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Abstract. Given a triangulated 2-Calabi-Yau category C and a cluster-tilting subcat-
egory T , the index of an object X of C is a certain element of the Grothendieck group
of the additive category T . In this note, we show that a rigid object of C is determined
by its index, that the indices of the indecomposables of a cluster-tilting subcategory T ′

form a basis of the Grothendieck group of T and that, if T and T ′ are related by a mu-
tation, then the indices with respect to T and T ′ are related by a certain piecewise linear
transformation introduced by Fomin and Zelevinsky in their study of cluster algebras
with coefficients. This allows us to give a combinatorial construction of the indices of all
rigid objects reachable from the given cluster-tilting subcategory T . Conjecturally, these
indices coincide with Fomin-Zelevinsky’s g-vectors.

1. Introduction

This note is motivated by the representation-theoretic approach to Fomin-Zelevinsky’s
cluster algebras [6] [7] [4] [8] developed by Marsh-Reineke-Zelevinsky [18], Buan-Marsh-
Reineke-Reiten-Todorov [3], Geiss-Leclerc-Schröer [11] [12] and many others, cf. [2] for a
survey. In this approach, a central rôle is played by certain triangulated 2-Calabi-Yau
categories and by combinatorial invariants associated with their rigid objects (we refer to
[14] [5] for different approaches). Here, our object of study is the index, which is a certain
‘dimension vector’ associated with each object of the given Calabi-Yau category.

More precisely, we fix a Hom-finite 2-Calabi-Yau triangulated category C with split
idempotents which admits a cluster-tilting subcategory T . It is known from [16] that for
each object X of C, there is a triangle

T1 → T0 → X → ΣT1

of C, where T1 and T0 belong to T . Following [19], we define the index of X to be the
difference [T0] − [T1] in the split Grothendieck group K0(T ) of the additive category T .
We show that

- if X is rigid (i.e. C(X,ΣX) = 0), then it is determined by its index up to isomor-
phism;

- the indices of the direct factors of a rigid object all lie in the same hyperquadrant
of K0(T ) with respect to the basis given by a system of representatives of the
isomorphism classes of the indecomposables of T ;

- the indices of the direct factors of a rigid object are linearly independent;
- the indices of a system of representatives of the indecomposable objects of any

cluster-tilting subcategory T ′ form a basis ofK0(T ). In particular, all cluster-tilting
subcategories have the same (finite or infinite) number of pairwise non isomorphic
indecomposable objects.
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Note that the last point was shown in Theorem I.1.8 of [1] under the additional assumption
that C is a stable category. We then study how the index of an object transforms when we
mutate the given cluster-tilting subcategory. We find that this transformation is given by
the right hand side of Conjecture 7.12 of [8], cf. section 4. This motivates the definition of
g†-vectors as the combinatorial counterpart to indices. If, as we expect, Conjecture 7.12
of [loc. cit.] holds, then our g†-vectors are identical with the g-vectors of [loc. cit.], whose
definition we briefly recall below. We finally show that if C has a cluster-structure in the
sense of [1], then we have a bijection between g†-vectors and indecomposable rigid objects
reachable from T and between g†-clusters and cluster-tilting subcategories reachable from
T .

Our results are inspired by and closely related to the conjectures of [8] and the results
of section 15 in [10]. As a help to the reader not familiar with [8], we give a short sum-
mary of the notions introduced there which are most relevant for us: Let n ≥ 1 be an
integer and B a skew-symmetric integer matrix. Let F be the field of rational functions
Q(x1, . . . , xn, y1, . . . , yn) in 2n indeterminates. Let A ⊂ F be the cluster algebra with
principal coefficients associated with the initial seed (x,y, B), where x = (x1, . . . , xn) and
y = (y1, . . . , yn), cf. sections 1 and 2 of [8]. As shown in Proposition 3.6 of [8], each
cluster variable of A lies in the ring Z[x±1

1 , . . . , x±1
n , y1, . . . , yn]. Moreover, by Proposi-

tion 6.1 of [8], each cluster variable of A is homogeneous with respect to the Zn-grading
on Z[x±1

1 , . . . , x±1
n , y1, . . . , yn] given by

deg(xi) = ei , deg(yj) = −
n∑

i=1

bijei ,

where the ei form the standard basis of Zn. The g-vector associated with a cluster variable
X is by definition the vector deg(X) of Zn. More generally, the g-vector of a cluster
monomial M is deg(M). Now we can state the conjectures of [8] which motivated the
above statements on the combinatorics of rigid objects:

- different cluster monomials have different g-vectors (part (1) of Conjecture 7.10 of
[8]);

- the g-vectors of the variables in a fixed cluster all lie in the same hyperquadrant of
Zn (Conjecture 6.13 of [8]);

- the g-vectors of the variables in a fixed cluster form a basis of Zn (part (2) of
Conjecture 7.10 of [8]);

- under a mutation of the initial cluster, the g-vector of a given cluster variable
transforms according to a certain piecewise linear transformation, cf. section 4
(Conjecture 7.12 of [8]).

In [9], the results of this paper have been used to prove these conjectures for certain classes
of cluster algebras.

2. A rigid object is determined by its index

Let k be an algebraically closed field and C a Hom-finite k-linear triangulated category
with split idempotents. In particular, the decomposition theorem holds for C: Each object
decomposes into finite sum of indecomposable objects, unique up to isomorphism, and
indecomposable objects have local endomorphism rings. We write Σ for the suspension
functor of C. We suppose that C is 2-Calabi-Yau, i.e. that the square of the suspension
functor (with its canonical structure of triangle functor) is a Serre functor for C. This
implies that we have bifunctorial isomorphisms

DC(X,Y ) ∼→ C (Y,Σ2X) ,
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where X and Y vary in C and D denotes the duality functor Homk(?, k) over the ground
field. Moreover, we suppose that C admits a cluster-tilting subcategory T (called a maximal
1-orthogonal subcategory in [13]). Recall from [16] that this means that T is a full additive
subcategory such that

- T is functorially finite in C, i.e. for all objects X of C, the restrictions of the functors
C(X, ?) and C(?, X) to T are finitely generated, and

- an object X of C belongs to T iff we have C(T,ΣX) = 0 for all objects T of T .
We call an object X of C rigid if the space C(X,ΣX) vanishes.

2.1. Rigid objects yield open orbits. Let X be a rigid object of C. From [17], we know
that there is a triangle

T1
f // T0

h // X // ΣX ,

where T0 and T1 belong to T . The algebraic group G = Aut(T0)×Aut(T1) acts on C(T1, T0)
via

(g0, g1)f ′ = g0f
′g−1

1 .

Lemma. The orbit of f under the action of G is open in C(T1, T0).

Proof. It suffices to prove that the differential of the map g 7→ gf is a surjection from
Lie(G) to C(T1, T0). This differential is given by

(γ0, γ1)f = γ0f − fγ1.

Let f ′ be an element of C(T1, T0). Consider the following diagram

Σ−1X
e // T1

γ1

||x
x

x
x

x
f ′

��

f // T0

γ0~~}
}

}
}

β0

���
�
�

h // X

T1
f

// T0
h

// X // ΣT1.

Since X is rigid, the composition hf ′e vanishes. So there is a β0 such that β0f = hf ′. Now
h is a right T -approximation. So there is a γ0 such that hγ0 = β0. It follows that we have

h(γ0f − f ′) = 0.

So there is a γ1 such that
γ0f − f ′ = fγ1.

This shows that the differential of the map g 7→ gf is indeed surjective. �

2.2. Rigid objects have disjoint terms in their minimal presentations. Let

F : C → mod T

be the functor taking an object Y of C to the restriction of C(?, Y ) to T . Let X be a rigid
object of C. Let

T1
// T0

h // X
ε // ΣT1

be a triangle such that T0 and T1 belong to T and h is a minimal right T -approximation.

Proposition. T0 and T1 do not have an indecomposable direct factor in common.

We give two proofs of the proposition. Here is the first one:
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Proof. We know that
FT1 → FT0 → FX → 0

is a minimal projective presentation of FX. Since F induces an equivalence from T onto
the category of projectives of mod T , it is enough to show that FT1 and FT0 do not have
an indecomposable factor in common. For this, it suffices to show that no simple module
S occuring in the head of FT0 also occurs in the head of FT1. Equivalently, we have to
show that if a simple S satisfies Hom(FX,S) 6= 0, then we have Ext1(FX,S) = 0. So let
S be a simple admitting a surjective morphism

p : FX → S.

Let f : FT1 → S be a map representing an element in Ext1(FX,S). Since FT1 is projective,
there is a morphism f1 : FT1 → FX such that p ◦ f1 = f . Now using the fact that F
is essentially surjective and full, we choose a preimage up to isomorphism S̃ of S and
preimages f̃ , p̃ and f̃1 of f , p and f1 in C as in the following diagram

Σ−1X
Σ−1ε // T1ef1

||yy
yy

yy
yy

y ef
��

// T0
// X

X ep // S̃

Denote by mod T the category of finitely presented k-linear functors from T op to the
category of k-vector spaces. Since F induces a bijection

C(T, Y ) → (mod T )(FT, FY )

for all Y in C, we still have p̃ ◦ f̃1 = f̃ . The composition f̃1 ◦ (Σ−1ε) vanishes since we have
C(Σ−1X,X) = 0. Therefore, the composition

f̃ ◦ (Σ−1ε) = p̃ ◦ f̃1 ◦ (Σ−1ε)

vanishes. This implies that f̃ factors through the morphism T1 → T0. But then f factors
through the morphism FT1 → FT0 and f represents 0 in Ext1(FX,S). �

Let us now give a second, more geometric, proof of the proposition:

Proof. Suppose that T0 and T1 have an indecomposable direct factor T2 so that we have
decompositions

T0 = T ′0 ⊕ T2 and T1 = T ′1 ⊕ T2.

For a morphism f : T1 → T0, let [
f11 f12

f21 f22

]
be the matrix corresponding to f with respect to the given decompositions. Of course, up
to isomorphism, the cone on f only depends on the orbit of f under the group Aut(T0)×
Aut(T1). Suppose that the cone on f is isomorphic to X, which is rigid. Then we know
that the orbit of f in C(T1, T0) is open. Hence there is some f ′ in the orbit such that
the component f ′22 is invertible. But then, using elementary operations on the rows and
columns of the matrix of f ′, we see that the orbit of f contains a morphism f ′′ whose matrix
is diagonal with invertible component f ′′22. Clearly, the triangle on f ′′ is not minimal. This
shows that T1 and T0 do not have a common indecomposable factor if they are the terms
of a minimal triangle whose third term is the rigid object X. �
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2.3. A rigid object is determined by its index. The (split) Grothendieck groupK0(T )
of the additive category T is the quotient of the free group on the isomorphism classes [T ]
of objects T of T by the subgroup generated by the elements of the form

[T1 ⊕ T2]− [T1]− [T2].

It is canonically isomorphic to the free abelian group on the isomorphism classes of the
indecomposable objects of T . It contains a canonical positive cone formed by the classes
of objects of T . Each element c of K0(T ) can be uniquely written as

c = [T0]− [T1]

where T0 and T1 are objects of T without common indecomposable factors. Let X be an
object of C. Recall that its index [19] is the element

ind(X) = [T0]− [T1]

of K0(T ) where T0 and T1 are objects of T which occur in an arbitrary triangle

T1 → T0 → X → ΣT1.

Now suppose that X is rigid. We know that if we choose the above triangle minimal, then
T0 and T1 do not have common indecomposable factors. Thus they are determined by
ind(X). Moreover, since the C(T1, T0) is an irreducible variety (like any finite-dimensional
vector space), each morphism f : T1 → T0 whose orbit under the group Aut(T0)×Aut(T1) is
open yields a cone isomorphic to X. Thus up to isomorphism, X is determined by ind(X).
In fact, X is isomorphic to the cone on a general morphism f : T1 → T0 between the
objects T0 and T1 without a common indecomposable factor such that ind(X) = [T0]− [T1].
We have proved the

Theorem. The map X 7→ ind(X) induces an injection from the set of isomorphism classes
of rigid objects of C into the set K0(T ).

This theorem was inspired by part (1) of conjecture 7.10 in [8].

2.4. Direct factors of rigid objects have sign-coherent indices. Let A be a free
abelian group endowed with a basis ei, i ∈ I. A subset X ⊂ A is sign-coherent if, for all
elements x, y ∈ X and for all i ∈ I, the sign of the component xi in the decomposition

x =
∑

xiei

agrees with the sign of yi, cf. Definition 6.12 of [8]. This means that the set X is entirely
contained in a hyperquadrant of A with respect to the given basis ei, i ∈ I. Now consider
the free abelian group K0(T ) endowed with the basis formed by the classes of indecompos-
able objects of T . Suppose that X is a rigid object of C. We claim that the set of indices
of the direct factors of X is sign-coherent. Indeed, let U and V be direct factors of X.
Choose minimal triangles

TU
1 → TU

0 → U → ΣTU
1 and T V

1 → T V
0 → V → ΣT V

1 ,

where the TU
i and T V

i belong to T . Then the triangle

TU
1 ⊕ T V

1 → TU
0 ⊕ T V

0 → U ⊕ V → Σ(TU
1 ⊕ T V

1 )

is minimal. Since U ⊕ V is rigid, the two terms TU
1 ⊕ T V

1 and TU
0 ⊕ T V

0 do not have
indecomposable direct factors in common. In particular, whenever an indecomposable
object occurs in TU

0 (resp. TU
1 ), it does not occur in T V

1 (resp. T V
0 ). This shows that

ind(U) and ind(V ) are sign-coherent. This property is to be compared with conjecture 6.13
of [8].
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2.5. Indices of factors of rigid objects are linearly independent. Let X be a rigid
object of C and let Xi, i ∈ I, be a finite family of indecomposable direct factors of X
which are pairwise non isomorphic. We claim that the elements ind(Xi), i ∈ I, are linearly
independent in K0(T ). Indeed, suppose that we have a relation∑

i∈I1

ci ind(Xi) =
∑
j∈I2

cj ind(Xj)

for two disjoint subsets I1 and I2 of I and positive integers ci and cj . Then the rigid objects⊕
i∈I1

Xci
i and

⊕
j∈I2

X
cj

j

have equal indices. So they are isomorphic. Since I1 and I2 are disjoint, all the ci and cj
have to vanish.

2.6. The indices of the indecomposables of a cluster tilting subcategory form a
basis. The following theorem was inspired by part (2) of conjecture 7.10 of [8].

Theorem. Let T ′ be another tilting subcategory of C. Then the elements ind(T ′), where
T ′ runs through a system of representatives of the isomorphism classes of indecomposables
of T ′, form a basis of the free abelian group K0(T ).

Proof. Indeed, we already know that the ind(T ′) are linearly independent. So it is enough
to show that the subgroup they generate contains ind(T ) for each indecomposable T of T .
Indeed, let T be an indecomposable of T and let

T → T ′1 → T ′0 → ΣT

be a triangle with T ′i in T ′ (this triangle allows to compute the index of ΣT with respect
to T ′). Then the map FT ′1 → FT ′0 is surjective and therefore, we have

ind(T )− ind(T ′1) + ind(T ′0) = 0

by Proposition 6 of [19]. Thus, ind(T ) is in the subgroup of K0(T ) generated by the ind(T ′),
where T ′ runs through the indecomposables of T ′. �

3. How the index transforms under change of cluster-tilting subcategory

Let T ′ be another cluster-tilting subcategory. Suppose that T and T ′ are related by a
mutation, i.e. there is an indecomposable S of T and an indecomposable S∗ of T ′ such
that, if indec denotes the set of isomorphism classes of indecomposables, we have

indec(T ′) = indec(T ) \ {S} ∪ {S∗},
and that there exist triangles

S∗ → B → S → ΣS∗ and S → B′ → S∗ → ΣS

with B and B′ belonging to T ∩ T ′, cf. e.g. [3] [12] [15]. We define two linear maps

φ+ : K0(T ) → K0(T ′) and φ− : K0(T ) → K0(T ′)

which both send each indecomposable T ′′ belonging to both T and T ′ to itself and such
that

φ+(S) = [B]− [S∗] and φ−(S) = [B′]− [S∗].
For an object X of C, we denote by indT (X) the index of X with respect to T and by
[indT (X) : S] the coefficient of S in the decomposition of indT (X) with respect to the basis
given by the indecomposables of T . The following theorem is inspired by Conjecture 7.12
of [8].
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Theorem. Let X be a rigid object of C. We have

indT ′(X) =
{
φ+(indT (X)) if [indT (X) : S] ≥ 0 ;
φ−(indT (X)) if [indT (X) : S] ≤ 0.

Proof. Let

T1 → T0 → X → ΣT1

be a triangle with T0 and T1 in T . Suppose first that S occurs neither as a direct factor of
T1 nor of T0. Then clearly the triangle yields both the index of X with respect to T and
with respect to T ′ and we have

φ+(indT (X)) = φ−(indT (X)) = indT ′(X).

Now suppose that the multiplicity [indT (X) : S] equals a positive integer i ≥ 1. This means
that S occurs with multiplicity i in T0 but does not occur as a direct factor of T1. Choose
a decomposition T0 = T ′′0 ⊕ Si. From the octahedron constructed over the composition

T ′′0 ⊕Bi → T ′′0 ⊕ Si → X ,

we extract the following commutative diagram, whose rows and columns are triangles

ΣS∗i
1 // ΣS∗i

T1

OO

// T ′′0 ⊕ Si

OO

// X // ΣT1

T ′1

OO

// T ′′0 ⊕Bi //

OO

X

1

OO

// ΣT ′1

OO

S∗i

OO

1 // S∗i.

OO

Since there are no non zero morphisms from T1 to ΣS∗i (T1 and S∗ belong to T ′), the
leftmost column is a split triangle and T ′1 is isomorphic to S∗i ⊕ T1. Thus, the third line
yields the index of X with respect to T ′, which equals

indT ′(X) = [T ′′0 ⊕Bi]− [T ′1] = [T ′′0 ]− [T1] + i([B]− [S∗]) = φ+(indT (X)).

Finally, suppose that the multiplicity [indT (X) : S] is equals a negative integer −i ≤ −1.
This means that S occurs with multiplicity i in T1 but does not occur in T0. Choose a
decomposition T1 = T ′′1 ⊕ Si. From the octahedron over the composition

Σ−1X → T ′′1 ⊕ Si → T ′′1 ⊕B′i ,



8 RAIKA DEHY AND BERNHARD KELLER

we extract the following diagram, whose rows and columns are triangles

Σ−1S∗i
1 //

��

Σ−1S∗i

��
Σ−1X

1

��

// T ′′1 ⊕ Si //

��

T0
//

��

X

1

��
Σ−1X // T ′′1 ⊕B′i //

��

T ′0

��

// X

S∗i 1
// S∗i

Since there are no non zero morphisms from Σ−1S∗i to T0 (S∗ and T0 belong to T ′), the
object T ′0 is isomorphic to T0 ⊕ Si and we can read indT ′(X) off the third line of the
diagram:

indT ′(X) = [T ′0]−[T ′′1⊕B′i] = [T0⊕S∗i]−[T ′′1 ]−i[B′] = [T0]−[T ′′1 ]−i([B′]−[S∗]) = φ−(indT (X)).

�

4. g†-vectors and g†-clusters

In this section, we recall fundamental constructions from [8] in a language adapted to
our applications. We will define g†-vectors using the right hand side of Conjecture 7.12 of
[loc. cit.]. If, as we expect, this conjecture holds, then our g†-vectors are identical with
the g-vectors of [loc. cit.].

Let Q be a quiver. Thus Q is given by a set of vertices I = Q0, a set of arrows Q1 and
two maps s and t from Q1 to I = Q0 taking an arrow to its source, respectively its target.
We assume that Q is locally finite, i.e. for each given vertex i of Q there are only finitely
many arrows α such that s(α) = i or t(α) = i. Moreover, we assume that Q has no loops
(i.e. arrows α such that s(α) = t(α)) and no 2-cycles (i.e. pairs of distinct arrows α 6= β
such that s(α) = t(β) and t(β) = s(α)). The quiver Q is thus determined by the set I
and the skew-symmetric integer matrix B = (bij)I×I such that, whenever the coefficient
bij is positive, it equals the number of arrows from i to j in Q. Notice that if, for an
integer x, we write [x]+ = max(x, 0), then the number of arrows from i to j in Q is [bij ]+.
The mutation µk(Q) of Q at a vertex k is by definition the quiver with vertex set I whose
numbers of arrows are given by the mutated matrix B′ = µk(B) as defined, for example,
in definition 2.4 of [8]:

b′ij =
{
−bij if i = k or j = k;
bij + sgn(bik)[bijbkj ]+ otherwise.

As in definition 2.8 of [8], we let T = TI be the regular tree whose edges are labeled by the
elements of I such that for each vertex t and each element k of I, there is precisely one
edge incident with t and labeled by k. We fix a vertex t0 of T and define Qt0 = Q. Clearly,
there is a unique map assigning a quiver Qt to each vertex t such that if t and t′ are linked
by an edge labeled by k, we have Qt′ = µk(Qt). In analogy with the terminology of [8], we
call the map t 7→ Qt the quiver pattern associated with t0 and Q.

Now for each vertex t of T, we define Kt to be the free abelian group on the symbols eti,
i ∈ I. For two vertices t and t′ linked by an edge labeled k, we let

φ+
t′,t : Kt → Kt′ respectively φ−t′,t : Kt → Kt′
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be the linear map sending etj to et
′

j for each j 6= k and sending ek to

−et′k + Σj [btjk]+ e
t′
j respectively − et

′
k + Σj [btkj ]+ e

t′
j ,

where (btij) is the skew-symmetric matrix associated with the quiver Qt. We define the
piecewise linear transformation

φt′,t : Kt → Kt′

to be the map whose restriction to the halfspace of elements with positive etk-coordinate is
φ+

t′,t and whose restriction to the opposite halfspace is φ−t′,t. Thus, the image of an element
g with coordinates gj , j ∈ I, is the element g′ with coordinates

g′j =


−gj if j = k;
gj + [btjk]+ gk if j 6= k and gk ≥ 0;
gj + [btkj ]+ gk if j 6= k and gk ≤ 0.

It is easy to check that this rule agrees with formula (7.18) in Conjecture 7.12 of [8].
If t and t′ are two arbitrary vertices of T, there is a unique path

t = t1 t2 . . . tN = t′

of edges leading from t to t′ and we define φt′,t to be the composition

φtN ,tN−1 ◦ · · · ◦ φt2,t1 .

For a vertex t of T and a vertex l of Q, the g†-vector g†l,t is the element of the abelian
group Kt0 defined by

g†l,t = φt0,t(etl).

The g†-cluster associated with a vertex t of T is the set of g†-vectors g†l,t, l ∈ I. If
Conjecture 7.12 of [8] holds for the cluster algebra with principal coefficients associated
with the matrix B, then it is clear that in the notations of formula (6.4) of [8], we have

g†l,t = gl,t

for all vertices t of T and all l ∈ I, , i.e. the g†-vectors equal the g-vectors for the cluster
algebra with principal coefficients associated with the skew-symmetric matrix B.

5. Rigid objects in 2-Calabi-Yau categories with cluster structure

Let C be a Hom-finite 2-Calabi-Yau category with a cluster-tilting subcategory T . Let
Q = Q(T ) be the quiver of T . Recall that this means that the vertices of Q are the
isomorphism classes of indecomposable objects of T and that the number of arrows from
the isoclass of T1 to that of T2 equals the dimension of the space of irreducible morphisms

irr(T1, T2) = rad(T1, T2)/rad2(T1, T2) ,

where rad denotes the radical of T , i.e. the ideal such that rad(T1, T2) is formed by all non
isomorphisms from T1 to T2.

We make the following assumption on C: For each cluster-tilting subcategory T ′ of C,
the quiver Q(T ′) does not have loops or 2-cycles. We refer to section 1, page 11 of [1]
for a list of classes of examples where this assumption holds. By theorem 1.6 of [1], the
assumption implies that the cluster-tilting subcategories of C determine a cluster structure
for C. Let us recall what this means:
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1) For each cluster-tilting subcategory T ′ of C and each indecomposable S of T ′, there
is a unique (up to isomorphism) indecomposable S∗ not isomorphic to M and such
that the additive subcategory T ′′ = µS(T ′) of C with

indec(T ′′) = indec(T ′) \ {S} ∪ {S∗}
is a cluster-tilting subcategory;

2) the space of morphisms from S to ΣS∗ is one-dimensional and in the non-split
triangles

S∗ → B → S → ΣS∗ and S → B′ → S∗ → ΣS
the objects B and B′ belong to T ′ ∩ T ′′;

3) the multiplicity of an indecomposable L of T ′ ∩ T ′′ in B equals the number of
arrows from L to S in Q(T ′) and that from S∗ to L in Q(T ′′); the multiplicity of
L in B′ equals the number of arrows from S to L in Q(T ′) and that from L to S∗

in Q(T ′′);
4) finally, we have Q(T ′′) = µS(Q(T ′)).

Let Q = Q(T ) be the quiver of T . Notice that its set of vertices is the set Q0 = I of
isomorphism classes of indecomposables of T . Let T be the regular tree associated with
Q as in section 4. We fix a vertex t0 of T and put Tt0 = T . For two cluster tilting
subcategories T ′ and T ′′ as above, let ψT ′′,T ′ : indec(T ′) → indec(T ′′) be the bijection
taking S to S∗ and fixing all other indecomposables.

Thanks to point 1), with each vertex t of T, we can associate
a) a unique cluster-tilting subcatgory Tt and
b) a unique bijection

ψt,t0 : indec(Tt0) → indec(Tt)
such that Tt0 = T and that, whenever two vertices t and t′ are linked by an edge labeled
by an indecomposable S of T = Tt0 , we have

a) Tt′ = µS′(Tt), where S′ = ψt,t0(S), and
b) ψt′,t0 = ψt′,t ◦ ψt,t0 .

Moreover, thanks to point 4), the map t 7→ Q(Tt) is the quiver-pattern associated with Q
and t0 in section 4. Notice that the group K0(T ) with the basis formed by the isomor-
phism classes of indecomposables canonically identifies with the free abelian group Kt0 of
section 4. We define a cluster-tilting subcategory T ′ to be reachable from T if we have
T ′ = Tt for some vertex t of the tree T. We define a rigid indecomposable M to be reachable
from T if it belongs to a cluster-tilting subcategory which is reachable from T .

Theorem. a) The index ind(M) of a rigid indecomposable reachable from T is a g†-
vector and the map M 7→ ind(M) induces a bijection from the set of isomorphism
classes of rigid indecomposables reachable from T onto the set of g†-vectors.

b) Under the bijection M 7→ ind(M) of a), the cluster-tilting subcategories reachable
from T are mapped bijectively to the g†-clusters.

Proof. a) By assumption, there is a vertex t of T such that M belongs to Tt. Now we use
theorem 3 and induction on the length of the path joining t0 to t in the tree T to conclude
that

ind(M) = g†M ′,t , where M = ψt,t0(M
′).

This formula shows that the map M 7→ ind(M) is a well-defined surjection onto the set of
g†-vectors. By theorem 2.3, the map M 7→ ind(M) is also injective. b) By assumption, a
reachable cluster-tilting subcategory T ′ is of the form Tt for some vertex t of the tree T.
Thus its image is the g†-cluster associated with t. This shows that the map is well-defined
and surjective. It follows from a) that it is also injective. �
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