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1. Introduction

This note is motivated by recent developments in the categorification of
cluster algebras and cluster varieties. Let us recall the context: To a finite
quiver Q without loops and without 2-cycles, one can associate the cluster
algebra AQ and the cluster variety XQ (endowed with a Poisson structure),
cf. [5] and [4]. If Q does not have oriented cycles, we have at our disposal
a very good categorical model for the combinatorics of the cluster algebra
AQ, cf. the surveys [1] [19] [20] [12]. In contrast, for the moment, there
is no corresponding theory for the cluster variety XQ. Ongoing work by
Kontsevich-Soibelman [16], T. Bridgeland [3] and others shows that there
is a close link between the quantized version [4] of XQ and the Hall alge-
bra [22] of a certain triangulated 3-Calabi-Yau category TQ associated with
Q. The category TQ can be described as the algebraic triangulated category
generated by the objects in a ‘generic’ collection of 3-spherical objects whose
extension spaces have dimensions encoded by the quiver Q. Alternatively, it
may be described as the derived category of dg (=differential graded) mod-
ules with finite-dimensional total homology over the Ginzburg dg algebra [6]
associated with Q and a generic potential. In this note, we consider the case
where Q is reduced to a single vertex without any arrows. This amounts to
considering the (algebraic) triangulated category TQ generated by a single
spherical object. We first show that this category is indeed well-determined
up to a triangle equivalence (Theorem 2.1). Then we classify the objects of
TQ (Theorem 4.1, due to P. Jørgensen [9]), compute the Hall algebra of TQ

(Theorem 5.1) and establish the link with the cluster variety, which in this
case is just a one-dimensional torus (Section 6). The Hall algebra of the
algebraic triangulated category generated by a spherical object of arbitrary
dimension can be determined similarly. We give the result in Section 7. For
the classification theorem, we establish more generally the classification of
the indecomposable objects in a triangulated category admitting a generator
whose graded endomorphism algebra is hereditary, a result which may be
useful in other contexts as well.
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2. The triangulated category generated by a spherical object

Let k be a field and T a k-linear algebraic triangulated category (cf. Sec-
tion 3.6 of [14] for this terminology). We write Σ for the suspension functor
of T . We assume that T is idempotent complete, i.e. each idempotent
endomorphism of an object of T comes from a direct sum decomposition.

Let d be an integer and G a d-spherical object of T . This means that the
graded endomorphism algebra

B =
⊕
p∈Z

Hom T (G,ΣpG)

is isomorphic to k〈s〉/(s2), where s is of degree d. We also view B as a dg
algebra whose differential vanishes. We refer to Section 3 of [14] for the def-
inition of the derived category D(B). The perfect derived category per (B)
is defined as the smallest thick subcategory of D(B) containing B. We say
that G classically generates T if T coincides with its smallest triangulated
subcategory stable under taking direct factors and containing G.

Theorem 2.1. If G classically generates T , there is a triangle equivalence
from T to the perfect derived category of B.

Proof. According to Theorem 7.6.0.6 of [17], there is a triangle equivalence
between T and the perfect derived category of a minimal strictly unital A∞-
algebra whose underlying graded algebra is B. This A∞-structure is given
by linear maps

mp : (ks)⊗p → B

defined for p ≥ 3 and homogeneous of degree 2 − p. For degree reasons,
these maps vanish. The claim follows because the perfect derived category
of B considered as a dg algebra is equivalent to the perfect derived category
of B considered as an A∞-algebra by Lemma 4.1.3.8 of [17].

√

Thus, it makes sense to speak about ‘the’ algebraic triangulated category
generated by a spherical object of dimension d. Notice that Koszul duality
provides us with another realization of this category: If d 6= 1, we have a
triangle equivalence

per (B) ∼→ Dfd(A) ,

where the dg algebra A is the free dg algebra on a closed generator t of
degree −d + 1. Here the category Dfd(A) is the full subcategory of the
derived category DA formed by the dg modules whose homology is of finite
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total dimension. If d equals 3, then A is the Ginzburg algebra [6] associated
with the quiver A1. If d equals 1, then per (B) is triangle equivalent to the
full subcategory of D(k[t]), where t is of degree 0, formed by the dg modules
whose homology is of finite total dimension and annihilated by some power
of t.

3. Classification

In this section, we present a general classification theorem for indecom-
posable objects in a triangulated category admitting a ‘generator’ G whose
graded endomorphism algebra is hereditary. We first consider the case where
G compactly generates a triangulated category with arbitrary direct sums.
Then we consider the case where G is a classical generator. We apply it
to the perfect and the finite dimensional derived categories of the Ginzburg
algebra of type A1.

3.1. Compactly generated case. Let k be a commutative ring, and T
a k-linear triangulated category with suspension functor Σ. Assume T has
arbitrary direct sums. Let G be a compact generator for T , i.e. the functor
HomT (G, ?) commutes with arbitrary direct sums, and given an object X
of T , if HomT (G,ΣpX) vanishes for all integers p, then X vanishes. Let

A =
⊕
p∈Z

HomT (G,ΣpG)

be the graded endomorphism algebra of G. Then for any object X of T , the
graded vector space ⊕

p∈Z
HomT (G,ΣpX)

has a natural graded (right) module structure over A. We define a functor

F : T → Grmod(A), X 7→
⊕
p∈Z

HomT (G,ΣpX) ,

where Grmod(A) denotes the category of all graded right A-modules. Notice
that since G is a compact generator, a morphism of T is invertible if and
only if its image under F is invertible.

We say that A is graded hereditary, if the category Grmod(A) of graded
A-modules is hereditary, or in other terms, each subobject of a projective
object of Grmod(A) is projective.

Theorem 3.1. With the notations above, suppose that A is graded heredi-
tary. The functor F : T → Grmod(A) is full, essentially surjective, and its
kernel has square zero. In particular, it induces a bijection from the class of
isoclasses of objects (respectively, of indecomposable objects) of T to that of
Grmod(A).

Remarks. a) Notice that we have an isomorphism of functors F◦Σ ' [1]◦F ,
where [1] denotes the shift functor in Grmod(A).

b) The functor F is obviously a homological functor. We will use this fact
implicitly.
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The theorem is a consequence of the following lemmas.
For a class S of objects of an additive category A with arbitrary direct

sums, we denote by Add(S) the closure of S under taking all direct sums
and direct summands.

Lemma 3.2. a) The functor F : T → Grmod(A) induces an equivalence
between Add(ΣpG|p ∈ Z) and Add(A[p]|p ∈ Z).

b) An object X belongs to Add(ΣpG|p ∈ Z) if and only if FX belongs to
Add(A[p]|p ∈ Z).

Notice that the sufficiency of the condition in b) is not immediate from
a). For example, the functor F might ‘retract’ the whole category T onto
Add(A[p]|p ∈ Z).

Proof. a) By definition, we have

HomT (G,X) = (FX)0 ∼= HomGrmod(A)(A,FX)

for any object X in T , and so the map

F (G,X) : HomT (G,X) → HomGrmod(A)(FG,FX)

is bijective. Therefore the map

F (G0, X) : HomT (G0, X) → HomGrmod(A)(FG0, FX)

is an isomorphism for any G0 in Add(ΣpG|p ∈ Z) and any X in T . Tak-
ing X in Add(ΣpG|p ∈ Z), this proves that, considered as a functor from
Add(ΣpG|p ∈ Z) to Add(A[p]|p ∈ Z), the functor F is fully faithful. More-
over, since G is compact, F commutes with arbitrary coproducts. The proof
of essential surjectivity is therefore easy.

b) The necessity of the condition follows from a). Let us prove the
sufficiency. Let X be an object of T such that there is an isomorphism
f : FG0 → FX in Add(A[p]|p ∈ Z) for some G0 ∈ Add(ΣpG|p ∈ Z). We
can lift f to a morphism f̃ : G0 → X in T . As we have observed above,
since G is a compact generator, a morphism of T is invertible iff its image
under F is invertible. Since we have F f̃ = f , it follows that f̃ is invertible
and X is isomorphic to G0.

√

It is well known that the class of projective objects of Grmod(A) is exactly
Add(A[p]|p ∈ Z).

Lemma 3.3. The functor F is essentially surjective.

Proof. Let M be a graded A-module. Since A is graded hereditary, there
exists a short exact sequence of graded A-modules

0 → P1
u→ P0 →M → 0

with P0 and P1 in Add(A[p]|p ∈ Z). By Lemma 3.2 a), we can lift u to a
morphism v in Add(ΣpG|p ∈ Z). Letting X be a cone of v, one checks that
FX is isomorphic to M .

√

Lemma 3.4. The functor F is full.
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Proof. We prove this in three steps.
Step 1: By the first paragraph of the proof of Lemma 3.2, the map

F (G0, X) : HomT (G0, X) → HomGrmod(A)(FG0, FX)

is an isomorphism for any G0 in Add(ΣpG|p ∈ Z) and any X in T .
Step 2: Let X be an object of T . We will show that there exists a triangle

G1 → G0 → X → ΣG1

in T such that G0, G1 belong to Add(ΣpG|p ∈ Z). We choose w : G0 → X
such that Fw is surjective. We form the triangle

Y → G0
w→ X → ΣY.

We apply F and obtain an exact sequence

F (Σ−1G0)
F (Σ−1w) // F (Σ−1X) // FY // FG0

Fw // FX // F (ΣY ).

Both Fw and F (Σ−1w) = (Fw)[−1] are surjective, so we obtain a short
exact sequence

0 → FY → FG0 → FX → 0.

Thus FY belongs to Add(A[p]|p ∈ Z) since Grmod(A) is hereditary. By
Lemma 3.2 b), the object Y belongs to Add(ΣpG|p ∈ Z). Now it suffices to
take G1 = Y .

Step 3: Let X,Y be objects in T . By Step 2, there is a triangle in T

G1 → G0 → X → ΣG1,

where G0, G1 belong to Add(ΣpG|p ∈ Z), whose image under F is a short
exact sequence in Grmod(A)

0 → FG1 → FG0 → FX → 0.

If we apply HomT (?, Y ) to the triangle and HomGrmod(A)(?, FY ) to the short
exact sequence, we obtain a commutative diagram with exact rows

Hom T (ΣG1, Y ) // Hom T (X,Y ) //

��

Hom T (G0, Y )

��

// Hom T (G1, Y )

��
0 // (FX,FY ) // (FG0, FY ) // (FG1, FY ),

where the parentheses (, ) in the second row denote the groups of homo-
geneous A-linear maps. By Step 1, the rightmost two vertical maps are
isomorphisms. Therefore, the leftmost vertical map is surjective. Since X
and Y are arbitrary, we have proved that F is full.

√

Lemma 3.5. Let J = {f ∈ Mor(T )|Ff = 0}. Then J2 = 0.

Proof. Let f : X → Y be a morphism in J , that is, for any p ∈ Z and for
any morphism u : G→ ΣpX, we have Σpf ◦ u = 0.

Let G1
u→ G0

v→ X
w→ ΣG1 be a triangle in T such that G0, G1 belong to

Add(ΣpG|p ∈ Z). Since f belongs to J , we have f ◦ v = 0. Therefore, the
morphism f factors through w, that is, there is f ′ ∈ HomT (ΣG1, Y ) such
that f = f ′ ◦ w.
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Let G′1
u′→ G′0

v′→ Y
w′→ ΣG′1 be a triangle in T such that G′0, G

′
1 belong to

Add(ΣpG|p ∈ Z), Fu′ is injective and Fv′ is surjective. Then the induced
homomorphism

HomT (ΣG1, G
′
0) → HomT (ΣG1, Y )

is surjective. Therefore, there is h ∈ HomT (ΣG1, G
′
0) such that f ′ = v′ ◦ h.

Now let g : Y → Z be another morphism in J . By the arguments in the
second paragraph there is g′ : ΣG′1 → Z such that g = g′ ◦w′. Thus we have
g ◦ f = g′ ◦ w′ ◦ v′ ◦ h ◦ w = 0, and we are done.

√

3.2. Classically generated case. Let k be a commutative ring and let T
be a k-linear triangulated category with suspension functor Σ. Let G be
a classical generator for T , i.e. T is the closure of G under taking shifts,
extensions and direct summands. Let

A =
⊕
p∈Z

HomT (G,ΣpG)

be the graded endomorphism algebra of G. We assume that the category
grmod(A) of finitely presented graded A-modules is abelian (i.e. A is graded
right coherent) and hereditary.

Theorem 3.6. The functor

F : T → grmod(A), X 7→
⊕
p∈Z

HomT (G,ΣpX)

is well-defined, full, essentially surjective, and its kernel has square zero. In
particular, it induces a bijection from the set of isoclasses of objects (respec-
tively, of indecomposable objects) of T to that of grmod(A).

Proof. Lemma 3.2, 3.3, 3.4 and 3.5 and their proofs are still valid, mutatis
mutandis. For example, we need to replace Add by add in the statement
of Lemma 3.2, where for a class S of objects of an additive category A, we
denote by add(S) the closure of S under taking direct summands and finite
direct sums. It remains to prove that F is well-defined, that is, for any
object X of T , the graded A-module FX is indeed finitely presented.

Let T ′ be the full additive subcategory of T consisting of those objects
X such that F (X) is a finitely presented A-module. Evidently G belongs to
T ′. Thus, in order to conclude that T ′ equals T , it suffices to show that T ′

is stable under shifts, direct summands and extensions. The first two points
are clear.

Suppose that we have a triangle

Y
u→ Z

v→ X
w→ ΣY

in T such that FY and FX are finitely presented. Then the objects

F (Σ−1X) = (FX)[−1] and F (ΣY ) = (FY )[1]

are also finitely presented. We apply F to the above triangle to obtain an
exact sequence

F (Σ−1X)
F (Σ−1w) // F (Y ) Fu // FZ

Fv // FX
Fw // F (ΣY ).
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Note that all components except possibly FZ are finitely presented. Since
the category grmod(A) of finitely presented graded A-modules is abelian,
the kernel kerFv = cokerF (Σ−1w) of Fv and the image imFv = kerFw of
Fv are also finitely presented. Consequently FZ is finitely presented and
T ′ is stable under extensions. Therefore, the functor F is well-defined.

√

Examples 3.7. a) Let B be a finite dimensional hereditary algebra over
a field k. Let T = Db(modB) be the bounded derived category of finite
dimensional B-modules, and let G be the free B-module of rank 1. Then
A = B and the functor F : Db(modB) → grmod(B) takes X to its total
homology H∗X.

b) Let R be a discrete valuation ring with a uniformizing parameter π.
Denote B = R/(π2) and k = R/(π). Let T = Db(modB) be the bounded
derived category of finitely generated B-modules, and let G be the simple
module k. Then the graded endomorphism algebra A of G in T is isomor-
phic to the graded algebra k[u] with deg(u) = 1. Now Theorem 3.6 gives the
classification of the indecomposable objects of T which was previously ob-
tained by I. Burban in his thesis ([2]) and also by M. Künzer in [15, Lemma
3.1]. In fact, using the notations of M. Künzer, up to isomorphism, the inde-
composables are the complexes X [a,b] and X ]−∞,b], where, for given integers
a ≤ b, we denote by X [a,b] the complex

· · · → 0 → B︸︷︷︸
a

π→ B
π→ · · · π→ B

π→ B︸︷︷︸
b

→ 0 → · · ·

and by X ]−∞,b] the complex

· · · π→ B
π→ B

π→ B︸︷︷︸
b

→ 0 → · · · .

c) Let Ã be a dg algebra such that the category of finitely presented graded
modules over the graded algebra A = H∗(Ã) is abelian and hereditary. Let
T = per(Ã) be the perfect derived category and let G be the free dg Ã-module
of rank 1. Then the functor F takes X to its total homology viewed as a
graded A-module.

4. Application of the classification

Let k be a field. Let Γ denote the Ginzburg dg algebra of type A1 over
k, i.e. Γ is the dg algebra k[t] with deg(t) = −2 and trivial differential.

Recall that the perfect derived category per(Γ) is the smallest thick sub-
category of the derived category D(Γ) containing Γ. We denote by Dfd(Γ)
the finite dimensional derived category, i.e. the full triangulated subcategory
consisting of the dg Γ-modules whose homology is of finite total dimension
(cf. [13]). The triangulated category Dfd(Γ) is Hom-finite and 3-Calabi-Yau
(cf. [9] or [11]), classically generated by the simple dg Γ-module S = Γ/(tΓ)
concentrated in degree 0, which is a spherical object of dimension 3.

Let [1] denote the shift functor of the category grmod(Γ) of finitely pre-
sented graded Γ-modules. For an integer p and a strictly positive integer n,
the finite dimensional graded Γ-module Γ/(tnΓ)[p], viewed as an object in
Dfd(Γ), is indecomposable.
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Theorem 4.1 (Jørgensen [9]). a) Each indecomposable object in per(Γ) is
isomorphic to either Γ/(tnΓ)[p] for some integer p and some strictly positive
integer n or Γ[p] for some integer p.

b) Each indecomposable object in Dfd(Γ) is isomorphic to Γ/(tnΓ)[p] for
some integer p and some strictly positive integer n.

Proof. It is readily seen that the category grmod(A) for A = H∗(Γ)(= Γ as
graded algebras) is abelian and hereditary. We are therefore in a particular
case of Example 3.7 c). The functor

F = H∗ : per(Γ) → grmod(Γ)

induces a bijection between the set of isoclasses of indecomposable objects
of per(Γ) and that of grmod(A). Moreover, the full subcategory Dfd(Γ)
of per(Γ) is sent by F to the full subcategory of grmod(Γ) consisting of
finite dimensional graded Γ-modules. Now the theorem follows from the
classification of indecomposable objects for the latter category, which is
well-known.

√

Remark. It is not hard to check that the Auslander-Reiten quiver of the
perfect derived category has the following shape

P [4]

S[4]

P [2]

◦

P

S[2]

◦

◦

◦

S

◦

◦

◦

S[−2]

◦

◦

P [3]

S[−4]

P [1]

S[3]

P [−1]

◦

◦

S[1]

◦

◦

◦

S[−1]

◦

◦

◦

S[−3]

P [2]

◦

S[2]

P

S[−5]

◦

P [−2]

S

◦
??

??��

??��

��??

??���
??��

��?
??

??���

��?
?

??���

��?
??

??��

��?
??

??���

��??

??���

��?
??

??��

��?
??

��??

��

��

��??

��?
??

??��

��?
??

??���

��??

??���

��?
??

??��

��?
??

??���

��??

??���

��?
??

??��
??���

��??

??��

??��

??��

??��

��?
?

??���

where the picture is periodic as indicated by the labels. The Auslander-Reiten
quiver of Dfd(Γ) is the subquiver consisting of the components containing the
simples S and S[1]. This latter quiver was first determined by P. Jørgensen
in [9]; he considerably generalized the result in [10].

5. The Hall algebra

In this section, we prove the structure theorem (Theorem 5.1) for the
(derived) Hall algebra of the the Ginzburg dg algebra of type A1. We begin
with some reminders on Hall algebras of triangulated categories. We refer
to [21] for an excellent introduction to non derived Hall algebras.

5.1. The Hall algebra. We follow [22] and [23]. Let Q be the field of
rational numbers, q be a prime power and Fq be the finite field with q
elements. Let C be a Hom-finite triangulated Fq-category with suspension
functor Σ, such that for all objects X and Y of C, the space of morphisms
from X to Σ−iY vanishes for all but finitely many positive integers i.

Let X, Y and Z be three objects of C. We denote by Aut(Y ) the group
of automorphisms of Y and by [Y, Z]X the set of morphisms from Y to Z
with cone isomorphic to X. Following [22], we define the Hall number by

FZ
XY =

|[Y, Z]X |
|Aut(Y )|

·
∏

i>0 |Hom(Y,Σ−iZ)|(−1)i∏
i>0 |Hom(Y,Σ−iY )|(−1)i ,



THE HALL ALGEBRA OF A SPHERICAL OBJECT 9

where | · | denotes the cardinality. The Hall algebra of C over Q, denoted by
H(C), is the Q-vector space with basis the isoclasses [X] of objects X of C
whose multiplication is given by

[X][Y ] =
∑
[Z]

FZ
XY [Z].

It is shown in [22] [23] that it is an associative algebra with unit [0]. Notice
however that the algebra we define here is opposite to that in [22] [23].

5.2. The structure theorem. Let R be the Q-algebra with generators xi

and yi, i ∈ Z, subject to the following relations:

x2
ixi−1 − (1 + q−1)xixi−1xi + q−1xi−1x

2
i(1)

xix
2
i−1 − (1 + q−1)xi−1xixi−1 + q−1x2

i−1xi(2)
xixj − xjxi if |i− j| > 1(3)

yixi − qxiyi + q
q−1(4)

yixi+1 − q−1xi+1yi − 1
q−1(5)

yixj − xjyi if j 6= i, i+ 1(6)
y2

i yi−1 − (1 + q−1)yiyi−1yi + q−1yi−1y
2
i(7)

yiy
2
i−1 − (1 + q−1)yi−1yiyi−1 + q−1y2

i−1yi(8)
yiyj − yjyi if |i− j| > 1.(9)

Let Γ be the Ginzburg dg algebra of type A1 over the finite field Fq, and
Dfd(Γ) the finite dimensional derived category with suspension functor Σ.
Let H = H(Dfd(Γ)) be the Hall algebra.

Theorem 5.1. We have a Q-algebra isomorphism

φ : R −→ H, xi 7→ [Σ−2iS], yi 7→ [Σ−2i−1S],

where we recall that S = Γ/(tΓ) is the simple dg Γ-module concentrated in
degree 0.

One checks by a direct computation that φ is indeed an algebra homo-
morphism, i.e. the relations (1)–(9) are satisfied if we replace xi and yi by
[Σ−2iS] and [Σ−2i−1S] respectively. It remains to prove the surjectivity and
the injectivity.

5.3. Surjectivity of φ.

Proposition 5.2. The Q-algebra H is generated by the [ΣpS], p ∈ Z.

Proof. Let M be an object of Dfd(Γ). Thanks to Theorem 4.1, we may
assume that the differential of M is trivial. We have a short exact sequence
in the category of graded Γ-modules

0 // radM // M // topM // 0,

where radM is the radical of M , and topM = M/radM is the maximal
semisimple quotient of M . This sequence can be viewed as a sequence in
the category of dg Γ-modules, and yields a triangle in Dfd(Γ)

radM // M // topM // ΣradM.
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Now let E be an extension of topM by radM in Dfd(Γ), i.e. there is a
triangle in Dfd(Γ)

radM // E // topM
f // ΣradM.

Applying the cohomological functor H∗, we obtain a long exact sequence in
the category of graded Γ-modules

topM [−1]
H∗f [−1] // radM // H∗E // topM

H∗f // radM [1].

If H∗f 6= 0, then the dimension of H∗E is strictly smaller than that of H∗M .
IfH∗f = 0, then the dimensions are equal but the number of indecomposable
direct summands of H∗E is greater than or equal to that of H∗M , and
these two numbers equal if and only if H∗E is isomorphic to H∗M . Hence
by Theorem 3.6, the number of indecomposable direct summands of E is
greater than or equal to that of M , and these two numbers equal if and only
if E is isomorphic to M in Dfd(Γ). Thus

[topM ][radM ] = FM
topM,radM [M ] +

∑
[E]:E 6∼=M

FE
topM,radM [E]

where FM
topM,radM is nonzero and FE

topM,radM (E 6∼= M) is zero unless E has
strictly more indecomposable direct summands than M or the dimension of
H∗E is strictly smaller than that of H∗M . By induction the proof reduces to
the case where M is semisimple, namely, the case where M is isomorphic to⊕

p∈Z(ΣpS)⊕mp , where the mp’s are nonnegative integers and only finitely
many of them are nonzero. Applying a suitable shift, we may assume that
mp is zero for all positive p and m0 is nonzero. Let E be an extension of S
by M ′ =

⊕
p≤0(Σ

pS)⊕m′
p , where m′

p = mp if p is negative and m′
0 = m0−1.

Recall that S is a 3-spherical object. It follows that any morphism from S to
ΣM ′ either is 0 or induces an isomorphism between S and a direct summand
of ΣM ′. In both cases the above triangle splits. So E is isomorphic either
to M or to M ′′ =

⊕
p≤0(Σ

pS)⊕m′′
p (when it is well-defined), where m′′

p = m′
p

if p 6= −1 and m′′
−1 = m′

−1 − 1. Thus we have

[S][M ′] = FM
S,M ′ [M ] + FM ′′

S,M ′ [M ′′],

where FM
S,M ′ is nonzero. Now the proposition follows by induction on

∑
p∈Zmp.√

As a consequence, we have

Corollary 5.3. The algebra homomorphism φ : R→ H is surjective.

5.4. Injectivity of φ. Let Rx (respectively, Ry) be the subalgebra of R
generated by {xi|i ∈ Z} (respectively, by {yi|i ∈ Z}). The image of Rx

under φ is the subalgebra of H generated by {[Σ2iS]|i ∈ Z}, denoted by Hx,
which has a Q-basis {[M ]|M ∈ Dfd(Γ),HoddM = 0}, where HoddM is the
direct sum of homology spaces of M in odd degrees. Similarly, the image
Hy of Ry under φ is the subalgebra of H generated by {[Σ2i+1S]|i ∈ Z}, and
has a Q-basis {[M ]|M ∈ Dfd(Γ),HevenM = 0}, where HevenM is the direct
sum of homology spaces of M in even degrees.
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Thanks to (4)(5)(6), we have an isomorphism of Q-vector spaces

ψ : Rx ⊗Ry → R, f(x)⊗ g(y) 7→ f(x)g(y).

In particular, the product of a basis of Rx and a basis of Ry is a basis of R.
Now the injectivity is implied by the following two lemmas.

Lemma 5.4. The restriction φ|Rx : Rx → Hx (respectively, φ|Ry : Ry →
Hy) is an isomorphism.

Lemma 5.5. The set {[M ][N ]|M,N ∈ Dfd(Γ),HoddM = HevenN = 0} is
a Q-basis of H.

Proof of Lemma 5.4: On one hand, the algebra Rx is the Hall algebra of the
quiver ~A∞∞ of type A∞∞ (infinite to both sides) with linear (any) orientation.
It is NI-graded with I = Z. For each d ∈ NI, the dimension of the degree
d component of Rx equals the number of ways of expressing d as sum of
dimension vectors of indecomposable representations over ~A∞∞.

On the other hand, the algebra Hx is also NI-graded with deg([M ]) =
(dimH2i(M))i∈I . Indeed, if E is an extension of M by M ′, where HoddM =
HoddM ′ = 0, then we have exact sequences

0 = H2i−1(M ′) → H2i(M) → H2i(E) → H2i(M ′) → H2i+1(M) = 0.

As a result, we have the equality

deg([E]) = deg([M ]) + deg([M ′]).

For d ∈ NI, the dimension of the degree d component of Hx equals the
number of ways of expressing d as sum of deg([M ]) with M ∈ Dfd(Γ) inde-
composable and HoddM = 0.

Now the homomorphism φ|Rx is NI-graded and restricts to an isomor-
phism in each degree d ∈ NI because the map deg defines a bijection from
the set of isoclasses of indecomposable objects of Dfd(Γ) whose homology is
concentrated in even degrees to the set of dimension vectors of indecompos-
able representations over the quiver ~A∞∞. Hence it is an isomorphism.

√

Proof of Lemma 5.5: By the surjectivity of φ, the set of products

{[M ][N ]|M,N ∈ Dfd(Γ),HoddM = HevenN = 0}
generates the Q-vector space H. It remains to prove that these products are
linearly independent.

Following [8], cf. also [7], we define a partial order ≤∆ on the set of
isoclasses of objects in Dfd(Γ) as follows: if X and Y are two objects of
Dfd(Γ), then [Y ] ≤∆ [X] if there exists an object Z of Dfd(Γ) and a triangle
in Dfd(Γ):

X → Y ⊕ Z → Z → ΣX.
We extend the partial order ≤∆ to a total order �.

Now suppose (M1, N1), . . . , (Mr, Nr) are pairwise distinct pairs of objects
of Dfd(Γ) such that

HoddM1 = . . . = HoddMr = HevenN1 = . . . = HevenNr = 0.

Suppose that λ1, . . . , λr are rational numbers such that

λ1[M1][N1] + . . .+ λr[Mr][Nr] = 0.
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By the assumption on the Mi’s and Ni’s, there is a unique maximal element
among all [Mi ⊕Ni]’s, say [M1 ⊕N1]. Then we have

λ1[M1][N1] + . . .+ λr[Mr][Nr] = λ1F
M1⊕N1
M1N1

[M1 ⊕N1] + smaller terms,

since a nontrivial extension of two objects is always smaller than the direct
sum of them. The (derived) Hall number FM1⊕N1

M1N1
is a nonzero rational

number. Therefore λ1 has to be zero. An induction on r shows that λ1 =
. . . = λr = 0.

√

6. From the Hall algebra to the torus

Let v =
√
q. We tensor R with Q(v) over Q, and still denote the resulting

algebra by R. Let I be the ideal of R generated by the space [R,R] of
commutators of R.

Lemma 6.1. The assignment ϕ : xi 7→ v
v2−1

x, yi 7→ v
v2−1

x−1 defines an
algebra homomorphism from R to Q(v)[x, x−1] with kernel I.

Proof. We have

R/I ∼= Q(v)[xi, yi]i∈Z/(xiyi = xi+1yi =
q

(q − 1)2
).

Now it is clear that xi 7→ v
v2−1

x, yi 7→ v
v2−1

x−1 defines an algebra isomor-
phism from R/I to Q(v)[x, x−1].

√

7. General case

The general case can be treated similarly. Here we only give the final
result and the key points of the proof.

Theorem 7.1. Let d be an integer, and d′ = d− 1. Let D be the algebraic
triangulated category classically generated by a d-spherical object, and let
H(D) be the Hall algebra of D over Q.

(i) When d ≥ 3 (i.e. d′ ≥ 2), the algebra H(D) is generated by zi, i ∈ Z,
subject to the following relations:

z2
i zi−d′ − (q + 1)q(−1)d

zizi−d′zi + q1+2(−1)d
zi−d′z

2
i(10)

ziz
2
i−d′ − (q + 1)q(−1)d

zi−d′zizi−d′ + q1+2(−1)d
z2
i−d′zi(11)

zizi+1 − q−1zi+1zi − 1
q−1(12)

zizj − q(−1)j−i(1+(−1)−d)zjzi if i− j < −d′(13)

zizj − q(−1)j−i
zjzi if − d′ < i− j < −1.(14)

(ii) When d = 2 (i.e. d′ = 1), the algebra H(D) is generated by zi, i ∈ Z,
subject to the following relations:

z2
i zi−1 − (q + 1)qzizi−1zi + q3zi−1z

2
i − q(q + 1)zi(15)

ziz
2
i−1 − (q + 1)qzi−1zizi−1 + q3z2

i−1zi − q(q + 1)zi−1(16)

zizj − q2(−1)j−i
zjzi if i− j < −1.(17)
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(iii) When d = 1 (i.e. d′ = 0), the algebra H(D) is generated by zi,j,
i ∈ Z, j ∈ N, subject to the following relations:

zi,jzi′,j′ − zi′,j′zi,j , if i− i′ 6= ±1(18)

zi,jzi+1,j′ −
∑

0≤l≤min{j,j′} F
l
j,j′zi+1,j′−lzi,j−l(19)

where

F l
j,j′ =



1, if l = 0
q−1
ql+1 , if 0 < l < min{j, j′}
q−j′ , if l = j′ < j

q−j , if l = j < j′

1
qj−1(q−1)

, if l = j = j′.

(iv) When d = 0 (i.e. d′ = −1), the algebra H(D) is generated by zi,
i ∈ Z, subject to the following relations

z2
i zi+1 − (q + 1)q−2zizi+1zi + q−3zi+1z

2
i − (q + 1)q−3zi(20)

ziz
2
i+1 − (q + 1)q−2zi+1zizi+1 + q−3z2

i+1zi − (q + 1)q−3zi−1(21)

zizj − q2(−1)j−i
zjzi if i− j < −1.(22)

(v) When d ≤ −1 (i.e. d′ ≤ −2), the algebra H(D) is generated by zi,
i ∈ Z, subject to the following relations:

z2
i zi−d′ − (q + 1)q−1−(−1)−d

zizi−d′zi + q−1−2(−1)−d
zi−d′z

2
i(23)

ziz
2
i−d′ − (q + 1)q−1−(−1)−d

zi−d′zizi−d′ + q−1−2(−1)−d
z2
i−d′zi(24)

zizi+1 − q−1zi+1zi − 1

q(−1)−d
(q−1)

(25)

zizj − q(−1)j−i(1+(−1)−d)zjzi if i− j < d′(26)

zizj − q(−1)j−i
zjzi if d′ < i− j < −1.(27)

Proof. Let S be the d-spherical object, and Σ be the suspension functor.
(i) and (v): Similar to Theorem 5.1, with zi representing Σ−iS.
(ii) and (iv): Notice that both the Hall algebra H(D) and the desired

algebra are filtered, and the algebra homomorphism from the desired alge-
bra to the Hall algebra H(D) is a morphism of filtered algebras, and the
associated graded algebra homomorphism is an isomorphism, which has a
similar proof to that for Theorem 5.1, with zi representing for Σ−iS.

(iii) In this case, the triangulated category D is equivalent to the bounded
derived category of the hereditary abelian category of finite dimensional
representations over the Jordan quiver. Then the desired result follows
from [22, Proposition 7.1] and the classical result on the Hall algebra of
the above hereditary abelian category (cf. for example [18]), with zi,j rep-
resenting Σ−iMj , where Mj is the indecomposable nilpotent representation
of the Jordan quiver of dimension j.

√
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