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4 Coherent sheaves on a smooth projective

curve

We introduce these categories in an axiomatic way, introducing in addition
to (H1) – (H3∗) some natural additional axioms. For the whole section we
assume that k is an algebraically closed field.

4.1 Some further axioms

We continue investigating Hom-finite hereditary abelian k-categories H with
Serre duality. By Gabriel’s theorem we understand completely the case when
H is a length category. An object is of finite length if and only if it is together
noetherian and artinian. Here, an object X in an abelian category is called
noetherian if each ascending chain of subobjects U0 ⊆ U1 ⊆ U2 ⊆ · · · of U
becomes stationary, that is, we have Un = Un+1 = Un+2 = · · · for large n.
Dually, X is called artinian if each descending chain of subobjects becomes
stationary.

It is hence natural to add to (H1), (H2) and (H3∗) one of the two chain
conditions as a further request:

(H4) H is noetherian but not every object of H has finite length.

Proposition 4.1 Assume that H is a noetherian, hereditary, abelian cat-
egory which is Hom-finite and satisfies Serre duality. Then the following
holds:

(i) The full subcategory H0 of consisting of all objects of finite length is
an exact abelian subcategory of H, in particular, a hereditary abelian length
category with Serre duality.

(ii) H0 is uniserial, and decomposes into a coproduct
∐

x∈C Ux of con-
nected uniserial subcategories, whose associated quivers are tubes (possibly of
infinite τ -period).

(iii) Each indecomposable object X of H decomposes into a direct sum
X = X0 ⊕ E, where X0 belongs to H0, and E does not have any simple
subobject.

Proof. Since H0 is closed in H under subobjects, quotients and extensions,
it is a full abelian subcategory of H and hence hereditary and abelian. Since
moreover τ as an equivalence preserves simple objects and hence finite length,
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it follows that τ induces an equivalence τ|H0 of H0 such that Serre duality
also holds for H0. Hence Gabriel’s theorem applies and (i) and (ii) follow.

Concerning (iii) we choose by noetherianness a maximal subobject X0

of X having finite length. By Serre duality the sequence 0 → X0 → X →
X+ → 0 splits since X+ belongs toH+ and therefore 0 = Hom(τ−1X0, X+) =
D Ext1(X+, X0). ¤

Let now H+ denote the full subcategory of H consisting of all objects
E not having a simple subobject, then each indecomposable object of H is
either in H+ or in H0; moreover there are no non-zero morphisms from H0

to H+. In other words H = H+ ∨ H0. On the other hand there are many
morphisms from H+ to H0. We depict the situation schematically as follows:

H+
H0

By Gabriel’s theorem we basically know the shape of indecomposables of H0.
The classification problem for the indecomposables of H thus largely reduces
to classify the indecomposable objects in H+.

We next request the existence of a linear form rk : K0(H) → Z, that is,
of an additive function on H separating the objects of H+ and H0:

(H5) There is an additive function rk : H → Z, called rank, that is τ -
stable, zero on H0 and > 0 on nonzero objects of H+. Moreover H+ admits
an (indecomposable) object of rank one.

We call the objects of H+ bundles and those of rank one line bundles.
By noetherianness each non-zero object E has a maximal subobject E ′,

hence a nonzero morphism to a simple object. We now introduce a much
stronger request, dealing with the interaction between H+ and H0.

(H6) Each simple object S satisfies τS ∼= S. Moreover, if L is a line bundle
and S is simple, then Hom(E, S) ∼= k.

It follows from (H6) that H is connected.
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4.2 Properties of line bundles

Proposition 4.2 Let L be a line bundle and E be any bundle. Then each
nonzero morphism u : L → E is a monomorphism. In particular End(L) =
k.

Proof. By properties of the rank the image I of u has rank one, hence
the kernel K of u has rank zero by additivity of the rank. Being of finite
length and a subobject of a bundle K must be zero, proving the first claim.
For the second claim note that by the previous argument End(L) is a finite
dimensional algebra without zero divisors, hence a finite dimensional skew
field extension of k. Since k is algebraically closed hence End(L) = k. ¤

The role of the line bundles becomes clear from the next statement which
can be proved by induction on the rank.

Proposition 4.3 Each bundle E of H has a line bundle filtration, that is, a
chain 0 = E0 ⊆ E1 ⊆ · · · ⊆ Er = E of subobjects of E, where each quotient
Ei/Ei−1 is a line bundle (and hence r is the rank of E). ¤

4.3 Categories of coherent sheaves

Theorem 4.4 (Reiten–van den Bergh) Assume that k is an algebraically
closed field. Properties (H1)–(H6) plus Serre duality characterize the cate-
gories of coherent sheaves on a smooth projective curve.

Proof. This can be deduced from [9]. ¤

In the sequel, therefore, by a category of coherent sheaves on a
smooth projective curve we just mean a category H satisfying (H1)–(H6)
plus Serre duality (H3∗).

4.4 Degree and Riemann-Roch

By its very properties the rank is an important linear form on K0(H). It is τ -
invariant, vanishes on H0 and is strictly positive on indecomposables of H+.
We now introduce another linear form, called degree, and having somehow
dual properties being > 0 on nonzero objects of H0 and being τ -stable on
H0.
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Fix a line bundle L0 of H. (We will see later that it is irrelevant which
one we choose.) Then the degree is the linear form on K0(H) given by

deg x = 〈[L0], x〉 − 〈[L0], [L0]〉rk x

for each x ∈ K0(H). Put g = dimk Ext1(L0, L0) such that 〈[L0], [L0]〉 = 1−g.
We deduce from (H6) that the degree of each simple object equals one, hence
for objects from H0 degree and length coincide. We deduce from this:

Remark 4.5 An object X of H with rk X = deg X is already 0. In partic-
ular, if [X] = 0, then X = 0, showing that the interaction between H and
K0(H) works fine.

The defining equation for the degree can be rewritten as

〈[L0], x〉 = (1− g)rk x + deg x.

Using line bundle filtrations and the symmetry property 〈x, y〉 = −〈y, τx〉
this formula generalizes to the Riemann-Roch formula (RR)

〈x, y〉 = (1− g)rk x rk y +
rk x rk y
deg x deg y

Note that g = dimk Ext1(L0, L0) initially depends on the choice of the line
bundle L0. It follows however from (RR) that each line bundle L satisfies
〈L,L〉 = 1−g such that also g = dimk Ext1(L,L). Therefore g is an invariant
of H, called the genus of H.

Remark 4.6 (i) The Riemann-Roch formula is the key for a homological
classification of indecomposable bundles (sofar possible).

(ii) The genus g = gH of H and the related Euler characteristic
χH = 2(1 − g), which is sometimes more appropriate to use, are important
homological invariants of H. Their value is responsible for the complexity of
the classification problem for H.

5 Request of a tilting object: coherent sheaves

on the projective line

5.1 Curves of genus zero

Next we are going to show that the assumption of a tilting object for H is
a very severe restriction. We impose this as a further axiom for the whole
section in addition to the axioms (H1)–(H6).
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(H7) H has a tilting object T .

Theorem 5.1 Assume that H is a category of coherent sheaves on a smooth
projective curve over an algebraically closed field. Then the following asser-
tions are equivalent:

(i) H has a tilting object.
(ii) H has genus zero.
(iii) H has a tilting object T = L ⊕ L̄ that is the direct sum of two line

bundles L and L̄, such that End(T ) is isomorphic to the Kronecker algebra
k[◦ ⇒ ◦]

The proof follows from the next two lemmas.

Lemma 5.2 If H has a tilting object T , then we have gH = 0 and each
indecomposable direct summand of T is a line bundle.

Proof. Let E be an indecomposable direct summand of a tilting object T .
It follows that also E has no self-extensions and so, by a theorem of Happel
and Ringel [6] valid for hereditary categories, has trivial endomorphism ring
k, that is, E is an exceptional object from H. Applying (RR) to [E] hence
leads to

1 = 〈[E], [E]〉 = (1− g)rk (E)2.

It follows that g = 0, and E is a line bundle. ¤

Lemma 5.3 If H has genus zero, then each line bundle L is exceptional.
Moreover let η : 0 → L → L̄ → S → 0 be a nonsplit sequence with a simple
object S, then L̄ is a line bundle and T = L ⊕ L̄ is a tilting object, whose
endomorphism algebra is isomorphic to the Kronecker algebra k[◦ ⇒ ◦].

Proof. Applying (RR) to a line bundle L′ yields 1 − dimk Ext1(L′, L′) =
〈L′, L′〉 = (1 − g) = 1, so for genus zero a line bundle has no self-
extensions.

Applying Hom(L,−) and Hom(L̄,−) to η shows that

Hom(L̄, L) = 0, Ext1(L̄, L) = 0, Ext1(L, L̄) = 0, dimk Hom(L, L̄) = 2.

Hence T = L ⊕ L̄ has no self-extensions, and its endomorphism ring is iso-
morphic to the Kronecker algebra.
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It remains to show that T generates H homologically. Let X be in H such
that Hom(T, X) = 0 = Ext1(T, X). Then 〈[L], [X]〉 = 0 and 〈[L̄], [X]〉 = 0.
Since [L̄] − [L] = [S] it follows that 〈[S], [X]〉 = 0 and hence rk X = 0, so
that X ∈ H0.

Invoking (RR) is now follows from 0 = 〈[L], [X]〉 that also deg X = 0,
and hence the length of X is zero. ¤

Corollary 5.4 Up to equivalence there is only one category of coherent sheaves
which has genus zero.

Any category satisfying (H1)–(H7) will thus be called category of coherent
sheaves on the projective line over k.

Proof. We only sketch the argument. By the theorem Db(H) is equivalent
to the derived category Db(mod-Λ), where Λ is the Kronecker algebra. So
each other category H′ of coherent sheaves with genus zero has a derived
category equivalent to Db(H), in particular H′ embeds into Db(H). From the
bisection of H into H+ and H0 (and the corresponding bisection of H′) it is
not difficult to see that under this embedding H′ is one of the shifted copies
H[n] of H, implying the claim. ¤

5.2 Classification of indecomposables: Grothendieck’s
theorem

By the definition of degree, each simple sheaf S has degree one. Note that
each line bundle L admits nonsplit exact sequences 0 → L′ → L → S → 0
and 0 → L → L̄ → S → 0, allowing to construct line bundles of arbitrary
degree.

Proposition 5.5 (i) Each line bundle L is determined, up to isomorphism,
by its degree d. (We write Ld in this case.)

(ii) We have Hom(Ld, Ld′) 6= 0 if and only if d ≤ d′.

Proof by (RR). (i) Let L and L′ be line bundles with the same degree. By
(RR) we have 〈L,L′〉 = 1. It follows the existence of monomorphisms L ↪→ L′

and similarly L′ ↪→ L. The composition L ↪→ L′ ↪→ L yields a nonzero
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member of the endomorphism ring End(L) = k which is an isomorphism.
Hence also L ↪→ L′ is an isomorphism.

(ii) If Hom(Ld, Ld′) is nonzero we obtain an exact sequence 0 → Ld →
Ld′ → C → 0, where C has finite length hence non-negative degree, and
d ≤ d′ follows. Conversely assume that d ≤ d′. By (RR) 〈[Ld], [Ld′ ]〉 =

(1− g) +
1 1
d d′

= 1 + (d′ − d) > 0. Hence Hom(Ld, Ld′) 6= 0 . ¤

The key ingredient for the homological classification of H is the next
result with a surprisingly simple proof.

Proposition 5.6 Let L be a line bundle. Then deg τL = deg L− 2.

Proof. Let L = Ld and τLd = Ln. We have to show that n = d2. Now
〈[Ld], [τLd]〉 = −〈[Ld], [Ld]〉 = −1. Evaluating by (RR) the same expression

yields 〈[Ld], [Ln]〉 = 1 +
1 1
d n

, and n = d− 2 follows. ¤

Note: The number 2 appearing in the above proposition is the Euler char-
acteristic of the projective line (or for k = C of the Riemann sphere).

Theorem 5.7 (Grothendieck) Each indecomposable bundle E on the pro-
jective line is a line bundle.

Proof. Assume the assertion is false and choose a counterexample E from
H+ having minimal rank. Next we choose a line bundle Ld contained in
L and having maximal degree. (For the existence of d we may refer to a
line bundle filtration of E.) By the assumptions E/Ld is a bundle and thus,
having smaller rank, splits into a direct sum Ld1 ⊕ · · · ⊕ ÃLdt of line bundles.
By indecomposability of E the sequence

0 → Ld → E → Ld1 ⊕ · · · ⊕ Ldt → 0

does not split, yielding a non-trivial extension Ext1(Ldi
, Ld) for some i, hence

by Serre duality a non-zero morphism Ld → τLdi
= Ldi−2. This implies

d ≤ di − 1.
Now, applying Hom(Ld+1,−) to the above sequence yields

0 → Hom(Ld+1, E) →
s⊕

j=1

Hom(Ld+1, Ldj
) → Ext1(Ld+1, Ld).
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By the previous proposition Ext1(Ld+1, Ld) ∼= D Hom(Ld, Ld−1) = 0. More-
over Hom(Ld+1Ldi

, 6=)0, showing that also Hom(Ld+1, E) 6= 0 (use (RR) to
see this!) and contradicting the choice of d. ¤

We thus get a complete picture of the category of indecomposable bundles
as follows:

L−1
x1

!!CC
CC

CC
CC

x2 !!CC
CC

CC
CC

L1
x1

ÃÃ@
@@

@@
@@

@

x2 ÃÃ@
@@

@@
@@

@

· · · L−2

x1

<<yyyyyyyy x2

<<yyyyyyyy
L0

x1

>>~~~~~~~~ x2

>>~~~~~~~~
L2 · · ·

Next, we take another look at H0:

Proposition 5.8 The simple objects of H are naturally parametrized by the
points of the projective line P1(k) = k ∪ {∞}.
Proof. Let S be any simple object. In view of (H6) there is a short exact
sequence 0 → L′ → L0 → S → 0. Since S has degree 1, we conclude that
L′ = L−1, so for each simple we obtain some nonzero u ∈ Hom(L−1, L) such
that S is isomorphic to the cokernel term of 0 → L−1

u−→ L → Su → 0.
Invoking the degree, each such cokernel has degree one and thus is simple.
Moreover, Su and Sv are isomorphic if and only if u = λv for some non-zero
λ from k. Since Hom(L−1, L) has dimension two, the claim follows. ¤

5.3 Tilting to Kronecker modules

We know already that T = L0 ⊕ L1 is a tilting object in H whose endomor-
phism ring E is isomorphic to the Kronecker algebra. Using the notations of
Theorem 3.1 we see that H0 belongs to T and, moreover, the indecomposable
bundles of T are exactly the line bundles Ln with n ≥ 0.

Similarly, it is easily checked that the indecomposables in F are exactly
the line bundles Lm with m < 0. Hence, we have H = F ∨ T and mod-E ∼=
T ∨F [1]. Under this identification reg-E corresponds exactly to H0, showing
that reg-E and H0 are equivalent categories.
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5.4 Various incarnations of coh(P1(k))

Many theories deal with the same mathematical object, cf. Schiffmann’s gen-
eral nonsense principle: There are more theories than interesting mathemati-
cal objects. Our case is no exceptions. In the mathematical literature you will
find many incarnations of the category of coherent sheaves on the projective
line. We just mention a few of them:

1. H = coh(P1(k)), algebraic coherent sheaves.

2. k = C, H = coh(S2), analytic coherent sheaves.

3. R = k[x1, x2], graded by total degree, H = modZ-R/modZ0 -R, the
quotient category of finitely presented Z-graded R-modules modulo its
Serre subcategory of finite length graded modules.

4. the pullback
coh(P1(k))

²²

// mod-k[X]

²²
mod-k[X−1] // mod-k[X, X−1]

in the category of small abelian categories.

5. mod-k[◦ ⇒ ◦], if derived equivalence replaces equivalence.

There are other incarnations. All of the above, with the exception of the last
one, however lead to the same category given by axioms (H1)–(H7). The
theory developed here is just independent of the actual construction.
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6 Weighted projective lines

6.1 Happel’s theorem

We call two hereditary categories derived-equivalent if their derived cate-
gories Db(H) and Db(H′) are equivalent (as triangulated categories). An ex-
ample of derived equivalence is given by the category coh(P1(k)) of coherent
sheaves on the projective line and the category mod-k[◦ ⇒ ◦] of finite di-
mensional Kronecker modules. One of the two categories is a length category
having a generating system of projectives (module-sense), the other is not a
length category and has no nonzero projectives. So they are far from being
equivalent. Nevertheless, being derived-equivalent they are closely related,
in particular the classification problem for one of the categories is equivalent
to the classification problem for the other. In particular, one could claim
that Kronecker was classifying indecomposable vector bundles on the projec-
tive lines already 1884, a long time before Grothendieck proved the theorem
carrying his name.

It is therefore natural to aim for a classification of hereditary categories
— if wanted with further properties — up to derived equivalence. In general
this task is difficult and only partial solutions are known. However there is a
surprisingly simple answer if we request additionally that our categories
have a tilting object. This result is due to Happel [5] and has a difficult
proof.

Theorem 6.1 (Happel) Assume k is an algebraically closed field. Then
each connected Ext-finite hereditary category H′ with a tilting object
is derived equivalent to a hereditary category H of one of the following types:

(i) H is the category mod-Λ of finite dimensional modules over a
finite dimensional hereditary algebra Λ.

(ii) H is the category coh(X) of coherent sheaves on a weighted
projective line X. ¤

Weighted projective lines were introduced by Geigle-Lenzing in [4] in an
attempt to understand the interaction between preprojective and regular
modules for tame hereditary algebras (and also the classification of inde-
composable modules over tubular algebras). Roughly speaking, a weighted
projective line X is defined through the attached category coh(X) of coherent
sheaves where coh(X) is a natural generalization of the category of coherent
sheaves on the projective line, obtained by allowing a finite number of simple
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objects to have τ -period > 1. As in the situation studied previously the
classification problem for indecomposables for H = coh(X) mainly depends
on the Euler characteristic χH of H (or X).

As in the case of the projective line and the category of modules over the
Kronecker algebra, it may happen that a category coh(X), X a weighted pro-
jective line, and a category mod-Λ, Λ a connected finite dimensional heredi-
tary algebra, are derived equivalent. Actually this is going to happen exactly
for the tame hereditary algebras Λ and the weighted projective lines
of positive Euler characteristic. An overview of the situation is given by
the following picture. Note that the picture is up to derived equivalence:

coh(X)
Euler char < 0

wild
coh(X)

Euler char 0
tame tubular

mod-Λ Λ tame hereditary mod-Λ
Λ representation-finite mod-Λ ∼der coh(X) Λ wild hereditary

Euler char > 0

6.2 Coherent sheaves on weighted projective lines

We collect the requirements (H1)–(H7) used to characterize coherent sheaves
over the projective line, but now replace (H6) by a more general request:

(H1) H is an abelian k-linear category.

(H2) H is (skeletally) small and Hom-finite, that is, all morphism spaces
Hom(X,Y ) from H are finite dimensional over k.

(H3∗) (Serre duality) We assume the existence of an equivalence τ :
H → H and of natural isomorphisms

Ext1(X, Y )
∼−→ D Hom(Y, τX)

for all objects X, Y from H.

(H4) H is noetherian but not every object of H has finite length.
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(H5) There is an additive function rk : H → Z, called rank, that is τ -
stable, zero on H0 and > 0 on nonzero objects of H+. Moreover H+ admits
an (indecomposable) object of rank one.

(H6new) Each tube of H0 has only finitely many simple objects. Moreover, if
L is a line bundle and U is a tube,

∑
S∈U simple dimHom(E,S) = 1.

(H7) H has a tilting object T .

Since (H7) implies that the Grothendieck group K0(H) is finitely gener-
ated free (on the classes of a representative system of indecomposable direct
summands of T ) there are only finitely many tubes having more than one
simple object, equivalently having τ -period > 1.

Let U1, . . . ,Ut be the exceptional tubes having more than one simple
object. We denote by pi the number of simple objects from Ui and call
(p1, . . . , pt) the weight type of H.

The next assertion is taken from [10], where actually a much stronger
version is shown.

Theorem 6.2 A category is equivalent to a category of coherent sheaves on
a weighted projective line if and only if it satisfies the above seven axioms. ¤
In the sequel we will therefore say that a category H satisfying the preceding
axioms is a category of coherent sheaves on a weighted projective
line.

6.3 Rank, degree and Riemann-Roch-formula

As for coherent sheaves on the projective line, we have the bisection H =
H+ ∨ H0. Further the rank function is τ -stable and zero exactly on the
objects of finite length and is > 0 on nonzero objects of H+. Line bundles,
with the same definition as before, play a key role also here. We fix a line
bundle L0 for the rest of the discussion.

Concerning degree, its main property in the previous discussion has been
to be strictly positive on all simple objects. Since we allow more than one
simple in one tube but only morphisms from L0 to (exactly) one of them, the
linear form 〈[L0],−〉 is hence zero on the remaining ones. This is corrected
by looking at an average

〈〈x, y〉〉 =
1

p

p−1∑
j=0

〈τ jx, y〉 ∈ 1

p
Z,
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x, y ∈ K0(H), of the Euler form. Here p = l.c.m.(p1, . . . , pt), where (p1, . . . , pt)
is the weight type of H.

As before we now introduce the degree deg : K0(H) → Z by means of

deg x = 〈〈[L0], x〉〉 − 〈〈[L0], [L0]〉〉rk x.

Lemma 6.3 The degree function deg : K0(H) → 1
p
Z has the following prop-

erties:
(i) deg L0 = 0.
(ii) If S is simple of τ -period q, then deg S = 1/q. In particular, the

degree is τ -stable on H0 and we have deg X > 0 for each nonzero object of
H0.

The degree, when restricted to H0, hence plays the role of a weighted length.
With the above definition of degree we have the same Riemann-Roch

formula (RR)

〈〈x, y〉〉 = (1− g)rk x rk y +
rk x rk y
deg x deg y

as before, introducing the genus of H by 1 − g = 〈〈[L0], [L0]〉〉. Finally the
Euler characteristic is given as

χH = 2〈〈[L0], [L0]〉〉.

Proposition 6.4 Let (p1, . . . , pt) be the weight type of H. Then the Euler
characteristic of H is given as

χH = 2−
t∑

i=1

(1− 1/pi).

¤

Concerning line bundles in general, we have the following:

Proposition 6.5 Let L be any line bundle in H. Then the following holds
(i) L is exceptional, hence End(L) = k and Ext1(L,L) = 0.
(ii) We have deg τL = deg L− χH. ¤
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Note that a line bundle L is uniquely determined by its class [L] in K0(H)
but is no longer determined by its degree. However, only finitely many
nonisomorphic line bundles can have the same degree.
To summarize: everything here is analogous to the study of coherent
sheaves on a projective line, with obvious modification necessary by the in-
serted weights. In particular, in (RR) 〈〈−,−〉〉 takes the role of the Euler
form 〈−,−〉. However the control through the averaged Euler form is less
strict; so 〈〈[X], [Y ]〉〉 > 0 no longer implies that Hom(Y, Y ) 6= 0.

Remark 6.6 (1) Note that the number 2 in the for χH is the Euler char-
acteristic for the projective line. Each inserted weight pi further yields a
negative correction term −(1 − 1/pi). In the literature this expression for
χH is known as orbifold Euler characteristic. It appears in many mathemati-
cal contexts: function theory, differential geometry, group actions of discrete
groups, . . .

(2) As for a category of sheaves over a smooth projective curve the Euler
characteristic (accordingly the genus) is an important homological invariant
of H. It’s role is to reflect the representation type of H.

(i) If χH > 0, equivalently if the star formed by the weights is a Dynkin
diagram ∆, then the classification problem for H is very close to the case of
coh(P1(k)). Namely, the indecomposable bundles form a single AR-component
whose quiver is of type Z∆̄, where ∆̄ is the extended Dynkin diagram of
∆. We say in this case that H is of domestic type. To summarize, we are
in the domestic type if the weight type of H is of the form (), (p), (p, q) or
(2, 2, n), (2, 3, 3), (2, 3, 4) or (2, 3, 5).

(ii) If χH = 0, equivalently if gH = 1, then it is still possible to classify all
indecomposables, but this is much more difficult. All AR-components turn
out to be tubes we say then that H has tubular type. This happens exactly
for the weight types (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and (2, 3, 6).

The same classification method works for H as for coherent sheaves on
elliptic curves, a problem first solved by Atiyah [1]. Up to derived equiva-
lence the classification problem for H was solved for module categories by
Ringel [11].

(iii) In all the remaining cases where χH < 0, the classification problem
for H is wild. For further information we refer to [8].
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6.4 Canonical shape of tilting object

It is quite exceptional that a normal form for a tilting module and its endo-
morphism algebra exists. This is the case for the categories H of coherent
sheaves on a weighted projective line. In the case of trivial weights, the
projective line, we have seen that the Kronecker quiver appears as the endo-
morphism algebra of a tilting object, and it is not difficult to see that this
is the only possibility (when dealing with a multiplicity-free tilting module).
Recall that there we obtained a tilting object starting with a line bundle L
and extending this line bundle by a simple object.

In the weighted projective case one proceeds in a similar fashion, taking
a little care. Starting with a line bundle L, we extend L for each tube
with all the simples in that tube exactly once. The result is the canonical
configuration, here shown for the weight type (2, 3, 7)

◦
x1 : x1

z

• x2 - ◦ x2- ◦ x2 - •

x3↘ ↗x3

◦ x3−→ ◦ x3−→ ◦ x3−→ ◦ x3−→ ◦ x3−→ ◦

with relations x2
1 + x3

2 + x7
3 = 0.

Theorem 6.7 Let H denote a category of coherent sheaves on a weighted
projective line. Then H has a a tilting object T that is a direct sum of line
bundles and whose endomorphism ring is a canonical algebra Λ(p, λ). ¤

Here, p = (p1, . . . , pt) denotes the weight typ of H while λ = (λ1, λ2, . . . , λt)
denotes pairwise different points of the projective line P1(k) normalized as
follows: λ1 = ∞, λ2 = 0, λ3 = 1.

Remark 6.8 (1) It is best to view a canonical algebra as a generalization
of the Kronecker algebra: Look at the full subcategory of the path category
consisting of the starting and terminal vertex yielding k[◦ ⇒ ◦].

(2) Λ has global dimension ≤ 2, where equality occurs if and only if there
are at most two weights.
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(3) The derived categories Db(H) and Db(mod-Λ) are equivalent (as tri-
angulated categories). If compared, H has the advantage to be a hereditary
category. Also the homological classification machinery, used for H, works
less efficient for mod-Λ.

6.5 The main classification tool: stability

For each nonzero object X ofH we have a well-defined slope µ X = deg X/rk X
which is in Q ∪ {∞}. A nonzero bundle E is called stable (resp. semi-
stable) if for each proper nonzero subobject E ′ of E we have µE ′ < µE
(resp. µE ′ ≤ µE). By definition, the zero object is also semistable.

Proposition 6.9 Let q ∈ Q, then the full subcategory H(q) of all semistable
objects of slope q is an exact abelian, subcategory which is closed under ex-
tensions.

Moreover, each object of X has finite length in H(q) bounded by the rank
of X. Further the simple objects in H(q) are exactly the stable objects of slope
q.

Proof. (1) Write q = pd/pr with integers d and r. Then λ = p r deg−p drk
is an integral linear form on K0(H). The full subcategory controlled by λ con-
sists exactly of of the semistable bundles of slope q, hence by Proposition 1.3
is an extension closed exact subcategory and hence a hereditary category.

(2) It remains to show that each object E inH(q) has finite length bounded
by the rank of E. Indeed consider a proper chain of subobjects 0 = E0 $
E1 $ · · · $ En = E in H(q). Since all En have the same slope q, the
corresponding ranks are strictly increasing, showing the claim. ¤

Accordingly, H(q) is a hereditary, Hom-finite length category in its own
right. Note that this procedure produces many hereditary categories, usually
not connected and not having Serre duality. By Schur’s lemma the next result
immediately follows. ¤

Corollary 6.10 Each stable bundle has trivial endomorphism ring k.

The next proposition is the major basis for classification for non-negative
Euler characteristic.
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Proposition 6.11 Assume χH ≥ 0. Then each indecomposable bundle is
semistable. If, moreover, χH > 0, then each indecomposable bundle E is
stable and exceptional.

Proof. We are going to sketch the argument. Assume first that χH ≥ 0
and E is an indecomposable bundle. We then look for subobjects of E
having maximal slope (use a line bundle filtration for E to see existence), and
among those choose one Ess having maximal rank. Clearly, Ess is semistable
and actually uniquely determined, hence called the maximal semistable
subbundle of E. Invoking χH ≥ 0 and Proposition 6.5 one next shows
that the sequence 0 → Ess → E → E/Ess → 0 splits, hence E = Ess is
semistable.

Next assume that χH > 0. Assume E is an indecomposable bundle of
slope q. By the first part E is semistable, hence has finite length in H(q).
It is clear from the definition that the simple objects of H(q) are exactly the
stable ones of the same slope. So there is a stable subobject S of E having
the same slope. We claim that E = S. Otherwise the sequence 0 → S →
E → E/S → 0 is nonsplit, yielding a nonzero morphism τ−1S → E/S,
implying τ−1S ⊆ E/S. Invoking χH > 0 this yields a subobject of E having
slope > q, contradicting semistability of E. ¤

6.6 The domestic case

A category H of coherent sheaves on a weighted projective line is called
domestic if χH > 0, meaning that

2−
t∑

i=1

(1− 1

pi

) > 0.

This happens only if t ≤ 3 and the weight type is one of (), (p), (p, q),
(2, 2, n) (n ≥ 2), (2, 3, 3), (2, 3, 4) or (2, 3, 5), that is, exactly if the weight
type is given by a Dynkin diagram of type A-D-E.

Theorem 6.12 Assume χH > 0 and the weight type of H is given by the
Dynkin diagram ∆. Then the following holds:

(i) The indecomposable bundles form a single Auslander-Reiten compo-
nent consisting of exceptional objects. The quiver ΓH+ has the form Z∆̄,
where ∆̄ is the extended Dynkin diagram corresponding to ∆.
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(ii) The direct sum T of a representative system of indecomposable bun-
dles E with slope 0 ≤ µE < χH is a tilting object of H whose endomorphism
ring is isomorphic to the path algebra of ∆̄.

Proof as for the case coh(P1(k)) where L0 and L1 are the only indecompos-
able bundles with a slope q in the range 0 ≤ q < χH = 2. ¤

Corollary 6.13 Each category H = coh(X) with positive Euler characteris-
tic is derived equivalent to the category mod-Λ, where Λ is a connected tame
hereditary algebra, and conversely. ¤

By tilting from H to mod-Λ we get complete information on mod-Λ. In
particular:

Corollary 6.14 Let Λ be a connected tame hereditary algebra. Then the
category mod-Λ has a trisection

mod-Λ = prep-Λ ∨ reg-Λ ∨ prinj-Λ

into the preprojective, regular and preinjective Λ modules, where the inde-
composables of prep-Λ and prinj-Λ, respectively, form components of ΓH,
and reg-Λ is a category equivalent to H0. ¤

6.7 Euler characteristic zero: the tubular case

We now assume that H is a category of coherent sheaves on a weighted
projective line of Euler characteristic zero. That is, we deal with one of the
weight types (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6). We have already seen
that each indecomposable bundle E is semistable of a rational slope q, such
that E ∈ H(q). We start with a preliminary result, already showing clearly
what is going to be expected here.

Proposition 6.15 Assume that χH = 0. Then each H(q) is preserved under
τ , accordingly decomposes into a coproduct

∐
x∈X Ux of connected uniserial

categories, whose quivers are stable tubes of finite τ -period.

Proof. We have already seen that H(q) is a Hom-finite length category.
Since H(q) is also stable under τ , we additionally have Serre duality. Hence
H(q) decomposes into tubes by Gabriel’s theorem. That the τ -period of these
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tubes is finite, and only a finite number of them have more than one simple
object, follows from the fact that the Grothendieck group K0(Λ) is finitely
generated. ¤

It is convenient to attach slope infinity to the objects from H0, hence
H(∞) = H0 (Convention: the zero object takes any slope).

Theorem 6.16 Assume thatH is a category of coherent sheaves on a weighted
projective line of Euler characteristic zero, equivalently, that the weight type
of H is one of (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6). Then the following
holds:

(i) H =
∨

q∈Q∪{∞}H(q).

(ii) We have a nonzero morphism from H(q) to H(r) if and only if q ≤ r.
(iii) Each H(q) decomposes into a one-parameter family of tubes, indexed

by the projective line. Moreover, H(q) is equivalent to H0.

Proof. (i) is implied by semistability of indecomposables.
(ii) Let E be from H(q) and F be from H(r).
(a) If u : E → F is nonzero, let I be the image of u. Then q = µE ≤ µ I

since E is semistable and µ I ≤ µF = r since F is semistable. Hence q ≤ r.
(b) Assume that q < r, then

〈〈[E], [F ]〉〉 =
rk E rk F
deg E deg F

= rk E rk F (µF − µE) > 0.

Hence we get a nonzero morphism from the τ -orbit of E to F .
(iii) (a) There exist two automorphisms of Db(H) generating an action

of the braid group B3 on Db(H) that is transitive on the slopes. It follows
that each H(q) is equivalent to H0.

(b) Let S be a simple object from H with τS ∼= S, there is a nonsplit
exact sequence 0 → L → L̄ → S → S, where L̄ is also a line bundle and
Hom(L, L̄) is two-dimensional over k. One checks that for each nonzero
u : L → L̄ the cokernel term of the arising sequence 0 → L

u−→ L̄ → Cu → 0
is indecomposable of finite length hence belongs to a tube Tu of H0. It is
then easily checked that each tube of H0 arises this way and that u and v
yield the same tube if and only if v ∈ k∗u, yielding the one-parameter family
over P1(k) we were looking for. ¤
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Definition 6.17 A finite dimensional algebra A is called tubular if A is
isomorphic to the endomorphism algebra of a tilting object on a category of
coherent sheaves H on a weighted projective of Euler characteristic zero.

Let A be a tubular algebra. It is straightforward to derive the shape of the
module category mod-A from the known structure of H. We are not giving
a formal statement here, but instead visualize the shape of the resulting
Auslander-Reiten quiver ΓA:

Therefore, we have a preprojective component (sitting on the left), a prein-
jective component (sitting on the right) and in between a rational family of
1-parameter families of tubes, where a finite number of them may contain
projectives (left hand side) or injectives (right hand sie), and all remaining
ones are stable tubes. In particular, this applies to mod-Λ for the module
category over a canonical algebra of tubular type.

Remark 6.18 (i) The first classification of indecomposable modules over
tubular algebras was achieved by Ringel [11].

(ii) The classification for the coherent sheaves on weighted projective lines
of Euler characteristic zero was done by Lenzing-Meltzer [7].

(iii) The classification method for coherent sheaves on weighted projective
lines can also be applied to the classification of indecomposable bundles on
elliptic curves. This classification — with slightly different methods — was
first achieved by Atiyah [1].
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