Quiver mutation and derived equivalence

Bernhard Keller and Dong Yang

U.F.R. de Mathématiques et Institut de Mathématiques Université Paris Diderot – Paris 7

Amsterdam, July 16, 2008, 5ECM

quiver mutation = elementary operation on quivers discovered

- in mathematics: cluster algebras (Fomin-Zelevinsky, 2000)
- in physics: Seiberg duality (Vafa, Berenstein-Douglas, ...)

Aim: Categorify quiver mutation using recent work by

- Derksen-Weyman-Zelevinsky
- Ginzburg

Plan

Definition

A quiver Q is an oriented graph: It is given by

- a set *Q*₀ (the set of vertices)
- a set Q₁ (the set of arrows)
- two maps
 - $s: Q_1 \rightarrow Q_0$ (taking an arrow to its source)
 - $t: Q_1 \rightarrow Q_0$ (taking an arrow to its target).

Remark

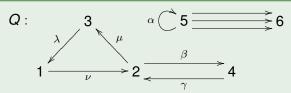
A quiver is a 'category without composition'.

A quiver can have loops, cycles, several components.

Example

The quiver
$$\vec{A}_3$$
: $1 < \frac{\alpha}{\alpha} 2 < \frac{\beta}{\beta} 3$ is an orientation of the Dynkin diagram A_3 : $1 - \frac{\alpha}{2} 2 - \frac{\beta}{3} 3$.

Example



We have $Q_0 = \{1, 2, 3, 4, 5, 6\}$, $Q_1 = \{\alpha, \beta, ...\}$. α is a *loop*, (β, γ) is a 2-*cycle*, (λ, μ, ν) is a 3-*cycle*. Let *Q* be a quiver without loops or 2-cycles.

Definition (Fomin-Zelevinsky)

Let $i \in Q_0$. The *mutation* $\mu_i(Q)$ is the quiver obtained from Q as follows

1) for each subquiver $j \xrightarrow{b} i \xrightarrow{a} l$, add a new arrow

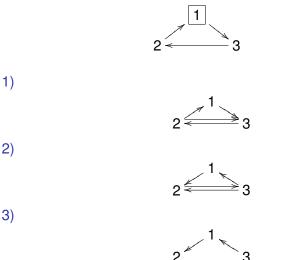
$$j \xrightarrow{[ab]} I;$$

2) reverse all arrows incident with *i*;

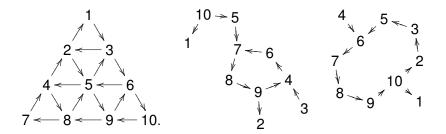
 remove the arrows in a maximal set of pairwise disjoint 2-cycles (e.g. • → • yields • → • , '2-reduction').

Examples of quiver mutation

A simple example:



More complicated examples: Google 'quiver mutation'!



Aim: Categorify these combinatorics!

Special case: source mutation

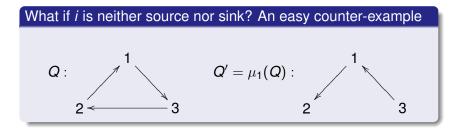
Notation

- k a field,
- kQ the path algebra: $\bigoplus_{p \text{ path}} kp$,
- *e_i* the lazy path attached to a vertex *i*,
- $P_i = e_i kQ$ the projective right module associated with e_i ,
- Mod(kQ) the category of all right kQ-modules,
- $\mathcal{D}(kQ)$ the derived category of Mod(kQ).

Theorem (Bernstein-Gelfand-Ponomarev 1973 + Happel 1986)

Let $Q' = \mu_i(Q)$, where *i* is a source. There is an equivalence (=reflection functor) $R : \mathcal{D}(kQ') \xrightarrow{\sim} \mathcal{D}(kQ)$ such that $P'_j \mapsto P_j$ for $j \neq i$ and $P'_i \mapsto (P_i \to \bigoplus_{i \to j} P_j)$.

General case: Much more complicated



Easy:

 $\mathcal{D}(kQ)$ and $\mathcal{D}(kQ')$ are very far from being equivalent.

Remedy? Hint from physics:

Study quivers with potentials!

Completed path algebras, potentials

Notation

- k a field, Q a finite quiver without loops or 2-cycles
- \widehat{kQ} = completed path algebra = $\prod_{p \text{ path}} kp$,
- $HH_0 = \widehat{kQ}/[\widehat{kQ}, \widehat{kQ}] = \{\text{infinite lin. comb. of cycles of } Q\},\$
- each a ∈ Q₁ yields the cyclic derivative ∂_a : HH₀ → kQ such that

path
$$p \mapsto \sum_{p=uav} vu$$
.

Definition

A *potential* on Q is an element $W \in HH_0$ not involving cycles of length 0.

Theorem (Derksen-Weyman-Zelevinsky)

The mutation operation $Q \mapsto \mu_i(Q)$ admits a good extension to quivers with potentials

$$(\boldsymbol{Q}, \boldsymbol{W}) \mapsto \mu_i(\boldsymbol{Q}, \boldsymbol{W}) = (\boldsymbol{Q}', \boldsymbol{W}'),$$

i.e. $\mu_i(Q)$ is isomorphic to the quiver Q' at least if W is generic (and to the 2-reduction of Q' if W is arbitrary).

Example

(Q, W) a quiver with potential (Q may have loops and 2-cycles)

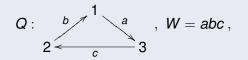
Definition (Ginzburg)

- $\widetilde{\textit{Q}} =$ quiver with $\widetilde{\textit{Q}}_0 = \textit{Q}_0$ and
 - the arrows of *Q* in degree 0,
 - a new arrow $a^*: j \rightarrow i$ of degree -1 for each $a: i \rightarrow j$ of Q,
 - a loop $t_i : i \rightarrow i$ of degree -2 for each vertex *i* of *Q*.

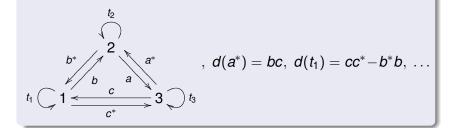
 $\Gamma = \Gamma(Q, W) = \widehat{kQ}$ endowed with the unique *d* of degree 1 such that

- d(a) = 0 for each arrow a of Q,
- $d(a^*) = \partial_a W$ for each arrow *a* of *Q*,
- $d(t_i) = e_i(\sum_{a \in Q_1} [a, a^*])e_i$ for each vertex *i* of *Q*.

Example of Ginzburg's dg algebra



Ginzburg dg algebra



Remark

Γ is an enhancement of

$$H^0\Gamma = \widehat{kQ}/(\partial_a W|a \in Q_1) = Jacobi \ algebra \ ext{of} \ (Q, W).$$

Definition

- DΓ =derived category of Γ (objects: differential graded Γ-modules),
- per Γ =perfect derived category = closure of Γ_Γ under shifts, extensions, direct summands,
- $\mathcal{D}^{b}\Gamma$ = bounded derived category = { $M \in \mathcal{D}\Gamma \mid \dim H^{*}M < \infty$ }.

Γ is smooth and 3-Calabi Yau

Remarks

Γ is homologically smooth, i.e.

 $\Gamma \in per(\Gamma^{e})$, where $\Gamma^{e} = \Gamma \widehat{\otimes} \Gamma^{op}$.

- Therefore, we have $\mathcal{D}^b\Gamma \subset \text{per }\Gamma$.
- Γ is 3-Calabi Yau (as a bimodule), i.e.

 $\mathsf{RHom}_{\Gamma^e}(\Gamma,\Gamma^e) \xrightarrow{\sim} \Gamma[-3] \text{ in } \mathcal{D}(\Gamma^e).$

• Therefore, $\mathcal{D}^b\Gamma$ is 3-CY as a triang. cat., i.e.

 $D \operatorname{Hom}(L, M) = \operatorname{Hom}(M, L[3])$

for all L, M in $\mathcal{D}^b\Gamma$, where $D = \text{Hom}_k(?, k)$.

Q w/o loops or 2-cycles, *i* a vertex of *Q*, $\Gamma' = \Gamma(\mu_i(Q, W))$.

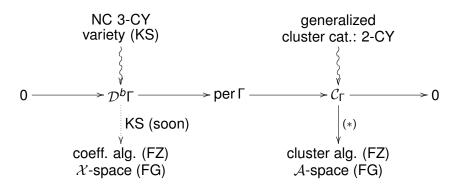
Theorem (-Yang)

There is a canonical equivalence $\mathcal{D}\Gamma' \xrightarrow{\sim} \mathcal{D}\Gamma$ taking P'_j to P_j for $j \neq i$ and P'_i to cone($P_i \rightarrow \bigoplus_{i \rightarrow j} P_j$). It induces equivalences in per and \mathcal{D}^b .

Remarks

- This improves on a result by Jorge Vitória (0709.3939v2), cf. also Mukhopadhyay-Ray, Berenstein-Douglas, ...
- The canonical *t*-structure on D^bΓ' yields a new *t*-structure on D^bΓ. If W is generic, we get lots of new *t*-structures on D^bΓ...

Links to cluster theory



KS=Kontsevich-Soibelman, FZ=Fomin-Zelevinsky, FG=Fock-Goncharov

Illustration of the link (*) from C_{Γ} to the cluster algebra:

Theorem (-Caldero)

Suppose Q does not have any oriented cycles. Then

 $\left\{ \begin{matrix} \text{rigid indecomp.} \\ \text{objects of } \mathcal{C}_{\Gamma} \end{matrix} \right\} \xrightarrow{\sim} \left\{ \begin{matrix} \text{cluster variables} \\ \text{of the cl. alg. } \mathcal{A}_{Q} \end{matrix} \right\}.$

Application of these techniques:

Theorem (K)

The periodicity conjecture (Al. Zamolodchikov, 1991) for pairs of Dynkin diagrams (Kuniba-Nakanishi, 1992) is true.

- Quiver mutation is derived equivalence of Ginzburg algebras.
- The periodicity conjecture is true.
- Google 'quiver mutation'!

The periodicity conjecture

Notation

- Δ and Δ' two Dynkin diagrams with vertex sets J, J',
- h, h' their Coxeter numbers, C, C' their Cartan matrices,
- $Y_{i,i',t}$ variables where $i \in J$, $i' \in J'$, $t \in \mathbb{Z}$.

Y-system associated with (Δ, Δ')

$$Y_{i,i',t-1} Y_{i,i',t+1} = \frac{\prod_{j \neq i} (1 + Y_{j,i',t})^{-c_{ij}}}{\prod_{j' \neq i'} (1 + Y_{i,j',t}^{-1})^{-c'_{i'j'}}}$$

Periodicity conjecture (Al. Zamolodchikov, Kuniba-Nakanishi)

All solutions to this system are periodic of period dividing 2(h + h').