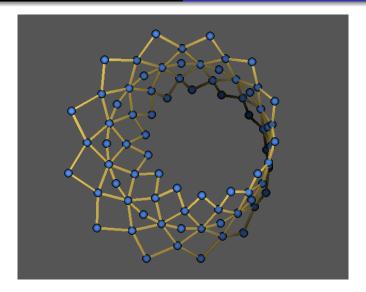
A characterization of cluster categories

Bernhard Keller¹ Idun Reiten²

¹Department of Mathematics and Institute of Mathematics University Paris 7

²Norwegian University of Science and Technology Trondheim



From quivers to derived categories and back

2 The cluster category, and the main theorem

3 Applications

Appendix: On the proof of the main theorem

A quiver is an oriented graph

Definition

A quiver Q is an oriented graph: It is given by

- a set *Q*₀ (the set of vertices)
- a set Q_1 (the set of arrows)
- two maps
 - $s: Q_1 \rightarrow Q_0$ (taking an arrow to its source)
 - $t: Q_1 \rightarrow Q_0$ (taking an arrow to its target).

Remark

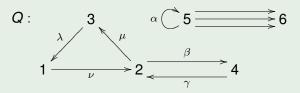
A quiver is a 'category without composition'.

A quiver can have loops, cycles, several components.

Example

The quiver
$$\vec{A}_3$$
: $1 < \frac{\alpha}{\alpha} 2 < \frac{\beta}{\beta} 3$ is an orientation of the Dynkin diagram A_3 : $1 - \frac{\alpha}{2} 2 - \frac{\beta}{3}$.

Example



We have $Q_0 = \{1, 2, 3, 4, 5, 6\}$, $Q_1 = \{\alpha, \beta, ...\}$. α is a *loop*, (β, γ) is a 2-*cycle*, (λ, μ, ν) is a 3-*cycle*.

representation of a quiver = diagram of vector spaces

Let *k* be an algebraically closed field. Let *Q* be a finite quiver (the sets Q_0 and Q_1 are finite).

Definition

A *representation* of Q is a diagram of finite-dimensional vector spaces of the shape given by Q.

Example

A representation of \vec{A}_2 : 1 $\xrightarrow{\alpha}$ 2 is a diagram of two finite-dimensional vector spaces linked by one linear map

$$V: V_1 \xrightarrow{V_{\alpha}} V_2$$

The category of representations of *Q* is abelian.

Definition

A morphism of representations of Q is a morphism of diagrams. rep(Q) = category of representations of Q.

Remarks

- Direct sums, kernels and cokernels are computed componentwise.
- The category of representations is a k-linear abelian category with enough projectives (it is even a module category).

Definition of the derived category \mathcal{D}_{Q}

Definition

- \mathcal{D}_Q = bounded derived category of rep(Q)
 - objects: bounded complexes V : ... → V^p → V^{p+1} → ... of representations
 - morphisms: obtained from morphisms of complexes by formally inverting all quasi-isomorphisms
 - suspension functor: $\Sigma : \mathcal{D}_Q \to \mathcal{D}_Q, V \mapsto \Sigma V = V[1]$
 - triangles: U' → V' → W' → ΣU' obtained from short exact sequences of complexes 0 → U → V → W → 0.

Remark

 \mathcal{D}_Q is k-linear. It is abelian iff Q has no arrows.

Objects of \mathcal{D}_Q decompose into indecomposables.

Definition

An object V of \mathcal{D}_Q is *indecomposable* if $V \neq 0$ and in each decomposition $V \cong V' \oplus V''$, we have V' = 0 or V'' = 0.

Decomposition theorem

(Azumaya-Fitting-Krull-Remak-Schmidt-...)

- a) An object of \mathcal{D}_Q is indecomposable iff its endomorphism ring is local.
- b) Each object of \mathcal{D}_Q decomposes into a finite sum of indecomposables, unique up to isomorphism and permutation.

Back from categories to quivers

Let \mathcal{A} be any *k*-linear category where the decomposition theorem holds. We will assign a quiver $\Gamma_{\mathcal{A}}$ to \mathcal{A} .

- The vertices of Γ_A will be in bijection with the isomorphism classes of the indecomposables of A.
- To define the arrows, let

 $\mathcal{R}(X, Y) = \{ \text{non invertible morphisms } f : X \to Y \},\$

where X, Y are indecomposable in A. Then \mathcal{R} is an ideal (namely, the radical) of the category ind A of indecomposables of A.

The quiver of a category with decomposition

Definition

The *quiver of* A is the quiver Γ_A with

- vertices: representatives X of the isoclasses of indecomposables of A
- arrows: the number of arrows from *X* to *Y* equals the dimension of the space

 $\operatorname{irr}(X, Y) = \mathcal{R}(X, Y) / \mathcal{R}^2(X, Y) = {\operatorname{irreducible morphisms}}$

of 'morphisms without non trivial factorization'.

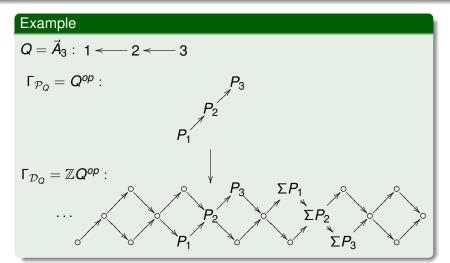
The quiver of the derived category

Theorem

Suppose that Q does not have oriented cycles.

- a) The quiver of the category P_Q of projectives of rep(Q) is the opposite quiver Q^{op}.
- b) (Happel, 1986) If the underlying graph of Q is a Dynkin diagram of type A_n, D_n or E_n, the (Auslander-Reiten) quiver of D_Q is the repetition ZQ^{op} of the opposite quiver: It has
 - vertices: (p, x), for $p \in \mathbb{Z}$, $x \in Q_0$,
 - arrows: for each arrow $\alpha : \mathbf{X} \to \mathbf{y}$ of \mathbf{Q}^{op} , we have arrows
 - $(p, \alpha) : (p, x) \rightarrow (p, y), p \in \mathbb{Z}$, and
 - $\sigma(\boldsymbol{\rho}, \alpha) : (\boldsymbol{\rho} \mathbf{1}, \boldsymbol{y}) \rightarrow (\boldsymbol{\rho}, \boldsymbol{x}), \, \boldsymbol{\rho} \in \mathbb{Z}.$

The example A_3



Bernhard Keller, Idun Reiten A characterization of cluster categories

The Serre functor

Blanket assumptions

Q is a finite quiver without oriented cycles. All categories and functors are *k*-linear.

Theorem (Happel, 1986)

 \mathcal{D}_Q admits a Serre functor (=Nakayama functor), i.e. an autoequivalence $S : \mathcal{D}_Q \xrightarrow{\sim} \mathcal{D}_Q$ such that

 $D\operatorname{Hom}(X,?) \xrightarrow{\sim} \operatorname{Hom}(?,SX)$

for all $X \in \mathcal{D}_Q$, where $D = \text{Hom}_k(?, k)$.

Calabi-Yau categories

Let *d* be an integer and T a triangulated category with finite-dimensional Hom-spaces.

Definition (Kontsevich)

 \mathcal{T} is *d*-Calabi-Yau if it has a Serre functor *S* and $S \xrightarrow{\sim} \Sigma^d$ as triangle functors.

Example

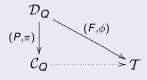
X a smooth projective variety of dimension *d*. *T* the bounded derived category of coherent sheaves on *X*. Then $S = ? \otimes \omega[d]$ and

X is Calabi-Yau $\Leftrightarrow \ \omega \xrightarrow{\sim} \mathcal{O} \Leftrightarrow \mathcal{T}$ is *d*-Calabi-Yau

The cluster category

Definition

The cluster category C_Q is the universal 2-Calabi-Yau category under the derived category D_Q :



 $C_Q, \mathcal{T} \text{ 2-Calabi-Yau} \\ P, F \text{ triangle functors} \\ \pi : P \circ S \xrightarrow{\sim} S \circ P \\ \phi : F \circ S \xrightarrow{\sim} S \circ F \\ \end{cases}$

Remark

 C_Q is due to Buan-Marsh-Reineke-Reiten-Todorov for Q, to Caldero-Chapoton-Schiffler for \vec{A}_n .

Bernhard Keller, Idun Reiten A characterization of cluster categories

Explicit construction of the cluster category

Remarks

- 1) Strictly speaking the definition should be formulated in the homotopy category of enhanced triangulated categories.
- 2) Explicitly, C_Q is the orbit category of D_Q under the action of the automorphism $S^{-1} \circ \Sigma^2$. It has

objects: same as those of \mathcal{D}_Q morphisms:

$$\mathcal{C}_{\mathcal{Q}}(X,Y) = \bigoplus_{p \in \mathbb{Z}} \mathcal{D}_{\mathcal{Q}}(X,(S^{-1} \circ \Sigma^2)^p Y).$$

The quiver of the cluster category

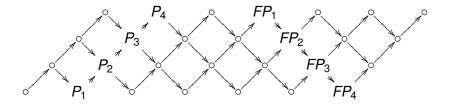
Theorem (BMRRT)

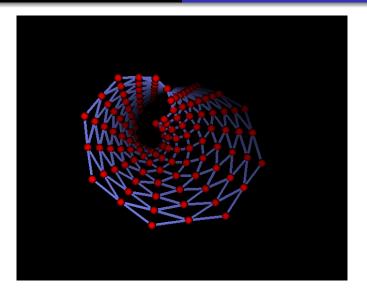
The decomposition theorem holds in C_Q and its quiver is isomorphic to the quotient of the quiver of D_Q under the action of the automorphism induced by $S^{-1} \circ \Sigma^2$.

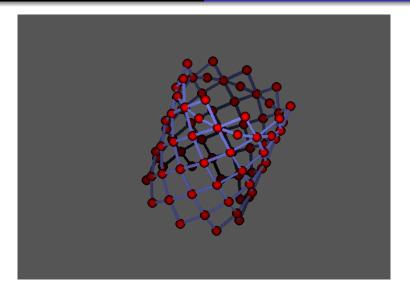
Example

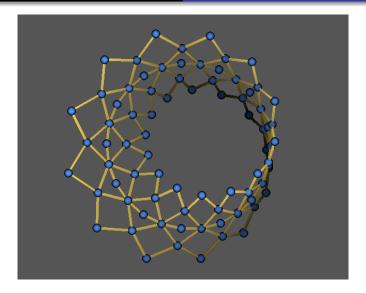
For $Q = \vec{A}_n = (1 \iff 2 \iff 3 \iff n)$ the quiver of C_Q is a Moebius strip of width n with n(n+3)/2 vertices. Similarly for $Q = \vec{E}_6$.

$$F = S^{-1} \circ \Sigma^2$$









The canonical cluster-tilting subcategory

Recall that we have functors $\operatorname{rep}(Q) \longrightarrow \mathcal{D}_Q \longrightarrow \mathcal{C}_Q$. Let \mathcal{T}_Q be the image of the category \mathcal{P}_Q of projectives of $\operatorname{rep}(Q)$.

Theorem (BMRRT)

a) The quiver of T_Q is isomorphic to Q^{op} .

b) $T_Q \subset C_Q$ is a cluster-tilting subcategory, i.e.

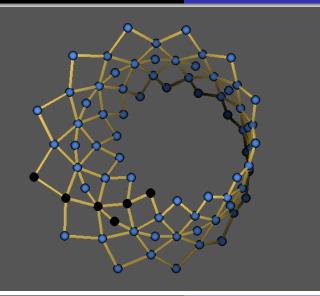
1) for all
$$T, T'$$
 in T_Q , we have

 $0 = \mathsf{Ext}^1(T, T') := \mathsf{Hom}_{\mathcal{C}_Q}(T, \Sigma T'),$

2) if $X \in C_Q$ satisfies $\text{Ext}^1(T, X) = 0$ for all T in T_Q , then X belongs to T_Q .

Definition

 T_Q is the canonical cluster-tilting subcategory.



The main theorem

Main theorem

Let

- C be a 2-Calabi-Yau triang. category (of 'algebraic origin'),
- $\mathcal{T} \subset \mathcal{C}$ a cluster-tilting subcategory,
- Q the opposite quiver of T.

If Q does not have oriented cycles, then $\mathcal{C}_Q \xrightarrow{\sim} \mathcal{C}$.

Remarks

We only need to know Q, not \mathcal{T} ! The objects of \mathcal{T}_Q generate \mathcal{C}_Q as a triangulated category but for general T, T' in \mathcal{T} , we have $\mathsf{Ext}^i(T, T') \neq 0$ for infinitely many *i*.

From quivers to derived categories and back The cluster category, and the main theorem Applications Summary

Appendix: On the proof of the main theorem

Application: Cohen-Macaulay modules

Let $k = \mathbb{C}$, ζ a primitive third root of 1. Let $G = \mathbb{Z}/3\mathbb{Z}$ act on

- S = k[[X, Y, Z]] by multiplying the generators by ζ . Then
 - $R = S^G$ is an isolated singularity of dimension 3 and Gorenstein.
 - The category CM(*R*) of maximal Cohen-Macaulay modules is Frobenius.
 - The stable category <u>CM(R)</u> is 2-Calabi-Yau (Auslander).
 - Decompose S = S^G ⊕ T₁ ⊕ T₂ over R. Then the direct sums of copies of the T_i form a cluster-tilting subcategory T of C (lyama).
 - The quiver of ${\mathcal T}$ is the generalized Kronecker quiver

From quivers to derived categories and back The cluster category, and the main theorem Applications

Summary Appendix: On the proof of the main theorem

Cluster categories occur in nature

Conclusion

The stable category of Cohen-Macaulay modules over S^G is triangle equivalent to the cluster category C_Q .

Consequence

New proof of Iyama-Yoshino's classification of the rigid Cohen-Macaulay modules over S^G : sums of projectives and copies of $\Omega^a T_1$, $\Omega^b T_2$, $a, b \in \mathbb{Z}$.

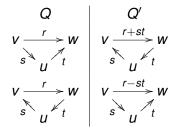
Moral

Cluster categories occur in nature.

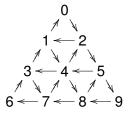
Application: Quiver mutation, I

Let *Q* be a quiver without loops or 2-cycles and *u* a vertex of *Q*. The mutation of *Q* at *u* (Fomin-Zelevinsky) is the quiver *Q'* obtained from *Q* as follows (where $v \xrightarrow{r} w = \text{arrow of} multiplicity <math>r \ge 0$)

- 1) reverse all arrows incident with *u*;
- 2) modify the other arrows as follows:



Q'' is mutation equivalent to Q if Q'' is isomorphic to a quiver obtained from Q by a finite sequence of mutations.



Theorem

This quiver Q is not mutation equivalent to a quiver Q' without oriented cycles.

Proof: Use brute force (Google 'quiver mutation'!) or use the main theorem!

Bernhard Keller, Idun Reiten A characterization of cluster categories

Sketch of the proof via the main theorem

- Let *C* be the stable category of finite-dimensional modules over the preprojective algebra of type *A*₅.
- Crawley-Boevey: *C* is 2-Calabi-Yau.
- Geiss-Leclerc-Schröer's work implies:
 - C contains a cluster-tilting subcategory T with quiver Q,
 - if Q ∼_{mut} Q', then C contains a cluster-tilting subcategory with quiver Q'.
- By the main theorem: If Q ~_{mut} Q' and Q' does not have oriented cycles, then C → C_{Q'}.
- Contradiction: The suspension functor Σ is of order 6 in C but of order ∞ in C_{Q'} (Q' is not a Dynkin quiver).

From quivers to derived categories and back The cluster category, and the main theorem Applications

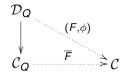
Summary

Appendix: On the proof of the main theorem

- Cluster categories occur in nature.
- Google 'quiver mutation'!

The (best) proof of the main theorem uses the universal property

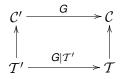
Michel Van den Bergh: We use the universal property!



where $\phi : F \circ S \xrightarrow{\sim} S \circ F$.

- 1) Construct \overline{F} via (F, ϕ) . Subtle: Construct ϕ !
- 2) \overline{F} is an equivalence by the

Beilinson's lemma has a cluster analogue



Lemma (cluster-Beilinson)

- $G: \mathcal{C}' \to \mathcal{C}$ a triangle functor between 2-CY categories
- $\mathcal{T}' \subset \mathcal{C}'$ a cluster tilting subcategory.

Then G is an equivalence iff T = G(T') is a cluster-tilting subcategory and the restriction of G to T' is fully faithful.