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History in a nutshell

quiver mutation = elementary operation on quivers discovered
in mathematics: cluster algebras (Fomin-Zelevinsky, 2000)
in physics: Seiberg duality (Vafa, Berenstein-Douglas, . . . )

Aim: Categorify quiver mutation using recent work by
Derksen-Weyman-Zelevinsky
Ginzburg
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Plan
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A quiver is an oriented graph

Definition
A quiver Q is an oriented graph: It is given by

a set Q0 (the set of vertices)
a set Q1 (the set of arrows)
two maps

s : Q1 → Q0 (taking an arrow to its source)
t : Q1 → Q0 (taking an arrow to its target).

Remark
A quiver is a ‘category without composition’.
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A quiver can have loops, cycles, several components.

Example

The quiver ~A3 : 1 2α
oo 3

β
oo is an orientation of the Dynkin

diagram A3 : 1 2 3 .

Example
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γ

oo

We have Q0 = {1, 2, 3, 4, 5, 6}, Q1 = {α, β, . . .}.
α is a loop, (β, γ) is a 2-cycle, (λ, µ, ν) is a 3-cycle.

Bernhard Keller and Dong Yang Quiver mutation and derived equivalence



Definition of quiver mutation

Let Q be a quiver without loops or 2-cycles.

Definition (Fomin-Zelevinsky)

Let i ∈ Q0. The mutation µi(Q) is the quiver obtained from Q as
follows

1) for each subquiver j b // i
a // l , add a new arrow

j
[ab] // l ;

2) reverse all arrows incident with i ;
3) remove the arrows in a maximal set of pairwise disjoint

2-cycles (e.g. •
//
// •oo yields • // • , ‘2-reduction’).
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Examples of quiver mutation

A simple example:
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More complicated examples: Google ‘quiver mutation’!
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Aim: Categorify these combinatorics!
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Special case: source mutation

Notation
k a field,
kQ the path algebra:

⊕
p path kp,

ei the lazy path attached to a vertex i ,
Pi = eikQ the projective right module associated with ei ,
Mod(kQ) the category of all right kQ-modules,
D(kQ) the derived category of Mod(kQ).

Theorem (Bernstein-Gelfand-Ponomarev 1973 + Happel 1986)

Let Q′ = µi(Q), where i is a source. There is an equivalence
(=reflection functor) R : D(kQ′) ∼→ D(kQ) such that P ′

j 7→ Pj for
j 6= i and P ′

i 7→ (Pi →
⊕

i→j Pj).
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General case: Much more complicated

What if i is neither source nor sink? An easy counter-example

Q :
1
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Q′ = µ1(Q) :
1

����
��

��
�

2 3

^^=======

Easy:

D(kQ) and D(kQ′) are very far from being equivalent.

Remedy? Hint from physics:
Study quivers with potentials!
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Completed path algebras, potentials

Notation
k a field, Q a finite quiver without loops or 2-cycles

k̂Q = completed path algebra =
∏

p path kp,

HH0 = k̂Q/[k̂Q, k̂Q] = {infinite lin. comb. of cycles of Q},
each a ∈ Q1 yields the cyclic derivative ∂a : HH0 → k̂Q
such that

path p 7→
∑

p=uav

vu.

Definition
A potential on Q is an element W ∈ HH0 not involving cycles of
length 0.
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Mutation of quivers with potential

Theorem (Derksen-Weyman-Zelevinsky)

The mutation operation Q 7→ µi(Q) admits a good extension to
quivers with potentials

(Q, W ) 7→ µi(Q, W ) = (Q′, W ′) ,

i.e. µi(Q) is isomorphic to the quiver Q′ at least if W is generic
(and to the 2-reduction of Q′ if W is arbitrary).

Example

1
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W = abc W ′ = 0
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Ginzburg’s dg algebra

(Q, W ) a quiver with potential (Q may have loops and 2-cycles)

Definition (Ginzburg)

Q̃ = quiver with Q̃0 = Q0 and
the arrows of Q in degree 0,
a new arrow a∗ : j → i of degree −1 for each a : i → j of Q,
a loop ti : i → i of degree −2 for each vertex i of Q.

Γ = Γ(Q, W ) = k̂ Q̃ endowed with the unique d of degree 1
such that

d(a) = 0 for each arrow a of Q,
d(a∗) = ∂aW for each arrow a of Q,
d(ti) = ei(

∑
a∈Q1

[a, a∗])ei for each vertex i of Q.
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Example of Ginzburg’s dg algebra

Quiver with potential

Q :
1
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Ginzburg dg algebra
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, d(a∗) = bc , d(t1) = cc∗−b∗b, . . .
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H0Γ and the derived category of Γ

Remark
Γ is an enhancement of

H0Γ = k̂Q/(∂aW |a ∈ Q1) = Jacobi algebra of (Q, W ).

Definition
DΓ =derived category of Γ

(objects: differential graded Γ-modules),
per Γ =perfect derived category = closure of ΓΓ under

shifts, extensions, direct summands,
DbΓ = bounded derived category

= {M ∈ DΓ | dim H∗M < ∞}.
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Γ is smooth and 3-Calabi Yau

Remarks
Γ is homologically smooth, i.e.

Γ ∈ per(Γe) , where Γe = Γ⊗̂Γop.

Therefore, we have DbΓ ⊂ per Γ.
Γ is 3-Calabi Yau (as a bimodule), i.e.

RHomΓe(Γ, Γe) ∼→ Γ[−3] in D(Γe).

Therefore, DbΓ is 3-CY as a triang. cat., i.e.

D Hom(L, M) = Hom(M, L[3])

for all L, M in DbΓ, where D = Homk (?, k).
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The main theorem

Q w/o loops or 2-cycles, i a vertex of Q, Γ′ = Γ(µi(Q, W )).

Theorem (-Yang)

There is a canonical equivalence DΓ′ ∼→ DΓ taking P ′
j to Pj for

j 6= i and P ′
i to cone(Pi →

⊕
i→j Pj). It induces equivalences in

per and Db.

Remarks
This improves on a result by Jorge Vitória (0709.3939v2),
cf. also Mukhopadhyay-Ray, Berenstein-Douglas, . . .
The canonical t-structure on DbΓ′ yields a new t-structure
on DbΓ. If W is generic, we get lots of new t-structures on
DbΓ . . .
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Links to cluster theory

NC 3-CY
variety (KS)

�� �O
�O
�O
�O

generalized
cluster cat.: 2-CY

�� �O
�O
�O
�O

0 // DbΓ //

KS (soon)
��

per Γ // CΓ
//

(∗)
��

0

coeff. alg. (FZ)
X -space (FG)

cluster alg. (FZ)
A-space (FG)

KS=Kontsevich-Soibelman, FZ=Fomin-Zelevinsky,
FG=Fock-Goncharov
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Link to cluster algebras, application

Illustration of the link (∗) from CΓ to the cluster algebra:

Theorem (-Caldero)
Suppose Q does not have any oriented cycles. Then{

rigid indecomp.
objects of CΓ

}
∼→

{
cluster variables
of the cl. alg. AQ

}
.

Application of these techniques:

Theorem (K)
The periodicity conjecture (Al. Zamolodchikov, 1991) for pairs
of Dynkin diagrams (Kuniba-Nakanishi, 1992) is true.
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Summary

Quiver mutation is derived equivalence of
Ginzburg algebras.
The periodicity conjecture is true.
Google ‘quiver mutation’!
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The periodicity conjecture

Notation
∆ and ∆′ two Dynkin diagrams with vertex sets J, J ′,
h, h′ their Coxeter numbers, C, C′ their Cartan matrices,
Yi,i ′,t variables where i ∈ J, i ′ ∈ J ′, t ∈ Z.

Y -system associated with (∆,∆′)

Yi,i ′,t−1Yi,i ′,t+1 =

∏
j 6=i(1 + Yj,i ′,t)

−cij∏
j ′ 6=i ′(1 + Y−1

i,j ′,t)
−c′

i′ j′
.

Periodicity conjecture (Al. Zamolodchikov, Kuniba-Nakanishi)

All solutions to this system are periodic of period dividing
2(h + h′).
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