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Summary

The aim of the present paper is to demonstrate the usefulness of

aisles for studying the tilting theory of Db(modA), where A is a finite-

dimensional algebra. In section 1, we establish the equivalence of “aisles”

with “t-structures” in the sense of [3] and give a characterization of aisles

in molecular categories. Section 2 contains an application to the gener-

alized tilting theory of hereditary algebras. Using aisles, we then give a

geometrical proof of the theorem of Happel [7] which states that a finite-

dimensional algebra which shares its derived category with a Dynkin-

algebra A can be transformed into A by a finite number of reflections.

The techniques developed so far naturally lead to the classification of

the tilting sets in Db(mod k ~An) presented in section 5. Finally, we con-

sider the classification problem for aisles in Db(modA), where A is a

Dynkin-algebra. We reduce it to the classification of the silting sets in

Db(modA), which we carry out for ∆ = ~An.

We thank P. Gabriel for lectures on these topics and for his helpful

criticisms during the preparation of the manuscript.

Notations

Let A be a finite-dimensional algebra over a field k. We denote by

• modA the category of finitely generated right A-modules,

• projA the full subcategory of modA consisting of the projective

A-modules,



• C−(projA) the category of differential complexes over projA which

are bounded above,

• Cb(projA) the full subcategory of C−(projA) consisting of the com-

plexes which are bounded above and below,

• C−b (projA) the full subcategory of C−(projA) consisting of the com-

plexes X such that H iX = 0 for almost all i ∈ Z,

• Hb(projA) the homotopy category obtained from Cb(projA) by fac-

toring out the ideal of the morphisms homotopic to zero [12],

• Db(A) := Db(modA) the bounded derived category [12] of the

abelian category modA.

1 Aisles

1.1 Let T be a triangulated category with suspension functor S. A full

additive subcategory U of T is called an aisle in T if

a) SU ⊂ U ,

b) U is stable under extensions, i.e. for each triangle X → Y → Z →
SX of T we have Y ∈ U whenever X,Z ∈ U ,

c) the inclusion U → T admits a right adjoint T → U , X 7→ XU .

For each full subcategory V of T we denote by V⊥ (resp. ⊥V) the

full additive subcategory consisting of the objects Y ∈ T satisfying

Hom (X,Y ) = 0 (resp. Hom (Y,X) = 0) for all X ∈ V .

The following proposition shows that the assignment U 7→ (U , SU⊥)

is a bijection between the aisles U in T and the t-structures on T (in the

sense of [3]).

Proposition. A strictly (=closed under isomorphisms) full subcategory

U of T is an aisle iff it satisfies a) and c’)

c’) for each object X of T there is a triangle XU → X → XU⊥ → SXU

with XU ∈ U and XU⊥ ∈ U⊥.



Proof. Suppose U satisfies a) and c’). The long exact sequence arising

from the triangle in c’) shows that Hom (U,XU) ∼→ Hom(U,X) for each

U ∈ U . If U → X → V → SU is a triangle and U, V ∈ U then Hom (X, ?)

vanishes on U⊥ andXU⊥ . In particular, the morphismXU⊥ → SXU of c’)

has a retraction, hence XU⊥ = 0 and X ∼= XU lies in U . Conversely, let

U satisfy a),b),c). According to b), U is strictly full. In order to prove c),

we form a triangle XU
ϕ→ X

ψ→ Y
ε→ SXU over the adjunction morphism

ϕ. Let V ∈ U and f ∈ Hom(V, Y ). We insert f into a morphism of

triangles

XU
h→ W → V

εf→ SXU
‖ ↓ g ↓ f ‖
XU

ϕ→ X
ψ→ Y

ε→ SXU

According to b), W lies in U . By assumption, g factors uniquely through

ϕ. Therefore, h has a retraction and εf = 0. So f factors through ψ and

even through ψϕ = 0 since V ∈ U .

1.2 For certain triangulated categories, condition 1.1c) can still be weak-

ened. We call an additive category T a molecular category if each object

of T is a finite direct sum of objects with local endomorphism rings.

In particular, if A is a finite-dimensional algebra over a field k, the ca-

tegory Db(A) is a molecular category: For all X, Y ∈ Db(A), we have

dimkHom(X, Y ) <∞ and for each indecomposable U of Db(A), End (U)

is local since EndC−(projA)
(V ) is local for each indecomposable V of

C−(projA).

If T is a molecular category, we denote by indT a full subcategory

of T whose objects form a system of representatives for the isomorphism

classes of indecomposables of T .

1.3 Proposition. Let T be a triangulated molecular category and U a

full additive subcategory which is closed under taking direct summands.

The subcategory U is an aisle in T iff it satisfies a), b) and c”).

c”) For each object X of T the functor Hom(?, X)| U is finitely gen-

erated, i.e. there is U ∈ U and an epimorphism HomU(?, U) →
Hom T (?, X)| U .



Proof. The claim follows from the

Lemma. Let S be a suspended [9] molecular category and F : Sop → Ab

a cohomological functor, i.e. for each triangle X
u→ Y

v→ Z
w→ SX of S

the sequence FX
Fu← FY

Fv← FZ is exact. The functor F is representable

iff it is finitely generated.

Proof. Let F be finitely generated. Because S is a molecular category

F has a projective cover HomS(?, X)
ϕ→ F in the abelian category of the

additive functors Sop → Ab. We shall show that ϕ is a monomorphism.

Let Y ∈ S and f ∈ Hom(Y,X) such that ϕ ◦ Hom(?, f) = 0. We form

a triangle Y
f→ X

g→ Z
h→ SY in S. By the ”Yoneda Lemma“ we

conclude from the exactness of FY
Ff← FX

Fg← FZ that ϕ factors through

Hom (?, g). By construction of ϕ, Hom (?, g) admits a retraction. Hence

g admits a retraction and f = 0.

1.4 Proposition. Let U ,V be aisles in a triangulated category T such

that V ⊂ U⊥. Then W := U ∗ V = {X ∈ T : There is a triangle

U → X → V → SU with U ∈ U ,V ∈ V} is also an aisle in T (cf. [3,

1.4])

Proof. We shall verify the conditions of Proposition 1.1. Only c’) is not

immediate from the definitions. Let X ∈ T . We form a diagram

XU⊥V⊥ XU⊥ X

(XU⊥)V XU

Y
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where triangles are marked by ∆ and tailed arrows denote morphisms

of degree 1. By definition, Y ∈ W , XU⊥V⊥ ∈ V⊥. Since XU⊥V⊥ is



an extension of S((XU⊥)V) by XU⊥ it also lies in U⊥, hence in W⊥ =

U⊥ ∩ V⊥. We obtain the required triangle Y → X → XU⊥V⊥ → SY by

forming an octahedron with base X → XU⊥ → XU⊥V⊥ .

2 Tilting sets

2.1 Let A be a finite-dimensional algebra over a field k. We consider

the problem of determining all finite-dimensional k-algebras B such that

Db(B) is S-equivalent [9] to Db(A).

A tilting set (cf. [7]) in Db(A) is a finite subset {T1, . . . , Ts} ⊂
indDb(A) such that Hom (SlTi, Tj) = 0 for all i, j and all integers l 6= 0.

Each fully faithful S-functor F : Db(B) → Db(A) gives rise to the

tilting set {T ∈ indDb(A) : T ∼= FP for some indecomposable projective

B-module P}. Conversely, let {T1, . . . , Ts} be a tilting set and B :=

End (
⊕s

i=1 Ti). By [9, 3.2], the obvious functor from projB to Db(A)

extends to a fully faithful S-functor E : Hb(projB) → Db(A) (put E :=

C−b (projA) in [9, 3.2]). We make the additional assumptions

a) Hom (Ti, Tj) = 0 ∀ i > j and Hom (Ti, Ti) is a skew field ∀i.

b) gldimA <∞.

Assumption a) implies gldimB < ∞. By composing E with a quasi-

inverse of the equivalence Hb(projB)→ Db(B) we obtain a fully faithful

S-functor F : Db(B)→ Db(A).

Proposition. The essential image of F is an aisle in Db(A). In partic-

ular, F has a right adjoint.

Proof. Let Ui be the strictly full triangulated subcategory of Db(A)

generated by Ti. SinceDb(End (Ti))
∼→ Ui, assumption b) and proposition

1.3 imply that Ui is an aisle in Db(A). The essential image of F equals

Us ∗ Us−1 ∗ · · · ∗ U2 ∗ U1 (by [3, 1.3.10], ∗ is associative). The claim now

follows from proposition 1.4.

2.2 Theorem. Let A be a hereditary finite-dimensional k-algebra and

{T1, . . . , Ts} a tilting set in Db(A). The functor F is an S-equivalence iff

s equals the number of isomorphism classes of simple A-modules.



Proof. By [7, 7.3] assumption a) is satisfied for an appropriate num-

bering of the Ti and, since A is hereditary, so is assumption b). An

S-equivalence Db(B) ∼→ Db(A) induces an isomorphism of the Grothen-

dieck-groups K0(B) ∼→ K0(A). Therefore, since s equals the number

of isomorphism classes of simple B-modules, the condition is necessary.

For the converse, it is enough to show that {FX : X ∈ Db(B)}⊥ = 0,

by proposition 2.1. Let Y ∈ Db(A) be indecomposable and such that

Hom (FX, Y ) = 0, ∀X ∈ Db(B). This implies < [FX], [Y ] >= 0,

where [.] denotes the canonical map Db(A) → K0(A) and < . , . > de-

notes the canonical bilinear form on K0(A) [7]. F induces a section

K0(B) → K0(A) (the right adjoint of F yields a retraction). Since

rankK0(B) = s = rankK0(A), we have K0(A) = {[FX] : X ∈ Db(B)},
hence [Y ] = 0 and, since A is hereditary and Y is indecomposable, Y = 0

[7].

3 Dynkin-algebras

3.1 Let B be a basic, connected, finite-dimensional algebra over an al-

gebraically closed field k. Assume that there exists a simple, projec-

tive, non-injective right B-module P . Define Q by B ∼= Q ⊕ P . Then

T = τ−P ⊕Q is a tilting module in modB (cf. [5], [8]), where τ−P de-

notes a preimage of P under the Auslander-Reiten-translation. The de-

rived functors F = RHomB(T, ?) : Db(B)→ Db(BP ) andG = L(?⊗BP
T )

are quasi-inverse S-equivalences, where BP = End (TB) is obtained from

B by reflection in P [4]. Thus, the derived category Db(B) is “invariant

under reflections”. Conversely, we have the

Theorem. (Happel) Let Db(B) be S-equivalent to Db(A) where A is a

Dynkin-algebra (=path algebra [6, 4.1] of a Dynkin quiver). Then A is

obtained from B by a finite number of reflections.

Proof. Let U = {X ∈ Db(B) : H iX = 0 ∀i > 0} be the natural aisle in

Db(B) [3, 1.3.1], V the natural aisle in Db(A) and E : Db(B)→ Db(A) an

S-equivalence with [V ] ⊂ [EU ], where [?] denotes the set of isomorphism

classes of indecomposables in ?. If [V ] = [EU ], E induces an equivalence



of the hearts (=hearts of the corresponding t-structures) of U and V ,

i.e. of modB and modA. In general, [V ] is obtained from [EU ] by

the omission of finitely many isomorphism classes, as it is apparent from

Happel’s description of indDb(A) [7]. By induction, we are reduced to the

case [V ] = [EU ]\{EM}, where M is a source of indU , i.e. Hom (V,M) =

0∀V ∈ indU , V 6= M and S−M 6∈ U . The sources of indU are isomorphic

to the simple projectives of modB. It is therefore enough to prove the

3.2 Lemma. In the setting of 3.1 let U be the natural aisle in Db(B), W
the natural aisle in Db(BP ) and W ′ its essential image under G. Then

W ′ = {X ∈ U : P is not a direct summand of X}.

Proof. Let UP = {X ∈ U : P is not a direct summand of X}. It

follows from pdimBP
T ≤ 1 that GW⊥ ⊂ SU⊥ hence SU ⊂ W ′. We also

have SU ⊂ UP and UP = (SU)∗(UP∩modB),W ′ = (SU)∗(W ′∩modB).

By [2], UP ∩modB is just the torsion theory generated by T , which by

[5] coincides with the essential image of modBP under H0G ∼=?⊗BP
T .

4 Complete tilting sets in Db(k ~An)

Let A be a finite-dimensional algebra over a field k. We define the spec-

trum of a tilting set M in Db(A) as the full subcategory of Db(A) whose

objects are the elements of M . We call a tilting set in Db(A) complete

if its cardinality equals the number of isomorphism classes of simple A-

modules.

Let A be the path algebra of the quiver ~An : 1 → 2 → . . . → n [6].

We identify [7] the category indDb(A) with the mesh-category k(Z ~An)

[11, 2.1] of the translation quiver Z ~An:
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By an ~An-quiver we mean an oriented tree K having n vertices and

whose set of arrows is decomposed into a class of α-arrows and a class of

β-arrows such that in each vertex of K there terminate at most one α-

arrow and one β-arrow and there originate at most one α-arrow and one

β-arrow. Now let K be an ~An-quiver. For each vertex x of K let xα (resp.

xα) be the number of vertices y of K such that the shortest walk from y

to x ends (resp. begins) with an α-arrow terminating (resp. originating)

in x. Analogously, we define xβ and xβ. Then there is exactly one map

of the underlying sets of vertices K0 → (Z ~An)0, x 7→ (gx, hx) such that

a) minx∈K gx = 0,

b) (gy, hy) = (gx, hx+ xβ + yβ + 1) for each α-arrow x
α→ y and

c) (gy, hy) = (gx + xα + yα + 1, hx − xα − yα − 1) for each β-arrow

x
β→ y.

Because hx = 1 + xα + xβ, this map is indeed well defined. Let MK

denote its image.

Theorem. The assignment K 7→ MK induces a bijection from the iso-

morphism classes of ~An-quivers to the complete tilting sets M in indDb(k ~An) =

k(Z ~An) with min(g,h)∈M g = 0. Moreover, the spectrum of MK is de-

scribed by the quiver K bound by all possible relations αβ = 0 and βα = 0

(cf. [1]).

Proof. Let K be an ~An-tree. We call x ∈ K0 a knot of K if x is

contained in a full subtree of one of the forms

• α→ x
α→ •, • α→ x

β← •, • β← x
α→ •, • β← x

β← •.

The other vertices of K are called peaks. We term (g, h) ∈ (Z ~An)0 a

marginal vertex if h = 1 or h = n and we call the other vertices of Z ~An

inner vertices. We use induction on the number m of knots of K.

If m = 0 , K has one of the forms

Kα = • α→ • β→ • α→ . . .

or

Kβ = • β→ • α→ • β→ . . .
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Figure 1: Z ~An with given vertex P

It is easy to see that the corresponding sets MKα , MKβ
are exactly the

complete tilting sets M of indDb(k ~An) which only consist of marginal

vertices and satisfy min(g,h)∈M g = 0.

Now let m > 0. We first describe the complete tilting sets in k(Z ~An)

which contain a given inner vertex P . The tilting sets {X1, . . . , Xr, P}
and {Y1, . . . , Ys, P} (cf. Fig. 1) give rise to fully faithful embeddings

jX : Db(k ~Ar+1)→ Db(k ~An) and jY : Db(k ~As+1)→ Db(k ~An). We may as-

sume that jX(Z ~Ar+1)0 ⊂ (Z ~An)0 and jY (Z ~As+1)0 ⊂ (Z ~An)0, in particular

jXPX = P and jY PY = P where PX = (0, r + 1) ∈ (Z ~Ar+1)0 and PY =

(0, s+ 1) ∈ (Z ~As+1)0. With these notations, the complete tilting sets M

in k(Z ~An) containing P are exactly the sets jX(L) ∪ jY (N) where L ⊂
(Z ~Ar+1)0 and N ⊂ (Z ~As+1)0 are complete tilting sets containing PX and

PY , respectively. Here, the set of marginal points of M equals {jX(R) :

R is a marginal point of L \ PX }∪{jY (R) : R is a marginal point of N \ PY }.
For the corresponding spectra we have the pushout diagram

k
iX→ L

iY ↓ ↓ jX
N

jY→ M

where k is considered as a category with one object and iX and iY are fully

faithful with iX(k) = PX and iY (k) = PY . Combined with the induc-

tion hypothesis, this description shows that the spectra of the complete

tilting sets in k(Z ~An) are described by the ~An-quivers with all relations

αβ = 0 = βα and that peaks are mapped to marginal points by the



corresponding isomorphisms of categories. So let M be a complete tilt-

ing set in k(Z ~An) whose spectrum is described by K. We claim that the

corresponding bijection e : K0 →M ⊂ (Z ~An)0 satisfies conditions b) and

c). This is obvious if x, y are peaks of K since then ex, ey are marginal

points. If for example x is a knot we apply the above construction with

P = ex and the claim follows from the induction hypothesis.

5 Aisles in Db(k∆)

5.1 Let U be an aisle in a triangulated category T . The heart of U is

the full subcategory U0 = U ∩ SU⊥ of T ; the associated cohomology

functor H0
U : T → U0 is given by X 7→ (XU)SU

⊥
[3, 1.3.1-6]. The

aisle U is faithful if the inclusion U0 → T extends to an S-equivalence

Db(U0)→ ⋃
n∈N S

−nU ; it is separated if
⋂
n∈N S

nU = 0.

Let k∆ be the path algebra [6] of a Dynkin-quiver ∆. For each subset

M ⊂ indDb(k∆) let F(M) be the smallest strictly full subcategory of

Db(k∆) which contains M and is stable under S and closed under ex-

tensions and direct summands. By proposition 1.3, F(M) is an aisle.

The assignment {T1, . . . , Ts} 7→ F(T1, . . . , Ts) is a bijection between the

tilting sets in Db(k∆) and the faithful aisles. We shall generalize the

concept of a tilting set in order to obtain an analogous description of all

separated aisles in Db(k∆).

A silting set in Db(k∆) is a finite subset {R1, . . . , Rs} ⊂ indDb(k∆)

such that Hom (Ri, S
lRj) = 0 ∀i, j and ∀l > 0.

Theorem.

a) The assignment {R1, . . . , Rs} 7→ F(R1, . . . , Rs) is a bijection be-

tween the silting sets in Db(k∆) and the separated aisles in Db(k∆).

If {R1, . . . , Rs} is a silting set and W = F(R1, . . . , Rs) we have

b) W ∩⊥(SW) ∩ indDb(k∆) = {R1, . . . , Rs}

c) s ≤ |∆0|, and s = |∆0| ⇔
⋃
n∈N S

−nW = Db(k∆)

d) W = {X ∈ ⋃
n∈N S

−nW : Hom (Ri, S
lX) = 0 ∀i, ∀l > 0}
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Figure 2: Example of V (•) and U (◦) in Z ~An

e) H0
WR1, . . . , H

0
WRs form a system of representatives of the isomor-

phism classes of indecomposable projectives of W0, and H0
W in-

duces an equivalence between the full subcategories {R1, . . . , Rs}
and {H0

WR1, . . . , H
0
WRs} of Db(k∆).

Proof. 1st step: The following variant of a construction by Parthasara-

thy [10] allows us to use induction on |∆0|.
Let W be a separated aisle in Db(k∆) and Q a source (3.1) of indW .

We may assume that ∆ admits a unique source q and that Q = (0, q). Let

Q be the full subcategory of Db(k∆) whose objects are the direct sums

of objects SnQ, n ∈ Z. The tilting set {(0, r) : r ∈ ∆0, r 6= q} ⊂ k(Z∆)

yields a fully faithful S-functor Db(k∆′) → Db(k∆) (2.1), where ∆′ is

obtained from ∆ by omitting the vertex q and all arrows originating

in q. The essential image of this S-functor equals ⊥Q. We claim that

W = U ∗ V , where U = W ∩⊥ Q and V = W ∩ Q. Obviously, we have

W ⊃ U ∗ V . Conversely, let X be an indecomposable in W which is not

isomorphic to Q. We have the triangle X⊥Q → X → XQ → SX⊥Q (1.3).

The assumptions on X imply that XQ lies in SV . Thus, as an extension

of X by S−XQ ∈ V ⊂ W , X⊥Q lies in W ∩⊥Q = U .

2nd step: b) Let the numbering be chosen in such a way that Hom (Rj, Ri) =

0∀i < j. We apply the construction of the first step to the source Q = R1

of indW . Let X ∈ W∩⊥(SW) be indecomposable. We have the triangle

X⊥Q → X → XQ → SX⊥Q. As in the first step, either X ∼= R1 or

XQ ∈ SV and in this case we infer XQ = 0 and X ∈ U ∩⊥ (SU). The



claim now follows from the induction hypothesis.

a) Because of b) we only have to show surjectivity. In the setting of

the first step let R1 = Q. We complete R1 to a system of representatives

{R1, . . . , Rs} of the indecomposables of W ∩⊥(SW). Then {R2, . . . , Rs}
is a system of representatives of the indecomposables of U ∩⊥(SU). Ac-

cording to the induction hypothesis, we have U = F(R2, . . . , Rs), and

therefore W = U ∗ V = F(R1, . . . , Rs).

The proof of c) is left to the reader. d) Obviously, W is contained

in the aisle given in the assertion. Conversely, let X = S−nY (Y ∈
W , n ∈ N) and Hom (Ri, S

lX) = 0 ∀i,∀l > 0. By induction we conclude

S−nYU ∈ U . Using Hom (R1, SU) = 0 and the triangle YU ∼= Y⊥Q →
Y → Y Q → SY⊥Q we infer Hom (S−lR1, S

−nY Q) = 0 for all l > 0 and

S−nY Q ∈ V .

e) From Hom (R1, SW) = 0 it follows that R1
∼= H0

WR1 is projective

in W0. The rest of the assertion follows from the

Lemma. Let U ,V be aisles in a triangulated category T such that

U ⊂⊥V and let W = U ∗ V. (cf. proposition 1.4)

a) V0 ⊂ W0 and H0
V |W0 is right adjoint to this inclusion.

b) H0
U |W0 is exact and H0

W | U0 is left adjoint to H0
U |W0 and fully

faithful.

c) For each A ∈ W0 we have an exact sequence

H0
WH

0
UA→ A→ H0

WA
U⊥ → 0

d) H0
W |W ∩⊥(SW) is fully faithful and for X ∈ U we have H0

WX
∼=

H0
WH

0
UX.

We leave the proof of the lemma to the reader (compare with [3]).

5.2 In the setting of 5.1 let {T1, . . . , Ts} be a tilting set in Db(k∆). Sup-

pose that the numbering has been chosen in such a way that

Hom (Tj, Ti) = 0 ∀j > i. Let p : {1, . . . , s} → N be a non-decreasing

function with p(1) = 0.



Proposition.

a) R1 := Sp (1)T1, . . . , Rs := Sp (s)Ts form a silting set in Db(k∆).

b) With U = F(T1, . . . , Ts), W = F(R1, . . . , Rs) we have for each

i ∈ Z

U0 ∩S−iW = {X ∈ U0 : Hom (Tj, X) = 0 for each j with i < p(j)}

W = {X ∈ U : H i
UX ∈ U0 ∩ SiW , ∀i ∈ Z}

c) The full subcategory {R1, . . . , Rs} of Db(k∆) is isomorphic to the

disjoint sum of the full subcategories Cj = {Ti : p(i) = j} , j ∈ N,

of {T1, . . . , Ts}.

We leave the proof to the reader.

5.3 Theorem. Each silting set in Db(k ~An) (cf. section 4) is of the form

given in 5.2

Proof. Let {R1, . . . , Rs} be a silting set in Db(k ~An).
1st step: {R1, . . . , Rs} is contained in a complete silting set (= silting

set of maximal cardinality).

If s < n we have T ⊥ 6= 0 (5.1 c), where T =
⋃
m∈N S

−mF(R1, . . . , Rs).

Because gldimk∆ < ∞ we can find an indecomposable R0 ∈ T ⊥ such

that Hom (R0, S
lRi) = 0 for all l > 0, i = 1, . . . , s. Then {R0, . . . Rs} is

a silting set. The claim now follows by induction on n− s.
2nd step: By the first step we may assume n = s. Let the numbering

of the Ri be non-decreasing with respect to the order on indDb(k ~An)
generated by the arrows of Z ~An. With the notations of the first step

of the proof of theorem 5.1 we set Q = R1. The induction hypothesis

applied to {R2, . . . , Rn} ⊂ ⊥Q yields a tilting set {T2, . . . , Tn} which

corresponds to a complete tilting set in Db(k∆′). Therefore the con-

nected components of the spectrum of {T2, . . . , Tn} are precisely the in-

tersections of {T2, . . . , Tn} with the connected components of ind⊥Q.
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Figure 3: A silting set in Z ~D4

Let C be a connected component of ind⊥Q. Because Hom (Q, ?)| C 6= 0

and {T2, . . . , Tn} ∩ C is a complete tilting set in C, Hom (Q, ?) does not

vanish on Sl{T2, . . . , Tn} ∩ C for some l ∈ Z. Hence we may assume

that {Q, T2, . . . , Tn} is connected. Because {X ∈ C : Hom (Q,X) 6= 0}
is linearly ordered by X ≤ X ′ :⇔ Hom(X,X ′) 6= 0 (cf. figure 2),

{Q, T2, . . . , Tn} must be a tilting set in Db(k ~An). Setting T1 = Q we

have Ri = Sp (i)Ti for some function p : {1, . . . , n} → Z with p(1) = 0. It

is easy to see that Hom (Ti, Tj) 6= 0 implies p(i) ≤ p(j).

5.4 Remarks: a) Silting sets can always be completed (cf. the first step

of the above proof) but in general, tilting sets cannot : {(0, 1), (3, 3)} ⊂
Z ~A3.

b) The silting set of figure 3 is not of the form given in 5.2 since 5.2 c)

cannot be satisfied.
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