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@ Quiver mutation

@ Quantum dilogarithm identities
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Quiver mutation

A quiver is an oriented graph

A quiver Q is an oriented graph: It is given by
@ aset Qq (the set of vertices)

@ aset Q (the set of arrows)
@ two maps

@ s: Q) — Q (taking an arrow to its source)
o t: Qy — @ (taking an arrow to its target).

A quiver is a ‘category without composition’.
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Quiver mutation

Loops, cycles, sources and sinks of a quiver.

Q- 3 aC5:>>6
N
B
1—l,>2

Y

We have Qp = {1,2,3,4,5,6}, @ = {o, 3,...}.
ais a loop, (58,~) is a 2-cycle, (X, u,v) is a 3-cycle.

Definition
A vertex i is a source of Q if no arrows stop at .
A vertex i is a sink of Q if no arrows start at /.
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Quiver mutation

Definition of quiver mutation

Let Q be a quiver without loops or 2-cycles.

Definition (Fomin-Zelevinsky)

Let j € Qo. The mutation 1;( Q) is the quiver obtained from Q as
follows

1) for each subquiver i—b>j —2. K, add a new arrow
[ab]

| ———k;

2) reverse all arrows incident with j;

3) remove the arrows in a maximal set of pairwise disjoint
2-cycles (e.g. e <—— e yields e —— o | ‘2-reduction’).
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Quiver mutation

Examples of quiver mutation

A simple example:
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Quiver mutation

More complicated examples: Google ‘quiver mutation’!
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Quiver mutation

Towards green quiver mutation
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Next aim: quiver mutation!
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Quiver mutation

Green quiver mutation: the framed quiver

Let Q be a quiver without loops or 2-cycles.

Definition

The framed quiver Q is obtained from Q by adding, for each
vertex i, a new vertex i’ and a new arrow i — i’.

Q:1—>2 Q:1——>2
1/ 2/

Definition
The vertices i’ are frozen vertices, i.e. we never mutate at
them.
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Quiver mutation

Green vertices, green sequences

Suppose that we have transformed Qinto Q' by a finite
sequence of mutations (at non frozen vertices).

Definition

A vertex i of Qis in Q' if there are no arrows j' — i in Q.
Otherwise, it is red.

Definition
A sequence i = (iy,...,iN) IS if foreach 1 <t <N, the
vertex iy is green in

Mi_yq - - - ity (Q) =2 Q(i, T).

Bernhard Keller Quiver mutation and quantum dilogarithm identities



Quiver mutation

Green quiver mutation: example
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Quiver mutation

Maximal green sequences

REINELE!

One can show: If j and i’ are maximal green, then there is a
frozen isomorphism

1i(Q) = 1ir(Q).

Remark 2
Maximal sequences do not always exist. Example:
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Quantum dilogarithm identities

Definition and the pentagon identity

The (exponential of the) quantum dilogarithm series is

T L @y
B ST A e g @)
€ Qg

Pentagon identity (Sch. 1953, Faddeev—Kashaev—Volkov 1993)

Yiye = qQyoy1 = E(y1)E()2) = E(y2)E(q~"2y1y2)E(11)-

Generalize this identity using green mutations.
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Quantum dilogarithm identities

The pentagon corresponds to the quiver Ao

E(y1)E(y2) = E(v2)E(q"2y1y2)E(y1)

— -2
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Quantum dilogarithm identities

Key construction

Given a green sequence | we need to construct a product E(/)
of quantum dilogarithm series. This product is taken in the
algebra A constructed as follows: Let Aq : Z" x Z" — Z be
bilinear antisymmetric such that

Ao(ei, ) = #(arrows i — jin Q) — #(arrows j — i in Q).

Define
Aq =Q(q"3)((y*,a e N | yoyP = q'/2M@h) yathy)

E(i) = E(y*")... E(y™),
where B
(ct)j = #(arrows iy — j" in Q(i, t)).
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Quantum dilogarithm identities

Quantum dilogarithm identities

Theorem

Leti and i’ be green sequences. If there is a frozen
isomorphism

1i(Q) = pin(Q'),
then we have

E(i) = E(i").

Remark

In particular, if i and i’ are maximal green sequences, then
E(i) = E(i’). This power series is intrinsically associated with
the quiver Q. It equals Kontsevich—Soibelman’s ‘refined
Donaldson—Thomas—invariant’ (if defined).
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Quantum dilogarithm identities

Example 1: Dynkin quivers

Let Q be an alternating Dynkin quiver A, where A is a simply
laced Dynkin diagram, e. g.

Q:A5:0 e} [} [¢) )

Put

i = sequence of all sources o
i— = sequence of all sinks e .

Then [ = iyi is maximal and so is

=i,
N—_——
h factors
where his the Coxeter number of the underlying graph of Q.
Thus, we have E(i) = E(i"). These are Reineke’s identities.
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Quantum dilogarithm identities

Example 2: Square products of Dynkin diagrams

Q = AOA’, where A and A’ are simply laced Dynkin diagrams,
e.g.

Q= A0A;: ﬁ
0]

Oe<——O0O——> 0
O—@0<——0
@e<—O0O—> 0

i = sequence of all o

i— = sequence of all e

= ipi_iy ... with hfactors, is maximal green,
=i_iyi_... with h'factors, is maximal green.
We get a new identity E(/) = E(i’).

i
1‘/
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Quantum dilogarithm identities

Two proofs

@ ‘Proof’ based on Kontsevich-Soibelman’s theory (preprints
from November 2008 and June 2010),

@ Proof based on the ‘additive categorification’ of cluster
algebras.

Some contributors to ‘additive categorification’ (in reverse
chronological order): Nagao, Plamondon,
Derksen—Weyman—Zelevinsky, ..., Berenstein—Zelevinsky, .
Buan—Marsh—Reineke—Reiten—Todoroy, ...,
Caldero—Chapoton, Fock—Goncharov, Fomin—Zelevinsky.

"y
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Quantum dilogarithm identities

Main steps of the second proof

(1) E(f) =E(i") in AQ foIIows from
(2) E(/) =E(i’) in A since Ag C A~
(3) The equality (2) i |s equivalent to

AdE() = AdE(/")

because the center of 1&5 is Q(q'/?).

(4) The equality (3) is equivalent to its specialization at
q'/2 = 11 (by a theorem on quantum cluster algebras due
to Berenstein-Zelevinsky)

(5) The specialization of AdE(j) at g'/? = 1 can be expressed
in terms of Euler characteristics of quiver grassmannians
of certain representations of Q (by the ‘main theorem of
additive categorification’).

(6) One shows that these representations only depend on the
class of u,(Q) modulo frozen isomorphism.
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Summary

Summary

@ Google ‘quiver mutation’!
@ Quiver mutation yields quantum dilogarithm identities.
@ These imply classical dilogarithm identities.

@ They also imply a quantum version Zamolodchikov’s
periodicity conjecture for Y-systems (proved previously
directly from cluster categorification).
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