
Cluster algebras and quantum affine algebras, after B. Leclerc
Bernhard Keller

This talk, based on [14], is a report on recent work by B. Leclerc on a new type
of categorification for cluster algebras.

Cluster algebras were invented by Fomin and Zelevinsky [8] at the beginning of
this decade. Since then, a major effort has gone into their categorification (cf. for
example [15] [1] [2] [3] [10]). Namely, in many cases, it was proved that for a given
cluster algebra A, there exists a triangulated (or Frobenius) category C, such that

• the cluster variables x of A correspond to certain indecomposables Tx of
C,

• two cluster variables x and y belong to the same cluster if and only if there
are no non split extensions between the corresponding objects Tx and Ty,

• the cluster monomial m = xy · · · z corresponds to the the object M =
Tx ⊕ Ty ⊕ · · ·Tz of C,

• the exchange relations xx∗ = m + m′ of A correspond to triangles

Tx → M → Tx∗ → ΣTx and Tx∗ → M ′ → Tx → ΣTx∗

of C.
It was shown that in certain cases, the objects Tx are precisely the indecomposable
rigid objects of C, i.e. those without selfextensions. For example, when A has only
a finite number of cluster variables, then all indecomposable objects of C are rigid
and the cluster variables are in bijection with the indecomposables of C. In this
case, it was also shown that the cluster algebra A can be realized as a sort of dual
Hall algebra of the triangulated category C and that its commutativity reflects the
fact that C is 2-Calabi-Yau, i.e. the space Ext1C(L, M) is in natural duality with
Ext1C(M,L) for all objects L and M of C.

This type of categorification is very useful: it has allowed to prove properties of
cluster algebras which appear to be beyond the reach of the purely combinatorial
methods, cf. for example [4]. However, it is perhaps not the most natural notion
of categorification which we could expect for a cluster algebra.

In order to categorify an algebra A defined over the integers and endowed with
a distinguished Z-basis B, one would rather look for an abelian category M which
is monoidal (i.e. endowed with a tensor product) and whose Grothendieck ring is
isomorphic to A in such a way that the elements of B correspond to the classes of
the simple objects of M, cf. for example [12]. The definition of a ‘canonical basis’
for a general cluster algebra is still an open problem (cf. for example [18]) but in
many cases, this basis is known, for example when there is only a finite number
of clusters or when the algebra already admits a canonical basis in the sense of
Kashiwara and Lusztig. One then expects [8] that the cluster monomials, and in
particular the cluster variables, belong to this canonical basis.

The natural notion of ‘tensor-indecomposability’ is primality: an object of M is
prime, if it does not admit a non trivial tensor factorization. In order to categorify
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a cluster algebra A, one would therefore look for an abelian monoidal category M
whose Grothendieck ring is A and such that

• the cluster variables x of A are the classes of certain prime simple objects
Sx of M,

• two cluster variables x and y belong to the same cluster if and only if
Sx ⊗ Sy is simple,

• the cluster monomial m = xy · · · z in A is the class of the simple object
M = Sx ⊗ Sy ⊗ . . .⊗ Sz of M,

• the exchange relations xx∗ = m + m′ come from exact sequences

0 → M → Sx ⊗ Sx∗ → M ′ → 0.

This last condition lacks in symmetry. But if we remember that the cluster algebra
is commutative, and thus the tensor product induces a commutative multiplication
in the Grothendieck group, we can save symmetry by also requiring the existence
of an exact sequence

0 → M ′ → Sx∗ ⊗ Sx → M → 0.

The natural notion which replaces rigidity in a monoidal category appears to
be ‘reality’: an object of M is real if its tensor square is simple (cf. [13]). The
objects Sx should exactly be the real prime simple objects of M. When the cluster
algebra A has only finitely many cluster variables, all the prime simple objects of
M should be real and the cluster variables of A should be in bijection with the
prime simples.

Using classical results on representations of quantum affine algebras [5] [6] [9]
[16] [17] B. Leclerc has shown [14] that the cluster algebras of types An, n ∈ N,
and D4 (with suitable coefficients) do admit monoidal categorifications given by
tensor abelian subcategories of categories of finite-dimensional representations of
quantum affine algebras. He conjectures that this holds in many more cases. More
precisely, the main conjecture of [14] is the following.

Conjecture (Leclerc). Let ∆ be a Dynkin diagram and l ≥ 1 an integer. Let
g be the complex simple Lie algebra of type ∆, q a non zero complex number
which is not a root of unity and Uq(ĝ) the corresponding quantum affine algebra.
Then the category of finite-dimensional representations of Uq(ĝ) admits a monoidal
abelian subcategory M∆,l which is a monoidal categorification of the cluster algebra
associated with a quiver Q∆,l.
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In [14], Leclerc explicitly describes the subcategory M∆,l and the quiver Q∆,l.
For example, if ∆ = D5 and l = 3, then the quiver Q∆,l is as follows
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The vertices marked by • correspond to ‘frozen variables’ of the initial cluster. For
∆ = A1 and l = 3, the quiver Q∆,l is

◦ ◦oo // ◦ •oo

In this last case, the subcategory M∆,l is the full subcategory on the finite-
dimensional Uq(ŝl2)-modules all of whose simple subfactors have Drinfeld poly-
nomials with roots in q4, q2, q0, q−2. The isomorphism between the cluster algebra
A(QA1,3) and the Grothendieck group K0(MA1,3) ⊗Z Q sends the variables x1,
x2, x3, x4 of the initial cluster to the classes of the Kirillov-Reshetikhin modules
W1,q0 , W2,q−2 , W3,q−2 and W4,q−4 . The complete list of the prime simples (up to
isomorphism) is
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The arrows do not indicate morphisms but serve to identify the vertices other
than W4,q−4 with those of the Auslander-Reiten quiver of the cluster category of
type A3 (the arrows on the left and on the right of the diagram are identified as
indicated by their labels). Every simple module in M∆,l is a tensor product of
modules in this list. A given tensor product of modules in the list other than
W4,q−4 is simple iff the corresponding direct sum of indecomposables of the cluster
category is rigid.

Thus, at least in certain examples, one obtains two rather different categori-
fications of a given cluster algebra. Table 1 sums up the correspondences. The
category C is much ‘smaller’ than M and M is much less well understood than
C. It does not seem to be known whether it has enough projectives, for example.
The table suggests that M should be an ‘exponential’ of C or C a ‘linearisation’
of M . . .
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cluster algebra A additive categorification C monoidal categorification M
+ ? ⊕
× ⊕ ⊗

cluster monomial rigid object real simple object
cluster variable rigid indecomposable real prime simple

Table 1. Correspondences between categorifications

Finally, let us point out [11] [7] for a very different link between cluster algebras
and quantum affine algebras, which does not seem to be related to categorification.
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