Quiver mutation and derived equivalence

Bernhard Keller and Dong Yang

U.F.R. de Mathématiques et Institut de Mathématiques

Université Paris Diderot - Paris 7
Amsterdam, July 16, 2008, 5ECM
quiver mutation = elementary operation on quivers discovered

- in mathematics: cluster algebras (Fomin-Zelevinsky, 2000)
- in physics: Seiberg duality (Vafa, Berenstein-Douglas, ...)

Aim: Categorify quiver mutation using recent work by

- Derksen-Weyman-Zelevinsky
- Ginzburg

A quiver is an oriented graph

Definition

A quiver Q is an oriented graph: It is given by

- a set Q_{0} (the set of vertices)
- a set Q_{1} (the set of arrows)
- two maps
- $s: Q_{1} \rightarrow Q_{0}$ (taking an arrow to its source)
- $t: Q_{1} \rightarrow Q_{0}$ (taking an arrow to its target).

Remark

A quiver is a 'category without composition'.

A quiver can have loops, cycles, several components.

Example

The quiver $\vec{A}_{3}: 1 \longleftarrow_{\alpha} 2 \longleftarrow 3$ is an orientation of the Dynkin diagram $A_{3}: 1-2-3$.

Example

We have $Q_{0}=\{1,2,3,4,5,6\}, Q_{1}=\{\alpha, \beta, \ldots\}$. α is a loop, (β, γ) is a 2 -cycle, (λ, μ, ν) is a 3-cycle.

Definition of quiver mutation

Let Q be a quiver without loops or 2-cycles.

Definition (Fomin-Zelevinsky)

Let $i \in Q_{0}$. The mutation $\mu_{i}(Q)$ is the quiver obtained from Q as follows

1) for each subquiver $j \xrightarrow{b} i \xrightarrow{a} l$, add a new arrow

$$
j \xrightarrow{[a b]} 1 \text {; }
$$

2) reverse all arrows incident with i;
3) remove the arrows in a maximal set of pairwise disjoint 2-cycles (e.g. $\longleftrightarrow \longleftrightarrow$ yields $\bullet \longrightarrow \bullet$, '2-reduction').

Examples of quiver mutation

A simple example:

1)

2)

3)

More complicated examples: Google 'quiver mutation'!

Aim: Categorify these combinatorics!

Special case: source mutation

Notation

- k a field,
- $k Q$ the path algebra: $\bigoplus_{p_{\text {path }}} k p$,
- e_{i} the lazy path attached to a vertex i,
- $P_{i}=e_{i} k Q$ the projective right module associated with e_{i},
- $\operatorname{Mod}(k Q)$ the category of all right $k Q$-modules,
- $\mathcal{D}(k Q)$ the derived category of $\operatorname{Mod}(k Q)$.

Theorem (Bernstein-Gelfand-Ponomarev 1973 + Happel 1986)

Let $Q^{\prime}=\mu_{i}(Q)$, where i is a source. There is an equivalence (=reflection functor) $R: \mathcal{D}\left(k Q^{\prime}\right) \xrightarrow{\sim} \mathcal{D}(k Q)$ such that $P_{j}^{\prime} \mapsto P_{j}$ for $j \neq i$ and $P_{i}^{\prime} \mapsto\left(P_{i} \rightarrow \bigoplus_{i \rightarrow j} P_{j}\right)$.

General case: Much more complicated

What if i is neither source nor sink? An easy counter-example

Easy:
$\mathcal{D}(k Q)$ and $\mathcal{D}\left(k Q^{\prime}\right)$ are very far from being equivalent.

Remedy? Hint from physics:

Study quivers with potentials!

Completed path algebras, potentials

Notation

- k a field, Q a finite quiver without loops or 2-cycles
- $\widehat{k Q}=$ completed path algebra $=\prod_{p_{\text {path }}} k p$,
- $H H_{0}=\widehat{k Q} /[\widehat{k Q}, \widehat{k Q}]=\{$ infinite lin. comb. of cycles of $Q\}$,
- each $a \in Q_{1}$ yields the cyclic derivative $\partial_{a}: H H_{0} \rightarrow \widehat{k Q}$ such that

$$
\text { path } p \mapsto \sum_{p=u a v} v u .
$$

Definition

A potential on Q is an element $W \in H H_{0}$ not involving cycles of length 0.

Mutation of quivers with potential

Theorem (Derksen-Weyman-Zelevinsky)

The mutation operation $Q \mapsto \mu_{i}(Q)$ admits a good extension to quivers with potentials

$$
(Q, W) \mapsto \mu_{i}(Q, W)=\left(Q^{\prime}, W^{\prime}\right)
$$

i.e. $\mu_{i}(Q)$ is isomorphic to the quiver Q^{\prime} at least if W is generic (and to the 2-reduction of Q^{\prime} if W is arbitrary).

Example

$$
W=a b c
$$

$$
W^{\prime}=0
$$

Ginzburg's dg algebra

(Q, W) a quiver with potential (Q may have loops and 2-cycles)

Definition (Ginzburg)

$\widetilde{Q}=$ quiver with $\widetilde{Q}_{0}=Q_{0}$ and

- the arrows of Q in degree 0 ,
- a new arrow $a^{*}: j \rightarrow i$ of degree -1 for each $a: i \rightarrow j$ of Q,
- a loop $t_{i}: i \rightarrow i$ of degree -2 for each vertex i of Q.
$\Gamma=\Gamma(Q, W)=\widehat{k \widetilde{Q}}$ endowed with the unique d of degree 1 such that
- $d(a)=0$ for each arrow a of Q,
- $d\left(a^{*}\right)=\partial_{a} W$ for each arrow a of Q,
- $d\left(t_{i}\right)=e_{i}\left(\sum_{a \in Q_{1}}\left[a, a^{*}\right]\right) e_{i}$ for each vertex i of Q.

Example of Ginzburg's dg algebra

Quiver with potential

Ginzburg dg algebra

Remark

Γ is an enhancement of

$$
H^{0} \Gamma=\widehat{k Q} /\left(\partial_{\mathrm{a}} W \mid a \in Q_{1}\right)=\text { Jacobi algebra of }(Q, W) .
$$

Definition

- $\mathcal{D} \Gamma=$ derived category of Γ (objects: differential graded Γ-modules),
- per $\Gamma=$ perfect derived category $=$ closure of Γ_{Γ} under shifts, extensions, direct summands,
- $\mathcal{D}^{b} \Gamma=$ bounded derived category

$$
=\left\{M \in \mathcal{D} \Gamma \mid \operatorname{dim} H^{*} M<\infty\right\} .
$$

Remarks

－「 is homologically smooth，i．e．

$$
\Gamma \in \operatorname{per}\left(\Gamma^{e}\right), \text { where } \Gamma^{e}=\Gamma \widehat{\otimes} \Gamma^{o p}
$$

－Therefore，we have $\mathcal{D}^{b} \Gamma \subset$ per Γ ．
－「 is 3－Calabi Yau（as a bimodule），i．e．
$\operatorname{RHom}_{\Gamma^{e}}\left(\Gamma, \Gamma^{e}\right) \xrightarrow{\sim} \Gamma[-3]$ in $\mathcal{D}\left(\Gamma^{e}\right)$ ．
－Therefore， $\mathcal{D}^{b} \Gamma$ is 3－CY as a triang．cat．，i．e．

$$
D \operatorname{Hom}(L, M)=\operatorname{Hom}(M, L[3])
$$

for all L, M in $\mathcal{D}^{b} \Gamma$ ，where $D=\operatorname{Hom}_{k}(?, k)$ ．

The main theorem

Q w/o loops or 2-cycles, i a vertex of $Q, \Gamma^{\prime}=\Gamma\left(\mu_{i}(Q, W)\right)$.

Theorem (-Yang)

There is a canonical equivalence $\mathcal{D} \Gamma^{\prime} \xrightarrow{\sim} \mathcal{D} \Gamma$ taking P_{j}^{\prime} to P_{j} for $j \neq i$ and P_{i}^{\prime} to cone $\left(P_{i} \rightarrow \bigoplus_{i \rightarrow j} P_{j}\right)$. It induces equivalences in per and \mathcal{D}^{b}.

Remarks

- This improves on a result by Jorge Vitória (0709.3939v2), cf. also Mukhopadhyay-Ray, Berenstein-Douglas, ...
- The canonical t-structure on $\mathcal{D}^{b} \Gamma^{\prime}$ yields a new t-structure on $\mathcal{D}^{b} \Gamma$. If W is generic, we get lots of new t-structures on $\mathcal{D}^{b} \Gamma \ldots$

Links to cluster theory

KS=Kontsevich-Soibelman, FZ=Fomin-Zelevinsky,
FG=Fock-Goncharov

Link to cluster algebras, application

Illustration of the link $(*)$ from \mathcal{C}_{Γ} to the cluster algebra:

Theorem (-Caldero)

Suppose Q does not have any oriented cycles. Then

$$
\left\{\begin{array}{l}
\text { rigid indecomp. } \\
\text { objects of } \mathcal{C}_{\Gamma}
\end{array}\right\} \stackrel{\sim}{\sim}\left\{\begin{array}{l}
\text { cluster variables } \\
\text { of the cl. alg. } \mathcal{A}_{Q}
\end{array}\right\} .
$$

Application of these techniques:

Theorem (K)

The periodicity conjecture (Al. Zamolodchikov, 1991) for pairs of Dynkin diagrams (Kuniba-Nakanishi, 1992) is true.

Summary

- Quiver mutation is derived equivalence of Ginzburg algebras.
- The periodicity conjecture is true.
- Google ‘quiver mutation’!

The periodicity conjecture

Notation

- Δ and Δ^{\prime} two Dynkin diagrams with vertex sets J, J^{\prime},
- h, h^{\prime} their Coxeter numbers, C, C^{\prime} their Cartan matrices,
- $Y_{i, i^{\prime}, t}$ variables where $i \in J, i^{\prime} \in J^{\prime}, t \in \mathbb{Z}$.
Y-system associated with $\left(\Delta, \Delta^{\prime}\right)$

$$
Y_{i, i^{\prime}, t-1} Y_{i, i^{\prime}, t+1}=\frac{\prod_{j \neq i}\left(1+Y_{j, i^{\prime}, t}\right)^{-c_{i j}}}{\prod_{j^{\prime} \neq i^{\prime}}\left(1+Y_{i, j^{\prime}, t}^{-1}\right)^{-c_{i^{\prime} j^{\prime}}^{\prime}}} .
$$

Periodicity conjecture (Al. Zamolodchikov, Kuniba-Nakanishi)
All solutions to this system are periodic of period dividing $2\left(h+h^{\prime}\right)$.

