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BOUNDED DERIVED CATEGORIES AND REPETITIVE

ALGEBRAS

DIETER HAPPEL, BERNHARD KELLER AND IDUN REITEN

Introduction

Let Λ be a finite dimensional algebra over a field k. It was proved in [H1] that
there is a full and faithful embedding of the bounded derived category Db(Λ) into the

stable category modΛ̂ of finite dimensional modules over the repetitive algebra Λ̂.
This embedding is an equivalence if and only if Λ has finite global dimension [H1].
The category Db(Λ) is a triangulated category which does not have almost split

triangles when Λ has infinite global dimension [H2], whereas modΛ̂ is triangulated
and always has almost split triangles [H1] [H2].

The purpose of this paper is to investigate the relationship between Db(Λ) and

modΛ̂ from various points of view, which is of course meaningful only for algebras Λ of
infinite global dimension. The most satisfactory results are obtained for Gorenstein
algebras, especially for selfinjective algebras.

We investigate the embedding Db(Λ) ⊂ modΛ̂ from the point of view of universal
properties with respect to triangle functors to triangulated categories with almost
split triangles, and also to which extent modΛ̂ is the smallest category containing
Db(Λ) with these properties. The first question has a positive answer for Gorenstein
algebras, and is not true in general. The second question has a negative answer even
for selfinjective algebras.

We also investigate the behavior of almost split triangles and irreducible maps
under the embedding functor, and show that both are actually preserved. While it is
known from [H2] what the end terms of almost split triangles in Db(Λ) look like, and
hence the left and right end terms of certain irreducible maps, we do not know in
general so much about irreducible maps in Db(Λ). However in the selfinjective case
we show that there are no irreducible maps not associated with almost split triangles
when (radΛ)2 6= 0, and we describe them all when (radΛ)2 = 0. We believe that also
for arbitrary Λ there should be very few irreducible maps not associated with almost
split triangles. As an application of our results we show that when Λ is selfinjective,
all the components of the AR-quiver of the category Kb(P) of bounded complexes
of projective modules are of the form ZA∞.

The paper is organised as follows. In section 1 we give some background material

from [H1] on the categories Db(Λ) and modΛ̂, including properties of almost split
triangles. In section 2 we give an example showing that in general the embedding

Db(Λ) ⊂ modΛ̂ is not universal among triangle functors from Db(Λ) to triangulated
categories with almost split triangles. We also show that the embedding mod Λ ⊂

modΛ̂ has a weak universal property with respect to triangle functors from Db(Λ)
to triangulated categories where the Nakayama functor becomes an equivalence. We
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2 DIETER HAPPEL, BERNHARD KELLER AND IDUN REITEN

deduce that if Λ is Gorenstein, there is a natural triangle functor from modΛ̂ to
Db(Λ). In section 3 we show that even when Λ is selfinjective, there is an infinite

strictly descending chain of triangulated subcategories of modΛ̂ with almost split
triangles and containing Db(Λ). In section 4 we show that irreducible maps in

Db(Λ) stay irreducible in modΛ̂ , and give sufficient conditions for the existence
of irreducible maps in Db(Λ) of the form S[−1] → T where S and T are simple
Λ-modules. In section 5 we show that almost split triangles in Db(Λ) stay almost

split in modΛ̂, and give the shape of the components of the AR-quiver of Kb(P)
for selfinjective algebras. We also give necessary conditions for having irreducible
maps in Db(Λ) not coming from almost split triangles for Gorenstein algebras, and
deduce the result on irreducible maps in Db(Λ) when Λ is selfinjective. In section 6
we deal with arbitrary finite dimensional algebras, and give some results supporting
the suspicion that there are very few irreducible maps not associated with almost
split triangles. We also show that the natural questions of a connection between
irreducible maps between infinite complexes of projective modules and their finite
parts have negative answers.

1. Preliminaries

In this section we will fix the notation and recall some of the results frequently
used in the subsequent sections. For the proofs of the stated propositions we refer
to [H1]. Let Λ be a finite dimensional algebra over a field k.

We denote by mod Λ the category of finitely generated left Λ-modules and by ΛP
(resp. ΛI) the full subcategory of projective (resp. injective) Λ-modules. For a simple
Λ-module S we denote by P (S) (resp. I(S) ) the projective cover (resp. injective
envelope) of S. We denote by νΛ : ΛP →Λ I the Nakayama functor defined by
νΛ = D Hom(−,Λ Λ), where D is the duality with respect to k, and by ν−

Λ : ΛI →Λ P
the inverse Nakayama functor which is defined by ν−

Λ = Hom(DΛΛ,−). We denote
by Db(Λ) the bounded derived category of mod Λ. The Nakayama functors νΛ and ν−

Λ

induce inverse equivalences of triangulated categories still denoted by νΛ : Kb(ΛP) →
Kb(ΛI) and ν−

Λ : Kb(ΛI) → Kb(ΛP). We denote by K−,b(ΛP) the homotopy category
of complexes over ΛP bounded above with bounded cohomology groups. Note that
K−,b(ΛP) ≃ Db(Λ). For a complex Z = (Z i, di) in Db(Λ) and n ∈ Z we always have
a triangle Z≥n → Z → Z<n → Z≥n[1] in Db(Λ), where Z i

≥n = Z i for i ≥ n, Z<n = Z i

for i < n, and zero otherwise, with the induced differentials.

To Λ we may associate the repetitive algebra Λ̂ and its category mod Λ̂ of finitely
generated modules. The Λ̂-modules X are given by X = (Xi, fi) where Xi ∈ mod Λ
and Xi = 0 for almost all i and fi : Xi → ν−

Λ Xi+1 such that fiν
−
Λ (fi+1) = 0 for all i.

A morphism of Λ̂-modules is defined in an obvious way. There is an automorphism

νΛ̂ : mod Λ̂ → mod Λ̂ defined by (νΛ̂X)i = Xi+1. The inverse is denoted by ν−

Λ̂
. The

category mod Λ̂ is a Frobenius category in the sense of [H1]. The indecomposable

projective-injective Λ̂-modules are given by I = P = (Xi, fi) with Xi = P (S), Xi+1 =
I(S), fi = idP (S) and zero otherwise. Note that topP = νΛ̂ soc P . Clearly there are
enough projectives. So for each X we obtain exact sequences 0 → X → I(X) →

Ω−

Λ̂
X → 0 and 0 → ΩΛ̂X → P (X) → X → 0. We denote by modΛ̂ the stable
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category. This is a triangulated category where Ω−

Λ̂
serves as a translation functor.

If X ∈ modΛ̂, we may choose a representative, again denoted by X ∈ mod Λ̂, without
indecomposable projective direct summands. This fact will be used frequently later
on.

There is a triangle functor µ : Db(Λ) → modΛ̂ which is full and faithful such that
µ extends the identity functor on modΛ, where mod Λ is embedded in Db(Λ) (resp.

modΛ̂) as complexes (resp. modules) concentrated in degree zero. It is known [H2]
that µ is an equivalence if and only if gl. dim Λ < ∞.

In general we recall from [GK] the following description of Im µ. Z = (Zi, gi) ∈
Im µ if and only if there is some n ≥ 0 such that (Ω−n

Λ̂
Z)j = 0 for j > 0 and

(Ωn

Λ̂
Z)j = 0 for j < 0. Also note that for a Λ̂-module Z = (Zi, gi) with Zi = 0 for

i < 0 also (Ωr

Λ̂
Z)j = 0 for j < 0 and all r ≥ 0.

This has the following immediate consequence for Gorenstein algebras (see also
[CZ]).

Corollary 1.1. Let Λ be a Gorenstein algebra. Then Im µ = {Z = (Zi, gi) ∈

mod Λ̂| pdΛ Zi < ∞ for i 6= 0}

Proof. If Λ is a Gorenstein algebra then the modules of finite projective dimension
coincide with the modules of finite injective dimension. Moreover this dimension
is bounded by the projective dimension of DΛΛ, which coincides with the injective

dimension of ΛΛ. Suppose that Z = (Zi, gi) ∈ mod Λ̂ satisfies pdΛZi < ∞ for i 6=
0, then it follows immediately from the criterion mentioned above from [GK] that

Z ∈ Im µ. Conversely let Z = (Zi, gi) ∈ Im µ and assume that Z = (Zi, gi) ∈ mod Λ̂
satisfies pdΛ Zi = ∞ for some i 6= 0. We may assume that i > 0. Choose i maximal
with this property. So pdΛZj < ∞ for j > i. By the first part of the proof and
the fact that Im µ is a triangulated category the factor module Z ′ = (Z ′

j, gj) with

Z ′
j = Zj for j ≤ i and Z ′

j = 0 for j > i is contained in Im µ. But then (Ω−n

Λ̂
Z ′)i 6= 0

for all n ≥ 0, in contrast to the result recalled from [GK]. �

Let C be a Hom-finite triangulated category, that is, the homomorphism spaces
are finite dimensional over k. Assume that C is also Krull-Schmidt, that is , the
indecomposable objects have local endomorphism rings. We say that there is an
almost split triangle ending at Z provided there is a triangle in C of the form

X
u
−→ Y

v
−→ Z

w
−→ X[1]

where (i) X is indecomposable, (ii) for all f : W → Z not split epi there is some
g : W → Y with f = gv and (iii) w 6= 0.

We refer to [H1] for equivalent formulations and the connection to irreducible
maps.

In case there is an almost split triangle ending at Z, the starting term X is uniquely
determined up to isomorphism. We then define τCZ = X.

Almost split sequences exist in mod Λ̂ and the translation τ is DTr, where Tr

denotes the transpose [H2]. It follows easily from this that modΛ̂ has almost split
triangles with τ = DTr. It is well known and can be shown using this description of

τ that for Z ∈ modΛ̂ indecomposable, we have τΛ̂Z = νΛ̂Ω2
Λ̂
X.
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In the case of Db(Λ) the following is known [H2]. Let Z ∈ Db(Λ) be indecom-

posable. Then there is an almost split triangle X → Y → Z
w
−→ X[1] if and only if

Z ∈ Kb(ΛP). In this case τDb(Λ)Z = νΛZ[−1]. Thus Db(Λ) has almost split triangles,

that is, for any indecomposable object Z in Db(Λ) there is an almost split triangle
X → Y → Z → X[1] in Db(Λ) if and only if gl. dim Λ < ∞.

2. A counterexample and a weak universal property

Problem: Let Λ be an artin algebra and

µ : Db(Λ) → mod Λ̂

the embedding of [H1]. Let C be a triangulated category with almost split triangles
and F : Db(Λ) → C a triangle functor. Does there exist a triangle functor

G : mod Λ̂ → C

such that F ∼→ µG ?

The following example shows that the answer is no, in general.

Example: Let Λ be given as a factor algebra of a path algebra of a field k by an
ideal:

Tβ 77 Sα
oo , 〈β2, αβ〉.

Let S, T be the two simple Λ-modules. Then

P (S) =

(
S
T

)
and P (T ) =

(
T
T

)

are the indecomposable projective Λ-modules and I(S) = S and

I(T ) =

(
S T

T

)

the indecomposable injective Λ-modules. It is easy to see that Λ is not Gorenstein
(I(T ) is of infinite projective dimension). Let Γ = EndΛ(P (T )), so Γ = k[x]/(x2)
and let F = Hom(P (T ),−) be a functor from modΛ to mod Γ. Now F is exact, so
F induces a functor Db(Λ) → Db(Γ). Since Γ is selfinjective, there is a functor [Ric]

π : Db(Γ) → mod Γ ,

so there is a triangle functor φ : Db(Λ) → modΓ and modΓ has almost split triangles.

We are now going to show that there is no triangle functor G : mod Λ̂ → modΓ such
that φ = µG.

Suppose there exists a triangle functor G : mod Λ̂ → mod Γ such that φ = µG. Let

X = (Xi, fi) be an object of mod Λ̂ with X1 = S and Xi = 0 for i 6= 1. Then Ω−

Λ̂
X =

P (S), the stalk module concentrated in degree zero. So GΩ−

Λ̂
X = φ(P (S)) = T and

GΩ−

Λ̂
X ∼= Ω−

Γ G(X) = G(X) ,
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so G(X) ∼= T . Also G(S) = φ(S) = 0 and G(T ) = φ(T ) = T . But then also
G(ΩΛ̂T ) = T . Now ΩΛ̂T = (Yi, fi) where Y0 = T , Y1 = I(T ) and f0 : T → P (T ) the
canonical map, and Yi = 0 for i 6= 0, 1. Consider the exact sequence in mod Λ:

0 → T → P (T ) → T → 0.

It gives rise to a triangle

T [−1]
f

−→ T → P (T ) → T (∗)

in Db(Λ). Since φ(P (T )) = 0, the map φ(f) is invertible. Now we also have the

exact sequence in mod Λ̂:

0 → Z → ΩΛ̂T → T → 0.

This gives rise to a triangle

Z → ΩΛ̂T
µ(f)
−→ T → Z[1] ,

which identifies with the image of the triangle (∗) under µ. Applying G then shows
that G(Z) = 0 because µ(G(f)) = φ(f) is invertible. Now Z = (Zi, fi), where
Z1 = I(T ) and Zi = 0 for i 6= 1. Let U = (Ui, fi) with U1 = T and Ui = 0 for i 6= 1.

Then we obtain an exact sequence in mod Λ̂

0 → U → Z → U ⊕ X → 0 ,

which gives rise to a triangle

U → Z → U ⊕ X → U [1]

in mod Λ̂, and so

G(U) → G(Z) → G(U) ⊕ G(X) → G(U)[1]

is a triangle in mod Γ. Now G(Z) = 0 by the computation above and G(X) = T , so
the triangle is of the form

G(U) → 0 → G(U) ⊕ T → G(U)[1] ,

a contradiction.

A weak universal property. As the above counterexample shows, the repetitive
category is not the ‘universal triangulated category with Auslander-Reiten triangles
containing the derived category’. However, we will see that if we take into account
additional structure, we do get a weak universal property for the embedding

modΛ → mod Λ̂.

Roughly speaking this embedding is the ‘universal functor to a triangulated cate-
gory where the Nakayama functor becomes an equivalence’. In the case where Λ is
Gorenstein, we will use this property to construct a natural triangle functor from
the stable category of the repetitive category to the bounded derived category.

Let us now construct the additional structure we need: For short, let us write M
for mod Λ and R for mod Λ̂. We write Σ : M → M for the right exact extension of
the Nakayama functor defined in section 1: Thus, we have Σ(M) = (DΛ) ⊗Λ M for
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all M in M. We now define an exact functor R → R, which we will also denote by
Σ. Namely, we put

Σ(X) = νΛ̂(ΩX) ,

where Ω is the syzygy functor R → R constructed as follows: If X is an object of R
with structure maps fi, i ∈ Z, we define the object P (X) to have the ith component

(Λ ⊗k Xi) ⊕ (DΛ ⊗k Xi−1)

and the structure maps
[

0 0
1 0

]
: νP (X)i → P (X)i−1.

Thus, the object P (X) is projective-injective. We define the canonical map P (X) →
X to have the components

[can, gi−1] : P (X)i → Xi

where can is the canonical map from Λ⊗kXi to Xi and gi−1 is the map DΛ⊗kXi−1 →
Xi induced by ν(fi−1). Thus, the map P (X) → X is a functorial projective right
approximation of X. We define ΩX to be the kernel of P (X) → X.

The functor Σ : R → R is exact, preserves projective-injectives and induces
an equivalence in the stable category (namely, the Serre functor). Moreover, if
F0 : M → R denotes the canonical embedding, we have a morphism of functors

φ0 : F0Σ → ΣF0.

Namely, for an object M of M, the only non vanishing component of the morphism
F0Σ(M) → ΣF0(M) is induced by the canonical map DΛ ⊗k M → DΛ ⊗Λ M . It is
easy to check that if P is a projective Λ-module, then φ0(P ) becomes an isomorphism
in the stable category of R. To summarize, we have

• a k-linear Frobenius category R endowed with an exact functor Σ : R →
R preserving projective-injectives and inducing an equivalence in the stable
category,

• an exact functor F0 : M → R endowed with a morphism

φ0 : F0Σ → ΣF0

such that φ0(P ) becomes an isomorphism in the stable category for each
projective module P .

Theorem 2.1. Let E be a k-linear Frobenius category endowed with an exact functor
Σ : E → E preserving projective-injectives and inducing an equivalence in the stable
category. Let F : M → E be an exact functor endowed with a morphism φ : ΣF →
FΣ such that φ(P ) becomes an isomorphism in the stable category for each projective
module P . Then there is a triangle functor

G : R → E ,
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such that G commutes with Σ up to isomorphism and the triangle

M
F0 //

F
  @

@@
@@

@@
@

R

G
��
E

commutes up to isomorphism.

The theorem will be proved below. Note that it does not make any claim about
uniqueness. In fact, one could obtain a more intrinsic formulation and a uniqueness
statement by working in a more sophisticated framework based on towers of trian-
gulated categories [K2], or derivators [G] or the homotopy category of dg categories
[Ta] [To] [K1]. However, this would go beyond the scope of this article.

Corollary 2.2. Suppose that Λ is Gorenstein. Then there is a triangle functor

G : mod Λ̂ → Db(Λ)

which commutes with the inclusion of mod Λ and such that we have a functorial
isomorphism

Σ ◦ G ∼→ G ◦ Σ ,

where Σ : mod Λ̂ → mod Λ̂ is the Serre functor and Σ : Db(Λ) → Db(Λ) the functor

M 7→ DΛ
L

⊗Λ M .

Proof of the corollary. Let E be the category of right bounded complexes of projec-
tive Λ-modules with bounded homology. Then the stable category of E is triangle
equivalent to the bounded derived category. For each Λ-bimodule B, write p(B)
for a projective bimodule resolution of B. Let Σ : E → E be the (total) tensor
product over Λ by the complex of bimodules p(DΛ). Let F0 be the functor taking
a module M to p(Λ) ⊗Λ M . To construct φ : F0Σ → ΣF0, it suffices to construct a
quasi-isomorphism of bimodule complexes

φ̃ : p(DΛ) ⊗Λ p(Λ) → p(Λ) ⊗Λ DΛ.

Indeed, since the morphism

p(DΛ) ⊗Λ p(Λ) → DΛ

is a projective resolution, it lifts (in the homotopy category) along the quasi-isomorphism

p(Λ) ⊗Λ DΛ → DΛ

and we define φ̃ to be a representative of a lift. If P is a projective module, then in
the square (commutative in the homotopy category),

p(DΛ) ⊗Λ p(Λ) ⊗Λ P //

φ(P )
��

DΛ ⊗Λ P

1

��
p(Λ) ⊗Λ DΛ ⊗Λ P // DΛ ⊗Λ P

the two horizontal morphisms are quasi-isomorphisms and so the left vertical mor-
phism is a homotopy equivalence. This means that φ(P ) becomes an isomorphism
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in the stable category. Thus, the hypotheses of the theorem are satisfied and we get,
if Λ is Gorenstein, a natural triangle functor

G : mod Λ̂ → Db(Λ)

which extends the inclusion of mod Λ and commutes with Σ up to isomorphism of
triangle functors.

Proof of the theorem. It is not hard to see that it suffices to define a functor with
the required properties on the full subcategory of objects X of R with Xi = 0 for
i > 0. Let X be such an object of R with structure maps fi : Σ(Xi) → Xi+1, i ∈ Z.
We define G1(X) to be the complex over E with components Σi(F (X−i)) and with
the differential

Σi(F (X−i)) → Σi−1(F (X−i+1))

given by (Σi−1φ(X−i))(Σ
i−1F (fi)). It is straightforward to check that the square of

the differential vanishes and that with the natural definition of G1 on morphisms,
we get a k-linear functor

G1 : R → Cb(E)

taking exact sequences of R to componentwise conflations of the category Cb(E)
of bounded complexes over E . Moreover, the functor G1 takes an indecomposable
projective injective object given by a projective P (put in degree −1, for simplicity
of notation) and the identity ΣP → ΣP to a complex of the shape

. . . // 0 // Σ(F (P ))
φ(P )

// F (Σ(P )) // 0 // . . .

Now since E is a Frobenius category, we have a canonical triangle functor [KV] [Ric]

Db(E) → E

extending the natural projection functor E → E . We define G2 to be the composition

Cb(E) → Db(E) → E

and we put G3 = G1 ◦ G2 : R → E . Then G3 takes projective-injectives to zero-
objects: Indeed, a complex of the form

. . . // 0 // Σ(F (P ))
φ(P )

// F (Σ(P )) // 0 // . . .

is the cone over the morphism φ(P ) (between complexes concentrated in degree 0).
Since φ(P ) becomes invertible in E by assumption, the image of the cone under G2 is
a zero object. Thus, G3 induces a k-linear functor G. It is clear from the construction
that F0G is isomorphic to F . Since G1 takes conflations to componentwise conflations
and the projection Cb(E) → Db(E) transforms each componentwise conflation into a
canonical triangle, the functor G is in fact a triangle functor. Therefore, to construct
a commutation isomorphism ΣG → GΣ, it suffices to construct such a commutation
isomorphism for Ω−1 ◦ Σ. Now in R the composition Ω−1 ◦ Σ is isomorphic to the
degree shifting functor νΛ̂. For an object X, the image G1(νΛ̂X) is isomorphic to
Σ(G1(X))[−1], where we denote by Σ the functor from Cb(E) to itself obtained by
applying Σ : E → E to each component. Now the canonical triangle functor

Db(E) → E
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is functorial with respect to exact functors preserving projective-injectives and thus
canonically commutes with Σ. Moreover, since it is a triangle functor, it is compatible
with shifts. So we get a canonical isomorphism

Ω−1Σ(G(X)) ∼→ G2(Σ(G1(X))[−1]) ∼→ G1(G2(Σ(Ω−1X))).

Note that for Gorenstein algebras we now have a positive answer to the question
posed in the beginning of the section.

3. Infinite chain of subcategories

In this section we construct triangulated subcategories of modΛ̂ containing Db(Λ)
for Λ a selfinjective algebra. Recall from Section 1 that in this case Db(Λ) can be

identified with the full subcategory of modΛ̂ with objects X = (Xi, fi) such that Xi

is a projective Λ-module for i 6= 0.

Lemma 3.1. Let Λ be a selfinjective algebra. Let I ⊆ Z and let CI ⊂ {X = (Xi, fi) ∈

modΛ̂ | Xi is a projective Λ-module if i 6∈ I}. Then the following hold

i) CI ⊆ modΛ̂ is a triangulated subcategory.
ii) 0 ∈ I if and only if Db(Λ) ⊆ CI .
iii) If I, I ′ ⊆ Z with I ⊆ I ′, then CI ⊆ CI′.

Proof. If P is a projective-injective Λ̂ -module, then P ∈ CI , since Λ is selfinjective.

So CI ⊆ modΛ̂.
Let X ∈ CI and consider an exact sequence 0 → X → I(X) → Ω−

Λ̂
X → 0

with I(X) injective in mod Λ̂. Then for each i ∈ Z we have an exact sequence
0 → Xi → I(Xi) ⊕ ν−I(Xi+1) → Zi → 0 where I(Xi) is the Λ-injective envelope of
Xi. If i 6∈ I, the sequence splits, since Xi is projective, hence Ω−

Λ̂
X ∈ CI . Thus CI

is closed under the translation functor in modΛ̂. Finally, let X → Y → Z → C[1]

be a triangle in modΛ̂ with X, Y ∈ CI . Then the triangle gives an exact sequence

0 → X → I(X) ⊕ Y → Z → 0 in modΛ̂. So for each j ∈ Z we obtain an exact
sequence 0 → Xi → I(X)i ⊕ Yi → Zi → 0 in mod Λ. If i 6∈ I then Xi, Yi are
projective, so Zi is projective, hence Z ∈ CI , so CI is a triangulated subcategory of

modΛ̂.
(ii) and (iii) are obvious. �

Example 3.2. Let n ∈ N and let I = (n + 1)Z. Let Cn = CI . Then νn+1

Λ̂
is an

automorphism on Cn. In fact, if X = (Xi, fi) ∈ Cn, then (νn+1

Λ̂
X)i = Xi+n+1. Since

j 6∈ (n + 1)Z if and only if j + n + 1 6∈ (n + 1)Z, we see that νn+1

Λ̂
X ∈ Cn.

If we choose n + 1 = 2k and let Dk = Cn we obtain a descending chain of subcate-

gories · · · ⊆ D2 ⊆ D1 ⊆ modΛ̂ and clearly Db(Λ) =
⋂

i≥1 Di.

Let Λ be a symmetric algebra and let F = νΛ̂ΩΛ̂ be the Serre functor on modΛ̂.

So for all X, Y ∈ mod Λ̂ we have ηX,Y : Hom(X, Y )
∼
−→ DHom(Y, F (X)) natural in X

and Y . We will show that F n+1 is a Serre functor on Cn. For this we will construct
ηX : F n+1(X) → F (X) such that ηX is natural in X and for all X, Y ∈ Cn we have
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that Hom(Y, F n+1(X))
∼
−→ Hom(Y, F (X)). This then implies that F n+1 is a Serre

functor on Cn, hence Cn has Auslander-Reiten triangles.(Compare [RV])

Lemma 3.3. For all X ∈ mod Λ̂ there is an exact sequence 0 → KX
µX

−−→ F (X)
πX−→

X → 0 which is natural in X.

Proof. Since Λ is finite-dimensional, there is a functor P : mod Λ →Λ P and an exact

sequence 0 → ΩΛX
αX−−→ P (X)

βX

−→ X → 0 natural in X for X ∈ modΛ (compare

section 2). Now let X = (Xi, fi) ∈ mod Λ̂. Applying ν−

Λ̂
if necessary we may assume

that Xi = 0 for i < 0. Now P extends to a functor P̃ : mod Λ̂ →Λ̂ P and we have

an exact sequence 0 → ΩΛ̂X → P̃ (X) → X → 0. Explicitly we have for i ≥ 0 a
commutative diagram of the form

P (Xi−1) ⊕ ΩΛXi

(
P (fi−1) 0

αXi
ΩΛfi

)

//

(
1 0
0 αXi

)

��

P (Xi) ⊕ ΩΛXi+1
(

1 0
0 αXi+1

)

��
P (Xi−1) ⊕ P (Xi)

(
−P (fi−1) 0

1 P (fi)

)

//

(
0

βXi

)

��

P (Xi) ⊕ P (Xi+1)
(

0
βXi+1

)

��
Xi

fi // Xi+1

The map πX : F (X) → X is now defined by (πX)i : P (Xi)⊕ΩXi+1

(
βXi

0

)

−−−−→ Xi. Clearly
πX is surjective and KX is described by the following commutative diagram

ΩXi ⊕ ΩΛXi+1

(
Ωfi 0
1 ΩΛfi+1

)

//

(
αXi

0

0 1

)

��

ΩXi+1 ⊕ ΩXi+2
(

αXi+1
0

0 1

)

��
P (Xi) ⊕ ΩXi+1

(
P (fi) 0
αXi

ΩΛfi+1

)

//

(
βXi

0

)

��

P (Xi+1) ⊕ ΩXi+2
(

βXi+1

0

)

��
Xi

fi // Xi+1

Since P , P̃ are functors, the exact sequence 0 → KX
µX

−−→ F (X)
πX−→ X → 0 is

natural in X. �

So for each 1 ≤ i ≤ n we obtain an exact sequence

(∗)i 0 → F i(KX) → F i+1(X) → F i(X) → 0

Now (∗)i induces ηX : F n+1(X) → F (X) natural in X. Thus for all X, Y ∈ mod Λ̂
we have ηX,Y : Hom(Y, F n+1(X)) → Hom(Y, F (X)) natural in X and Y .

For the following lemma we need some notation. Let X ∈ modΛ and denote by

δi(X) = (Zj , γj) the Λ̂-module with Zi−1 = Zi = X, Zj = 0 for j 6= i−1, i, γi−1 = 1X

and γj = 0 for j 6= i − 1.
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Lemma 3.4. If X ∈ Cn, then KX ≃
⊕

i∈(n+1)Z δi(ΩXi) in modΛ̂

Proof. If X = (Xi, fi) ∈ Cn, then by definition Xi is projective for i 6∈ (n + 1)Z.

Moreover it follows that δi(ΩXi) is projective as a Λ̂-module if Xi is projective. It
follows from the previous lemma that for each i we have that δi(ΩXi) is a submodule
of KX . Explicitly consider the following commutative diagram

ΩXi+1
1 //

( 0 1 )
��

ΩXi+1

( 1 Ωfi+1 )
��

ΩXi ⊕ ΩXi+1

(
Ωfi 0
1 Ωfi+1

)

// ΩXi+1 ⊕ ΩXi+2

So if i 6∈ (n+1)Z we see that δi(ΩXi) is a direct summand of KX . But then it follows
from the description of KX in the previous lemma that KX ≃

⊕
i∈(n+1)Z δi(ΩXi) in

modΛ̂. �

Lemma 3.5. Let X ∈ mod Λ and i ∈ Z. Then
i)F (δi(X)) ≃ δi−1(ΩX) in modΛ̂.
ii)If Y ∈ Cn, then Hom(Y, δi(X)) = 0, if i 6∈ (n + 1)Z

Proof. i) Clearly, if X, Y ∈ mod Λ then ΩΛ̂δi(X) = δi(ΩΛX) in modΛ̂ and νΛ̂δi(Y ) =
δi−1(Y ), so the assertion follows.

ii)Let Y = (Yi, gi) ∈ Cn and let ϕ ∈ Hom(Y, δi(X)). So we have the following
commutative diagram with ϕ = (ϕj)

· · · Yi−2

gi−2
//

��

Yi−1

gi−1
//

ϕi−1

��

Yi

gi //

ϕi

��

Yi+1

· · · 0 // X
1X // X // 0

Consider δi(P (X))
π
−→ δi(X), then δi(P (X)) is a projective Λ̂-module. Since i 6∈

(n + 1)Z, we have that Yi is a projective Λ-module, so there is some αi : Yi → P (X)
such that αiπi = ϕi, where π = (πj) and πj = 0 for j 6= i − 1, i and πi−1 = π = βX .

Let αi−1 = gi−1αi and αj = 0 forj 6= i−1, i. Then α = (αj) is a map Y → δi(P (X))
such that απ = ϕ, hence Hom(Y, δi(X)) = 0 �

Proposition 3.6. For all X, Y ∈ Cn, the natural transformation
ηX,Y : Hom(Y, F n+1(X)) → Hom(Y, F (X)) is an isomorphism

Proof. By the previous considerations we have for each X ∈ Cn and each 1 ≤ i ≤ n

an exact sequence 0 → F i(KX) → F i+1(X) → F i(X) → 0 in mod Λ̂ which gives

rise to a triangle F i(KX) → F i+1(X) → F i(X) → F i(KX)[1] in modΛ̂. Applying
Hom(Y,−) to this triangle for Y ∈ Cn gives an exact sequence

Hom(Y, F i(KX)) → Hom(Y, F i+1(X)) → Hom(Y, F i(X)) → Hom(Y, F i(KX)[1])

By the description of KX and the previous lemma we see that Hom(Y, F i(KX)) =
0 = Hom(Y, F i(KX)[1]), hence Hom(Y, F i+1(KX))

∼
−→ Hom(Y, F i(X)).

For each 1 ≤ i ≤ n we also have an exact sequence 0 → Ki → F i+1(X) →

F (X) → 0 in mod Λ̂ which gives rise to a triangle Ki → F i+1(X) → F (X) → Ki[1]
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in modΛ̂ where F i+1(X) → F (X) is obtained from the composition F i+1(X) →
F i(X) → F (X). By the octahedral axiom we have a triangle F i(KX) → Ki →
Ki−1 → F i(KX)[1] . By induction and the previous considerations we have that
Hom(Y, Ki) = 0 = Hom(Y, Ki[1]), hence Hom(Y, F i+1(X)) ≃ Hom(Y, F (X)), thus
ηX,Y is an isomorphism for all X, Y ∈ Cn. �

As pointed out above this implies

Corollary 3.7. For each n ∈ N the category Cn has almost split triangles

4. Irreducible maps in Db(Λ)

In this section we study the behavior of the embedding µ : Db(Λ) → modΛ̂ under
irreducible maps. If X = (X i, f i) ∈ Db(Λ) we write µ(X) = (Xi, fi). If X = (X i, f i)
satisfies X i = 0 for i < 0, then Xi = 0 for i < 0. Here of course we assume that
µ(X) has no projective-injective indecomposable summands. If X i = 0 for i > 0
then Xi = 0 for i > 0.

We denote by mod≥0 Λ̂ = {(Xi, fi)|Xi = 0, i < 0} and mod>0 Λ̂ = {(Xi, fi)|Xi =

0, i ≤ 0}. The categories mod≤0 Λ̂ and mod<0 Λ̂ are defined analogously. Clearly

mod≥0 Λ̂ and mod>0 Λ̂ are stable under ΩΛ̂. Moreover we clearly have Hom(X, Y ) = 0

for X ∈ mod≥0 Λ̂ and Y ∈ mod<0 Λ̂. This yields the following easy lemma.

Lemma 4.1. Let X ∈ mod≥0 Λ̂ and Y ∈ mod<0 Λ̂. Then Ext1
Λ̂
(X, Y ) = 0.

Proof. We have Ext1
Λ̂
(X, Y ) ≃ Hom(X, Ω−

Λ̂
Y ) = 0, since Ω−

Λ̂
Y ∈ mod<0 Λ̂. �

Lemma 4.2. Let Z = (Zi, fi) ∈ mod≥0 Λ̂ with Z ∈ Im µ. Consider the exact
sequence 0 → Z>0 → Z → Z0 → 0. Then νΛ̂Z>0 ∈ Im µ.

Proof. We verify the condition mentioned in section 1 from [GK]. Since νΛ̂Z>0 ∈

mod≥0 Λ̂ we have that Ωr

Λ̂
νΛ̂Z>0 ∈ mod≥0 Λ̂ for all r ≥ 0. The exact sequence

0 → Z>0 → Z → Z0 → 0 gives a triangle ΩΛ̂Z0 → Z>0 → Z → Z0 in modΛ̂. So for
each n ≥ 0 we obtain a triangle

Ω−n

Λ̂
Z0 → Ω−n−1

Λ̂
Z>0 → Ω−n−1

Λ̂
Z → Ω−n−1

Λ̂
Z0

For each n ≥ 0 we clearly have Ω−n

Λ̂
Z0 ∈ mod≤0 Λ̂. Since Z ∈ Im µ there is

n0 such that Ω−n

Λ̂
Z ∈ mod≤0 Λ̂ for all n ≥ n0 by [GK]. Let n ≥ n0 and as-

sume that Ω−n−1

Λ̂
Z>0 6∈ mod≤0 Λ̂. Then there is some X ∈ mod>0 Λ̂ such that

Hom(X, Ω−n−1

Λ̂
Z>0) 6= 0. Since Hom(X, Ω−n

Λ̂
Z0) = 0 = Hom(X, Ω−n−1

Λ̂
Z) we obtain

a contradiction. �

Theorem 4.3. Let X, Y be indecomposable in Db(Λ) and let f : X → Y be irre-

ducible. Then µ(f) : µ(X) → µ(Y ) is irreducible in modΛ̂.

Proof. We consider the almost split triangle (*) τΛ̂µ(Y )
α
−→ E

β
−→ µ(Y )

γ
−→ τΛ̂µ(Y )[1]

in modΛ̂. Now µ(f) is not split epi, since f is irreducible, hence we get g : µ(X) → E
such that µ(f) = gβ. Let µ(X) = (Xi, fi) and µ(Y ) = (Yi, gi). We may assume that

µ(X), µ(Y ) ∈ mod≥0 Λ̂. Now τΛ̂µ(Y ) = νΛ̂Ω2
Λ̂
µ(Y ) = (Zi, hi) satisfies Zi = 0 for
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i < −1, Z−1 = Ω2
ΛY0. Thus E = (Ei, ui) satisfies Ei = 0 for i < −1, E−1 = Ω2

ΛY0

and u−1 : Ω2
ΛY0 → ν−E0. Let P

π
−→ Ω2

ΛY0 be epi with P a projective Λ-module. Let

Ẽ = (Ẽi, vi) ∈ mod Λ̂ defined by Ẽi = 0 for i < −1, Ẽ−1 = P , Ẽi = Ei for i ≥ 0,
v−1 = πu−1, vi = ui for i ≥ 0.

Now F = Ω2
Λ̂
µ(Y ) ∈ Im µ, since Im µ is a triangulated category. By Lemma 4.2 we

have that νΛ̂F >0 ∈ Im µ, but νΛ̂F >0 = E≥0. Since νΛ̂P ∈ Im µ we see that Ẽ ∈ Im µ.

The construction of Ẽ clearly yields a triangle

νΛ̂µ(Kerπ)
δ
−→ Ẽ

ǫ
−→ E

η
−→ νΛ̂µ(Ker π)[1]

The factorization µ(f) = gβ induces another factorization as follows:

µ(X)

g̃

��
�

�

�
µ(X)

g

��
νΛ̂µ(Kerπ)

δ // Ẽ
ǫ //

β̃
���
�

�
E

η
//

β

��

νΛ̂µ(Ker π)[1]

µ(Y ) µ(Y )

where β̃ = ǫβ. Since gη = 0 by Lemma 3.1 we obtain g̃ with g̃ǫ = g. Now g̃β̃ =
g̃ǫβ = gβ = µ(f).

Since Ẽ ∈ Im µ and f is irreducible, we get that g̃ is a split mono or β̃ is a split

epi. If β̃ is split epi, there is β̃1 : µ(Y ) → Ẽ such that β̃1β = 1µ(Y ). Let β1 = β̃1c.

Then β1β = β̃1cβ = β̃1β̃ = 1µ(Y ), so β is a split epi, in contrast to (*) being an

almost split triangle. So g̃ is split mono, hence there is some g̃1 : Ẽ → µ(X) such
that g̃g̃1 = 1µ(X). Since Hom(νΛ Ker π, µ(X)) = 0 , we have δg̃1 = 0, so there is some
g1 : E → µ(X) such that ǫg1 = g̃1. Now gg1 = g̃ǫg1 = g̃g̃1 = 1µX shows that g is split
mono, hence X is an indecomposable direct summand of E and µ(f) is a component
of β, hence µ(f) is irreducible. �

Next we show how certain irreducible maps in Db(Λ) arise quite naturally from
extensions of simple Λ-modules. This will be of interest in section 5.

Proposition 4.4. Let S and T be simple Λ-modules with Ext1
Λ(S, T ) 6= 0. If

rad P (S) and I(T )/T are both semisimple, then there is an irreducible map f : S[−1] →
T in Db(Λ).

Proof. We will show that there is an irreducible map ϕ : µ(S[−1]) → µ(T ) in modΛ̂.
For simplicity let µ(S) = S and µ(T ) = T . Then S[−1] = ΩΛ̂S ≃ radΛ̂ P (S), where

P (S) is the Λ̂-projective cover of S. We consider the almost split sequence in mod Λ̂
starting in S[−1] = radΛ̂ P (S). It is well-known [AR, Prop. 4.1] that this is of the
form

0 → radΛ̂ P (S) →Λ̂ P (S) ⊕ radΛ̂ P (S)/ socΛ̂ P (S) → P (S)/ socΛ̂ P (S) → 0

Clearly, socΛ̂ P (S) = ν−

Λ̂
S. Let 0 → S

α
−→ I(S)

β
−→ I(S)/S → 0 be exact in mod Λ,

with I(S) the Λ-injective envelope of S. Applying the Nakayama functor ν−
Λ =
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Hom(DΛΛ,−) yields an exact sequence

0 → Hom(DΛΛ, S)
ν−

Λ
(α)

−−−→ P (S) = Hom(DΛΛ, I(S))
ν−

Λ
(β)

−−−→ Hom(DΛΛ, I(S)/S)

Let g be the composition of rad P (S)
γ
−→ P (S)

ν−

Λ
(β)

−−−→ ν−
Λ I(S)/S, so g = γν−

Λ β. Then
radΛ̂ P (S)/ socΛ̂ P (S) = (Zi, gi) = Z with Z0 = radΛ P (S), Z1 = I(S)/S, g0 = g,
and zero otherwise. By assumption, radP (S) is semisimple and Ext1

Λ(S, T ) 6= 0,
so T is an indecomposable direct summand of rad P (S). Let 0 6= δ : I(T ) → I(S)
be a map which is not an isomorphism. Since I(T )/T is semisimple, δ factors over
α, hence g(T ) = 0, or equivalently T is an indecomposable direct summand of Z.

Hence there is an irreducible map f : ΩΛ̂S → T in modΛ̂, so there is an irreducible
map f : S[−1] → T in Db(Λ) �

5. Components

We consider the embedding µ : Db(Λ) → modΛ̂. The category modΛ̂ has al-

most split triangles, where for an indecomposable X ∈ modΛ̂, the translate τΛ̂X =
νΛ̂[−2]X. In general, Db(Λ) will not have almost split triangles. However it was
shown in [H2] that for each P ∈ Kb(ΛP) indecomposable there is an almost split

triangle in Db(Λ) of the form νP [−1]
u
→ E

v
→ P

w
→ νP where ν : Kb(ΛP) → Kb(ΛI)

is the Nakayama functor. We will show first that this triangle is sent under µ to the

almost split triangle in modΛ̂ ending at µ(P ) and then apply this to determine the
structure of the components of the AR-quiver of Kb(ΛP) in case Λ is a Gorenstein
algebra.

Lemma 5.1. If P ∈ Kb(ΛP), then τΛ̂µ(P ) ∈ Im µ.

Proof. Let P = (P i, di) ∈ Kb(ΛP). Since µ commutes with the translation functors
we may assume that P i = 0 for i > 0 and it is enough

to show that νΛ̂µ(P ) ∈ Im µ. Since P ∈ Kb(ΛP) there is m0 such that P m = 0
for m < m0. We proceed by induction on m0. If m0 = 0, then P is a stalk complex
concentrated in degree 0, so µ(P ) is the stalk module P 0 concentrated in degree
zero. But νΛ̂P 0 ∼= νP 0[1] shows that νΛ̂P 0 ∈ Im µ. If m0 < 0, let P ′ = (P ′i, d′i) with
P ′i = P i for i < 0 and P ′0 = 0, d′i = di for i < −1 and d′i = 0 for i ≥ −1 be the
truncated complex.

We clearly have a map of complexes P ′[−1]
u
→ P 0 whose mapping cone is P . So

we obtain a triangle P ′[−1] → P 0 → P → P ′ in Kb(ΛP). This yields a triangle

νΛ̂µ(P ′)[−1] → νΛ̂P 0 → νΛ̂µ(P ) → νΛ̂µ(P ′) in modΛ̂.
By induction the first two terms belong to Im µ, hence so does the third, since µ

is a triangle functor. �

Proposition 5.2. Let P ∈ Kb(ΛP) and let νP [−1]
u
→ E

v
→ P

w
→ νP be the almost

split triangle in Db(Λ) ending at P . Then µ(νP )[−1]
µ(u)
→ µ(E)

µ(v)
→ µ(P )

µ(w)
→ µ(νP )

is the almost split triangle in mod Λ̂ ending at µ(P ).

Proof. Let

τΛ̂µ(P )
u
→ F

v
→ µ(P )

w
→ τΛ̂µ(P )[1] (∗)
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be the almost split triangle in modΛ̂ ending at µ(P ). By Lemma 5.1 there is X ∈
Db(Λ) such that µ(X) = τΛ̂µ(P )[1]. So there is some w′ : P → X such that µw′ = w.
Let

X[−1]
u′

→ E
v′

→ P
w′

→ X (∗∗)

be a triangle in Db(Λ). By construction µ(X)[−1] → µ(E) → µ(P )
w
→ µ(X) is

isomorphic to (∗). Since µ is an embedding and (∗) is an almost split triangle, we
infer that (∗∗) is the almost split triangle in Db(Λ) ending at P . �

Note that 5.2 is related to [KL, sections 7,8] where an adjoint of an extension of

the functor µ : Db(Λ) → modΛ̂ is constructed and used to compute almost split
triangles.

In the following let Λ be a Gorenstein algebra. Then the Nakayama functor ν :
Kb(ΛP) → Kb(ΛI) is an endofunctor, hence Kb(ΛP) has almost split triangles, which
are almost split triangles in Db(Λ), and therefore by Proposition 5.2 also almost split

triangles in modΛ̂. Hence we get

Corollary 5.3. Let C be a connected component of the AR-quiver of Kb(ΛP). Then

C is a connected component of the AR-quiver of mod Λ̂.

We will now investigate the shape of the components of the AR-quiver of Kb(ΛP)
for Λ a selfinjective algebra.

Theorem 5.4. Let Λ be a connected selfinjective algebra, which is not semisimple.
Let C be a connected component of the AR-quiver of Kb(ΛP). Then C is of the form
ZA∞.

Proof. Let C be a connected component of the AR-quiver of Kb(ΛP). By Corol-

lary 5.3, C is a connected component of the AR-quiver of modΛ̂. In fact C is a

connected component of the AR-quiver of modΛ̂, since otherwise there would ex-

ist an indecomposable projective Λ̂-module P such that rad P ∈ C, in particular
rad P ∈ Im µ|Kb(ΛP).

But it follows from the description of Im µ in Section 3 that Im µ|Kb(ΛP) = {(Xi, fi) |
Xi is a projective Λ-module}, so rad P 6∈ Im µ|Kb(ΛP), since Λ is not semisimple.

Consider l : C → N defined by l(X) = |X|, the length of X as a Λ̂-module. Then l

is an additive function on C, since C is a component of the AR-quiver of modΛ̂: If
P ∈ Kb(ΛP) and µ(P ) = (Xi, fi) we have that Xi = 0 for |i| > m and some m and Xi

is projective for |i| ≤ m. Since Λ is selfinjective there exists n ∈ N such that νn
ΛP ∼= P

for each projective Λ-module P . If µ(P ) = (Xi, fi), so that l(µ(P )) =
∑

i |Xi|, then
l(ΩΛ̂µ(P )) =

∑
i |νΛXi|.

So l(µ(P )) = l(Ωn

Λ̂
µ(P )), hence l(τn

Λ̂
µ(P )) = l(µ(P )), showing that l is a τΛ̂-

periodic additive function. Let X ∈ C and let 0 6= f : P → X with P an indecom-

posable projective Λ̂-module. Since C does not contain any projective Λ̂-modules we

obtain for each i a chain of irreducible maps Xi
fi

→ Xi−1 → · · · → X1
f1
→ X0 = X

such that fi . . . f1 6= 0 and Xi ∈ C. By the lemma of Harada-Sai (see [ARS, VI Cor.
1.3]) we know that the length of the indecomposable modules in C is unbounded;
so l is unbounded on C. In particular C contains infinitely many τΛ̂-orbits. By [F]
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the tree class of C is A∞. Trivially C does not contain any τΛ̂-periodic vertices. So
C ∼= ZA∞. �

If Λ is a Gorenstein algebra, then in Section 2 we constructed a functor G :

modΛ̂ → Db(Λ) such that µG ∼= 1Dd(Λ). Let ν̃ : Db(Λ) → Db(Λ) be the equivalence
induced by νΛ = D Hom(−, ΛΛ), then we obtain a commutative diagram

modΛ̂
G

−−−→ Db(Λ)yν
Λ̂

yν̃[1]

modΛ̂ −−−→ Db(Λ)

Proposition 5.5. Let Λ be a Gorenstein algebra and X, Y ∈ Db(Λ) indecomposable.
If f : X → Y is irreducible and Y 6∈ Kb(ΛP), then X ∼= ν̃Y [−1].

Proof. We consider the almost split triangle in modΛ̂

τΛ̂µ(Y )
α
→ E

β
→ µ(Y )

γ
→ τΛ̂µ(Y )[1] (∗)

Since f : X → Y is irreducible and by Theorem 4.3, also µ(f) is irreducible, we see
that E ∼= µ(X)⊕C and β = (µ(f), g)t for some g : C → µ(Y ). Since τΛ̂ = νΛ̂Ω2

Λ̂
and

using the diagram above, we see that G applied to (∗) yields a triangle in Db(Λ)

ν̃Y [−1]
G(α)
→ X ⊕ G(C)

G(β)
→ Y

G(γ)
→ ν̃Y (∗∗)

We claim that G(γ) = 0. Otherwise, let h : Z → Y be a map which is not a split
epi, then µ(h) is not a split epi. But then µ(h)γ = 0, hence 0 = G(µ(h)γ) = hG(γ).
Since Y and ν̃Y [−1] are indecomposable, (∗∗) would be an almost split triangle
in Db(Λ). Since Y 6∈ Kb(ΛP), this contradicts the existence theorem in [H2]. So
G(γ) = 0, hence G(β) is a split epi. Since X is not isomorphic to Y , we get that
X ∼= ν̃Y [−1]. �

We will now show that for selfinjective algebras Λ irreducible maps in Db(Λ)
outside Kb(ΛP) are rare. For this we will need the following easy fact, but first we
will define the relevant class of algebras Λn for n ≥ 1. Let Λ1 = k[x]/(x2) and let Λn

for n ≥ 2 be defined by the following quiver

1
α1 // 2

α2

��=
==

==
==

n

αn

@@��������
3

over k, with relations αiαi+1 = 0 for 1 ≤ i ≤ n where αn+1 = α1.
We collect the relevant information in the following well-known lemma (see [ARS,

IV.2])

Lemma 5.6. Let Λ be a basic selfinjective algebra over an algebraically closed field
k, which is not semisimple.

(1) rad2 Λ = 0 if and only if Λ ∼= Λn for some n.
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(2) If S(i) is a simple Λn-module, then νS(i) = S(i − 1) where S(0) = S(n).
(3) Λn is symmetric if and only if n = 1.

Theorem 5.7. Let Λ be a basic selfinjective algebra which is not semisimple. Let
Y ∈ Db(Λ) \Kb(ΛP) be indecomposable. There exists an irreducible map f : X → Y
in Db(Λ) if and only if Λ ∼= Λn, Y ∼= S(i− 1)[j], X ∼= S(i)[j− 1] for some 1 ≤ i ≤ n
and j ∈ Z.

Proof. If Λ = Λn for some n, we have seen in Proposition 4.4 that for each arrow αi

we have an irreducible map νS(i)[−1] → S(i+1) in Db(Λ). Since pdΛn
S(i+1) = ∞

we have S(i + 1) 6∈ Kb(ΛP).
Conversely, let f : X → Y be irreducible in Db(Λ) and Y 6∈ Kb(ΛP). We choose

Y ∈ K−,b(ΛP) and may assume that Y = (P i, di) satisfies Y i = 0 for i > 0 and
H0(Y ) 6= 0. By Proposition 5.5 we know that X ∼= ν̃Y [−1]. Since Λ is selfin-
jective, we have that νΛ is exact, hence ν̃Y = (νΛP i, νΛdi). Consider the trian-

gle νΛP 0[−1]
α
→ νY [−1]

β
→ νY [−1]≤0

γ
→ νΛP 0. Since Hom(νΛP 0[−1], Y ) = 0,

there is some f̄ : νY [−1]≤0 → Y such that f = βf̄ . H0(Y ) 6= 0 implies that
α 6= 0. Thus β is not split mono, so f̄ is split epi, since f is irreducible. Hence
H i(f̄) : H i(ν̃Y [−1]≤0 → H i(Y ) is split epi for all i. Since ν is exact, we have that
H i(ν̃Y ) ∼= νΛH i(Y ) for all i. Also we have that H i(ν̃Y [−1]≤0) = H i(ν̃Y [−1]) for all
i ≤ −1 and H i(ν̃Y [−1]) = H i−1(ν̃Y ). Since Y ∈ K−,b(ΛP) there is some n0 ≤ 0
such that Hn(Y ) = 0 for all n ≤ n0. Choose n0 maximal with this property, so
Hn0(Y ) = 0 and Hn0+1(Y ) 6= 0. We claim that Y ∈ modΛ, or equivalently n0 = −1.
Otherwise n0 ≤ −2. But then 0 = Hn0(Y ) = Hn0(ν̃Y ) = Hn0+1(ν̃Y [−1]) =
Hn0+1(ν̃Y [−1]≤0) ։ Hn0+1(Y ), hence Hn0+1(Y ) = 0 in contrast to the choice of n0.
Hence n0 = −1, so Y is an indecomposable Λ-module. But then Y ≤−1 ∼= ΩΛY [1],
so Y ≤−1 is indecomposable, since Λ is selfinjective. But then ν̃Y [−1]≤0 is indecom-
posable, so f̄ is an isomorphism, so νΛΩΛY ∼= Y . If Y is not simple, there is a
proper epi Y

π
→ S for some simple S. So there is h : Y → I(S), with Ker h 6= 0 and

Coker h 6= 0. Since Hom(I(S), Y [1]) = Ext1
Λ(I(S), Y ) = 0 we obtain a triangle

Ch[−1]
g
→ Y

h
→ I(S) → Ch

with Ch[−1] indecomposable and H0(Ch[−1]) = Ker h, H1(Ch[−1]) = Coker h. Since
Hom(νΛY [−1], I(S)) = 0, there is some f ′ : νΛY [−1] → Ch[−1] such that f ′g =
f . Since h 6= 0, g is not split epi, hence f ′ is split mono, since f is irreducible.
Since Ch[−1] is indecomposable, we have that f ′ is an isomorphism, in contrast to
H0(Ch[−1]) 6= 0 6= H1(Ch[−1]), so Y is a simple Λ-module. Since Y ∼= νΛΩΛY , we
see that ΩΛY is a simple Λ-module. But then rad2 Λ = 0, since Λ is selfinjective,
and the assertion follows from Lemma 5.6. �

6. Behavior of irreducible maps

In this section we show that beyond the Gorenstein algebras the behavior of irre-
ducible maps in Db(Λ) is not so regular. In particular, we show that some natural
conjectures have a negative answer.

For a non-zero map f : P → Q between indecomposable objects in Db(Λ) but
not in Kb(ΛP) we investigate the connection between f : P → Q being irreducible
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and f≥−n : P≥−n → Q≥−n being irreducible for some n. We also give some sufficient
condition for an irreducible map in modΛ not be irreducible in Db(Λ).

We start with a general result on mapping cones of irreducible maps, where the
analogous result in abelian categories is well known.

Proposition 6.1. Let X and Y be indecomposable in Db(Λ), for a finite dimensional
algebra Λ, and assume that we have an irreducible map f : X → Y . Then the
mapping cone Cf is indecomposable.

Proof. This can be proved in a similar way as the abelian analog. Here we give a

slightly shorter proof using Theorem 4.3. Let µ : Db(Λ) → modΛ̂ be as usual the
natural embedding. Then we know from Theorem 4.3 that µ(f) : µ(X) → µ(Y ) is

irreducible in modΛ̂. This is induced by an irreducible map f ′ : µ(X) → µ(Y ) in

modΛ̂. If f ′ is mono, we have an exact sequence 0 → µ(X) → µ(Y ) → µ(Y )/µ(X) →
0, and if f ′ is epi, we have an exact sequence 0 → Ker f ′ → µ(X) → µ(Y ) → 0.
We know that in the first case µ(Y )/µ(X) is indecomposable and in the second case
Ker f ′ is indecomposable, see [ARS, V Prop. 5.6]. So in any case we have a triangle

µ(X)
µ(f)
→ µ(Y ) → Z in modΛ̂, where Z is indecomposable. Since µ(Cf) ∼= Z, it

follows that Cf is indecomposable. �

Let 0 → A → B → C → 0 be an almost split sequence in modΛ. Then it is
known that if idΛ A ≤ 1 and pdΛ C ≤ 1, then the sequence gives rise to an almost
split triangle in Db(Λ)(see [H1, 4.7]). Consequently the corresponding irreducible
maps fi : A → Bi and gi : Bi → C stay irreducible, where B =

⊕t
i=1 Bi with Bi

indecomposable. But the normal behavior is that irreducible maps in modΛ do not
stay irreducible in Db(Λ). We illustrate this with the following result.

Proposition 6.2. Let Λ be a finite dimensional algebra, X and Y indecomposable
Λ-modules with pdΛ X < ∞ and pdΛ Y ≥ pdΛ X + 2. Then there is no irreducible
map f : X → Y in Db(Λ).

Proof. Assume that we have an irreducible map f : X → Y in modΛ, with X and
Y indecomposable, pdX = i < ∞ and pdY ≥ i+2. Let P : · · · → P−(i+2) → · · · →
P−1 → P 0 → 0 be a minimal projective resolution of Y and Q : 0 → Q−i → · · · →
Q−1 → Q0 → 0 a minimal projective resolution of X. Let C denote the complex

0 → P−(i+1) → · · · → P−1 → P 0 → 0. Then f : Q → P factors as Q
g
→ C

h
→ P ,

since we have the commutative diagram

0 −→ Q−i −→ . . . −→ Q−1 −→ Q0 −→ 0y f−i

y f−1

y f0

y

0 −→ P−(i+1) −→ P−i −→ . . . −→ P−1 −→ P 0 −→ 0∥∥∥
∥∥∥

∥∥∥
∥∥∥

. . . −→ P−(i+2) −→ P−(i+1) −→ P−i −→ . . . −→ P−1 −→ P 0 −→ 0

We want to show that g is not a split monomorphism and h is not a split epimor-
phism. If g : Q → C was a split monomorphism, the induced map H0(Q) = X →
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H0(C) = Y would be a split monomorphism. Since X and Y are indecomposable
nonisomorphic modules, this is impossible.

The diagram

Ω−(i+2)Yy

P−(i+1) −→ . . . −→ P−1 −→ P 0

y

Y

gives rise to the triangle Ω−(i+2)Y [i + 1] → C → Y [0]
α
→ Ω−(i+2)Y [i + 2]. Here α

is given by the sequence 0 → Ω−(i+2)Y → P−(i+1) → · · · → P−1 → P 0 → Y → 0,
which does not represent the zero element since pdΛ Y ≥ i + 2. Hence h : C → Y [0],
or equivalently h : C → P , is not a split epimorphism. It follows that f : Q → P is
not irreducible. �

Note that if Λ is hereditary, then each irreducible map in modΛ stays irreducible
in Db(Λ). In this case pd X is 0 or 1, hence we can never have pdY ≥ pd X + 2.

The next natural question is to which extent we have irreducible maps X →
Y [1], where X and Y are indecomposable in modΛ, corresponding to elements of
Ext1

Λ(X, Y ). Here we have seen some sufficient conditions in Section 3. Normally we
do not have such irreducible maps.

Proposition 6.3. Let f : X → Y [1] be an irreducible map, where X and Y are
indecomposable Λ-modules. Then Y must be a summand of ΩX.

Proof. We have the factorization X
h
→ ΩX[1]

g[1]
→ Y [1] of f : X → Y [1], as is seen by

considering the diagram

0 // ΩX //

g

��

PX
//

��

X // 0

0 // Y // E // X // 0

Then h : X → ΩX[1] is not a split monomorphism since H0(h) is not a split
monomorphism. Since f : X → Y [1] is irreducible, it follows that g : ΩX → Y is a
split epimorphism, so that Y is a summand of ΩX. �

We now give another situation where there are no irreducible maps, containing
the case X → Y [2], corresponding to elements of Ext2

Λ(X, Y ), as a special case.

Proposition 6.4. Let P and Q be indecomposable objects in Db(Λ) for a finite
dimensional algebra Λ, represented by complexes of projective Λ-modules with no
split exact summands, with P 0 6= 0, P i = 0 for i > 0 and Qi = 0 for i ≥ −1. Then
there is no irreducible map f : P → Q in Db(Λ).

Proof. Let f : P → Q be a map in Db(Λ). Consider the factorization of f given by
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. . . −→ P−2 −→ P−1 a
−→ P 0 −→ 0 Py

y
y

yh

. . . −→ P−2 −→ P−1 −→ 0 −→ 0 P≤−1y
y

yg

. . . −→ Q−2 −→ 0 Q

We have H0(P ) = P 0/ Im a, which is not zero since P has no split exact direct
summands. Since H0(P≤−1) = 0, h : P → P≤−1 cannot be a split monomorphism.

Assume now that g is a split epimorphism, and consider the triangle P≤−1
g
→ Q

u
→

Cg →. Then u : Q → Cg must be homotopic to 0, that is, we have the diagram

. . . // Q−3

yyttttttttttt

(0,1)
��

b−2
// Q−2

s−2wwooooooooooooo

(0,1)
��

b−1
// 0

s−1xxrrrrrrrrrrr

. . . // P−2 ⊕ Q−3
c−2

// P−1 ⊕ Q−2
c−1

// 0

where b−is−i + s−(i+1)c−(i+1) = (0, 1) for all i ≥ 1. Using the same maps si we see

that in the triangle P
f
→ Q

v
→ Cf →, the map v must be 0, so that f would also be a

split epimorphism. Since P and Q are indecomposable, f would be an isomorphism,
which is impossible because H0(P ) 6= 0 and H0(Q) = 0. We conclude that g is not
a split epimorphism. Since we already have that h is not a split monomorphism, it
follows that f : P → Q is not irreducible. �

The following sufficient condition for the mapping cone to be indecomposable will
be useful.

Lemma 6.5. Let f : P → Q be a map between indecomposable objects in a Hom-
finite Krull-Schmidt triangulated category C with shift [1], and assume that f is

not zero and not invertible. Complete to a triangle P
f
→ Q

g
→ C → P [1]. If

Hom(Q, P [1]) = 0, then C is indecomposable.

Proof. Assume to the contrary that C is not indecomposable, and write C =
⊕r

i=1 Zi,
where r > 1 and each Zi is indecomposable. Let g = (g1, . . . , gr) and h = (h1, . . . , hr)

t.
Then we know from [R] that gi 6= 0 and hi 6= 0 for each i = 1, . . . , r.

Consider the map

ϕ =




1 0 . . . 0

0
...

...
...

0 . . . . . . 0


 : C → C,
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where 1 = 1Z1
. We then have the diagram

P
f

−−−→ Q
g

−−−→ C
h

−−−→ P [1]yϕ

P
f

−−−→ Q
g

−−−→ C
h

−−−→ P [1]

Since by the assumption Hom(Q, P [1]) = 0, it follows that gϕh = 0. Hence there
is a map ϕQ : Q → Q such that ϕQg = gϕ. We have gϕ = (g1, 0, . . . , 0) and
ϕQg = (ϕQg1, . . . , ϕQgr), so that ϕQg1 = g1 and ϕQgi = 0 for 2 ≤ i ≤ r. Since
ϕ2 = ϕ, we have ϕn

Qg = gϕn = gϕ, so that ϕn
Qg1 = g1 and ϕn

Qgi = 0 for 2 ≤
i ≤ r. Since Q is indecomposable and C is Hom-finite, any map t : Q → Q is
nilpotent or an isomorphism, so that we have a contradiction. It follows that C is
indecomposable. �

We now consider the following question. If we have an irreducible map f : P → Q
between unbounded complexes of projective modules, not objects in Kb(ΛP), is then
f≥−n : P≥−n → Q≥−n irreducible for all n, where f≥−n is a nonzero map between
indecomposable objects?

For selfinjective algebras Λ, the existence of an irreducible map f : P → Q not in
Kb(ΛP) implies that Λ is selfinjective with rad2 Λ = 0 and that we have f : S → T [1],
where S and T are simple Λ-modules. In this case f≥−n : P≥−n → Q≥−n is irreducible
for n ≥ 2.

We now give an example which gives a negative answer to the above question. Let
Λ be the path algebra of the quiver

1γ
88 2

αoo

with relations αγ = 0, γ2 = 0. Denote by S the simple module at vertex 1 and by
T the simple module at vertex 2. Then the indecomposable projective Λ-modules
have Loewy series S

S and T
S , and we have T and ST

S for the indecomposable injectives.
We know from Proposition 4.4 that the map f : T → S[1] is irreducible, and we can
write this as f : P → Q given by

. . . −−−→ S
S −−−→ S

S −−−→ T
S∥∥∥

∥∥∥
y

. . . −−−→ S
S −−−→ S

S −−−→ 0

We then have the following.

Proposition 6.6. Let Λ be as above. In the above notation we have that f : P → Q
is irreducible, while f≥−1 : P≥−1 → Q≥−1 is a map between indecomposable objects
which is not irreducible.

Proof. We have already seen that f : P → Q is irreducible. We now want to show
that f≥−1 : P≥−1 → Q≥−1 is not irreducible. We have Q≥−1 = (S

S)[1], and hence

νQ≥−1 = ST
S , so that we have an almost split triangle ST

S → (S
S

α
→ ST

S ) → S
S[1] →,

where Im α = S. We claim that X = (S
S

α
→ ST

S ) is indecomposable. For this, it is
sufficient to show that Hom(ST

S , S
S[1]) = 0 by Lemma 6.5, that is that Ext1

Λ(ST
S , S

S) = 0.
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This follows by considering the injective resolution 0 → S
S

h
→ ST

S

g
→ T → 0, which

gives rise to the exact sequence Hom(ST
S , ST

S )
ϕ
→ Hom(ST

S , T ) → Ext1(ST
S , S

S) → 0, and
using that ϕ is clearly an epimorphism. Hence we conclude that X is indecomposable.
Alternatively we could prove that X is indecomposable by considering the homology
of X and how it could decompose.

Since H0(P≥−1) = T while H0(X) = S ⊕ T , P≥−1 cannot be isomorphic to X.
Hence f≥−1 : P≥−1 → Q≥−1 is not irreducible. �

We now give an example of a nonzero map f : P → Q between indecomposable
objects which is not irreducible, but such that f≥−n : P≥−n → Q≥−n is an irreducible
map between indecomposable objects for some n.

Let Λ = k[x]/(x3), and consider the complexes of projective modules:

P · · · → Λ
·x
→ Λ

·x2

→ Λ
(x,0)
→ Λ ⊕ Λ

(x
2

x )
→ Λ

Q · · · → Λ
·x
→ Λ

·x2

→ Λ
·x
→ Λ → 0

where the right hand terms are in degree 0, as objects in Db(Λ). Consider the map
f : P → Q in Db(Λ) induced by the commutative diagram

. . . −−−→ Λ
·x

−−−→ Λ
·x2

−−−→ Λ
(x,0)

−−−→ Λ ⊕ Λ
(x

2

x )
−−−→ Λ∥∥∥

∥∥∥
∥∥∥

y(10)

y

. . . −−−→ Λ
·x

−−−→ Λ
·x2

−−−→ Λ
·x

−−−→ Λ −−−→ 0

We have the following

Proposition 6.7. With the above notation and assumptions we have the following

(1) The induced map f≥−2 : P≥−2 → Q≥−2 is an irreducible map between inde-
composable objects in Db(Λ).

(2) The map f : P → Q is a map between indecomposable objects which is not
irreducible.

Proof. (1) The map f≥−2 is given by the following diagram

0 −−−→ Λ
(x,0)
−−−→ Λ ⊕ Λ

(x
2

x )
−−−→ Λ −−−→ 0∥∥∥

y(10)

y

0 −−−→ Λ
·x

−−−→ Λ −−−→ 0 −−−→ 0

Since Λ = k[x]/(x3) is symmetric, we have τQ≥−2 = Q≥−2[−1], and hence an

almost split triangle Q≥−2[−1] → E → Q≥−2
α
→ Q≥−2. The map α : Q≥−2 → Q≥−2

inducing the almost split triangle is easily seen to be given by the diagram

0 −−−→ Λ
·x

−−−→ Λ −−−→ 0y0 ·x2

y

0 −−−→ Λ
·x

−−−→ Λ −−−→ 0
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For it is clear that the induced map is nonzero and is in the socle of End(Q≥−2).
Taking the mapping cone of α we obtain P≥−2[1], so that E ∼= P≥−2. This shows
that f≥−2 : P≥−2 → Q≥−2 is irreducible.

We next show that P≥−2 is indecomposable. We give a proof which at the same
time illustrates the previous theory, rather than giving a direct computational proof.
We know from Theorem 5.4 that the components of the AR-quiver of Kb(ΛP) are
of the form ZA∞, and that the image of a component for Kb(ΛP) is a component

of the AR-quiver for modΛ̂. All Λ̂-modules in such a component C are given by
projective modules, the same ones as for Kb(ΛP). Then C is also a component for

modΛ̂. This follows since any indecomposable projective object in modΛ̂ has an
irreducible map to this object modulo its socle, and this object is not given by only
projective modules.

If P≥−2 was not indecomposable, then Λ
·x
→ Λ would not be at the border of

the ZA∞-component. Hence we would have an irreducible epimorphism starting at

Λ
·x
→ Λ, which would then have to end at Λ, since the terms must be projective.

But on the other hand we have an almost split triangle Λ[−1] → (Λ
·x2

→ Λ) → Λ in
Kb(ΛP), which gives a contradiction.

(2) We first show that P and Q are indecomposable. This is obvious for Q. Assume
P = P ′ ⊕ P ′′ is a nontrivial decomposition. Then we have P≥−2 = P ′

≥−2 ⊕ P ′′
≥−2.

Since H0(P ) = S, H−1(P ) = S
S and H−i(P ) = 0 for i 6= 0, 1, we must have, say

P ′ ∼= S and P ′′ ∼= (S
S)[1]. But then P ′

≥−2 and P ′′
≥−2 are both nonzero, contradicting

that P≥−2 is indecomposable.
That f : P → Q is not irreducible follows since Λ is selfinjective and rad2 Λ 6= 0

and P and Q are not in Kb(ΛP). We could alternatively give a direct argument by
considering the following factorization of the map f : P → Q:

. . . −−−→ Λ
·x

−−−→ Λ
·x2

−−−→ Λ
(x,0)

−−−→ Λ ⊕ Λ
(x

2

x )
−−−→ Λ P∥∥∥

∥∥∥
y(1,0)

∥∥∥
∥∥∥

yg

. . . −−−→ Λ
·x

−−−→ Λ
(x2,0)
−−−→ Λ ⊕ Λ

(x

0
0

x2)
−−−→ Λ ⊕ Λ

(x
2

x )
−−−→ Λ U∥∥∥

∥∥∥
y(10)

y(10)

y
yh

. . . −−−→ Λ
·x

−−−→ Λ
·x2

−−−→ Λ
·x

−−−→ Λ −−−→ 0 Q

and showing that g is not a split monomorphism and h is not a split epimorphism.
The first claim follows directly by considering the homology of P and U , and the
second claim is also not hard to show. �
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Math. 305 (1987), no. 6, 225–228.
[KL] Krause, Henning; Le, Jue, The Auslander-Reiten formula for complexes of modules, Adv.

Math. 207 (2006), no. 1, 133–148.
[RV] Reiten, Idun; Van den Bergh, Michel, Noetherian hereditary abelian categories satisfying

Serre duality. J. Amer. Math. Soc. 15 (2002).
[Ric] Rickard, Jeremy, Derived categories and stable equivalence, J. Pure and Appl. Algebra 61

(1989), 303–317.
[Rin] Ringel, Claus M., Hereditary triangulated categories. Compositio Mathematica. To appear.
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