Aisles in derived categories

B. Keller D. Vossieck

Bull. Soc. Math. Belg. 40 (1988), 239-253.

Summary

The aim of the present paper is to demonstrate the usefulness of aisles for studying the tilting theory of $\mathcal{D}^b(\mod A)$, where A is a finitedimensional algebra. In section 1, we establish the equivalence of "aisles" with "t-structures" in the sense of [3] and give a characterization of aisles in molecular categories. Section 2 contains an application to the generalized tilting theory of hereditary algebras. Using aisles, we then give a geometrical proof of the theorem of Happel [7] which states that a finitedimensional algebra which shares its derived category with a Dynkinalgebra A can be transformed into A by a finite number of reflections. The techniques developed so far naturally lead to the classification of the tilting sets in $\mathcal{D}^b(\mod k\vec{A}_n)$ presented in section 5. Finally, we consider the classification problem for aisles in $\mathcal{D}^b(\mod A)$, where A is a Dynkin-algebra. We reduce it to the classification of the silting sets in $\mathcal{D}^b(\mod A)$, which we carry out for $\Delta = \vec{A}_n$.

We thank P. Gabriel for lectures on these topics and for his helpful criticisms during the preparation of the manuscript.

Notations

Let A be a finite-dimensional algebra over a field k. We denote by

- mod A the category of finitely generated right A-modules,
- proj A the full subcategory of mod A consisting of the projective A-modules,

- $C^{-}(\text{proj } A)$ the category of differential complexes over proj A which are bounded above,
- $C^b(\text{proj } A)$ the full subcategory of $C^-(\text{proj } A)$ consisting of the complexes which are bounded above and below,
- $\mathcal{C}_b^-(\text{proj } A)$ the full subcategory of $\mathcal{C}^-(\text{proj } A)$ consisting of the complexes X such that $H^i X = 0$ for almost all $i \in \mathbb{Z}$,
- \$\mathcal{H}^b(\proj A)\$ the homotopy category obtained from \$\mathcal{C}^b(\proj A)\$ by factoring out the ideal of the morphisms homotopic to zero [12],
- $\mathcal{D}^b(A) := \mathcal{D}^b(\text{mod } A)$ the bounded derived category [12] of the abelian category mod A.

1 Aisles

1.1 Let \mathcal{T} be a triangulated category with suspension functor S. A full additive subcategory \mathcal{U} of \mathcal{T} is called an *aisle* in \mathcal{T} if

- a) $S\mathcal{U} \subset \mathcal{U}$,
- b) \mathcal{U} is stable under extensions, i.e. for each triangle $X \to Y \to Z \to SX$ of \mathcal{T} we have $Y \in \mathcal{U}$ whenever $X, Z \in \mathcal{U}$,
- c) the inclusion $\mathcal{U} \to \mathcal{T}$ admits a right adjoint $\mathcal{T} \to \mathcal{U}, X \mapsto X_{\mathcal{U}}$.

For each full subcategory \mathcal{V} of \mathcal{T} we denote by \mathcal{V}^{\perp} (resp. $^{\perp}\mathcal{V}$) the full additive subcategory consisting of the objects $Y \in \mathcal{T}$ satisfying Hom (X, Y) = 0 (resp. Hom (Y, X) = 0) for all $X \in \mathcal{V}$.

The following proposition shows that the assignment $\mathcal{U} \mapsto (\mathcal{U}, S\mathcal{U}^{\perp})$ is a bijection between the aisles \mathcal{U} in \mathcal{T} and the t-structures on \mathcal{T} (in the sense of [3]).

Proposition. A strictly (=closed under isomorphisms) full subcategory \mathcal{U} of \mathcal{T} is an aisle iff it satisfies a) and c')

c') for each object X of \mathcal{T} there is a triangle $X_{\mathcal{U}} \to X \to X^{\mathcal{U}^{\perp}} \to SX_{\mathcal{U}}$ with $X_{\mathcal{U}} \in \mathcal{U}$ and $X^{\mathcal{U}^{\perp}} \in \mathcal{U}^{\perp}$. **Proof.** Suppose \mathcal{U} satisfies a) and c'). The long exact sequence arising from the triangle in c') shows that $\operatorname{Hom}(U, X_{\mathcal{U}}) \xrightarrow{\sim} \operatorname{Hom}(U, X)$ for each $U \in \mathcal{U}$. If $U \to X \to V \to SU$ is a triangle and $U, V \in \mathcal{U}$ then $\operatorname{Hom}(X, ?)$ vanishes on \mathcal{U}^{\perp} and $X^{\mathcal{U}^{\perp}}$. In particular, the morphism $X^{\mathcal{U}^{\perp}} \to SX_{\mathcal{U}}$ of c') has a retraction, hence $X^{\mathcal{U}^{\perp}} = 0$ and $X \cong X_{\mathcal{U}}$ lies in \mathcal{U} . Conversely, let \mathcal{U} satisfy a),b),c). According to b), \mathcal{U} is strictly full. In order to prove c), we form a triangle $X_{\mathcal{U}} \xrightarrow{\varphi} X \xrightarrow{\psi} Y \xrightarrow{\varepsilon} SX_{\mathcal{U}}$ over the adjunction morphism φ . Let $V \in \mathcal{U}$ and $f \in \operatorname{Hom}(V, Y)$. We insert f into a morphism of triangles

According to b), W lies in \mathcal{U} . By assumption, g factors uniquely through φ . Therefore, h has a retraction and $\varepsilon f = 0$. So f factors through ψ and even through $\psi \varphi = 0$ since $V \in \mathcal{U}$.

1.2 For certain triangulated categories, condition 1.1c) can still be weakened. We call an additive category \mathcal{T} a molecular category if each object of \mathcal{T} is a finite direct sum of objects with local endomorphism rings. In particular, if A is a finite-dimensional algebra over a field k, the category $\mathcal{D}^b(A)$ is a molecular category: For all $X, Y \in \mathcal{D}^b(A)$, we have $\dim_k \operatorname{Hom}(X,Y) < \infty$ and for each indecomposable U of $\mathcal{D}^b(A)$, End (U)is local since $\operatorname{End}_{\mathcal{C}^-}(\operatorname{proj} A)(V)$ is local for each indecomposable V of $\mathcal{C}^-(\operatorname{proj} A)$.

If \mathcal{T} is a molecular category, we denote by ind \mathcal{T} a full subcategory of \mathcal{T} whose objects form a system of representatives for the isomorphism classes of indecomposables of \mathcal{T} .

1.3 Proposition. Let \mathcal{T} be a triangulated molecular category and \mathcal{U} a full additive subcategory which is closed under taking direct summands. The subcategory \mathcal{U} is an aisle in \mathcal{T} iff it satisfies a), b) and c").

c") For each object X of \mathcal{T} the functor $\operatorname{Hom}(?, X) | \mathcal{U}$ is finitely generated, i.e. there is $U \in \mathcal{U}$ and an epimorphism $\operatorname{Hom}_{\mathcal{U}}(?, U) \to \operatorname{Hom}_{\mathcal{T}}(?, X) | \mathcal{U}$.

Proof. The claim follows from the

Lemma. Let S be a suspended [9] molecular category and $F : S^{\text{op}} \to Ab$ a cohomological functor, i.e. for each triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} SX$ of Sthe sequence $FX \xleftarrow{Fu} FY \xleftarrow{Fv} FZ$ is exact. The functor F is representable iff it is finitely generated.

Proof. Let F be finitely generated. Because S is a molecular category F has a projective cover $\operatorname{Hom}_{\mathcal{S}}(?, X) \xrightarrow{\varphi} F$ in the abelian category of the additive functors $S^{\operatorname{OP}} \to Ab$. We shall show that φ is a monomorphism. Let $Y \in S$ and $f \in \operatorname{Hom}(Y, X)$ such that $\varphi \circ \operatorname{Hom}(?, f) = 0$. We form a triangle $Y \xrightarrow{f} X \xrightarrow{g} Z \xrightarrow{h} SY$ in S. By the "Yoneda Lemma" we conclude from the exactness of $FY \xleftarrow{Ff} FX \xleftarrow{Fg} FZ$ that φ factors through $\operatorname{Hom}(?, g)$. By construction of φ , $\operatorname{Hom}(?, g)$ admits a retraction. Hence g admits a retraction and f = 0.

1.4 Proposition. Let \mathcal{U}, \mathcal{V} be aisles in a triangulated category \mathcal{T} such that $\mathcal{V} \subset \mathcal{U}^{\perp}$. Then $\mathcal{W} := \mathcal{U} * \mathcal{V} = \{X \in \mathcal{T} : \text{There is a triangle } U \to X \to V \to SU \text{ with } U \in \mathcal{U}, V \in \mathcal{V}\}$ is also an aisle in \mathcal{T} (cf. [3, 1.4])

Proof. We shall verify the conditions of Proposition 1.1. Only c') is not immediate from the definitions. Let $X \in \mathcal{T}$. We form a diagram

where triangles are marked by Δ and tailed arrows denote morphisms of degree 1. By definition, $Y \in \mathcal{W}, X^{\mathcal{U}^{\perp}\mathcal{V}^{\perp}} \in \mathcal{V}^{\perp}$. Since $X^{\mathcal{U}^{\perp}\mathcal{V}^{\perp}}$ is an extension of $S((X^{\mathcal{U}^{\perp}})_{\mathcal{V}})$ by $X^{\mathcal{U}^{\perp}}$ it also lies in \mathcal{U}^{\perp} , hence in $\mathcal{W}^{\perp} = \mathcal{U}^{\perp} \cap \mathcal{V}^{\perp}$. We obtain the required triangle $Y \to X \to X^{\mathcal{U}^{\perp}\mathcal{V}^{\perp}} \to SY$ by forming an octahedron with base $X \to X^{\mathcal{U}^{\perp}} \to X^{\mathcal{U}^{\perp}\mathcal{V}^{\perp}}$.

2 Tilting sets

2.1 Let A be a finite-dimensional algebra over a field k. We consider the problem of determining all finite-dimensional k-algebras B such that $\mathcal{D}^b(B)$ is S-equivalent [9] to $\mathcal{D}^b(A)$.

A tilting set (cf. [7]) in $\mathcal{D}^b(A)$ is a finite subset $\{T_1, \ldots, T_s\} \subset$ ind $\mathcal{D}^b(A)$ such that Hom $(S^lT_i, T_j) = 0$ for all i, j and all integers $l \neq 0$.

Each fully faithful S-functor $F : \mathcal{D}^b(B) \to \mathcal{D}^b(A)$ gives rise to the tilting set $\{T \in \operatorname{ind} \mathcal{D}^b(A) : T \cong FP$ for some indecomposable projective B-module P}. Conversely, let $\{T_1, \ldots, T_s\}$ be a tilting set and B :=End $(\bigoplus_{i=1}^s T_i)$. By [9, 3.2], the obvious functor from proj B to $\mathcal{D}^b(A)$ extends to a fully faithful S-functor $E : \mathcal{H}^b(\operatorname{proj} B) \to \mathcal{D}^b(A)$ (put $\mathcal{E} := \mathcal{C}^-_b(\operatorname{proj} A)$ in [9, 3.2]). We make the additional assumptions

- a) Hom $(T_i, T_j) = 0 \forall i > j$ and Hom (T_i, T_i) is a skew field $\forall i$.
- b) gldim $A < \infty$.

Assumption a) implies $\operatorname{gldim} B < \infty$. By composing E with a quasiinverse of the equivalence $\mathcal{H}^b(\operatorname{proj} B) \to \mathcal{D}^b(B)$ we obtain a fully faithful S-functor $F : \mathcal{D}^b(B) \to \mathcal{D}^b(A)$.

Proposition. The essential image of F is an aisle in $\mathcal{D}^b(A)$. In particular, F has a right adjoint.

Proof. Let \mathcal{U}_i be the strictly full triangulated subcategory of $\mathcal{D}^b(A)$ generated by T_i . Since $\mathcal{D}^b(\text{End}(T_i)) \xrightarrow{\sim} \mathcal{U}_i$, assumption b) and proposition 1.3 imply that \mathcal{U}_i is an aisle in $\mathcal{D}^b(A)$. The essential image of F equals $\mathcal{U}_s * \mathcal{U}_{s-1} * \cdots * \mathcal{U}_2 * \mathcal{U}_1$ (by [3, 1.3.10], * is associative). The claim now follows from proposition 1.4.

2.2 Theorem. Let A be a hereditary finite-dimensional k-algebra and $\{T_1, \ldots, T_s\}$ a tilting set in $\mathcal{D}^b(A)$. The functor F is an S-equivalence iff s equals the number of isomorphism classes of simple A-modules.

Proof. By [7, 7.3] assumption a) is satisfied for an appropriate numbering of the T_i and, since A is hereditary, so is assumption b). An S-equivalence $\mathcal{D}^b(B) \xrightarrow{\sim} \mathcal{D}^b(A)$ induces an isomorphism of the Grothendieck-groups $K_0(B) \xrightarrow{\sim} K_0(A)$. Therefore, since s equals the number of isomorphism classes of simple B-modules, the condition is necessary. For the converse, it is enough to show that $\{FX : X \in \mathcal{D}^b(B)\}^{\perp} = 0$, by proposition 2.1. Let $Y \in \mathcal{D}^b(A)$ be indecomposable and such that $\operatorname{Hom}(FX,Y) = 0, \ \forall X \in \mathcal{D}^b(B)$. This implies $\langle [FX], [Y] \rangle = 0$, where [.] denotes the canonical map $\mathcal{D}^b(A) \to K_0(A)$ and $\langle ., . \rangle$ denotes the canonical bilinear form on $K_0(A)$ [7]. F induces a section $K_0(B) \to K_0(A)$ (the right adjoint of F yields a retraction). Since rank $K_0(B) = s = \operatorname{rank} K_0(A)$, we have $K_0(A) = \{[FX] : X \in \mathcal{D}^b(B)\}$, hence [Y] = 0 and, since A is hereditary and Y is indecomposable, Y = 0[7].

3 Dynkin-algebras

3.1 Let *B* be a basic, connected, finite-dimensional algebra over an algebraically closed field *k*. Assume that there exists a simple, projective, non-injective right *B*-module *P*. Define *Q* by $B \cong Q \oplus P$. Then $T = \tau^- P \oplus Q$ is a tilting module in mod *B* (cf. [5], [8]), where $\tau^- P$ denotes a preimage of *P* under the Auslander-Reiten-translation. The derived functors $F = \underline{R} \operatorname{Hom}_B(T, ?) : \mathcal{D}^b(B) \to \mathcal{D}^b(B_P)$ and $G = \underline{L}(? \otimes_{B_P} T)$ are quasi-inverse *S*-equivalences, where $B_P = \operatorname{End}(T_B)$ is obtained from *B* by reflection in *P* [4]. Thus, the derived category $\mathcal{D}^b(B)$ is "invariant under reflections". Conversely, we have the

Theorem. (Happel) Let $\mathcal{D}^{b}(B)$ be S-equivalent to $\mathcal{D}^{b}(A)$ where A is a Dynkin-algebra (=path algebra [6, 4.1] of a Dynkin quiver). Then A is obtained from B by a finite number of reflections.

Proof. Let $\mathcal{U} = \{X \in \mathcal{D}^b(B) : H^i X = 0 \ \forall i > 0\}$ be the *natural aisle* in $\mathcal{D}^b(B)$ [3, 1.3.1], \mathcal{V} the natural aisle in $\mathcal{D}^b(A)$ and $E : \mathcal{D}^b(B) \to \mathcal{D}^b(A)$ an *S*-equivalence with $[\mathcal{V}] \subset [E\mathcal{U}]$, where [?] denotes the set of isomorphism classes of indecomposables in ?. If $[\mathcal{V}] = [E\mathcal{U}]$, *E* induces an equivalence

of the hearts (=hearts of the corresponding t-structures) of \mathcal{U} and \mathcal{V} , i.e. of mod B and mod A. In general, $[\mathcal{V}]$ is obtained from $[E\mathcal{U}]$ by the omission of finitely many isomorphism classes, as it is apparent from Happel's description of ind $\mathcal{D}^b(A)$ [7]. By induction, we are reduced to the case $[\mathcal{V}] = [E\mathcal{U}] \setminus \{EM\}$, where M is a source of ind \mathcal{U} , i.e. Hom (V, M) = $0 \forall V \in \operatorname{ind} \mathcal{U}, V \neq M$ and $S^-M \notin \mathcal{U}$. The sources of ind \mathcal{U} are isomorphic to the simple projectives of mod B. It is therefore enough to prove the

3.2 Lemma. In the setting of 3.1 let \mathcal{U} be the natural aisle in $\mathcal{D}^b(B)$, \mathcal{W} the natural aisle in $\mathcal{D}^b(B_P)$ and \mathcal{W}' its essential image under G. Then $\mathcal{W}' = \{X \in \mathcal{U} : P \text{ is not a direct summand of } X\}.$

Proof. Let $\mathcal{U}_P = \{X \in \mathcal{U} : P \text{ is not a direct summand of } X\}$. It follows from $\operatorname{pdim}_{B_P}T \leq 1$ that $GW^{\perp} \subset S\mathcal{U}^{\perp}$ hence $S\mathcal{U} \subset W'$. We also have $S\mathcal{U} \subset \mathcal{U}_P$ and $\mathcal{U}_P = (S\mathcal{U})*(\mathcal{U}_P \cap \operatorname{mod} B), W' = (S\mathcal{U})*(\mathcal{W}' \cap \operatorname{mod} B)$. By [2], $\mathcal{U}_P \cap \operatorname{mod} B$ is just the torsion theory generated by T, which by [5] coincides with the essential image of $\operatorname{mod} B_P$ under $H^0G \cong ? \otimes_{B_P} T$.

4 Complete tilting sets in $\mathcal{D}^b(k\vec{A_n})$

Let A be a finite-dimensional algebra over a field k. We define the spectrum of a tilting set M in $\mathcal{D}^b(A)$ as the full subcategory of $\mathcal{D}^b(A)$ whose objects are the elements of M. We call a tilting set in $\mathcal{D}^b(A)$ complete if its cardinality equals the number of isomorphism classes of simple Amodules.

Let A be the path algebra of the quiver $\vec{A}_n : 1 \to 2 \to \ldots \to n$ [6]. We identify [7] the category ind $\mathcal{D}^b(A)$ with the mesh-category $k(\mathbf{Z}\vec{A}_n)$ [11, 2.1] of the translation quiver $\mathbf{Z}\vec{A}_n$:

By an \vec{A}_n -quiver we mean an oriented tree K having n vertices and whose set of arrows is decomposed into a class of α -arrows and a class of β -arrows such that in each vertex of K there terminate at most one α arrow and one β -arrow and there originate at most one α -arrow and one β -arrow. Now let K be an \vec{A}_n -quiver. For each vertex x of K let x^{α} (resp. x_{α}) be the number of vertices y of K such that the shortest walk from yto x ends (resp. begins) with an α -arrow terminating (resp. originating) in x. Analogously, we define x^{β} and x_{β} . Then there is exactly one map of the underlying sets of vertices $K_0 \to (\mathbf{Z}\vec{A}_n)_0, x \mapsto (gx, hx)$ such that

- a) $\min_{x \in K} gx = 0$,
- b) $(gy, hy) = (gx, hx + x^{\beta} + y_{\beta} + 1)$ for each α -arrow $x \xrightarrow{\alpha} y$ and
- c) $(gy, hy) = (gx + x^{\alpha} + y_{\alpha} + 1, hx x^{\alpha} y_{\alpha} 1)$ for each β -arrow $x \xrightarrow{\beta} y$.

Because $hx = 1 + x^{\alpha} + x_{\beta}$, this map is indeed well defined. Let M_K denote its image.

Theorem. The assignment $K \mapsto M_K$ induces a bijection from the isomorphism classes of $\vec{A_n}$ -quivers to the complete tilting sets M in $ind \mathcal{D}^b(k\vec{A_n}) = k(\mathbf{Z}\vec{A_n})$ with $\min_{(g,h)\in M} g = 0$. Moreover, the spectrum of M_K is described by the quiver K bound by all possible relations $\alpha\beta = 0$ and $\beta\alpha = 0$ (cf. [1]).

Proof. Let K be an $\vec{A_n}$ -tree. We call $x \in K_0$ a knot of K if x is contained in a full subtree of one of the forms

$$\bullet \xrightarrow{\alpha} x \xrightarrow{\alpha} \bullet, \ \bullet \xrightarrow{\alpha} x \xleftarrow{\beta} \bullet, \ \bullet \xleftarrow{\beta} x \xrightarrow{\alpha} \bullet, \ \bullet \xleftarrow{\beta} x \xleftarrow{\beta} \bullet.$$

The other vertices of K are called peaks. We term $(g,h) \in (\mathbf{Z}\vec{A_n})_0$ a marginal vertex if h = 1 or h = n and we call the other vertices of $\mathbf{Z}\vec{A_n}$ inner vertices. We use induction on the number m of knots of K.

If m = 0, K has one of the forms

$$K_{\alpha} = \bullet \stackrel{\alpha}{\to} \bullet \stackrel{\beta}{\to} \bullet \stackrel{\alpha}{\to} \dots$$

or

$$K_{\beta} = \bullet \xrightarrow{\beta} \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} \dots$$

Figure 1: $\mathbf{Z}\vec{A}_n$ with given vertex P

It is easy to see that the corresponding sets $M_{K_{\alpha}}$, $M_{K_{\beta}}$ are exactly the complete tilting sets M of ind $\mathcal{D}^b(k\vec{A}_n)$ which only consist of marginal vertices and satisfy $\min_{(g,h)\in M} g = 0$.

Now let m > 0. We first describe the complete tilting sets in $k(\mathbf{Z}\vec{A}_n)$ which contain a given inner vertex P. The tilting sets $\{X_1, \ldots, X_r, P\}$ and $\{Y_1, \ldots, Y_s, P\}$ (cf. Fig. 1) give rise to fully faithful embeddings $j_X : \mathcal{D}^b(k\vec{A}_{r+1}) \to \mathcal{D}^b(k\vec{A}_n)$ and $j_Y : \mathcal{D}^b(k\vec{A}_{s+1}) \to \mathcal{D}^b(k\vec{A}_n)$. We may assume that $j_X(\mathbf{Z}\vec{A}_{r+1})_0 \subset (\mathbf{Z}\vec{A}_n)_0$ and $j_Y(\mathbf{Z}\vec{A}_{s+1})_0 \subset (\mathbf{Z}\vec{A}_n)_0$, in particular $j_X P_X = P$ and $j_Y P_Y = P$ where $P_X = (0, r+1) \in (\mathbf{Z}\vec{A}_{r+1})_0$ and $P_Y =$ $(0, s+1) \in (\mathbf{Z}\vec{A}_{s+1})_0$. With these notations, the complete tilting sets Min $k(\mathbf{Z}\vec{A}_n)$ containing P are exactly the sets $j_X(L) \cup j_Y(N)$ where $L \subset$ $(\mathbf{Z}\vec{A}_{r+1})_0$ and $N \subset (\mathbf{Z}\vec{A}_{s+1})_0$ are complete tilting sets containing P_X and P_Y , respectively. Here, the set of marginal points of M equals $\{j_X(R) :$ R is a marginal point of $L \setminus P_X \} \cup \{j_Y(R) : R$ is a marginal point of $N \setminus P_Y$ }. For the corresponding spectra we have the pushout diagram

$$\begin{array}{cccc} k & \stackrel{i_X}{\to} & L \\ i_Y \downarrow & & \downarrow j_X \\ N & \stackrel{j_Y}{\to} & M \end{array}$$

where k is considered as a category with one object and i_X and i_Y are fully faithful with $i_X(k) = P_X$ and $i_Y(k) = P_Y$. Combined with the induction hypothesis, this description shows that the spectra of the complete tilting sets in $k(\mathbf{Z}\vec{A_n})$ are described by the $\vec{A_n}$ -quivers with all relations $\alpha\beta = 0 = \beta\alpha$ and that peaks are mapped to marginal points by the corresponding isomorphisms of categories. So let M be a complete tilting set in $k(\mathbf{Z}\vec{A_n})$ whose spectrum is described by K. We claim that the corresponding bijection $e: K_0 \to M \subset (\mathbf{Z}\vec{A_n})_0$ satisfies conditions b) and c). This is obvious if x, y are peaks of K since then ex, ey are marginal points. If for example x is a knot we apply the above construction with P = ex and the claim follows from the induction hypothesis.

5 Aisles in $\mathcal{D}^b(k\Delta)$

5.1 Let \mathcal{U} be an aisle in a triangulated category \mathcal{T} . The heart of \mathcal{U} is the full subcategory $\mathcal{U}^0 = \mathcal{U} \cap S\mathcal{U}^{\perp}$ of \mathcal{T} ; the associated cohomology functor $H^0_{\mathcal{U}} : \mathcal{T} \to \mathcal{U}^0$ is given by $X \mapsto (X_{\mathcal{U}})^{S\mathcal{U}^{\perp}}$ [3, 1.3.1-6]. The aisle \mathcal{U} is faithful if the inclusion $\mathcal{U}^0 \to \mathcal{T}$ extends to an S-equivalence $\mathcal{D}^b(\mathcal{U}^0) \to \bigcup_{n \in \mathbb{N}} S^{-n}\mathcal{U}$; it is separated if $\bigcap_{n \in \mathbb{N}} S^n\mathcal{U} = 0$.

Let $k\Delta$ be the path algebra [6] of a Dynkin-quiver Δ . For each subset $M \subset \operatorname{ind} \mathcal{D}^b(k\Delta)$ let $\mathcal{F}(M)$ be the smallest strictly full subcategory of $\mathcal{D}^b(k\Delta)$ which contains M and is stable under S and closed under extensions and direct summands. By proposition 1.3, $\mathcal{F}(M)$ is an aisle. The assignment $\{T_1, \ldots, T_s\} \mapsto \mathcal{F}(T_1, \ldots, T_s)$ is a bijection between the tilting sets in $\mathcal{D}^b(k\Delta)$ and the faithful aisles. We shall generalize the concept of a tilting set in order to obtain an analogous description of all separated aisles in $\mathcal{D}^b(k\Delta)$.

A silting set in $\mathcal{D}^b(k\Delta)$ is a finite subset $\{R_1, \ldots, R_s\} \subset \operatorname{ind} \mathcal{D}^b(k\Delta)$ such that $\operatorname{Hom}(R_i, S^l R_j) = 0 \ \forall i, j \text{ and } \forall l > 0.$

Theorem.

a) The assignment $\{R_1, \ldots, R_s\} \mapsto \mathcal{F}(R_1, \ldots, R_s)$ is a bijection between the silting sets in $\mathcal{D}^b(k\Delta)$ and the separated aisles in $\mathcal{D}^b(k\Delta)$.

If $\{R_1, \ldots, R_s\}$ is a silting set and $\mathcal{W} = \mathcal{F}(R_1, \ldots, R_s)$ we have

- b) $\mathcal{W} \cap^{\perp}(S\mathcal{W}) \cap \operatorname{ind} \mathcal{D}^b(k\Delta) = \{R_1, \dots, R_s\}$
- c) $s \leq |\Delta_0|$, and $s = |\Delta_0| \Leftrightarrow \bigcup_{n \in \mathbb{N}} S^{-n} \mathcal{W} = \mathcal{D}^b(k\Delta)$
- d) $\mathcal{W} = \{ X \in \bigcup_{n \in \mathbb{N}} S^{-n} \mathcal{W} : \operatorname{Hom} (R_i, S^l X) = 0 \ \forall i, \ \forall l > 0 \}$

Figure 2: Example of $\mathcal{V}(\bullet)$ and $\mathcal{U}(\circ)$ in $\mathbf{Z}A_n$

e) H⁰_WR₁,..., H⁰_WR_s form a system of representatives of the isomorphism classes of indecomposable projectives of W⁰, and H⁰_W induces an equivalence between the full subcategories {R₁,...,R_s} and {H⁰_WR₁,...,H⁰_WR_s} of D^b(kΔ).

Proof. 1st step: The following variant of a construction by Parthasarathy [10] allows us to use induction on $|\Delta_0|$.

Let \mathcal{W} be a separated aisle in $\mathcal{D}^b(k\Delta)$ and Q a source (3.1) of $\operatorname{ind} \mathcal{W}$. We may assume that Δ admits a unique source q and that Q = (0, q). Let Q be the full subcategory of $\mathcal{D}^b(k\Delta)$ whose objects are the direct sums of objects S^nQ , $n \in \mathbb{Z}$. The tilting set $\{(0, r) : r \in \Delta_0, r \neq q\} \subset k(\mathbb{Z}\Delta)$ yields a fully faithful S-functor $\mathcal{D}^b(k\Delta') \to \mathcal{D}^b(k\Delta)$ (2.1), where Δ' is obtained from Δ by omitting the vertex q and all arrows originating in q. The essential image of this S-functor equals ${}^{\perp}Q$. We claim that $\mathcal{W} = \mathcal{U} * \mathcal{V}$, where $\mathcal{U} = \mathcal{W} \cap {}^{\perp}Q$ and $\mathcal{V} = \mathcal{W} \cap Q$. Obviously, we have $\mathcal{W} \supset \mathcal{U} * \mathcal{V}$. Conversely, let X be an indecomposable in \mathcal{W} which is not isomorphic to Q. We have the triangle $X_{{}^{\perp}Q} \to X \to X^Q \to SX_{{}^{\perp}Q}$ (1.3). The assumptions on X imply that X^Q lies in $S\mathcal{V}$. Thus, as an extension of X by $S^-X^Q \in \mathcal{V} \subset \mathcal{W}, X_{{}^{\perp}Q}$ lies in $\mathcal{W} \cap {}^{\perp}Q = \mathcal{U}$.

2nd step: b) Let the numbering be chosen in such a way that $\operatorname{Hom}(R_j, R_i) = 0 \forall i < j$. We apply the construction of the first step to the source $Q = R_1$ of ind \mathcal{W} . Let $X \in \mathcal{W} \cap^{\perp}(S\mathcal{W})$ be indecomposable. We have the triangle $X_{\perp Q} \to X \to X^{\mathcal{Q}} \to SX_{\perp Q}$. As in the first step, either $X \cong R_1$ or $X^{\mathcal{Q}} \in S\mathcal{V}$ and in this case we infer $X^{\mathcal{Q}} = 0$ and $X \in \mathcal{U} \cap^{\perp}(S\mathcal{U})$. The claim now follows from the induction hypothesis.

a) Because of b) we only have to show surjectivity. In the setting of the first step let $R_1 = Q$. We complete R_1 to a system of representatives $\{R_1, \ldots, R_s\}$ of the indecomposables of $\mathcal{W} \cap^{\perp}(S\mathcal{W})$. Then $\{R_2, \ldots, R_s\}$ is a system of representatives of the indecomposables of $\mathcal{U} \cap^{\perp}(S\mathcal{U})$. According to the induction hypothesis, we have $\mathcal{U} = \mathcal{F}(R_2, \ldots, R_s)$, and therefore $\mathcal{W} = \mathcal{U} * \mathcal{V} = \mathcal{F}(R_1, \ldots, R_s)$.

The proof of c) is left to the reader. d) Obviously, \mathcal{W} is contained in the aisle given in the assertion. Conversely, let $X = S^{-n}Y$ ($Y \in \mathcal{W}, n \in \mathbb{N}$) and Hom $(R_i, S^l X) = 0 \forall i, \forall l > 0$. By induction we conclude $S^{-n}Y_{\mathcal{U}} \in \mathcal{U}$. Using Hom $(R_1, S\mathcal{U}) = 0$ and the triangle $Y_{\mathcal{U}} \cong Y_{\perp \mathcal{Q}} \to$ $Y \to Y^{\mathcal{Q}} \to SY_{\perp \mathcal{Q}}$ we infer Hom $(S^{-l}R_1, S^{-n}Y^{\mathcal{Q}}) = 0$ for all l > 0 and $S^{-n}Y^{\mathcal{Q}} \in \mathcal{V}$.

e) From Hom $(R_1, SW) = 0$ it follows that $R_1 \cong H^0_W R_1$ is projective in W^0 . The rest of the assertion follows from the

Lemma. Let \mathcal{U}, \mathcal{V} be aisles in a triangulated category \mathcal{T} such that $\mathcal{U} \subset^{\perp} \mathcal{V}$ and let $\mathcal{W} = \mathcal{U} * \mathcal{V}$. (cf. proposition 1.4)

- a) $\mathcal{V}^0 \subset \mathcal{W}^0$ and $H^0_{\mathcal{V}} | \mathcal{W}^0$ is right adjoint to this inclusion.
- b) $H^0_{\mathcal{U}}|\mathcal{W}^0$ is exact and $H^0_{\mathcal{W}}|\mathcal{U}^0$ is left adjoint to $H^0_{\mathcal{U}}|\mathcal{W}^0$ and fully faithful.
- c) For each $A \in \mathcal{W}^0$ we have an exact sequence

$$H^0_{\mathcal{W}}H^0_{\mathcal{U}}A \to A \to H^0_{\mathcal{W}}A^{\mathcal{U}^{\perp}} \to 0$$

d) $H^0_{\mathcal{W}}|\mathcal{W}\cap^{\perp}(S\mathcal{W})$ is fully faithful and for $X \in \mathcal{U}$ we have $H^0_{\mathcal{W}}X \cong H^0_{\mathcal{W}}H^0_{\mathcal{U}}X$.

We leave the proof of the lemma to the reader (compare with [3]).

5.2 In the setting of 5.1 let $\{T_1, \ldots, T_s\}$ be a tilting set in $\mathcal{D}^b(k\Delta)$. Suppose that the numbering has been chosen in such a way that $\operatorname{Hom}(T_j, T_i) = 0 \quad \forall j > i$. Let $p : \{1, \ldots, s\} \to \mathbf{N}$ be a non-decreasing function with p(1) = 0.

Proposition.

- a) $R_1 := S^{p(1)}T_1, \ldots, R_s := S^{p(s)}T_s$ form a silting set in $\mathcal{D}^b(k\Delta)$.
- b) With $\mathcal{U} = \mathcal{F}(T_1, \ldots, T_s)$, $\mathcal{W} = \mathcal{F}(R_1, \ldots, R_s)$ we have for each $i \in \mathbb{Z}$

$$\mathcal{U}^0 \cap S^{-i}\mathcal{W} = \{ X \in \mathcal{U}^0 : \text{Hom}\,(T_j, X) = 0 \text{ for each } j \text{ with } i < p(j) \}$$

$$\mathcal{W} = \{ X \in \mathcal{U} : H^i_{\mathcal{U}} X \in \mathcal{U}^0 \cap S^i \mathcal{W}, \, \forall i \in \mathbf{Z} \}$$

c) The full subcategory $\{R_1, \ldots, R_s\}$ of $\mathcal{D}^b(k\Delta)$ is isomorphic to the disjoint sum of the full subcategories $C_j = \{T_i : p(i) = j\}, j \in \mathbf{N},$ of $\{T_1, \ldots, T_s\}$.

We leave the proof to the reader.

5.3 Theorem. Each silting set in $\mathcal{D}^b(k\vec{A}_n)$ (cf. section 4) is of the form given in 5.2

Proof. Let $\{R_1, \ldots, R_s\}$ be a silting set in $\mathcal{D}^b(k\overline{A}_n)$.

1st step: $\{R_1, \ldots, R_s\}$ is contained in a complete silting set (= silting set of maximal cardinality).

If s < n we have $\mathcal{T}^{\perp} \neq 0$ (5.1 c), where $\mathcal{T} = \bigcup_{m \in \mathbb{N}} S^{-m} \mathcal{F}(R_1, \ldots, R_s)$. Because gldim $k\Delta < \infty$ we can find an indecomposable $R_0 \in \mathcal{T}^{\perp}$ such that Hom $(R_0, S^l R_i) = 0$ for all $l > 0, i = 1, \ldots, s$. Then $\{R_0, \ldots, R_s\}$ is a silting set. The claim now follows by induction on n - s.

2nd step: By the first step we may assume n = s. Let the numbering of the R_i be non-decreasing with respect to the order on $\operatorname{ind} \mathcal{D}^b(k\vec{A}_n)$ generated by the arrows of $\mathbf{Z}\vec{A}_n$. With the notations of the first step of the proof of theorem 5.1 we set $Q = R_1$. The induction hypothesis applied to $\{R_2, \ldots, R_n\} \subset {}^{\perp}\mathcal{Q}$ yields a tilting set $\{T_2, \ldots, T_n\}$ which corresponds to a complete tilting set in $\mathcal{D}^b(k\Delta')$. Therefore the connected components of the spectrum of $\{T_2, \ldots, T_n\}$ are precisely the intersections of $\{T_2, \ldots, T_n\}$ with the connected components of $\operatorname{ind} {}^{\perp}\mathcal{Q}$.

Figure 3: A silting set in $\mathbf{Z}D_4$

Let \mathcal{C} be a connected component of $\operatorname{ind}^{\perp} \mathcal{Q}$. Because $\operatorname{Hom}(Q,?)|\mathcal{C} \neq 0$ and $\{T_2, \ldots, T_n\} \cap \mathcal{C}$ is a complete tilting set in \mathcal{C} , $\operatorname{Hom}(Q,?)$ does not vanish on $S^l\{T_2, \ldots, T_n\} \cap \mathcal{C}$ for some $l \in \mathbb{Z}$. Hence we may assume that $\{Q, T_2, \ldots, T_n\}$ is connected. Because $\{X \in \mathcal{C} : \operatorname{Hom}(Q, X) \neq 0\}$ is linearly ordered by $X \leq X' :\Leftrightarrow \operatorname{Hom}(X, X') \neq 0$ (cf. figure 2), $\{Q, T_2, \ldots, T_n\}$ must be a tilting set in $\mathcal{D}^b(k\vec{A}_n)$. Setting $T_1 = Q$ we have $R_i = S^{p(i)}T_i$ for some function $p : \{1, \ldots, n\} \to \mathbb{Z}$ with p(1) = 0. It is easy to see that $\operatorname{Hom}(T_i, T_j) \neq 0$ implies $p(i) \leq p(j)$.

5.4 Remarks: a) Silting sets can always be completed (cf. the first step of the above proof) but in general, tilting sets cannot : $\{(0, 1), (3, 3)\} \subset \mathbf{Z}\vec{A_3}$.

b) The silting set of figure 3 is not of the form given in 5.2 since 5.2 c) cannot be satisfied.

References

- [1] I. Assem, D. Happel, Generalized tilted algebras of type A_n , Comm. Alg. 9 (1981), 2101-2125; Erratum, Comm. Alg. 10 (1982), 1475
- [2] M. Auslander, M. I. Platzeck, I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46
- [3] A. A. Beilinson, J. Bernstein, P. Deligne, *Faisceaux pervers*, Astérisque 100 (1982)
- [4] I. N. Bernstein, I. M. Gelfand, V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Uspekhi Mat. Nauk 28 (1973); translated in Russian Math. Surveys 28 (1973), 17-32

- [5] K. Bongartz, *Tilted algebras*, Springer LNM 903 (1982), 26-38
- [6] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Springer LNM 831 (1980), 1-71
- [7] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), 339-389
- [8] D. Happel, C. M. Ringel, *Tilted algebras*, Trans. Amer. Math. Soc. 274(2) (1982), 399-443
- B. Keller, D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris 305 (1987), 225-228
- [10] R. Parthasarathy, t-structures dans la catégorie dérivée associée aux représentations d'un carquois, C. R. Acad. Sci. Paris 304 (1987), 355-357
- [11] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224
- [12] J.-L. Verdier, *Catégories dérivées, état 0*, SGA 4 1/2, Springer LNM 569 (1977), 262-311

B.K. : Mathematik, G 28.2, ETH-Zentrum, 8092 Zürich, Switzerland;D.V. : Mathematisches Institut, Universität Zürich, Rämistrasse 74, 8051 Zürich, Switzerland