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Abstract. Building on work by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott
we investigate the link between certain cluster algebras with coefficients and suitable 2-
Calabi-Yau categories. These include the cluster-categories associated with acyclic quivers
and certain Frobenius subcategories of module categories over preprojective algebras. Our
motivation comes from the conjectures formulated by Fomin and Zelevinsky in ‘Cluster
algebras IV: Coefficients’. We provide new evidence for Conjectures 5.4, 6.10, 7.2, 7.10
and 7.12 and show by an example that the statement of Conjecture 7.17 does not always
hold.

1. Introduction

In this article, we pursue the representation-theoretic approach to Fomin-Zelevinsky’s
cluster algebras [19] [20] [8] [21] developed by Marsh-Reineke-Zelevinsky [35], Buan-Marsh-
Reineke-Reiten-Todorov [6] [7], Caldero-Chapoton and Caldero-Keller [9] [10] [11], Geiss-
Leclerc-Schröer [25] [26] [23], [2] and many others, cf. the surveys [4] [31] [39] [40] .

Our emphasis here is on cluster algebras with coefficients. More precisely, we investigate
certain symmetric cluster algebras of geometric type with coefficients. Coefficients are of
great importance both in geometric examples of cluster algebras [27] [28] [8] [41] [23] and in
the study of duality phenomena [18] as shown in [21]. Following [2], we consider two types
of categories which allow us to incorporate coefficients into the representation-theoretic
model:

1) 2-Calabi-Yau Frobenius categories;
2) 2-Calabi-Yau ‘subtriangulated’ categories, i.e. full subcategories of the form ⊥(ΣD)

of a 2-Calabi-Yau triangulated category C, where D is a rigid functorially finite
subcategory of C and Σ the suspension functor of C.

In both cases, we establish the link between the category and its associated cluster algebra
using (variants of) cluster characters in the sense of Palu [36]. For subtriangulated cate-
gories, we use the restriction of the cluster characters constructed in [36]. For Frobenius
categories, we construct a suitable variant in section 3 (Theorem 3.3).

The work of Geiss-Leclerc-Schröer [26] [23] and Buan-Iyama-Reiten-Scott [2] provides
us with large classes of 2-Calabi-Yau Frobenius categories and of 2-Calabi-Yau subtrian-
gulated categories which admit cluster structures in the sense of [2]. Our general results
imply that for these classes, the 2-Calabi-Yau categories do yield ‘categorifications’ of the
corresponding cluster algebras with coefficients (Theorems 5.4 and 6.3). As an applica-
tion, we show that Conjectures 7.2, 7.10 and 7.12 of [21] hold for these cluster algebras
(Proposition 5.5 and Theorem 6.3). Let us recall the statements of these conjectures:

7.2 cluster monomials are linearly independent;
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7.10 different cluster monomials have different g-vectors and the g-vectors of the cluster
variables in any given cluster form a basis of the ambient lattice;

7.12 the g-vectors of a cluster variable with respect to two neighbouring clusters are
related by a certain piecewise linear transformation (so that the g-vectors equal
the g†-vectors of [13]).

In the case of cluster algebras with principal coefficients admitting a categorification by a
2-Calabi-Yau subtriangulated category, we obtain a representation-theoretic interpretation
of the F -polynomial defined in section 3 of [21], cf. Theorem 6.5. This interpretation
implies in particular that Conjecture 5.4 of [21] holds in this case: The constant coefficient
of the F -polynomial equals 1. We also deduce that the multidegree of the F -polynomial
associated with a rigid indecomposable equals the dimension vector of the corresponding
module (Proposition 6.6). By combining this with recent work by Buan-Marsh-Reiten
[5], cf. also [17], we obtain a counterexample to Conjecture 7.17 (and 6.11) of [21]. We
point out that the corresponding computations were already present in G. Cerulli’s work
[12]. Following a suggestion by A. Zelevinsky, we show that, by assuming the existence of
suitable categorifications, instead of the equality claimed in Conjecture 7.17, one does have
an inequality: The multidegree of the F -polynomial is greater or equal to the denominator
vector (Proposition 6.8). We also show in certain cases that the transformation rule for
g-vectors predicted by Conjecture 6.10 of [21] does hold (Proposition 6.9).

Let us emphasize that our proofs for certain cluster algebras of some of the conjectures of
[21] depend on the existence of suitable Hom-finite 2-Calabi-Yau categories with a cluster-
tilting object. This hypothesis imposes a finiteness condition on the corresponding cluster
algebra (to the best of our knowledge, it is not known how to express this condition in
combinatorial terms). The construction of such 2-Calabi-Yau categories is a non trivial
problem for which we rely on [6] in the acyclic case and on [26] [23] [2] and [1] in the non
acyclic case. As A. Zelevinsky has kindly informed us, many of the conjectures of [21] will
be proved in [16] in full generality building on [35] and [15].

Acknowledgments. We thank A. Zelevinsky for stimulating discussions and for in-
forming us about the ongoing work in [16] and [12]. We are grateful to A. Buan and
I. Reiten for sharing the results on dimension vectors obtained in [5]. We thank J. Schröer
and O. Iyama for their interest and for motivating discussions. The first-named author
gratefully acknowledges a 5-month fellowship of the Liegrits network (MRTN-CT 2003-
505078) during which this research was carried out. Both authors thank the referee for his
great help in making this article more readable.

2. Recollections

2.1. Cluster algebras. In this section, we recall the construction of cluster algebras of
geometric type with coefficients from [21]. For an integer x, we use the notations

[x]+ = max(x, 0)

and

sgn(x) =

 −1 if x < 0;
0 if x = 0;
−1 if x < 0.

The tropical semifield on a finite family of variables uj , j ∈ J , is the abelian group
(written multiplicatively) freely generated by the uj , j ∈ J , endowed with the addition ⊕
defined by ∏

j

u
aj

j ⊕
∏
j

u
bj

j =
∏
j

u
min(aj ,bj)
j .
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Let 1 ≤ r ≤ n be integers. Let P be the tropical semifield on the indeterminates
xr+1, . . . , xn. Let QP be the group algebra on the abelian group P. It identifies with
the algebra of Laurent polynomials with rational coefficients in the variables xr+1, . . . , xn.
Let F be the field of fractions of the ring of polynomials with coefficients in QP in r
indeterminates. A seed in F is a pair (B̃,x) formed by

• an n×r-matrix B̃ with integer entries whose principal part B (the submatrix formed
by the first r rows) is antisymmetric;
• a free generating set x = {x1, . . . , xr} of the field F .

The matrix B̃ is called the exchange matrix and the set x the cluster of the seed (B̃,x).
Let 1 ≤ s ≤ r be an integer. The seed mutation in the direction s transforms the seed
(B̃,x) into the seed µs(B̃,x) = (B̃′,x′), where

• the entries b′ij of B̃′ are given by

b′ij =
{
−bij if i = s or j = s;
bij + sgn(bis)[bisbsj ]+ otherwise.

• The cluster x′ = {x′1, . . . x′r} is given by x′j = xj for j 6= s whereas x′s ∈ F is
determined by the exchange relation

x′sxs =
n∏

i=1

x
[bis]+
i +

n∏
i=1

x
[−bis]+
i .

Mutation in a fixed direction is an involution.
Let Tr be the r-regular tree, whose edges are labeled by the numbers 1, . . . , r so that

the r edges emanating from each vertex carry different labels. A cluster pattern is the
assignment of a seed (B̃t,xt) to each vertex t of Tr such that the seeds assigned to vertices
t and t′ linked by an edge labeled s are obtained from each other by the seed mutation µs.

Fix a vertex t0 of the r-regular tree Tr. Clearly, a cluster pattern is uniquely determined
by the initial seed (B̃t0 , xt0), which can be chosen arbitrarily.

Fix a seed (B̃,x) and let (B̃t,xt), t ∈ Tr be the unique cluster pattern with initial seed
(B̃,x). The clusters associated with (B̃,x) are the sets xt, t ∈ Tr. The cluster variables
are the elements of the clusters. The cluster algebra A(B̃) = A(B̃,x) is the ZP-subalgebra
of F generated by the cluster variables. Its ring of coefficients is ZP. It is a ‘cluster algebra
without coefficients’ if r = n and thus ZP = Z.

2.2. Cluster algebras from ice quivers. As we have seen in the previous subsection,
our cluster algebras are given by certain integer matrices B̃. Such matrices can also be
encoded by ‘ice quivers’: A quiver is a quadruple Q = (Q0, Q1, s, t), where Q0 is a set (the
set of vertices), Q1 is a set (the set of arrows) and s and t are two maps Q1 → Q0 (taking
an arrow to its source respectively to its target). An ice quiver is a pair (Q,F ) consisting
of a quiver Q and a subset F of its set of vertices (F is the set of frozen vertices).

Let (Q,F ) be an ice quiver such that the set Q0 is the set of natural numbers from 1
to n, the set Q1 is finite and the set F is the set of natural numbers from r + 1 to n for
some 1 ≤ r ≤ n. The associated integer matrix B̃(Q,F ) is the n × r matrix whose entry
bij equals the number of arrows from i to j minus the number of arrows from j to i. The
cluster algebra with coefficients A(Q,F ) is defined as the cluster algebra A(B̃(Q,F )). The
matrix B̃(Q,F ) determines the ice quiver (Q,F ) if

1) Q does not have loops (arrows from a vertex to itself) and
2) Q does not have 2-cycles (pairs of distinct arrows α, β such that s(α) = t(β) and

t(α) = s(β)) and
3) there are no arrows between any vertices of F .
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Given integers 1 ≤ r ≤ n each integer matrix B̃ with antisymmetric principal part B
(formed by the first r rows of B̃), is obtained as the matrix associated with a unique ice
quiver satisfying these properties. The mutation of ice quivers satisfying conditions 1)-3)
is defined via the mutation of the corresponding integer matrices recalled in section 2.1.

2.3. Krull-Schmidt categories. An additive category has split idempotents if each idem-
potent endomorphism e of an object X gives rise to a direct sum decomposition Y ⊕Z ∼→ X
such that Y is a kernel for e. A Krull-Schmidt category is an additive category where the
endomorphism rings of indecomposable objects are local and each object decomposes into
a finite direct sum of indecomposable objects (which are then unique up to isomorphism
and permutation). Each Krull-Schmidt category has split idempotents. We write indec(C)
for the set of isomorphism classes of indecomposable objects of a Krull-Schmidt category
C.

Let C be a Krull-Schmidt category. An object X of C is basic if every indecomposable
of C occurs with multiplicity ≤ 1 in X. In this case, X is fully determined by the full
additive subcategory add(X) whose objects are the direct factors of finite direct sums of
copies of X. The map X 7→ add(X) yields a bijection between the isomorphism classes of
basic objects and the full additive subcategories of C which are stable under taking direct
factors and only contain finitely many indecomposables up to ismorphism.

Let k be an algebraically closed field. A k-category is a category whose morphism sets
are endowed with structures of k-vector spaces such that the composition maps are bilinear.
A k-category is Hom-finite if all of its morphism spaces are finite-dimensional. A k-linear
category is a k-category which is additive. Let C be a k-linear Hom-finite category with
split idempotents. Then C is a Krull-Schmidt category. Let T be an additive subcategory
of C stable under taking direct factors. The quiver Q = Q(T ) of T is defined as follows:
The vertices of Q are the isomorphism classes of indecomposable objects of T and the
number of arrows from the isoclass of T1 to that of T2 equals the dimension of the space
of irreducible morphisms

irr(T1, T2) = rad(T1, T2)/rad2(T1, T2) ,

where rad denotes the radical of T , i.e. the ideal such that rad(T1, T2) is formed by all non
isomorphisms from T1 to T2.

2.4. 2-Calabi-Yau triangulated categories. Let k be an algebraically closed field. Let
C be a k-linear triangulated category with suspension functor Σ. We assume that C is
Hom-finite and has split idempotents. Thus, it is a Krull-Schmidt category. For objects
X, Y of C and an integer i, we define

Exti(X, Y ) = C(X, ΣiY ).

An object X of C is rigid if Ext1(X, X) = 0.
Let d be an integer. Following [42], cf. also [32], we define the category C to be d-Calabi-

Yau if there exists a family of linear forms

tX : C(X, ΣdX)→ k , X ∈ obj(C) ,

such that the bilinear forms

〈, 〉 : C(Y, ΣdX)× C(X, Y )→ k , (f, g) 7→ tX(f ◦ g)

are non degenerate and satisfy

〈Σpf, g〉 = (−1)pq〈Σqg, f〉

for all f in C(Y, ΣqX) and all g ∈ C(X, ΣpY ), where p + q = d.
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Let us assume that C is 2-Calabi-Yau. A cluster-tilting subcategory of C is a full additive
subcategory T ⊂ C which is stable under taking direct factors and such that

• for each object X of C, the functors C(X, ?) : T → mod k and C(?, X) : T op → mod k
are finitely generated;
• an object X of C belongs to T iff we have Ext1(T,X) = 0 for all objects T of T .

A cluster-tilting object is a basic object T of C such that add(T ) is a cluster-tilting
subcategory. Equivalently, an object T is cluster-tilting if it is rigid and if each object
X satisfying Ext1(T,X) = 0 belongs to add(T ). The following definition is taken from
section 1 of [2]. Recall that C is a Hom-finite k-linear triangulated category with split
idempotents which is 2-Calabi-Yau.

Definition 2.1 ([2]). The cluster-tilting subcategories of C determine a cluster structure
on C if the following hold:

0) There is at least one cluster-tilting subcategory in C.
1) For each cluster-tilting subcategory T ′ of C and each indecomposable M of T ′, there

is a unique (up to isomorphism) indecomposable M∗ not isomorphic to M and such
that the additive subcategory T ′′ = µM (T ′) of C with set of indecomposables

indec(T ′′) = indec(T ′) \ {M} ∪ {M∗}
is a cluster-tilting subcategory;

2) In the situation of 1), there are triangles

M∗ f // E
g // M // ΣM∗ and M

s // E′ t // M∗ // ΣM∗ ,

where g and t are minimal right T ′ ∩ T ′′-approximations and f and s are minimal
left T ′ ∩ T ′′-approximations.

3) For any cluster-tilting subcategory T ′, the quiver Q(T ′) does not have loops nor
2-cycles.

4) We have Q(µM (T ′)) = µM (Q(T ′)) for each cluster-tilting subcategory T ′ of C and
each indecomposable M of T ′.

The cluster tilting subcategory T ′′ = µM (T ′) of 1) is the mutation of T ′ at the indecom-
posable object M . The mutation of a cluster-tilting object T is defined via the mutation
of the cluster-tilting subcategory add(T ).

Lemma 2.2. Suppose that the cluster-tilting subcategories determine a cluster structure
on C. Then, in the situation of condition 2) of the above definition 2.4, the following hold:

a) The space Ext1(M,M∗) is one-dimensional (hence, by the 2-Calabi-Yau property,
so is the space Ext1(M∗,M)) and the triangles of 2) are non split.

3) The multiplicity of an indecomposable U of T ′ ∩ T ′′ in E equals the number of
arrows from U to M in the quiver Q(T ′) and that from M∗ to U in Q(T ′′); the
multiplicity of U in E′ equals the number of arrows from M to U in Q(T ′) and
that from U to M∗ in Q(T ′′);

Proof. a) The first triangle yields an exact sequence

C(M,E)→ C(M,M)→ Ext1(M,M∗)→ 0.

By the absence of loops required in condition 3), each radical morphism from M to M
factors through E. Since k is algebraically closed, the radical is of codimension 1 in the
local algebra C(M,M). Thus, the space Ext1(M,M∗) is one-dimensional. The minimality
of the approximations implies that the triangles are non split. b) This follows if we combine
the definition of the quivers Q(T ′) and Q(T ′′), with the approximation properties of f , g,
s and t. �
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We refer to section 1, page 11 of [2] for a list of classes of examples where this assumption
holds. In particular, this list contains the cluster categories associated with finite quiv-
ers without oriented cycles and the stable categories of preprojective algebras of Dynkin
quivers. We refer the reader to the surveys [4] [39] [30] [31] for more information on clus-
ter categories and to the survey [24] for more information on stable categories of Dynkin
quivers.

2.5. Cluster characters. The notion of cluster character is due to Palu [37]. Under
suitable assumptions, cluster characters allow one to pass from 2-Calabi-Yau categories to
cluster algebras. We recall the definition and the main construction from [37]. Let k be
an algebraically closed field and C a k-linear Hom-finite triangulated category with split
idempotents which is 2-Calabi-Yau. Let R be a commutative ring. A cluster character on
C with values in R is a map ζ : obj(C)→ R such that

1) we have ζ(L) = ζ(L′) if and L and L′ are isomorphic,
2) we have ζ(L⊕M) = ζ(L)ζ(M) for all objects L and M and
3) if L and M are objects such that Ext1(L,M) is one-dimensional (and hence Ext1(M,L)

is one-dimensional) and

L→ E →M → ΣL and M → E′ → L→ ΣM

are non-split triangles, then we have

(2.1) ζ(L)ζ(M) = ζ(E) + ζ(E′).

Assume that C has a cluster-tilting object T which is the direct sum of r pairwise non
isomorphic indecomposable summands T1, . . . Tr. In a vast generalization of Caldero-
Chapoton’s work [9], Palu has shown in [37] that there is a canonical cluster-character

XT
? : obj(C)→ Z[x1, . . . , xr] , M 7→ XT

M

such that XT
ΣTi

= xi for 1 ≤ i ≤ r. Let us recall Palu’s construction. First we need
to introduce some more notation. Let C be the endomorphism algebra of T . Let mod C
denote the category of k-finite-dimensional right C-modules. For each 1 ≤ i ≤ r, the
morphism space C(T, Ti) becomes an indecomposable projective right C-module denoted
by Pi. Its simple top is denoted by Si. For L and M in mod C, define

〈L,M〉 = dim HomC(L,M)− dim Ext1C(L,M)

and put
〈L,M〉a = 〈L,M〉 − 〈M,L〉.

By Theorem 11 of [37], the map (L,M) 7→ 〈L,M〉a induces a well-defined bilinear form on
the Grothendieck group K0(mod C). By [34], for any X ∈ C, we have triangles

TX
1 → TX

0 → X → ΣTX
1 and X → Σ2T 0

X → Σ2T 1
X → ΣX,

where TX
1 , TX

0 , T 0
X and T 1

X belong to add(T ). The index and coindex of X with respect to
T are defined to be the classes in K0(add T )

indT (X) = [TX
0 ]− [TX

1 ] and coindT (X) = [T 0
X ]− [T 1

X ].

For an object M of C, one defines

XT
M =

r∏
i=1

x
−[coindT (M):Ti]
i

∑
e

χ(Gre(C(T,M))
r∏

i=1

x
〈Si,e〉a
i ,

where e runs through the positive elements of the Grothendieck group K0(mod C) and
Gre(C(T,M)) denotes the variety of submodules U of the right C-module C(T,M) such
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that the class of U is e and χ is the Euler characteristic (of the underlying topological
space if k = C or of l-adic cohomology if k is arbitrary).

2.6. From 2-CY categories to cluster algebras without coefficients. In this section,
we show how certain 2-Calabi-Yau triangulated categories can be linked to cluster algebras
without coefficients via cluster characters. All we need to do is to combine the results
recalled in sections 2.4 and 2.5. In the main part of the paper, we will concentrate on the
case where our cluster algebras do have coefficients.

Let k be an algebraically closed field and C a Hom-finite k-linear 2-Calabi-Yau triangu-
lated category with split idempotents as defined in section 2.4. Let T be a cluster-tilting
object in C. Assume that T is the direct sum of r pairwise non isomorphic indecomposable
objects T1, . . . , Tr. Let

ζT : obj(C)→ Q(x1, . . . , xr)
be Palu’s cluster character associated with T as recalled in section 2.5. In particular, we
have

(2.2) ζT (ΣTi) = xi for 1 ≤ i ≤ r.

Now assume that the cluster-tilting subcategories define a cluster structure on C (cf. sec-
tion 2.4). A cluster-tilting object T ′ is reachable from T if add(T ′) is obtained from add(T )
be a finite sequence of mutations as defined in 2.4. A rigid object M is reachable from T
if it lies in add(T ′) for a cluster-tilting object T ′ reachable from T . Let Q be the quiver of
the endomorphism algebra C of T , or equivalently, the quiver of the category add(T ). We
consider Q as an ice quiver with empty set of frozen vertices and denote by A(Q) the asso-
ciated cluster algebra without coefficients (defined by specializing the construction of 2.2
to the case where the set of frozen vertices is empty). It is the subalgebra of Q(x1, . . . , xr)
generated by the cluster variables.

Proposition 2.3. Assume that the above assumptions hold and in particular that the
cluster-tilting subcategories define a cluster-structure on C (cf. section 2.4).

a) The map M 7→ ζT (ΣM) induces a surjection from the set of rigid objects reachable
from T onto the set of cluster variables of the cluster algebra A(Q).

b) The surjection of a) induces a surjection from the set of cluster-tilting objects reach-
able from T onto the set of clusters of A(Q).

Proof. Clearly, part a) follows from part b). Let us prove part b). Let Tr be the r-regular
tree and let t0 be a fixed vertex of Tr. Let B be the antisymmetric matrix associated with
the quiver Q and let x be the initial cluster x1, . . . , xr. Let (Bt,xt), t ∈ Tr, be the unique
cluster pattern with initial seed (Bt0 ,xt0) = (B,x) (cf. section 2.1). To each vertex t of T,
we assign a cluster-tilting object Tt with indecomposable direct summands Tt,1, . . . , Tt,r

such that
1) we have Tt0 = T and
2) if t is linked to t′ by an edge labeled s, then Tt′ is obtained from Tt by mutating at

the summand Tt,s.
It follows from point 1) of the definition of a cluster structure that Tt is well-defined for each
vertex t of T. Moreover, it follows from point 4) of the same definition that for each vertex t
of T, the antisymmetric matrix Bt corresponds to the quiver of the category add(Tt) under
the bijection of section 2.2. We claim that for each vertex t of T, the cluster character
takes the shift ΣTt,i of the indecomposable direct summand Tt,i of Tt to the cluster variable
xt,i, 1 ≤ i ≤ r. Indeed, this holds for t = t0 by equation (2.2). Now assume that it holds
for some vertex t and that t is linked to a vertex t′ by an edge labeled s. We know that
the indecomposable summands of Tt′ are the Tt′,i = Tt,i for i 6= s and a new summand T ′

t,s
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which is not isomorphic to Tt,s. By part a) of lemma 2.2, the extension space between Tt,s

and Tt′,s is one-dimensional and we have non split triangles

Tt′,s → E → Tt,s → ΣTt′,s and Tt,s → E′ → Tt′,s → ΣTt,s.

Here, the middle terms are sums of copies of the Tt,i, i 6= s, and the multiplicities are
determined by the quivers of the endomorphism algebras of T and T ′, as indicated in part
b) of lemma 2.2. More precisely, if bt

ij denotes the (i, j)-entry of the exchange matrix,
the summand Tt,i occurs in E with multiplicity [bt

is]+ and in E′ with multiplicity [bt
si]+ =

[−bt
is]+. Now if we use points 2) and 3) of the definition of a cluster character, we see that

the induction hypothesis and equation (2.1) yield the exchange relation

xt,sζT (ΣTt′,s) =
n∏

i=1

x
[bt

ik]+
i +

n∏
i=1

x
[−bt

ik]+
i .

Thus, we have ζT (ΣTt′,s) = xt′,s as required. �

2.7. Frobenius categories. A Frobenius category is an exact category in the sense of
Quillen [38] which has enough projectives and enough injectives and where an object is
projective iff it is injective. By definition, such a category is endowed with a class of
admissible exact sequences

0→ L→M → N → 0.

Following [22] we will call the left morphism L → M of such a sequence an inflation, the
right morphism a deflation and, sometimes, the whole sequence a conflation. Let E be a
Frobenius category. Its associated stable category E is the quotient of E by the ideal of
morphisms factoring through a projective-injective object. It was shown by Happel [29]
that E has a canonical structure of triangulated category. We have

ExtiE(L,M) ∼→ ExtiE(L,M)

for all objects L and M of E and all integers i ≥ 1. An object M of E is rigid if
Ext1E(M,M) = 0.

Let k be an algebraically closed field and E a Hom-finite Frobenius category with split
idempotents. Suppose that E is a 2-Calabi-Yau Frobenius category, i.e. its associated stable
category C = E is 2-Calabi-Yau in the sense of section 2.4. A cluster-tilting subcategory of
E is a full additive subcategory T ⊂ E which is stable under taking direct factors and such
that

• for each object X of E , the functors E(X, ?) : T → mod k and E(?, X) : T op → mod k
are finitely generated;
• an object X of E belongs to T iff we have Ext1E(T,X) = 0 for all objects T of T .

Clearly if these conditions hold, each projective-injective object of E belongs to T . A
cluster-tilting object is a basic object T of E such that add(T ) is a cluster-tilting subcategory.
Equivalently, an object T is cluster-tilting if it is rigid and if each object X satisfying
Ext1E(T,X) = 0 belongs to add(T ). The following definition is taken from section 1 of [2].
Recall that E is a k-linear Hom-finite Frobenius category with split idempotents such that
the associated stable category C = E is 2-Calabi-Yau.

Definition 2.4 ([2]). The cluster-tilting subcategories of E determine a cluster structure
on C if the following hold:

0) There is at least one cluster-tilting subcategory in E.
1) For each cluster-tilting subcategory T ′ of E and each non projective indecomposable

M of T ′, there is a unique (up to isomorphism) non projective indecomposable M∗
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not isomorphic to M and such that the additive subcategory T ′′ = µM (T ′) of E with
set of indecomposables

indec(T ′′) = indec(T ′) \ {M} ∪ {M∗}

is a cluster-tilting subcategory;
2) In the situation of 1), there are conflations

0 // M∗ f // E
g // M // 0 and 0 // M

s // E′ t // M∗ // 0 ,

where g and t are minimal right T ′ ∩ T ′′-approximations and f and s are minimal
left T ′ ∩ T ′′-approximations.

3) For any cluster-tilting subcategory T ′, the quiver Q(T ′) does not have loops nor
2-cycles.

4) We have Q◦(µM (T ′)) = µM (Q◦(T ′)) for each cluster-tilting subcategory T ′ of E
and each non projective indecomposable M of T ′, where Q◦(T ′) denotes the quiver
obtained from Q(T ′) be removing all arrows between projective vertices.

The cluster tilting subcategory T ′′ = µM (T ′) of 1) is the mutation of T ′ at the non pro-
jective indecomposable object M . The mutation of a cluster-tilting object T is defined via
the mutation of the cluster-tilting subcategory add(T ).

Lemma 2.5. Suppose that the cluster-tilting subcategories determine a cluster structure
on E. Then, in the situation of condition 2) of the above definition 2.4, the following hold:

a) The space Ext1(M,M∗) is one-dimensional (hence, by the 2-Calabi-Yau property,
so is the space Ext1(M∗,M)) and the conflations of 2) are non split.

b) The multiplicity of an indecomposable U of T ′ ∩ T ′′ in E equals the number of
arrows from U to M in the quiver Q(T ′) and that from M∗ to U in Q(T ′′); the
multiplicity of U in E′ equals the number of arrows from M to U in Q(T ′) and
that from U to M∗ in Q(T ′′);

We omit the proof of the lemma since it is entirely parallel to that of lemma 2.2. Large
classes of examples of Frobenius categories where the cluster-tilting objects define a cluster-
structure are obtained in [23] and [3], cf. the survey [24] and example 5.3 below. For an
extension of the theory from the antisymmetric to the antisymmetrizable case, we refer to
[14].

3. Cluster characters for 2-Calabi-Yau Frobenius categories

Let k be an algebraically closed field and E a k-linear Frobenius category with split
idempotents. We assume that E is Hom-finite and that the stable category C = E is
2-Calabi-Yau (cf. section 2.4).

Definition 3.1. A cluster character on E with values in a commutative ring R is a map
ζ : obj(E)→ R such that

1) we have ζ(L) = ζ(L′) if and L and L′ are isomorphic,
2) we have ζ(L⊕M) = ζ(L)ζ(M) for all objects L and M and
3) if L and M are objects such that Ext1E(L,M) is one-dimensional (and hence Ext1E(M,L)

is one-dimensional) and

0→ L→ E →M → 0 and 0→M → E′ → L→ 0

are non-split triangles, then we have

(3.1) ζ(L)ζ(M) = ζ(E) + ζ(E′).
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From now on, we assume in addition that E contains a cluster-tilting object T . Using T
we will construct a cluster character on E and link it to Palu’s cluster character associated
with the image of T in the triangulated category C = E (cf. section 2.5).

Let C be the endomorphism algebra of T (in E) and C = EndC(T ). Let

F = HomE(T, ?) : E → mod C,

G = HomC(T, ?) : C → mod C.

Let Ti, 1 ≤ i ≤ n, be the pairwise non isomorphic indecomposable direct summands of
T . We choose the numbering of the Ti so that Ti is projective exactly for r < i ≤ n for
some integer 1 ≤ r ≤ n. For 1 ≤ i ≤ n, let Si be the top of the indecomposable projective
Pi = FTi. Note that C and C are finite dimensional k-algebras, so finitely presented
modules are the same as finitely generated modules. As in section 4 of [34], we identify
ModC with the full subcategory of ModC formed by the modules without composition
factors isomorphic to one of the Si, r < i ≤ n. Let DC be the unbounded derived
category of the abelian category ModC of all right C-modules. Let per C be the perfect
derived category of C, i.e. the full subcategory of DC whose objects are all the complexes
quasi-isomorphic to bounded complexes of finitely generated projective C-modules. Let
Db(mod C) the bounded derived category of mod C identified with the full subcategory of
DC whose objects are all complexes whose total homology is finite-dimensional over k. As
shown in section 4 of [34], we have the following embeddings

mod C ↪→ per C ↪→ Db(mod C).

We have a bilinear form

〈 , 〉 : K0(per C)×K0(Db(mod C)) −→ Z

defined by
〈[P ], [X]〉 =

∑
(−1)idim HomDb(mod C)(P,ΣiX),

where K0(per C) (resp. K0(Db(mod C))) is the Grothendieck group of per C (resp. Db(mod C))
and Σ is the shift functor of Db(mod C).

For arbitrary finitely generated C-modules L and N , put

[L,N ] = 0[L,N ] = dimk HomC(L,N) and i[L,N ] = dimk ExtiC(L,N) for i ≥ 1.

Let

〈L,N〉τ = [L,N ]− 1[L,N ] and 〈L,N〉3 =
3∑

i=0

(−1)i i[L,N ]

be the truncated Euler forms on the split Grothendieck group Ksp
0 (mod C). By the propo-

sition below, if L is a C-module, then 〈L,N〉3 only depends on the dimension vector dim L
in K0(mod C). We put

〈dim L,N〉3 = 〈L,N〉3.

Proposition 3.2. a) The restriction of the map

K0(per C) −→ K0(Db(mod C)) = K0(mod C)

induced by the inclusion of per C into Db(mod C) to the subgroup generated by the
[Si], 1 ≤ i ≤ r, is injective.

b) If L, N are two C-modules such that dim L = dim N in K0(mod C), then

〈L, Y 〉3 = 〈N,Y 〉3
for each finitely generated C-module Y .
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Proof. a) We need to show that for arbitrary finitely generated C-modules L, N with
dim L = dim N , we have [L] = [N ] in K0(per C). Let

0 = Ls ⊂ Ls−1 ⊂ · · · ⊂ L0 = L

and
0 = Ns ⊂ Ns−1 ⊂ · · · ⊂ N0 = N

be composition series of L and N respectively. By [34], we know that every C-module
has projective dimension at most 3 in mod C. Assume for simplicity that Ls−1 = S1,
Ls−2/Ls−1 = S2. Denote by P ∗

i a minimal projective resolution of Si. Then we have the
following commutative diagram

0 // P 3
1

//

��

P 2
1

//

��

P 1
1

//

��

P 0
1

//

��

Ls−1
//

��

0

0 // P 3
1 ⊕ P 3

2
//

��

P 2
1 ⊕ P 2

2
//

��

P 1
1 ⊕ P 1

2
//

��

P 0
1 ⊕ P 0

2
//

��

Ls−2
//

��

0

0 // P 3
2

// P 2
2

// P 1
2

// P 0
2

// Ls−2/Ls−1
// 0

where the middle term is a projective resolution of Ls−2. In this way, we inductively con-
struct projective resolutions for L and N . If mi is the multiplicity of Si in the composition
factors of L and N , then we obtain projective resolutions of L and N of the form

0→
r⊕

i=1

(P 3
i )mi

f3−→
r⊕

i=1

(P 2
i )mi

f2−→
r⊕

i=1

(P 1
i )mi

f1−→
r⊕

i=1

(P 0
i )mi → L→ 0,

0→
r⊕

i=1

(P 3
i )mi

g3−→
r⊕

i=1

(P 2
i )mi

g2−→
r⊕

i=1

(P 1
i )mi

g1−→
r⊕

i=1

(P 0
i )mi → N → 0.

Let PL (resp. PN ) be the projective resolution complex of L (resp. N). We have L ∼= PL

and N ∼= PN in per C, which implies [L] = [PL] = [PN ] = [N ] in K0(per C).
b) We have

〈L, Y 〉3 = 〈PL, Y 〉 = 〈[PL], [Y ]〉,
〈N,Y 〉3 = 〈PN , Y 〉 = 〈[PN ], [Y ]〉.

By a), we have [PL] = [PN ] in K0(per C), which implies the equality. �

One should note that the truncated Euler form 〈 , 〉3 does not descend to the Grothendieck
group K0(mod C) in general (except if the global dimension of C is not greater than 3), cf.
remark 3.5.

Using the bilinear forms introduced so far, for M ∈ E , we define the Laurent polynomial

X ′
M =

n∏
i=1

x
〈FM,Si〉τ
i

∑
e

χ(Gre(Ext1E(T,M)))
n∏

i=1

x
−〈e,Si〉3
i .

Here we consider Ext1E(T,M) as a right C-module via the natural action of C = EndE(T )
on the first argument; the sum ranges over all the elements of the Grothendieck group;
for a C-module L, the notation Gre(L) denotes the projective variety of submodules of L
whose class in the Grothendieck group is e; for an algebraic variety V , the notation χ(V )
denotes the Euler characteristic (of the underlying topological space of V if k = C and of
l-adic cohomology if k is arbitrary).
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Since C is 2-Calabi-Yau, the object T = ⊕r
i=1Ti is a cluster tilting object of C. For an

object M of C, put
XM = X

T
M ,

where M 7→ X
T
M is Palu’s cluster character associated with the cluster-tilting object T , cf.

section 2.5.
The following theorem shows that M 7→ X ′

M is a cluster character on E and that, if
we specialize the ‘coefficients’ xr+1, . . . , xn to 1, it specializes to the composition of Palu’s
cluster character M 7→ XM with the suspension functor M 7→ ΣM . Notice that this
theorem does not involve cluster algebras (but paves the way for establishing a link with
cluster algebras when E admits a cluster structure, cf. Theorem 5.4 below).

Theorem 3.3. As above, let k be an algebraically closed field and E a k-linear Frobenius
category with split idempotents such that E is Hom-finite, the stable category C = E is
2-Calabi-Yau and E contains a cluster-tilting object T . For an object M of E, let X ′

M and
XM be the Laurent polynomials defined above.

a) We have X ′
Ti

= xi for 1 ≤ i ≤ n.
b) The specialization of X ′

M at xr+1 = xr+2 = . . . = 1 is XΣM , where Σ is the
suspension of C.

c) For any two objects L and M of E, we have X ′
L⊕M = X ′

LX ′
M .

d) If L and M are objects of E such that Ext1E(L,M) is one-dimensional and we have
non split conflations

0→ L→ E →M → 0 and 0→M → E′ → L→ 0 ,

then we have
X ′

LX ′
M = X ′

E + X ′
E′ .

Proof. a) is straightforward.
b) We have

XΣM =
r∏

i=1

x
−[coindT (ΣM):Ti]
i

∑
e

χ(Gre(GΣM))
r∏

i=1

x
〈Si,e〉a
i .

Now by the definition, we have

GΣM = HomC(T,ΣM) = ExtE(T,M).

Therefore, we only need to show that the exponents of xi, 1 ≤ i ≤ r, in the corresponding
terms of XΣM and X ′

M are equal. There exists a triangle in C
T 1

M → T 0
M →M → ΣT1

with T 0
M and T 1

M in add T . We may and will assume that this triangle is minimal, i.e. does
not admit a non zero direct factor of the form

T ′ → T ′ → 0→ ΣT ′.

Since E is Frobenius, we can lift this triangle to a short exact sequence in E
0→ T 1

M → T 0
M ⊕ P →M → 0,

where P is a projective of E . Applying the functor F to this short exact sequence, we get
a projective resolution of FM as a C-module,

0→ FT 1
M → F (T 0

M ⊕ P )→ FM → 0.

Therefore, we have

〈FM,Si〉τ = [FT 0
M ⊕ FP, Si]− [FT 1

M , Si] = [FT 0
M , Si]− [FT 1

M , Si]
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for 1 ≤ i ≤ r.
On the other side, we have the following minimal triangle

ΣM → Σ2T 1
M → Σ2T 0

M → Σ2M.

By the definition of the coindex, we get

−[coindT (ΣM) : Ti] = −[T 1
M − T 0

M : Ti] = 〈FM,Si〉τ , for 1 ≤ i ≤ r.

Next we will show that 〈Si, e〉a = −〈e, Si〉3. Let N be a C-module such that dim N = e.
Note that N and the Si, 1 ≤ i ≤ r, are C-modules and that all of them are finitely presented
C-modules. Therefore, they lie in the perfect derived category per(C). Thus, we can use
the relative 3-Calabi-Yau property of per(C) (cf. [34]) to deduce that 〈Si, e〉a = −〈e, Si〉3.
We have

Ext2C(N,Si) = ExtC(Si, N) = ExtC(Si, N),

Ext3C(N,Si) = HomC(Si, N) = HomC(Si, N),

for 1 ≤ i ≤ r. By the definition of 〈Si, N〉a, we have

〈Si, N〉a = dimk HomC(Si, N)− dimk ExtC(Si, N) + dimk ExtC(N,Si)− dimk HomC(N,Si)
= dimk HomC(Si, N)− dimk ExtC(Si, N) + dimk ExtC(N,Si)− dimk HomC(N,Si)
= 3[N,Si]− 2[N,Si] + 1[N,Si]− [N,Si]
= −〈N,Si〉3.

c) is proved in exactly the same way as Corollary 3.7 in [9].
d) Let

0→ L
i−→ E

p−→M → 0 and 0→M
i′−→ E′ p′−→ L→ 0 ,

be the non-split conflations in E , and

ΣL
GΣi−−→ ΣE

GΣp−−−→ ΣM → Σ2L

ΣM
GΣi′−−−→ ΣE′ GΣp′−−−→ ΣL→ Σ2N

the associated triangles in C. For any classes e, f , g in the Grothendieck group K0(mod C),
let Xe,f be the variety whose points are the C-submodules E ⊂ GΣE such that the
dimension vector of (GΣi)−1E equals e and the dimension vector of (GΣp)E equals f .
Similarly, let Yf,e be the variety whose points are the C-submodules E ⊂ GΣE′ such that
the dimension vector of (GΣi′)−1E equals f and the dimension vector of (GΣp′)E equals
e. Put

Xg
e,f = Xe,f ∩Grg(GΣE),

Y g
f,e = Yf,e ∩Grg(GΣE′).

Since C is a 2-CY triangulated category, by section 5.1 of [37] we also have

χ(Gre(GΣL)×Grf (GΣM)) =
∑

g

χ(Xg
e,f ) + χ(Y g

f,e).

Therefore, part d) is a consequence of the following lemma.

Lemma 3.4. If Xg
e,f 6= ∅, then we have the following equality

−〈g, Si〉3 + 〈FE, Si〉τ = −〈e + f, Si〉3 + 〈FL, Si〉τ + 〈FM,Si〉τ , 1 ≤ i ≤ n.
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Proof. We have the following commutative diagram as in section 4 of [37]

(GΣi)−1E
α //

i

��

E
β //

j

��

(GΣp)E //

k

��

0

GΣL
GΣi // GΣE

GΣp // GΣM // GΣ2L

where i, j, k are monomorphisms, β is an epimorphism and [E] = g, [GΣi)−1E] = e,
[GΣp)E] = f in K0(mod C). One can easily show that ker GΣi = ker α. We have an exact
sequence

0→ ker α→ (GΣi)−1E → E → (GΣp)E → 0.

If we apply F = HomE(T, ?) to the short exact sequence

0→ L→ E →M → 0,

we get the long exact sequences of C-modules

0→ FL→ FE → FM → GΣL
GΣi−−→ GΣE → . . . ,

and

0→ FL
Fi−→ FE

Fp−−→ FM → ker α→ 0.

Since ker α, (GΣi)−1E, E, (GΣp)E are C-modules, and the projective dimensions of FL,
FE, FM are not greater than 1, we can use the method of Proposition 3.2 to construct
the projective resolutions and compute the truncated Euler forms. We get that

〈e, Si〉3 + 〈f, Si〉3 = 〈g, Si〉3 + 〈ker α, Si〉3,

and
〈FL, Si〉3 + 〈FM,Si〉3 = 〈FE, Si〉3 + 〈ker α, Si〉3.

Note that 〈FL, Si〉3 = 〈FL, Si〉τ , 〈FM,Si〉3 = 〈FM,Si〉τ and 〈FE, Si〉3 = 〈FE, Si〉τ ,
which implies

〈FL, Si〉τ + 〈FM,Si〉τ − 〈e + f, Si〉3 = 〈FE, Si〉τ − 〈g, Si〉3.

�

Remark 3.5. If C has finite global dimension, the Grothendieck group K0(mod C) has the
Euler form 〈 , 〉. We can then define a Laurent polynomial Xf

M as follows

Xf
M =

n∏
i=1

x
〈FM,Si〉
i

∑
e

χ(Gre(Ext1E(T,M)))
n∏

i=1

x
〈Si,e〉
i .

One can show that in this case X ′
M = Xf

M . In fact, if gldimC <∞, then the perfect derived
category per(C) equals Db(mod C), and Si belongs to per(C) for all i. Thus, we have

〈Si, e〉 =
3∑

i=0

(−1)idimExtiC(Si, e) = −〈e, Si〉3

and 〈FM,Si〉τ = 〈FM,Si〉. The assumption that C is of finite global dimension holds for
the examples constructed in [2] by Proposition I.2.5 b) of [loc. cit.] and for the examples
constructed in [26] by Proposition 11.5 of [loc.cit.].
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4. Index and g-vector

4.1. Index. As in section 3, we let k be an algebraically closed field and E a k-linear
Frobenius category with split idempotents. We assume that E is Hom-finite and that the
stable category C = E is 2-Calabi-Yau (cf. section 2.4). Moreover, we assume that E admits
a cluster-tilting object T and we write C = EndE(T ) and C = EndC(T ).

Let D(ModC) be the derived category of C-modules, D−(mod C) the right bounded de-
rived category of mod C, H−(P) the right bounded homotopy category of finitely generated
projective C-modules. It is well known that there is an equivalence

H−(P) ∼−→ D−(mod C).

Proposition 4.1. For an arbitrary C-module Z which is also a finitely presented C-module
we have a canonical isomorphism

D HomD−(mod C)(Z, ?) ∼−→ HomD−(mod C)(?, Z[3]).

Proof. For arbitrary X ∈ D−(mod C), by the equivalence, we have a PX ∈ H−(P) such
that X ∼= PX in D−(mod C). Assume that PX has the following form

. . .→ Pm → Pm+1 → . . .→ Pn−1 → Pn → 0→ 0 . . . .

Put

X0 = . . .→ 0→ 0→ Pn → 0 . . . ,

Xi = . . .→ 0→ Pn−i → . . .→ Pn → 0 . . . , for i > 0.

Clearly, the complex PX is the direct limit of the complexes Xi. We write hocolim for
the total left derived functor of the functor of taking the direct limit. Since taking direct
limits over filtered systems is an exact functor, the functor hocolim is simply induced by
the direct limit functor. Thus, we have PX

∼= hocolim Xi in D(ModC). Note that by
Proposition 4 of [34], Z belongs to per C, i.e. Z is compact in D(ModC). So we have

HomD(Mod C)(Z,X) ∼= HomD(Mod C)(Z,PX)
∼= HomD(Mod C)(Z,hocolimXi)
∼= colim HomD(Mod C)(Z,Xi).

By the definition of Xi, we know that Xi ∈ per C. Since per C is a full subcategory of
D(ModC), by the relative 3-Calabi-Yau property of per C, we have the following

colim HomD(Mod C)(Z,Xi) ∼= colimD HomD(Mod C)(Xi, Z[3]).

It is easy to see that this colimit is a stationary system, i.e. ∃ N such that for i > N , we
have

D HomD(Mod C)(Xi, Z[3]) ∼= D HomD(Mod C)(Xi+1, Z[3]).

Thus, we have

colimD HomD(Mod C)(Xi, Z[3]) ∼= D lim HomD(Mod C)(Xi, Z[3])
∼= D HomD(Mod C)(hocolimXi, Z[3])
∼= D HomD(Mod C)(PX , Z[3]).

Note that since D−(mod C) is a full subcategory of D(ModC), we get the isomorphism

D HomD−(mod C)(Z,X) ∼−→ HomD−(mod C)(X, Z[3]).

�
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For each X ∈ E , there is a unique minimal conflation (up to isomorphism)

0→ T 1
X → T 0

X → X → 0

with T 0
X , T 1

X ∈ add T . As in [37], put

indT (X) = [T 0
X ]− [T 1

X ] in K0(add T ).

By the proof of Theorem 3.3, we have

indT (X) =
n∑

i=1

〈FX, Si〉τ [Ti].

The following result is easily deduced from Theorem 2.3 of [13].

Lemma 4.2. If X is a rigid object of E, then X is determined up to isomorphism by
indT (X), i.e. if Y is rigid and indT (X) = indT (Y ), then X is isomorphic to Y .

Proof. Since indT (X) = indT (Y ), we have indT (X) = indT (Y ) in the stable category E .
By Theorem 2.3 of [13], we have X ∼= Y in E . Thus, there are E-projectives PX and PY

such that X⊕PX
∼= Y ⊕PY in E . Consider the minimal right T -approximation of X⊕PX

0→ T 1 → T 0 → X ⊕ PX → 0,

we have indT (X ⊕ PX) = indT (Y ⊕ PY ) = [T 0]− [T 1]. Note that

indT (X) = indT (X ⊕ PX)− [PX ] = indT (Y ⊕ PY )− [PY ] = indT (Y ),

which implies [PX ] = [PY ] in K0(add T ). Thus, we have PX
∼= PY and X ∼= Y in E . �

4.2. g-vector. Let us recall the definition of g-vectors from section 7 of [21]. Let 1 < r ≤ n

be integers. Let B̃ = (b̃ij) be an n× r matrix with integer entries, whose principal part B

(i.e. the submatrix formed by the first r rows) is antisymmetric. Let A(B̃) be the cluster
algebra with coefficients associated with B̃, cf. the end of section 2.1. Let z be an element
of A(B̃). Suppose that we can write z as

z = R(ŷ1, . . . , ŷr)
n∏

i=1

xgi
i ,where ŷj =

n∏
i=1

x
b̃ij

i ,

where R(ŷ1, . . . , ŷr) is a primitive rational polynomial. If rank B̃ = r, then the g-vector of
z is defined by

g(z) = (g1, . . . , gr).

Note that rank B̃ = r implies that the g-vector is well-defined.
As in the previous section, we let k be an algebraically closed field and E a k-linear

Frobenius category with split idempotents. We assume that E is Hom-finite and that the
stable category C = E is 2-Calabi-Yau (cf. section 2.4). Moreover, we assume that E admits
a cluster-tilting object T and we write C = EndE(T ) and C = EndC(T ). Let T1, T2, . . .,
Tn be the pairwise non isomorphic indecomposable direct summands of T numbered in
such a way that Ti is projective iff r < i ≤ n. We define B(T ) = (bij)n×n to be the
antisymmetric matrix associated with the quiver of the endomorphism algebra of T . Let
B(T )0 be the submatrix formed by the first r columns of B(T ). We suppose that we have
rank B(T )0 = r. In analogy with the definition of g-vectors in a cluster algebra, for M ∈ E ,
if we can write X ′

M as

X ′
M = R(ŷ1, . . . , ŷr)

n∏
i=1

xgi
i ,where ŷj =

n∏
i=1

x
bij

i ,
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where R(ŷ1, . . . , ŷr) is a primitive rational polynomial, then we define the g-vector gT (X ′
M )

of M with respect to T to be

gT (X ′
M ) = (g1, . . . , gr).

As in the cluster algebra case, this is well-defined since rank B(T )0 = r.

Proposition 4.3. Assume that rank B(T )0 = r. For arbitrary M ∈ E, the g-vector
gT (X ′

M ) is well-defined and its i-th coordinate is given by

gT (X ′
M )(i) = [indT (M) : Ti], 1 ≤ i ≤ r.

Proof. By the relative 3-Calabi-Yau property of D−(mod C), for 1 ≤ i ≤ n, 1 ≤ j ≤ r, we
have

〈Si, Sj〉3 = [Si, Sj ]− 1[Si, Sj ] + 2[Si, Sj ]− 3[Si, Sj ]

= [Si, Sj ]− 1[Si, Sj ] + 1[Sj , Si]− [Sj , Si]

= 1[Sj , Si]− 1[Si, Sj ]
= bij ,

where the last equality follows from the definition of B(T ). Recall the definition of X ′
M

X ′
M =

n∏
i=1

x
〈FM,Si〉τ
i

∑
e

χ(Gre(Ext1E(T,M)))
n∏

i=1

x
−〈e,Si〉3
i .

Let e be the dimension vector of a C-submodule of Ext1E(T,M) and ej its j-th coordinate
in the basis of the Si, 1 ≤ i ≤ n. Then we have

−〈e, Si〉3 = −
r∑

j=1

ej〈Sj , Si〉3 =
r∑

j=1

bijej .

Therefore, we get
n∏

i=1

x
−〈e,Si〉3
i =

n∏
i=1

x
Pr

j=1 bijej

i =
r∏

j=1

ŷj
ej .

Thus, we can write

X ′
M =

n∏
i=1

x
〈FM,Si〉τ
i (

∑
e

χ(Gre(Ext1E(T,M)))
r∏

j=1

ŷj
ej ).

The polynomial

R(ŷ1, . . . , ŷr) =
∑

e

χ(Gre(Ext1E(T,M)))
r∏

j=1

ŷj
ej

is primitive since it has constant term 1. Thus, by definition we have gT (X ′
M )(i) =

〈FM,Si〉τ = [indT (M) : Ti]. �

Corollary 4.4. As above, let E be a Hom-finite k-linear Frobenius category such that its
stable category C = E is 2-Calabi-Yau and assume that

• E admits a cluster-tilting object T with indecomposable direct summands T1, . . . ,
Tn numbered in such a way that Ti is projective iff r < i ≤ n, where 1 < r ≤ n is
an integer;
• the first r columns of the antisymmetric matrix B(T ) associated with the quiver of

the algebra C = EndE(T ) are linearly independent.
Then the following hold.
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a) The map M 7→ X ′
M induces an injection from the set of isomorphism classes of

non projective rigid indecomposables of E into the set Q(x1, . . . , xn).
b) Let I be a finite set and T i, i ∈ I, cluster tilting objects of E. Suppose that for each

i ∈ I, we are given an object Mi which belongs to add T i and does not have non
zero projective direct factors. If the Mi are pairwise non isomorphic, then the X ′

Mi

are linearly independent.

Proof. a) clearly follows from b). Let us prove b). First, we will show that we can assign
a degree to each xi such that for every 1 ≤ i ≤ r the degree of ŷi is 1.

Indeed, it suffices to put deg(xi) = ki, where the ki are rationals such that we have

(k1, k2, . . . , kn)B(T )0 = (1, 1, . . . , 1).

Since rank B(T )0 = r, this equation does admit a solution. Thus, the term of strictly
minimal total degree in X ′

Mj
is

n∏
i=1

x
[indT (Mj):Ti]
i .

Suppose that the X ′
Mi

are linearly dependent, i.e. there is a non-empty subset I ′ of I

and rationals ci, i ∈ I ′, which are all non zero such that∑
i∈I′

ciX
′
Mi

= 0.

If we consider the terms of minimal total degree of the polynomial above, we find∑
j∈I′′

cj

n∏
i=1

x
[indT (Mj):Ti]
i = 0

for some non-empty subset I ′′ of I. Since the Mj are all pairwise non isomorphic, Lemma 4.2
implies that the indices indT (Mj) are all distinct. Thus, the monomials

∏n
i=1 x

[indT (Mj):Ti]
i

are linearly independent. Contradiction. �

Remark 4.5. If the algebra C has finite global dimension, then the condition rankB(T )0 =
r is superfluous. Indeed, let A be the Cartan matrix of C. Then B(T )0 is the submatrix
formed by the first r columns of the invertible matrix A−t.

Next we will investigate the relation between the indices of an exchange pair.
Recall that F is the functor HomE(T, ?) : E → mod C. A conflation of E

0→ X → Y → Z → 0

is F -exact if
0→ FX → FY → FZ → 0

is exact in mod C. The F -exact sequences define a new exact structure on the additive
category E . For each X, we have an F -exact conflation

0→ T1 → T0 → X → 0.

This shows that E endowed with the F -exact sequences has enough projectives and that
its subcategory of projectives is add T . Moreover, if we denote by ExtiF (X, Z) the i-th
extension groups of the category E endowed with the F -exact sequences, then Ext1F (X, Z)
is the cohomology at HomE(T1, Z) of the complex

0→ HomE(X, Z)→ HomE(T0, Z)→ HomE(T1, Z)→ 0→ . . . .
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Lemma 4.6. For X, Z ∈ E, there is a functorial isomorphism

ExtiF (X, Z) ∼−→ ExtiC(FX, FZ).

Proof. Clearly, the derived functor

LF : Db(E)→ Db(mod C)

is fully faithful. Thus, ExtiF (X, Z) ∼−→ ExtiC(FX, FZ). �

Now Proposition 15.4 of [23] still holds in our general setting.

Proposition 4.7. Let T and R be cluster tilting objects of E. Let

η′ : 0→ Rk → R′ → R∗
k → 0, η′′ : 0→ R∗

k → R′′ → Rk → 0

be the two exchange sequences associated to an indecomposable direct summand Rk of R
which is not E-projective. Then exactly one of η′ and η′′ is F -exact. Moreover, we have

dim HomE(T,Rk) + dim HomE(T,R∗
k) = max{dim HomE(T,R′),dim HomE(T,R′′)}.

Proof. Using Lemma 4.6, the proof is the same as that of proposition 15.4 in [23]. �

Corollary 4.8. Under the assumptions of the above proposition, put

I ′ = indT (R′)− indT (Rk),

I ′′ = indT (R′′)− indT (Rk).

Then we have

indT (R∗
k) =

{
I ′, if dim FI ′ ≥ dim FI ′′,
I ′′, if dim FI ′ ≤ dim FI ′′.

and exactly one of these cases occurs. Let h(i) = [indT (R′)− indT (R′′) : Ti], for 1 ≤ i ≤ n.
Then h is a linear combination of the columns of B(T )0.

Proof. The first part follows from Proposition 4.7 directly, because the index is additive
on F -exact sequences.

Since (Rk, R
∗
k) is an exchange pair, we have

X ′
Rk

X ′
R∗

k
= X ′

R′ + X ′
R′′ .

For simplicity, we write

HM =
∑

e

χ(Gre(ExtE(T,M)))
r∏

i=1

ŷi
ei

for X ′
M . By Proposition 4.3, we have
n∏

i=1

x
[indT (Rk)+indT (R∗

k):Ti]
i HRk

HR∗
k

=
n∏

i=1

x
[indT (R′):Ti]
i HR′ +

n∏
i=1

x
[indT (R′′):Ti]
i HR′′ .

Assume that indT (R∗
k) = indT (R′)− indT (Rk). We have

HRk
HR∗

k
−HR′ =

n∏
i=1

x
[indT (R′′)−indT (R′):Ti]
i HR′′ .

By comparing the minimal total degree we get that
∏n

i=1 x
[indT (R′′)−indT (R′):Ti]
i is a mono-

mial in ŷi, 1 ≤ i ≤ r, which implies the result. �
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5. Frobenius 2-Calabi-Yau realizations

Recall the bijection defined in section 2.2 between antisymmetric integer n×n-matrices
and finite quivers without loops nor 2-cycles with vertex set {1, 2, . . . , n}: The quiver Q
corresponds to the matrix B iff bij > 0 exactly when there are arrows from i to j in Q and
in this case their number is bij .

We call an n× n antisymmetric integer matrix B acyclic if the corresponding quiver Q
does not have oriented cycles. Two matrices B and B′ are called mutation equivalent if
we can obtain B′ from B by a series of matrix mutations followed by conjugation with a
permutation matrix.

Let 0 ≤ r < n be positive integers and let (Q,F ) be an ice quiver (cf. section 2.2) with
vertex set Q0 = {1, . . . , n} and set of frozen vertices F = {r +1, . . . , n}. We define B̃ to be
the n × r matrix formed by the first r columns of the skew-symmetric matrix associated
with Q and we let A(Q,F ) = A(B̃) be the cluster algebra with coefficients associated with
B̃, cf. sections 2.1 and 2.2.

Definition 5.1. A Frobenius 2-Calabi-Yau realization of the cluster algebra A(B̃) is a
Frobenius category E with a cluster tilting object T as in section 3 such that

1) E has a cluster structure in the sense of [2], cf. section 2.7;
2) T has exactly n indecomposable pairwise non isomorphic summands T1, T2, . . ., Tn

and among these, precisely Tr+1, . . ., Tn are projectives;
3) The matrix B̃ equals the matrix formed by the first r columns of the antisymmetric

matrix associated with the quiver of the endomorphism algebra of T in E.
Remark 5.2. Suppose we have a Frobenius 2-CY realization of a cluster algebra A(Q,F )
as above. Let 1 ≤ s ≤ r. Then by Lemma 2.5 b), we have conflations

0→ T ∗
s → E → Ts → 0,

0→ Ts → E′ → T ∗
s → 0.

Here the middle terms are the sums

E =
⊕
bis>0

T bis
i , E′ =

⊕
bis<0

T−bis
i .

Therefore, none of the first r vertices of Q can be a source or a sink.

Example 5.3. All quivers obtained from Theorem 2.3 of [23] and, more generally, from
Theorem II.4.1 of [2] admit Frobenius 2-Calabi-Yau realizations. We illustrate this on the
following specific case taken from section II.4 of [loc. cit.]. Let ∆ be the graph

2
AA

AA

1

����
3 .

Let Λ be the completion of the preprojective algebra of ∆ and W the Weyl group associated
with ∆. Let w be the element of W given by the reduced word s2s1s2s3s2. Let ei, i = 1, 2, 3,
be the primitive idempotents corresponding to the vertices of ∆. Let Ii = Λ(1 − ei)Λ. By
Theorem II.2.8 of [2], the category SubΛ/Iw formed by all Λ-submodules of finite direct
sums of copies of Λ/Iw is a Frobenius category whose associated stable category is 2-Calabi-
Yau; moreover, it contains the cluster-tilting object

T = Λ/I2 ⊕ Λ/I2I1 ⊕ Λ/I2I1I2 ⊕ Λ/I2I1I2I3 ⊕ Λ/Iw.

According to Proposition II.1.11 of [loc. cit.], in this decomposition, each direct factor
differs from the preceding one by one indecomposable direct summand Ti, 1 ≤ i ≤ 5, and
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among these, exactly T3, T4 and T5 are projective-injective. Moreover, by Theorem II.4.1
of [loc. cit.], the quiver of the cluster-tilting object is

T1

!!D
DD

DD

T2

>>}}}}}

��

T3

��vvmmmmmmmmmmm

T4
// T5 .

hhQQQQQQQQQQQ

Using Theorem I.1.6 of [2], one can easily show that the category SubΛ/Iw is a Frobenius
2-Calabi-Yau realization of the cluster algebra A(B̃) given by the matrix

B̃ =


0 −1
1 0
−1 0
0 −1
0 1

 .

We return to the general setup. Following [13] we define a cluster-tilting object T ′ of
E to be reachable from T if it is obtained from T by a finite sequence of mutations. We
define an indecomposable rigid objects M to be reachable from T if it occurs as a direct
factor of a cluster-tilting object reachable from T .

Theorem 5.4. Let 1 < r ≤ n be integers and A(B̃) the cluster algebras with coefficients
associated with an initial n × r-matrix B̃ of maximal rank. Suppose that A(B̃) admits a
Frobenius 2-CY realization E with cluster tilting object T .

a) The map M 7→ X ′
M induces a bijection from the set of isomorphism classes of

indecomposable rigid non projective objects of E reachable from T onto the set of
cluster variables of A(B̃). Under this bijection, the cluster-tilting objects reachable
from T correspond to the clusters of A(B̃).

b) The map M 7→ indT (M) is a bijection from the set of isomorphism classes of
indecomposable rigid non projective objects of E reachable from T onto the set of
g-vectors of cluster variables of A(B̃).

Proof. a) It follows from Theorem 3.3 c) that X ′
M is a cluster variable for each indecom-

posable rigid M reachable from T and from the existence of a cluster structure on E that
the map M 7→ X ′

M is a surjection onto the set of cluster variables. The injectivity of the
map M 7→ X ′

M follows from Lemma 4.2 and Proposition 4.3. The second statement follows
from the first one and the fact that E has a cluster structure. b) The map is injective by
Lemma 4.2. It is surjective thanks to part a) and Proposition 4.3. �

Theorem 5.5. Let 1 < r ≤ n be integers and A(B̃) the cluster algebras with coefficients
associated with an initial n × r-matrix B̃ of maximal rank. Suppose that A(B̃) admits a
Frobenius 2-CY realization E with cluster tilting object T .

a) Conjecture 7.2 of [21] holds for A, i.e. cluster monomials are linearly independent.
b) Conjecture 7.10 of [21] holds for A, i.e.

1) Different cluster monomials have different g-vectors with respect to a given initial
seed.
2) The g-vectors of the cluster variables in any given cluster form a Z-basis of the
lattice Zr.

c) Conjecture 7.12 of [21] holds for A, i.e. if (g1, . . . , gr) and (g′1, . . . , g
′
r) are the g-

vectors of one and the same cluster variable with respect to two clusters t and t′
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related by the mutation at l, then we have

g′j =
{
−gl if j = l
gj + [bjl]+gl − bjl min(gl, 0) if j 6= l

where the bij are the entries of the r × r-matrix B associated with t and we write
[x]+ for max(x, 0) for any integer x.

Proof. a) By Theorem 5.4 a), each cluster monomial m is the image X ′
M of a rigid object

M of E , where M does not have any non zero projective direct factor. Moreover, such
an object M is unique up to isomorphism. Thus, given a set m1, . . . , mN of pairwise
distinct cluster monomials, we obtain a set M1, . . .MN of pairwise non isomorphic rigid
objects without projective direct factors such that X ′

Mi
= mi for 1 ≤ i ≤ N . Thus, by

Corollary 4.4 b), the images X ′
Mi

= mi of the Mi are not only pairwise distinct but in fact
linearly independent.

b) Let us prove 1). Let m and m′ be two distinct cluster monomials. We would like to
compare their g-vectors with respect to a given initial cluster. By theorem 5.4 a), we may
assume that this given cluster consists of the images under M 7→ X ′

M of the indecomposable
direct factors of T . Still by theorem 5.4 a), the monomials m and m′ are the images X ′

M
and X ′

M ′ of two non isomorphic rigid objects M and M ′ of E without non zero projective
direct factors. Thus M and M ′ are still non isomorphic in the stable category C = E .
But by theorem 2.3 of [13], non isomorphic rigid objects have distinct indices indT (M) and
indT (M ′). Therefore, they have distinct g-vectors by Proposition 4.3. Now let us prove 2).
Let a cluster x′ be given. By theorem 5.4 a), the variables x′i in x′ are the images under
M 7→ X ′

M of the indecomposable non projective direct summands T ′
i of a cluster-tilting

object T ′ reachable from T . By Proposition 4.3, the g-vector of each x′i is the index of
T ′

i . Now by Theorem 2.6 of [13], the indices of the indecomposable direct factors of a
cluster-tilting object form a basis of the lattice K0(add T ), where T is the image of T in C.
Thus the g-vectors of the x′i form a basis of the lattice Zr.

c) By Theorem 5.4 a), we may assume that under the maps M 7→ X ′
M , the clusters t and

t′ correspond to the cluster-tilting object T and another cluster-tilting object T ′ obtained
from T by mutation at the non projective indecomposable direct factor Tl. Moreover, the
given cluster variable x corresponds to some non projective rigid indecomposable object
X. By Proposition 4.3, the g-vectors of x with respect to t and t′ are given by the
components of the indices indT (X) and indT ′(X) in the bases formed by the indT (Ti),
1 ≤ i ≤ r, respectively the indT ′(T ′

i ), 1 ≤ i ≤ r, where the Ti and the T ′
i are the non

projective indecomposable direct factors of T respectively T ′. Now Theorem 3.1 of [13]
tells us exactly how indT (X) and indT ′(X) are related: Let

Tl
// E′ // T ∗

l
// ΣTl and T ∗

l
// E // Tl

// ΣT ∗
l

be the exchange triangles associated with the mutation from T to T ′. Let

φ+ : K0(add T )→ K0(add T ′) and φ− : K0(add T )→ K0(add T ′)

be the linear maps which send the classes [Ti], i 6= l, to themselves and send [Tl] to

φ+([Tl]) = [E]− [T ∗
l ] respectively φ−([Tl]) = [E′]− [T ∗

l ].

Then by Theorem 3.1 of [13], we have

indT ′(X) =
{

φ+(indT (X)) if [indT (X) : Tl] ≥ 0
φ−(indT (X)) if [indT (X) : Tl] ≤ 0.

We leave it to the reader to check that this yields exactly the rule given in the assertion. �
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Let B̃ be a 2r× r matrix whose principal (i.e. top r× r) part B0 is mutation equivalent
to an acyclic matrix, and whose complementary (i.e. bottom) part is the r × r identity
matrix. Let A(B̃) be the cluster algebra with the initial seed (x, B̃).

Theorem 5.6. With the above notation, the cluster algebra A(B̃) does not admit a Frobe-
nius 2-CY realization.

Proof. Suppose that A(B̃) has a Frobenius 2-CY realization E . Then there is a cluster
tilting object T of E with 2r indecomposable direct summands. Then we have B(T )0 = B̃.
Since B0 is mutation equivalent to an acyclic matrix Bc by a series of mutations, we have
a cluster tilting object T ′ such that the quiver of the stable endomorphism algebra of T ′

corresponds to Bc. Let A be the stable endomorphism algebra of T ′. By the main theorem
of [33], we have a triangle equivalence E ' CA, where CA is the cluster category of A. Thus
the cluster tilting graph of E is connected and every rigid object of E can be extended to
a cluster tilting object of E .

Let F = HomE(T, ?). Let Si, 1 ≤ i ≤ 2r, be the simple modules of EndE(T ). For each
object M of E , we have the Laurent polynomial

X ′
M =

2r∏
i=1

x
〈FM,Si〉τ
i

∑
e

χ(Gre(Ext1E(T,M)))
2r∏

i=1

x
−〈e,Si〉3
i .

Let

yj =
2r∏

i=1

x
bij

i , 1 ≤ j ≤ r.

As in Proposition 4.3, we can rewrite X ′
M as

X ′
M =

2r∏
i=1

x
〈FM,Si〉τ
i (1 +

∑
e6=0

χ(Gre(Ext1E(T,M)))
r∏

i=1

y
ej

j ),

where ej is the j-th coordinate of e in the basis of the Si, 1 ≤ i ≤ 2r. If the indecomposable
object M is rigid and not isomorphic to Ti for r < i ≤ 2r, then X ′

M is a cluster variable of
A(B̃). By the definition of the rational function Fl,t associated with the cluster variable
xl,t in [21], we have

FM = X ′
M (x1 = x2 = . . . = xr = 1)

=
2r∏

i=r+1

x
〈FM,Si〉τ
i (1 +

∑
e6=0

χ(Gre(Ext1E(T,M)))
2r∏

j=r+1

x
ej−r

j ).

Put

GM = 1 +
∑
e6=0

χ(Gre Ext1E(T,M))
2r∏

j=r+1

x
ej−r

j .

Note that GM is always a polynomial of xi, r + 1 ≤ i ≤ 2r, with constant term 1. By
Proposition 5.2 in [21], we know that the polynomial FM is not divisible by xi, r +1 ≤ i ≤
2r. Now for i > r, we have 〈FM,Si〉τ ≥ 0 in general, which implies that 〈FM,Si〉τ = 0.
In particular, 〈FM,Si〉τ = [indT (M) : Ti] = 0, for r + 1 ≤ i ≤ 2r. Consider M = ΣT1,
which is rigid and indecomposable, so X ′

M is a cluster variable of the cluster algebra A(B̃).
But in the Frobenius category E we have the conflation

0→ T1 → P → ΣT1 → 0,

where P is an injective hull of T1, which implies

indT (M) = [P ]− [T1].
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Thus there is always some r + 1 ≤ i ≤ 2r such that [indT (M) : Ti] 6= 0. Contradiction. �

Remark 5.7. In the above notation, if B0 is acyclic, then it is easy to deduce that the
cluster algebra A(B̃) does not have a Frobenius 2-CY realization. Indeed in this case, one
of the first r vertices of Q which corresponds to B̃ is always a sink. This is incompatible
with the existence of a Frobenius 2-CY realization by remark 5.2.

6. Triangulated 2-Calabi-Yau realizations

6.1. Definitions. Let B = (bij)n×n be an antisymmetric integer matrix and A(B) the
associated cluster algebra. A 2-Calabi-Yau triangulated category C is called a triangulated
2-Calabi-Yau realization of the matrix B if C admits a cluster tilting object T such that

• C has a cluster structure in the sense [2], cf. section 2.4;
• T has exactly n non isomorphic indecomposable direct summands T1, . . ., Tn;
• The antisymmetric matrix B(T ) associated with the quiver of the endomorphism

algebra of T equals B.
We denote a triangulated 2-CY realization of B by C ⊃ add T .

Let n1 and n2 be positive integers. Let B1 and B2 be antisymmetric integer n1 × n1

resp. n2 × n2-matrices. Let B21 be an integer n2 × n1-matrix with non negative entries.
Let Ci ⊃ Ti be a triangulated 2-CY realization of Bi, i = 1, 2. Let B be the matrix(

B1 −Bt
21

B21 B2

)
.

A gluing of C1 ⊃ T1 with C2 ⊃ T2 with respect to B is a triangulated 2-CY realization
C ⊃ T of B endowed with full additive subcategories T ′1 and T ′2 such that

• HomC(T ′1 , T ′2 ) = 0;
• The set indec(T ) is the disjoint union of indec(T ′1 ) with indec(T ′2 );
• There is a triangle equivalence

⊥(ΣT ′1 )/(T ′1 ) ∼−→ C2
inducing an equivalence T ′2

∼−→ T2;
• There is a triangle equivalence

⊥(ΣT ′2 )/(T ′2 ) ∼−→ C1
inducing an equivalence T ′1

∼−→ T1.
A principal gluing of C1 ⊃ T1 is a gluing of C1 ⊃ T1 with C2 ⊃ T2 with respect to(

B1 −In1

In1 0

)
,

where C2 is the cluster category of (A1)n1 and T2 the image of the subcategory of finitely
generated projective modules.

It is well known that each acyclic matrix B admits a triangulated 2-CY realization
CQB

, where CQB
is the cluster category of the quiver QB corresponding to B. In the last

subsection, we will see that CQB
does admit a principal gluing.

Conjecture 6.1. If C1 and C2 are algebraic, a gluing exists for any matrix B21 with non
negative entries.

Amiot’s work [1] provides some evidence for the conjecture: Indeed, if C1 and C2 are
generalized cluster categories [1] associated with Jacobi-finite quivers with potential [15],
it is easy to construct a quiver with potential which provides a gluing as required by the
conjecture.
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6.2. Cluster algebras with coefficients. Let B be an antisymmetric integer n × n-
matrix. Suppose that the matrix B admits a triangulated 2-CY realization C with the
cluster tilting subcategory T = add T . Let Ti, 1 ≤ i ≤ n, be the non isomorphic indecom-
posable direct summands of T . By the definition, we have B(T ) = B. The mutations of
the matrix B correspond to the mutations of the cluster tilting object T . Fix an integer
0 < r ≤ n and consider the submatrix B0 of B formed by the first r columns of B. If l ≤ r,
then we have

µl(B0) = (µl(B))0,

where µl is the mutation in the direction l. Thus we can view the cluster algebra A(B0)
with coefficients as a sub-cluster algebra of A(B), cf. Ch. III of [2].

Denote by P the full subcategory of C whose objects are the finite direct sums of copies
of Tr+1, . . . , Tn. We define a subcategory of C

U = ⊥(ΣP) = {X ∈ C|Ext1C(Ti, X) = 0 for r < i ≤ n}.

By Theorem I.2.1 of [2], the quotient category U/P is a 2-Calabi-Yau triangulated category
and the projection U → U/P induces a bijection between the cluster tilting subcategories
of C containing P and the cluster tilting subcategories of U/P. Thus, a mutation of a
cluster tilting object in U/P can be viewed as a mutation of a cluster tilting object in
U ⊂ C which does not affect the direct summands Ti, r < i ≤ n. This exactly corresponds
to a mutation of the matrix B in one of the first r directions. In particular, a mutation of
the cluster algebra A(B0) corresponds to a mutation of a cluster tilting object in U .

Recall from section 2.5 that on C, we have Palu’s cluster character associated with T ,
which is given by the formula

XM = XT
M =

n∏
i=1

x
−[coindT M :Ti]
i

∑
e

χ(Gre(HomC(T,M)))
n∏

i=1

x
〈Si,e〉a
i .

We consider the composition of this map with the shift:

X ′
M = XΣM =

n∏
i=1

x
[indT M :Ti]
i

∑
e

χ(Gre(HomC(T,ΣM)))
n∏

i=1

x
〈Si,e〉a
i .

We consider the restriction of the map M 7→ X ′
M to the subcategory U . It follows from

Proposition 2.3 that if M is an indecomposable rigid object reachable from T in U , then
X ′

M is a cluster variable of A(B0). We will rewrite this variable so as to express its g-vector
(if it is defined) in terms of the index of M : Let M be an object of U . Then HomC(T,ΣM)
is an EndC(T )-module which vanishes at each vertex r < i ≤ n. Let e be the image of
HomC(T,ΣM) in the Grothendieck group of mod EndC(T ). Let ej be the j-th coordinate
of e with respect to the basis Si, 1 ≤ i ≤ n. We have

〈Si, e〉a = 〈Si, e〉τ − 〈e, Si〉τ

=
r∑

j=1

ej(〈Si, Sj〉τ − 〈Sj , Si〉τ )

=
r∑

j=1

ej(Ext1EndC(T )(Sj , Si)− Ext1EndC(T )(Si, Sj))

=
r∑

j=1

bijej .
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As in section 4, put

yj =
n∏

i=1

x
bij

i , for 1 ≤ j ≤ r.

Then X ′
M can be rewritten as

X ′
M =

n∏
i=1

x
[indT (M):Ti]
i (1 +

∑
e6=0

χ(Gre(HomC(T,ΣM)))
r∏

j=1

y
ej

j ).

As in section 4, when rank B0 = r, we can define the g-vector of M ∈ U with respect to
a cluster tilting object T . Thus we have proved part a) of the following proposition. We
leave the easy proof of part b) to the reader.

Proposition 6.2. Suppose that rank B0 = r. Let M be an object of U .
a) The g-vector of X ′

M with respect to the initial cluster is given by

gT (X ′
M )(i) = [indT (M) : Ti], for 1 ≤ i ≤ r.

b) The index of the image of M in U/P with respect to the image of T is
r∑

i=1

gT (X ′
M )(i)[Ti].

In analogy with the definition in section 5, we define a cluster tilting object T ′ of U to
be reachable from T if it is obtained from T by a sequence of mutations at indecomposable
rigid objects of U not in P. We define an indecomposable rigid object of U to be reachable
from T if it is a direct factor of a cluster tilting object reachable from T .

Theorem 6.3. Let B be an antisymmetric integer n× n-matrix and 1 ≤ r ≤ n an integer
such that the submatrix B0 of B formed by the first r columns has rank r. Let A = A(B0)
be the associated cluster algebra with coefficients. Assume that the matrix B admits a
triangulated 2-CY realization given by a triangulated category C with a cluster tilting object
T which is the sum of n indecomposable direct factors T1, . . . , Tn. Denote by P the full
subcategory of C whose objects are the finite direct sums of copies of Tr+1, . . . , Tn and define
the subcategory U of C by

U = ⊥(ΣP) = {X ∈ C|Ext1C(Ti, X) = 0 for r < i ≤ n}.

For M ∈ C, define (cf. section 2.5)

X ′
M = XT

ΣM =
n∏

i=1

x
[indT M :Ti]
i

∑
e

χ(Gre(HomC(T,ΣM)))
n∏

i=1

x
〈Si,e〉a
i .

Then the following hold.
a) The map M 7→ X ′

M induces a bijection from the set of isomorphism classes of
indecomposable rigid objects of U not belonging to P and reachable from T onto the
set of cluster variables of A(B0). Under this bijection, the cluster-tilting objects of
U reachable from T correspond to the clusters of A(B0).

b) The map M 7→ [indT (M) : Ti]1≤i≤r is a bijection from the set of indecomposable
rigid objects of U not belonging to P and reachable from T onto the set of g-vectors
of cluster variables of A(B0).

c) Conjecture 7.2 of [21] holds for A, i.e. the cluster monomials are linearly indepen-
dent over Z. Moreover, the cluster monomials form a basis of the Z[xr+1, . . . , xn]-
submodule of A(B0) which they generate.
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d) Conjecture 7.10 of [21] holds for A, i.e.
1) Different cluster monomials have different g-vectors with respect to a given initial
seed.
2) The g-vectors of the cluster variables in any given cluster form a Z-basis of the
lattice Zr.

e) Conjecture 7.12 of [21] holds for A, i.e. if (g1, . . . , gr) and (g′1, . . . , g
′
r) are the g-

vectors of one and the same cluster variable with respect to two clusters t and t′

related by the mutation at l, then we have

g′j =
{
−gl if j = l
gj + [bjl]+gl − bjl min(gl, 0) if j 6= l

where the bij are the entries of the r × r-matrix B associated with t and we write
[x]+ for max(x, 0) for any integer x.

Proof. It follows from Proposition 2.3 that the map M 7→ X ′
M is well-defined and surjective

onto the set of cluster variables of A(B0). It is injective by Proposition 6.2 b) because
rigid objects of U/P are determined by their indices and the map taking a rigid object
M of U without non zero direct factors in P to its image in U/P is injective (up to
isomorphism). This also implies part b). The same proof as for Corollary 4.4 b) yields the
linear independence of the cluster monomials in c). Let us prove that the cluster monomials
form a basis of the Z[xr+1, . . . , xn]-submodule of A(B0) which they generate. Indeed, over
Z, this submodule is spanned by the images X ′

M of all rigid objects of U obtained as direct
sums of objects of P and indecomposable rigid objects reachable from T not belonging
to P. Such objects M are in particular rigid in T and they can be distinguished (up to
isomorphism) by their indices. Now again, the same proof as for Corollary 4.4 b) shows that
these X ′

M are linearly independent over Z. Clearly this implies that the cluster monomials
form a basis of the Z[xr+1, . . . , xn]-submodule of A(B0) which they generate. As in the
proof of Theorem 5.5 b), the assertions in part d) follow from the interpretation of the
g-vector given in 6.2 b) and the facts that

1) rigid objects of U/P are determined by their indices (Theorem 2.3 of [13]) and
2) the indices of the indecomposable direct factors of a cluster-tilting subcategory T

of U/P form a basis of K0(T ) (Theorem 2.6 of [13]).

Part e) is proved in exactly the same way as the corresponding statement for cluster
algebras with a 2-CY Frobenius realization in Theorem 5.4 c). �

Example 6.4. Let A4 be the quiver 3→ 1→ 2← 4, CQ the corresponding cluster category.
The following is the AR quiver of CQ, where Pi, 1 ≤ i ≤ 4, are the indecomposable projective
kQ-modules.

P4

""E
EEE 123

""F
FFF

F ΣP3

$$II
III

. . . P2

<<xxxxx

##GG
GGG

12

;;wwww

$$H
HHHH ΣP1

$$II
III

. . .

. . . P1

<<xxxxx

""E
EEE 124

;;wwww

""F
FF

FF
2

::tttttt

$$I
IIII ΣP2 . . .

P3

<<zzzz
S1

<<xxxx
M

;;wwwwww
ΣP4

;;vvvvv

Let T = P1⊕P2⊕P3⊕P4 be the canonical cluster tilting object in CQ, P = add(P3⊕P4). It is
easy to see that the indecomposable objects in U/P ∼= CA2 are exactly P1, P2,M,ΣP1,ΣP2.
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In this case, the matrix B(T )0 is 
0 1
−1 0
1 0
0 1

 .

We have rankB(T )0 = 2. Moreover, the cluster algebra A(B(T )0) has principal coeffi-
cients.

6.3. Cluster algebras with principal coefficients. In this subsection, we suppose that
2r = n and that the complementary part of B0 is the r × r identity matrix. Thus the
cluster algebra A(B0) has principal coefficients. Recall that for the matrix B, we have a
triangulated 2-CY realization C ⊃ add T and we have fixed P = add(Tr+1⊕ . . .⊕ T2r). Let
Q = add(T1 ⊕ . . . ⊕ Tr). Let C1 = U/P and C2 = ⊥(ΣQ)/Q be the quotient categories,
T1 = add(π1(T1 ⊕ . . .⊕ Tr)) and T2 = add(π2(Tr+1 ⊕ . . .⊕ T2r)) the corresponding cluster
tilting subcategories, where π1 and π2 are the respective projection functors. Then C is a
gluing of C1 ⊃ T1 with C2 ⊃ T2 with respect to the matrix B.

As in section 5, for a cluster variable xl,t of the cluster algebra A(B0) which corresponds
to an indecomposable rigid object M ∈ U and not in P, we denote the rational function
Fl,t defined in section 3 of [21] by FM . Since xl,t = X ′

M , we have

FM = X ′
M (x1 = . . . = xr = 1)

=
2r∏

i=r+1

x
[indT (M):Ti]
i (1 +

∑
e6=0

χ(Gre(HomC(T,ΣM)))
2r∏

j=r+1

x
ej−r

j ).

The following result is now a consequence of Proposition 3.6 and 5.2 in [21]. We give a
proof based on representation theory. Note that conjecture 5.4 of [21] will be proved in full
generality in [16].

Theorem 6.5. Conjecture 5.4 of [21] holds for A(B0), i.e. the polynomial FM has constant
term 1. Thus we have

FM = 1 +
∑
e6=0

χ(Gre(HomC(T,ΣM)))
2r∏

j=r+1

x
ej−r

j .

Proof. We need to show that for each i > r, [indT (M) : Ti] is zero. Since X ′
M is a cluster

variable and M is indecomposable, we have the following two cases:
Case 1: M ∼= ΣTj for some j ≤ r. We have indT (M) = −[Tj ], which implies that
[indT (M) : Ti] = 0.
Case 2: M is not isomorphic to ΣTj for any j ≤ r. Recall that by assumption, M is not
isomorphic to Tj for any j > r. We have the following minimal triangle

T 1
M → T 0

M →M → ΣT 1
M

with T 0
M , T 1

M in add T and indT (M) = [T 0
M ]− [T 1

M ]. Since M belongs to U , for each i > r
we have HomC(M,ΣTi) = 0. If we had [T 1

M : Ti] 6= 0 for some i > r, then the above
minimal triangle would have a non zero direct factor

Ti → Ti → 0→ ΣTi.

Suppose that we have [T 0
M : Ti] 6= 0 for some i > r. Applying the functor F = HomC(T, ?)

to the triangle, we get a minimal projective resolution of FM as an EndC(T )-module. Note
that for i > r, the projective module FTi is also a simple module, which implies that FM
is decomposable. Contradiction. �
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Suppose that the indecomposable rigid object M of C is reachable from T and consider
the polynomial FM of Theorem 6.5. We define the f-vector fT (M) = (f1, . . . , fr) of M
with respect to T by

FM |Trop(u1,...,ur)(u
−1
1 , . . . , u−1

r ) = u−f1
1 . . . u−fr

r ,

where Trop(u1, . . . , ur) is the tropical semifield defined in section 2.1.

Proposition 6.6. Suppose that M is not isomorphic to Ti for 1 ≤ i ≤ 2r, and let
dim HomC(T,ΣM) = (d1, . . . , dr). Then we have

di = fi, 1 ≤ i ≤ r.

Proof. By Theorem 6.5, we have

FM = 1 +
∑
e6=0

χ(Gre(HomC(T,ΣM)))
2r∏

j=r+1

x
ej−r

j .

Therefore, we obtain

FM |Trop(u1,...,ur)(u
−1
1 , . . . , u−1

r ) = 1⊕
⊕
e6=0

χ(Gre(HomC(T,ΣM)))
r∏

j=1

u
−ej

j

= u−d1
1 . . . u−dr

n .

�

Under the assumptions above, we have proved that the dimension vector of HomC(T,ΣM)
equals the f -vector fT (M). Conjecture 7.17 of [21] states that the f -vectors coincide with
the denominator vectors in general. But by recent work of A. Buan, R. Marsh and I. Reiten
[5], the dimension vectors do not always coincide with the denominator vectors. In fact,
as shown in [5], for a quiver Q whose underlying graph is an affine Dynkin diagram, the
vector dimHomCQ

(T,M) is different from the denominator vector of XT
M if M = R and R

is a direct factor of T , where R is a rigid regular indecomposable of maximal quasi-length.
This leads to the following minimal counterexample to Conjecture 7.17 in [21]. Let us
point out that the corresponding computations already appear in [12]. In subsection 5.5
below, we will show that in many cases, the f -vector is greater or equal to the denominator
vector.

6.4. A counterexample.

Example 6.7. Let Q be the following quiver

3
����

��

1 +3 2 .

``AAAA

Let A(Q) be the cluster algebra associated with the initial seed given by Q and x =
(x1, x2, x3). Consider the mutations at 3, 2, 1. Let xt3 be the corresponding cluster. We
have

xt3
1 =

x2
1 + 2x1x2 + x2

2 + x3

x1x2x3

and the corresponding F -polynomial is

F
x

t3
1

= 1 + (1 + y1 + y1y2)y3 + y1y2y
2
3.

Then the f-vector of xt3
1 does not coincide with the denominator vector.
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Let us interpret this counterexample in terms of representation theory. Let A2,1 be the
quiver

3
  A

AA
A

1

@@����
// 2 .

Consider the cluster category CA2,1 of kA2,1. Let Pi, 1 ≤ i ≤ 3, be the indecomposable
projective modules and Si the corresponding simple modules. Then

T = P1 ⊕ P2 ⊕ τS3,

is a cluster tilting object of CA2,1 , where τ is the Auslander-Reiten translation functor. The
quiver QT of T looks like

τS3

||zz
zz

P1
+3 P2 .

ccGGGG

We will show that the cluster category CA2,1 ⊃ add T admits a principal gluing. For this,
consider the following quiver Q1 :

6 // 3

��
4 // 1 //

OO

2 5 .oo

It admits a cluster category CQ1 . Let TQ1 = kQ1 be the canonical cluster tilting object in
CQ1 . Let T ′ = µ3(µ6(TQ1)) be the cluster tilting object obtained by mutations from TQ1 .
Denote the non isomorphic indecomposable direct summands of T ′ by T ′

i , 1 ≤ i ≤ 6. Then
the quiver of QT ′ is

T ′
6

��
T ′

3

�����
�

T ′
4
// T ′

1
+3 T ′

2

__????

T ′
5 .oo

Let P = add(T ′
4⊕T ′

5⊕T ′
6). Then U/P is a 2-Calabi-Yau triangulated category and admits

a cluster tilting object with the quiver QT . By the main theorem of [33], we know that
there is a triangle equivalence U/P ' CA2,1 . Thus, we see that the matrix B(T ′) admits a
triangulated 2-CY realization CQ1 which is the required principal gluing of CA2,1 ⊃ add T .
We may assume that the images of T ′

1, T
′
2, T

′
3 coincide with P1, P2, τS3 in CA2,1 respectively.

Denote the shift functor in CQ1 (resp. CA2,1) by Σ (resp. [1]).
Let N be the preimage of S3 in CQ1 . Then one can easily compute

dim HomCQ1
(T ′,ΣN) = dim HomCA2,1

(T, τS3) = (1, 1, 2).

Note that the denominator vector of X ′
N equals the denominator vector of XT

τS3
. Now the

result follows from the Proposition above.

6.5. An inequality. Let T be a 2-Calabi-Yau triangulated category with cluster-tilting
object T . Recall that we have the generalized Caldero-Chapoton map

XT
M =

n∏
i=1

x
−[coindT (M):Ti]
i

∑
e

χ(Gre(GM))
n∏

i=1

x
〈Si,e〉a
i ,

where G is the functor HomC(T, ?) : C → mod EndC(T ). The following proposition is proved
in greater generality in [16].
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Proposition 6.8. For each M in T , let dim GM = (m1, . . . ,mn) and let 1 ≤ i ≤ n. We
have

−[coindT (M) : Ti] + 〈Si, e〉a ≥ −mi,

for each submodule N of GM with dim N = e. Thus the exponent of xi in the denominator
of XM is less or equal to mi.

Proof. This result holds for the case M ∼= ΣT ′, T ′ ∈ add T obviously. We assume that M
is indecomposable and not isomorphic to any ΣT ′. The case where M is decomposable is
a consequence of the multiplication theorem for X?. Now by Lemma 7 of [37], we have

−[coindT (M) : Ti] = −〈Si, GM〉τ .
Note that we have the short exact sequence of EndC(T )-modules

0→ N → GM → GM/N → 0.

By applying the functor Hom(Si, ?), we get

〈Si, N〉τ + 〈Si, GM/N〉τ − 〈Si, GM〉τ + dim Ext2(Si, N) ≥ 0.

By the stable 3-Calabi-Yau property of mod EndC(T ) proved in [34], we have dim Ext2(Si, N) ≤
dim Ext1(N,Si). Therefore, we have

−[coindT (M) : Ti] + 〈Si, e〉a ≥ −〈N,Si〉τ − 〈Si, GM/N〉τ − dim Ext2(Si, N)
≥ −[N,Si]− [Si, GM/N ] + 1[Si, GM/N ]
≥ −mi.

�

6.6. Behaviour of the g-vectors under mutation. Let B = (bij) be an antisymmetric
integer r×r-matrix. Let C ⊃ add T be a triangulated 2-CY realization of B. Let T1, . . . , Tr

be the non isomorphic indecomposable factors of T . Let 1 ≤ l ≤ r be an integer and
T ′ = µl(T ) the mutation of T at Tl. Thus, the non isomorphic indecomposable factors
of T ′ are T1, . . . , T

∗
l , . . . , Tr. Let C1 be a principal gluing of C ⊃ add T and C2 a principal

gluing of C ⊃ add T ′ (we assume such gluings exist). For each indecomposable object
M ∈ C reachable from T , we denote by FT

M and FT ′
M the F-polynomials of M with respect

to C1 and C2 respectively. Following [21], we define the integers hl and h′l by

uhl = FT
M |Trop(u)(u

[−bk1]+ , . . . , u−1, . . . , u[−bkn]+),

uh′l = FT ′
M |Trop(u)(u

[bk1]+ , . . . , u−1, . . . , u[bkn]+),

where u−1 is in the l-th position.
The following proposition shows that if the gluings C1 and C2 exist (for example if C

is algebraic and Conjecture 6.1 holds), then Conjecture 6.10 of [21] holds for the cluster
algebra with principal coefficients associated with B.

Proposition 6.9. In the above notation, we have

h′l = −[[indT (M) : Tl]]+, hl = min(0, [indT (M) : Tl]).

Proof. Let Si, 1 ≤ i ≤ r, be the top of the indecomposable right projective EndC(T ′)-
module HomC(T ′, T ′

i ). First we will show that gl = [indT (M) : Tl] > 0 iff Sl occurs as
a submodule of the module HomC(T ′,ΣM) and that the multiplicity of Sl in the socle of
HomC(T ′,ΣM) equals [indT (M) : Tl].

Suppose that gl > 0. Then we have the following triangle

T 1
M → T 0′

M ⊕ (Tl)gl →M → ΣT 1
M
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with T 1
M , T 0′

M in add T and [T 0′
M : Tl] = 0, where (Tl)gl is the sum of gl copies of Tl. Applying

the functor HomC(T ′, ?) to the shift of the above triangle, we get the exact sequence

0→ HomC(T ′,Σ(Tl)gl)→ HomC(T ′,ΣM)→ HomC(T ′,Σ2T 1
M )→ . . .

Note that HomC(T ′,Σ(Tl)g) ∼= (Sl)gl , i.e. Sl occurs with multiplicity ≥ gl in the socle of
HomC(T ′,ΣM). If the multiplicity of Sl in the socle of HomC(T ′,ΣM) was > gl, then Sl

would occur in the socle of HomC(T ′,Σ2T 1
M ). This is not the case since HomC(T ′,Σ2T 1

M ) is
the sum of injective indecomposables not isomorphic to the injective hull HomC(T ′,Σ2Tl) of
Sl. Conversely, if Sl occurs in the socle of HomC(T ′,ΣM), thanks to the split idempotents
property of C, we have an irreducible morphism α : ΣTl → ΣM in C. Thus, by the
definition of the index, we get gl > 0. Moreover, the multiplicity of Sl equals gl by the
same argument as before.

Assume that gl > 0. For an arbitrary submodule U of HomC(T ′,ΣM), let dim U =
(e1, . . . , en). We will show that

el ≤ gl +
∑

i

[bil]+ei.

Indeed, consider the projective resolution of the simple module Sl

. . .→ ⊕P bil
i → Pl → Sl → 0.

Applying the functor HomEndC(T ′)(?, U), we get the exact sequence

0→ Hom(Sl, U)→ Hom(Pl, U)→ Hom(⊕P bil
i , U)→ . . . ,

which implies the inequality because the dimension of Hom(Sl, U) is less or equal to the
multiplicity of Sl in the socle of HomC(T ′,ΣM), which equals gl. By Theorem 6.5, we have

uh′l = FT ′
M |Trop(u)(u

[bk1]+ , . . . , u−1, . . . , u[bkn]+)

= 1⊕
⊕

e

χ(Gre(HomC(T ′,ΣM)))u−el
∏
i6=l

(u[bki]+)ei .

We have just shown that for each e, we have

−el +
∑

i

[bil]+ei ≥ gl,

and the equality occurs if e is the dimension vector of the submodule (Sl)gl . We conclude
that we have h′l = −[indT (M) : Tl]. If gl ≤ 0, then Sl does not occur in the socle of
HomC(T ′,ΣM) and it is easy to see that h′l = 0. Dually, we have the equality hl =
min(0, [indT (M) : Tl]). �

6.7. Acyclic cluster algebras with principal coefficients. Let B be an antisymmetric
integer r × r-matrix. Assume that B is acyclic. Let Q be the corresponding quiver of B
with set of vertices Q0 = {1, . . . , r} and with set of arrows Q1. Let CQ be the cluster
category of Q, T = kQ the canonical cluster tilting object of CQ. We claim that the cluster
category CQ ⊃ add T admits a principal gluing.

Indeed, we define a new quiver Q̃ = Q
←−∐

Q0 associated with Q: Its set of vertices is
{1, . . . , 2r}, and its arrows are those of Q and new arrows from r + i to i for each vertex i

of Q. Since Q is acyclic, so is Q̃, hence kQ̃ is finite-dimensional and hereditary. Thus, we
have the cluster category CQ̃ which is a triangulated 2-CY realization of the matrix(

B −Ir

Ir 0

)
.
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In particular, CQ̃ ⊃ add kQ̃ is a principal gluing for CQ ⊃ add T . Thus, Proposition 6.2,
Theorem 6.3, Theorem 6.5 and Proposition 6.6 hold for acyclic cluster algebras with prin-
cipal coefficients.

Let Pi, 1 ≤ i ≤ 2r, be the non isomorphic indecomposable projective right modules of
kQ̃. Let P = add(Pr+1 ⊕ . . .⊕ P2r). We have a triangle equivalence

⊥(ΣP)/P ∼−→ CQ.

Recall that there is a partial order on Zr defined by

α ≤ β iff α(i) ≤ β(i), for 1 ≤ i ≤ r, where α, β ∈ Zr.

Proposition 6.10. Let B be a 2r×r integer matrix, whose principal part is antisymmetric
and acyclic and whose complementary part is the identity matrix. Let σ be a sequence k1,
. . ., km with 1 ≤ ki ≤ r. Denote by Bσ the matrix

µk1 ◦ µk2 . . . ◦ µkm(B) = (bσ
ij).

Let Eσ = (e1, e2, . . . , er) be the complementary part of Bσ, where ei ∈ Zr, 1 ≤ i ≤ r. Then
for each i, we have ei ≤ 0 or ei ≥ 0.

Proof. Suppose that there is some k such that ek � 0 and ek � 0. For simplicity, assume
that k = 1, i.e. there are r < i, j ≤ 2r such that bσ

i1 > 0 and bσ
j1 < 0.

Let Q be the quiver corresponding to the principal part of B and Q̃ as constructed above.
By the argument above, there is a cluster tilting object T ′ of CkQ̃ such that B(T ′)0 = Bσ.
We have arrows Pi → T ′

1 and T ′
1 → Pj , where T ′

1 is the indecomposable direct summand of
T ′ corresponding to the first column of Bσ. Now if we consider the mutation in direction 1
of T ′, we will have an arrow Pi → Pj in Qµ1(T ′). But this is impossible, since for r < l ≤ 2r,
the Pl are simple pairwise non isomorphic modules so we have

HomCkQ̃
(Pi, Pj) = HomkQ̃(Pi, Pj) = 0.

�
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