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Abstract. We prove derived invariance of the cap product for associa-
tive algebras projective over a commutative ring. – Nous démontrons
l’invariance dérivée du cap produit pour les algèbres associatives projec-
tives sur un anneau commutatif.

1. Introduction

It has been known since Rickard’s work [3] that Hochschild cohomology

is preserved under derived equivalence as a graded algebra with the cup

product. Using the methods of [3], one can also show that Hochschild ho-

mology is preserved as a graded space, see for example [5]. Nevertheless,

derived invariance of the cap product – which provides an action of the

Hochschild cohomology algebra on the Hochschild homology – has not been

considered. In this note, we prove that derived invariance holds as well for

the cap product.

This paper is part of the Ph. D. thesis of the first author, whose advisors

are Claude Cibils and José Antonio de la Peña, to whom he is very grateful.

It enters into the first author’s project of showing the derived invariance of

the Tamarkin-Tsygan calculus associated with a k-projective algebra.

2. Derived invariance

Let k be a commutative ring and A an associative k-algebra, projective as

a k-module. We write Ae for the envelopping algebra A⊗k Aop. We denote

by D(A) the unbounded derived category of the category of right A-modules.

For a bimodule M , we denote by HH•(A,M) the Hochschild cohomology

with coefficients in M and by HH•(A,M) the Hochschild homology with

coefficients in M , see for example [1] or [4]. We have canonical isomorphisms

HHn(A,M) ∼→ Hn(RHomAe(A,M)) = HomD(Ae)(A,M [n])

and

HHn(A,M) ∼→ Hn(A
L
⊗Ae M).
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Let f ∈ HHm(A,A). The cap product by f is a map

f∩? : HHn(A,M)→ HHn−m(A,M).

The following lemma gives an interpretation of the cap product in terms of

the derived category

Lemma 2.1. The following square commutes, where the vertical arrows are

the canonical identifications.

HHm(A,M)

��

f∩? // HHm−n(A,M)

��

H0(M
L
⊗Ae A[−m])

H0(id⊗f)
// H0(M

L
⊗Ae A[n−m]).

Proof. Let Bar(A) be the bar resolution of A, we get

M
L
⊗Ae A = Tot(M ⊗Ae Bar(A)) = M ⊗Ae Bar(A).

Let x ∈M and y ∈ Bar(A), then

H0(id⊗f)([x⊗ y]) = [x⊗ f(y)] = f ∩ [x⊗ y].

�

Now suppose that A is derived equivalent to a k-projective algebra B. By

Rickard’s Morita theory for derived categories [2] [3], this implies that there

exist bimodule complexesX ∈ D(Aop⊗kB) andX∨ ∈ D(Bop⊗kA) such that

there are isomorphisms η : A ∼→ X
L
⊗B X∨ and ε : X∨

L
⊗A X ∼→ B in D(Ae)

respectively D(Be). We may and will suppose that these isomorphisms make

the following triangles commutative:

X
η⊗X //

=

&&

X
L
⊗B X∨

L
⊗A X

X⊗ε
��
X

X∨
X∨⊗η //

=
&&

X∨
L
⊗A X

L
⊗B X∨

ε⊗X∨
��

X∨.

As a consequence, the functor

F =?
L
⊗Ae (X

L
⊗k X∨) : D(Ae)→ D(Be)

is an equivalence with quasi-inverse G =?
L
⊗Be (X

L
⊗kX∨). We have canonical

isomorphisms

FA = A
L
⊗Ae (X

L
⊗k X∨) = X∨

L
⊗A A

L
⊗A X = X∨

L
⊗A X ∼→ B

and

GB = B
L
⊗Be (X∨

L
⊗k X) = X

L
⊗B B

L
⊗B X∨ = X

L
⊗B X∨ ∼→ A.
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We obtain a canonical isomorphism

HHn(A,A) = HomD(Ae)(A,A[n]) ∼→ HomD(Be)(X
∨ L
⊗A X,X∨

L
⊗A X[n])

∼→ HomD(Be)(B,B[n]) = HHn(B,B).

By abuse of notation, we will still denote it by f 7→ Ff . Let us suppose

that M is an A-bimodule such that N = FM is concentrated in degree 0.

For example, if M = A, then N = B.

Theorem 2.2. There is a canonical isomorphism

HH•(A,M) ∼→ HH•(B,N)

such that for each f ∈ HHm(A,A) the following square commutes

HHn(A,M)
f∩? //

∼=
��

HHn−m(A,M)

∼=
��

HHn(B,N)
Ff∩?

// HHn−m(B,N).

Proof. We define the isomorphism

HH•(A,M) ∼→ HH•(B,N)

to be induced by the canonical chain of isomorphisms in D(k)

M
L
⊗AeA ∼→M

L
⊗Ae(X

L
⊗BX∨) = M

L
⊗Ae(X

L
⊗kX∨)

L
⊗BeB = FM

L
⊗BeB = N

L
⊗BeB.

Let f ∈ HHm(A,A). It suffices to show that the following square is com-

mutative

M
L
⊗Ae A //

M⊗f
��

M
L
⊗Ae (X

L
⊗k X∨)

L
⊗Be B

M⊗X⊗X∨⊗Ff
��

M
L
⊗Ae A[m] // M

L
⊗Ae (X

L
⊗k X∨)

L
⊗Be B[m].

This is implied by the commutativity of the square

A

f

��

// B
L
⊗Be (X∨

L
⊗k X)

(Ff)⊗X∨⊗X
��

A[m] // B[m]
L
⊗Be (X∨

L
⊗k X).

In turn, this will follow from the commutativity of the square

A

f

��

// A
L
⊗Ae (X

L
⊗k X∨)

L
⊗Be (X∨

L
⊗k X)

f⊗X⊗X∨⊗X∨⊗X
��

A[m] // A[m]
L
⊗Ae (X

L
⊗k X∨)

L
⊗Be (X∨

L
⊗k X).
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This last commutativity follows from the naturality of the adjunction mor-

phism A ∼→ GFA. �
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de Mathématiques de Jussieu–PRG, UMR 7586 du CNRS, Case 7012, Bâtiment
Sophie Germain, 75205 Paris Cedex 13, France

E-mail address: drmarco@cimat.mx, bernhard.keller@imj-prg.fr


