ) := K0(mod-Λ) such that reg-Λ is the full subcategory of
mod-Λ controlled by δ. (We will return to this later.) Then one applies
Gabriel’s theorem and uses that K0(Λ) has finite rank.

For instance for a Kronecker module M = (M0 ⇒ M1) one uses the
additive function given by δ(M) = dimk M0 − dimk M1.

Example 1.9 Let H be the category of coherent sheaves over a smooth pro-
jective curve C. This is a small abelian, Hom-finite category with Serre
duality. Then H0, the full subcategory of H, consisting of all objects of finite
length is an exact abelian subcategory of H which is closed under extensions
and closed under τ , so satisfies (H1), (H2) and (H3).

Again H0 is uniserial The claim follows from Gabriel’s theorem.
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2 The repetitive shape of the derived cate-

gory

We recall that the bounded derived category of an abelian category H is
obtained from the category of bounded complexes in H by formally inverting
all quasi-isomorphisms, see Keller’s course.

Theorem 2.1 Let H be a hereditary abelian category. Then the bounded de-
rived category Db(H) is naturally equivalent to the repetitive category

∨
n∈ZH[n],

where each H[n] is a copy of H, with objects written X[n] for X in H, and
morphisms given by

HomDb(H)(X[n], Y [m]) = Extm−n
H (X,Y ).

Here the expression
∨

n∈ZH[n] has two meanings. First it stands for the
additive closure add(

⋃
n∈ZH[n]) of the union of all H[i], and secondly it

indicates that there are no nonzero morphisms backwards, that is, from H[n]
to H[m] for n > m.

Proof. Let X be a bounded complex, being zero in degrees > n. As usual

let Bn (resp. Zn−1) be the image (resp. the kernel) of Xn−1 d−→ Xn. Let
X ′ denote the complex obtained from X by replacing Xn by 0 and Xn−1

by Zn−1. We are going to show that X is quasi-isomorphic to X ′ ⊕ HnX[n]
which by induction implies the claim. SinceH is hereditary, the epimorphism
c : Xn−1 → Bn, induced by d, induces an epimorphism Ext1(HnX, Xn−1) →
Ext1(HnX, Bn). We thus obtain a commutative diagram with exact diagonals

0

%%KKK
KK 0

0

&&LLLLL Bn

::ttttt
f

$$III
I 0

··· // Xn−3
d // Xn−2

d //
a

%%
Xn−1

c ::tttt d //
e

$$III
I Xn //

99sssss

h
%%JJJ

JJ 0

Zn−1

LLLL
LLLL

b 99rrrr
X̄n

g
$$HHH

H

c̄ ::vvvv
HnX

""EEEE

0

99rrrrr
Zn−1

b̄ ::uuuu
HnX

ttttt
ttttt

%%KKKKK 0

0

88rrrrr
0
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hence an induced diagram of complexes

X ··· // Xn−3
d // Xn−2

d // Xn−1
d // Xn // 0

X̄

α
OO

β²²

··· // Xn−3
d // Xn−2

( 0
a)// Xn−1⊕Zn−1

(1,b)
OO

(0,1)²²

(e,0) // X̄n

c̄
OO

g
²²

// 0

X′⊕HnX[n] ··· // Xn−3
d // Xn−2

a // Zn−1
0 // HnX // 0

with quasi-isomorphisms α and β. The claim follows by induction on the
number of non-vanishing cohomology groups. ¤

Remark 2.2 Let H satisfy (H1), (H2) and (H3).
(1) Each indecomposable of Db(H) belongs to some H[n]. Hence knowing

the indecomposables of H, we know the indecomposables of Db(H), and of
its full subcategories. Important for tilting!

(2) From the description of indecomposable objects it follows that Db(H)
is Hom-finite and further a Krull-Schmidt category. These assertions
are true in a larger context, see Keller’s course, but don’t afford here any
extra work.

(2) There are only non-zero morphisms fromH[n] toH[m] if m ∈ {m,m+
1}. This uses that there are no extensions of negative degree or of degree
≥ 2.

We thus arrive at the following visualization of the derived category

H = H[0] H[1]H[−1] · · ·· · ·

where morphisms between indecomposable objects only exist from left to
right, and — again restricting to indecomposable objects — from a copy
H[n] there exist only morphisms within H[n] or from H[n] to H[n + 1].

3 Derived category and tilting

An object T from a hereditary abelian Hom-finite category H is called a
tilting object if it satisfies the following two conditions:

(i) T has no self-extensions, that is, Ext1(T, T ) = 0.
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(ii) T generates H homologically, that is, any object X from H with
Hom(T, X) = 0 = Ext1(T,X) must be the zero object.

(Note that since we do not assume the existence of projectives in H our
definition of a tilting object differs from the one given in Keller’s course.)

Theorem 3.1 Assume H is a hereditary abelian Hom-finite category with
Serre duality and T is a tilting object in H with endomorphism ring E. Then
the following properties hold:

(i) The right derived functor RHom(T,−) induces an equivalence between
Db(H) and Db(mod-E).

(ii) The category mod-E of finite dimensional right E-modules is equiva-
lent to the full subcategory T ∨F [1] of Db(H), where T consists of all objects
X from H satisfying Ext1(T, X) = 0, and F consists of all objects Y of H
such that Hom(T, Y ) = 0.

(iii) Hom(T ,F) = 0, and each object X of H is the extension term of
a short exact sequence 0 → XT → X → XF → 0 with XT from T and XF
from F . That is, the pair (T ,F) is a torsion theory for H.

(iv) The global dimension of E is at most two.

In the module theoretic setting this is close to the main theorem of tilting
theory due to Brenner-Buttler [1] and Happel-Ringel [3].

Proof. Since T is a tilting object in H, assertion (i) follows as in Keller’s
course.

For the remaining assertions we identify Db(H) and Db(mod-E); in par-
ticular mod-E then is a full subcategory of Db(H), and consists exactly of
those objects X of Db(H) satisfying Extn(T, X) = 0 for any nonzero integer
n. Here, Extn(T, X) has to be interpreted as HomDb(H)(T, X[n]), where [n]
stands for the shift by n copies in Db(H).

First observe that indecomposable objects X from Db(H), satisfying con-
dition

(∗) HomDb(H)(T, X[n]) = 0 for all nonzero n

can only live in H or H[1]: Assume that X = Y [m] with Y from H and
m ≥ 2, then applying (∗) for n = −m and n = 1 −m yields Hom(T, Y ) =
0 = Ext1(T, Y ), and so the tilting condition (ii) implies that Y = 0, and
hence X = 0. Similarly one shows that no nonzero object X = Y [m] with
m < 0 satisfies (∗).

11



Further the objects X from H satisfying (∗) are exactly those satisfying
Ext1(T,X) = 0, and those from H[1] satisfying (∗) are exactly those objects
Y [1] with Y in H satisfying Hom(T, Y ) = 0. This proves (ii). We are
skipping the proof of (iii).

Concerning (iv) we note that, with the above identifications, any two
simple E-modules S and T are lying in H or in H[1]. Hence Ext3

E(S, T ) =
HomDb(H)(S, T [3]) = 0, since there are no nonzero morphisms from H[0] or
H[1] to H[3] or H[4]. This implies that Extn(−,−) vanishes in degrees n ≥ 3
and proves the claim. ¤

We may visualize the tilting theorem above as follows:

H H[1]

mod-E

TF F [1]

Usually in this process, passing from H to mod-E, we will loose some inde-
composables. This does not happen, however, if the endomorphism algebra
End(E) is hereditary.
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