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Summary

The aim of the present paper is to demonstrate the usefulness of
aisles for studying the tilting theory of D’(mod A), where A is a finite-
dimensional algebra. In section 1, we establish the equivalence of “aisles”
with “t-structures” in the sense of [3] and give a characterization of aisles
in molecular categories. Section 2 contains an application to the gener-
alized tilting theory of hereditary algebras. Using aisles, we then give a
geometrical proof of the theorem of Happel [7] which states that a finite-
dimensional algebra which shares its derived category with a Dynkin-
algebra A can be transformed into A by a finite number of reflections.
The techniques developed so far naturally lead to the classification of
the tilting sets in D°(mod k%fn) presented in section 5. Finally, we con-
sider the classification problem for aisles in D’(mod A), where A is a
Dynkin-algebra. We reduce it to the classification of the silting sets in
DP(mod A), which we carry out for A = A,
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Notations

Let A be a finite-dimensional algebra over a field k. We denote by

e mod A the category of finitely generated right A-modules,

e proj A the full subcategory of mod A consisting of the projective

A-modules,



e C (proj A) the category of differential complexes over proj A which

are bounded above,

e C’(proj A) the full subcategory of C~(proj A) consisting of the com-
plexes which are bounded above and below,

e C, (proj A) the full subcategory of C~ (proj A) consisting of the com-
plexes X such that H'X = 0 for almost all i € Z,

e H’(proj A) the homotopy category obtained from C®(proj A) by fac-
toring out the ideal of the morphisms homotopic to zero [12],

e D’(A) := D’(mod A) the bounded derived category [12] of the

abelian category mod A.

1 Aisles

1.1 Let 7 be a triangulated category with suspension functor S. A full
additive subcategory U of 7T is called an aisle in 7T if

a) SU C U,

b) U is stable under extensions, i.e. for each triangle X — Y — Z —
SX of T we have Y € U whenever X, Z € U,

¢) the inclusion Y — 7 admits a right adjoint 7 — U, X — Xy,.

For each full subcategory V of 7 we denote by V* (resp. V) the
full additive subcategory consisting of the objects Y € 7 satisfying
Hom (X,Y) =0 (resp. Hom (Y, X)) =0) for all X € V.

The following proposition shows that the assignment U +— (U, SUL)
is a bijection between the aisles ¢/ in 7 and the t-structures on 7 (in the

sense of [3]).

Proposition. A strictly (=closed under isomorphisms) full subcategory
U of T is an aisle iff it satisfies a) and c’)

c’) for each object X of T there is a triangle Xyy — X — XU SXy,
with Xy € U and X¥* € U+,



Proof. Suppose U satisfies a) and ¢’). The long exact sequence arising
from the triangle in ¢’) shows that Hom (U, X3;) = Hom (U, X)) for each
UeU. IfU — X —V — SUisatriangle and U,V € U then Hom (X, 7)
vanishes on 4+ and X¥". In particular, the morphism X Ut §X,, of c’)
has a retraction, hence XU =0and X Xy lies in U. Conversely, let
U satisty a),b),c). According to b), U is strictly full. In order to prove c),
we form a triangle Xy, 2 X Ly 5 S Xy, over the adjunction morphism
p. Let Ve U and f € Hom (V,Y). We insert f into a morphism of

triangles

X, now - v £ osxy,

| lg Lf |
Xy & x % v 5 sxy
According to b), W lies in U. By assumption, g factors uniquely through
w. Therefore, h has a retraction and e f = 0. So f factors through ¢ and
even through ¥¢ = 0 since V € U.

1.2 For certain triangulated categories, condition 1.1¢) can still be weak-

ened. We call an additive category 7 a molecular category if each object
of 7 is a finite direct sum of objects with local endomorphism rings.
In particular, if A is a finite-dimensional algebra over a field k, the ca-
tegory D°(A) is a molecular category: For all X,Y € D°(A), we have
dim;Hom (X,Y) < oo and for each indecomposable U of D(A), End (U)
is local since End
C~(projA).

If 7 is a molecular category, we denote by ind 7 a full subcategory

- (proj A)(V) is local for each indecomposable V' of

of 7 whose objects form a system of representatives for the isomorphism
classes of indecomposables of 7.

1.3 Proposition. Let T be a triangulated molecular category and U a
full additive subcategory which is closed under taking direct summands.
The subcategory U is an aisle in T iff it satisfies a), b) and c¢”).

¢”) For each object X of T the functor Hom (7, X)|U is finitely gen-
erated, i.e. there is U € U and an epimorphism Homy(?,U) —
Hom (7, X)|U.



Proof. The claim follows from the

Lemma. Let S be a suspended [9] molecular category and F : SOP — Ab
a cohomological functor, i.e. for each triangle X %Y % 7 % SX of S
the sequence F'X 2 ry £ FZ is exact. The functor F' is representable
iff it is finitely generated.

Proof. Let F' be finitely generated. Because S is a molecular category
F has a projective cover Homg(?, X) 2 F in the abelian category of the
additive functors SOP — Ab. We shall show that ¢ is a monomorphism.
Let Y € S and fe Hom (Y, X) such that ¢ o Hom (?, f) = 0. We form
a triangle Y L x %7 M gy in S. By the ”Yoneda Lemma“ we
conclude from the exactness of FY X FX £ FZ that ¢ factors through
Hom (7, g). By construction of ¢, Hom (7, g) admits a retraction. Hence

g admits a retraction and f = 0.

1.4 Proposition. Let U,V be aisles in a triangulated category T such
that V C U, Then W = UV = {X € T : There is a triangle
U—-X—-V — SU withU e U,V € V} is also an aisle in T (cf. [3,
1.4])

Proof. We shall verify the conditions of Proposition 1.1. Only ¢’) is not
immediate from the definitions. Let X € 7. We form a diagram

(Xw/\
[aNC /\

Z/ILVl

where triangles are marked by A and tailed arrows denote morphisms
of degree 1. By definition, ¥ € W, XU'V' € VL Since XYV is



an extension of S((XY")y) by X“" it also lies in U+, hence in W+ =
UL NV, We obtain the required triangle Y — X — XYV" — SY by

forming an octahedron with base X — X4 — XUV,

2 Tilting sets

2.1 Let A be a finite-dimensional algebra over a field k. We consider
the problem of determining all finite-dimensional k-algebras B such that
D*(B) is S-equivalent [9] to D°(A).

A tilting set (cf. [7]) in D°(A) is a finite subset {T},...,T,} C
ind D°(A) such that Hom (S'T}, T;) = 0 for all 4,j and all integers [ # 0.

Each fully faithful S-functor F : D*(B) — DY(A) gives rise to the
tilting set {T" € ind D*(A) : T = F P for some indecomposable projective
B-module P}. Conversely, let {T7,...,Ts} be a tilting set and B :
End (@:_, T;). By [9, 3.2], the obvious functor from proj B to D°(A
extends to a fully faithful S-functor £ : H®(proj B) — D’(A) (put € :=
C, (proj A) in [9, 3.2]). We make the additional assumptions

a) Hom (7;,7;) =0V i > j and Hom (7}, T;) is a skew field Vi.

b) gldimA < oo.

Assumption a) implies gldimB < oco. By composing E with a quasi-
inverse of the equivalence H(proj B) — D°(B) we obtain a fully faithful
S-functor F : D°(B) — D°(A).

Proposition. The essential image of F is an aisle in D°(A). In partic-
ular, F' has a right adjoint.

Proof. Let U; be the strictly full triangulated subcategory of D’(A)
generated by T;. Since D*(End (T})) = U;, assumption b) and proposition
1.3 imply that If; is an aisle in D°(A). The essential image of F equals
Us ¥ Us_y % -+ x Uy x Uy (by [3, 1.3.10], * is associative). The claim now
follows from proposition 1.4.

2.2 Theorem. Let A be a hereditary finite-dimensional k-algebra and
{Ty,...,T.} a tilting set in D*(A). The functor F is an S-equivalence iff
s equals the number of isomorphism classes of simple A-modules.



Proof. By [7, 7.3] assumption a) is satisfied for an appropriate num-
bering of the T; and, since A is hereditary, so is assumption b). An
S-equivalence D?(B) = D°(A) induces an isomorphism of the Grothen-
dieck-groups Ko(B) = Ky(A). Therefore, since s equals the number
of isomorphism classes of simple B-modules, the condition is necessary.
For the converse, it is enough to show that {FX : X € D(B)}+ = 0,
by proposition 2.1. Let Y € D’(A) be indecomposable and such that
Hom (FX,Y) = 0, VX € D’ B). This implies < [FX],[Y] >= 0,
where [.] denotes the canonical map D°(A) — Ko(A) and < ., . > de-
notes the canonical bilinear form on Ky(A) [7]. F induces a section
Ko(B) — Ky(A) (the right adjoint of F' yields a retraction). Since
rankKo(B) = s = rank Ko(A), we have Ko(A) = {[FX]: X € D"(B)},
hence [Y] = 0 and, since A is hereditary and Y is indecomposable, Y = 0
[7].

3 Dynkin-algebras

3.1 Let B be a basic, connected, finite-dimensional algebra over an al-
gebraically closed field k. Assume that there exists a simple, projec-
tive, non-injective right B-module P. Define Q by B = @ & P. Then
T =7"P®Q is a tilting module in mod B (cf. [5], [8]), where 7= P de-
notes a preimage of P under the Auslander-Reiten-translation. The de-
rived functors ' = RHom 3(T',?) : D*(B) — D*(Bp) and G = L(?®3p,T)
are quasi-inverse S-equivalences, where Bp = End (T5) is obtained from
B by reflection in P [4]. Thus, the derived category D°(B) is “invariant
under reflections”. Conversely, we have the

Theorem. (Happel) Let D*(B) be S-equivalent to D*(A) where A is a
Dynkin-algebra (=path algebra [6, 4.1] of a Dynkin quiver). Then A is
obtained from B by a finite number of reflections.

Proof. Let U = {X € D°(B) : H'X = 0Vi > 0} be the natural aisle in
Db(B) [3, 1.3.1], V the natural aisle in D*(A) and E : D*(B) — D(A) an
S-equivalence with [V] C [EU], where [?] denotes the set of isomorphism
classes of indecomposables in 7. If [V] = [EU], E induces an equivalence



of the hearts (=hearts of the corresponding t-structures) of U and V,
i.e. of mod B and mod A. In general, [V] is obtained from [EU| by
the omission of finitely many isomorphism classes, as it is apparent from
Happel’s description of ind D?(A) [7]. By induction, we are reduced to the
case [V| = [EU|\{EM }, where M is a source of indU, i.e. Hom (V, M) =
0VV €indU,V # M and S™M ¢ U. The sources of ind U are isomorphic
to the simple projectives of mod B. It is therefore enough to prove the

3.2 Lemma. In the setting of 3.1 let U be the natural aisle in D°(B), W
the natural aisle in D°(Bp) and W' its essential image under G. Then
W' ={X €U : P is not a direct summand of X}.

Proof. Let Up = {X € U : P isnot a direct summand of X}. It
follows from pdimpg,7T < 1 that GW* € SU* hence SU € W'. We also
have SU C Up and Up = (SU)*(UpNmod B), W' = (SU)x(W' Nmod B).
By [2], Up N mod B is just the torsion theory generated by 7', which by
[5] coincides with the essential image of mod Bp under H'G =? ®@p,, T.

4 Complete tilting sets in D'(kA,)

Let A be a finite-dimensional algebra over a field k. We define the spec-
trum of a tilting set M in D°(A) as the full subcategory of D?(A) whose
objects are the elements of M. We call a tilting set in D°(A) complete
if its cardinality equals the number of isomorphism classes of simple A-
modules.

Let A be the path algebra of the quiver A, : 1 — 2 — ... — n [6].
We identify [7] the category ind D?(A) with the mesh-category k(ZA,)
[11, 2.1] of the translation quiver ZA,:

(0,n)

W\
(1,n—1)\ (O,n—1)

. s o
(1,1) (0,1)



By an /Yn-quiver we mean an oriented tree K having n vertices and
whose set of arrows is decomposed into a class of a-arrows and a class of
(-arrows such that in each vertex of K there terminate at most one a-
arrow and one (-arrow and there originate at most one a-arrow and one
B-arrow. Now let K be an ffn—quiver. For each vertex x of K let 2 (resp.
T4) be the number of vertices y of K such that the shortest walk from y
to x ends (resp. begins) with an a-arrow terminating (resp. originating)
in 2. Analogously, we define 2” and z3. Then there is exactly one map
of the underlying sets of vertices Ko — (ZA,)o, = — (gz, ha) such that

a) mingex gz =0,
b) (gy, hy) = (gz, hx + 2P + yg + 1) for each a-arrow x = y and

¢) (gy,hy) = (92 + z® + yo + 1, hx — 2% — y, — 1) for each S-arrow
z Ly

Because hx = 1 + 2% + x5, this map is indeed well defined. Let Mg
denote its image.

Theorem. The assignment K — My induces a bijection from the iso-
morphism classes ofgn-quivers to the complete tilting sets M in z'ndDb(k/Tn) =
k;(ZfYn) with ming pyerr g = 0. Moreover, the spectrum of My is de-
scribed by the quiver K bound by all possible relations a8 = 0 and fa =0

(cf. [1]).

Proof. Let K be an ffn—tree. We call x € Ky a knot of K if x is
contained in a full subtree of one of the forms

o o @ 15} 8 « B B
e ST —e e I e e T e e« I e

The other vertices of K are called peaks. We term (g, h) € (ZA,)o a
marginal vertex if h = 1 or h = n and we call the other vertices of ZA,
inner vertices. We use induction on the number m of knots of K.

If m =0, K has one of the forms

or



Figure 1: ZA, with given vertex P

It is easy to see that the corresponding sets My, , M, are exactly the
complete tilting sets M of ind Db(kffn) which only consist of marginal
vertices and satisfy min pyear g = 0.

Now let m > 0. We first describe the complete tilting sets in k(ZA,)
which contain a given inner vertex P. The tilting sets {X1,...,X,, P}
and {Y1,...,Y,, P} (cf. Fig. 1) give rise to fully faithful embeddings
jx : DP(kA, 1) — DP(kA,) and jy : DY (kAy.,) — DP(kA,). We may as-
sume that jx(ZA,,1)o C (ZA,)o and jy (ZA,.1)o C (ZA,)o, in particular
jxPx = P and jy Py = P where Py = (0,7 + 1) € (ZA,,1)o and Py =
(0,s+1) € (ZA,,1)o. With these notations, the complete tilting sets M
in k(ZA,) containing P are exactly the sets jy (L) U jy (N) where L C
(Z/TTH)O and N C (ngﬂ)o are complete tilting sets containing Py and
Py, respectively. Here, the set of marginal points of M equals {jx(R) :
R is a marginal point of L\ Px }U{jy(R): R is a marginal point of N \ Py }.
For the corresponding spectra we have the pushout diagram

XL
Z'Yl' L Jx
N 2% M

where k is considered as a category with one object and ix and 7y are fully
faithful with ix(k) = Px and iy(k) = Py. Combined with the induc-
tion hypothesis, this description shows that the spectra of the complete
tilting sets in k(Zan) are described by the A,-quivers with all relations
aff = 0 = PBa and that peaks are mapped to marginal points by the



corresponding isomorphisms of categories. So let M be a complete tilt-
ing set in k(ZKn) whose spectrum is described by K. We claim that the
corresponding bijection e : Ky — M C (ZA,), satisfies conditions b) and
c¢). This is obvious if x,y are peaks of K since then ex,ey are marginal
points. If for example x is a knot we apply the above construction with
P = ex and the claim follows from the induction hypothesis.

5 Aisles in D(kA)

5.1 Let U be an aisle in a triangulated category 7. The heart of U is
the full subcategory U° = U N SU* of T; the associated cohomology
functor HY : T — U° is given by X — (Xy)%" [3, 1.3.1-6]. The
aisle U is faithful if the inclusion U° — 7T extends to an S-equivalence
DY (U°) — Unen S™™U; it is separated if N,en S™U = 0.

Let kA be the path algebra [6] of a Dynkin-quiver A. For each subset
M C ind D°(kA) let F(M) be the smallest strictly full subcategory of
D*(kA) which contains M and is stable under S and closed under ex-
tensions and direct summands. By proposition 1.3, F(M) is an aisle.
The assignment {71,...,Ts} — F(T1,...,Ts) is a bijection between the
tilting sets in DY(kA) and the faithful aisles. We shall generalize the
concept of a tilting set in order to obtain an analogous description of all
separated aisles in D°(kA).

A silting set in D°(kA) is a finite subset {Ry, ..., R,} C ind D°(kA)
such that Hom (R;, S'R;) = 0 Vi, j and VI > 0.

Theorem.

a) The assignment {Ry,..., Rs} — F(R1,...,Rs) is a bijection be-
tween the silting sets in D°(kA) and the separated aisles in D°(kA).

If {Ry,...,Rs} is a silting set and W = F(Ry, ..., Rs) we have
b) WNE(SW)NindD*(kA) = {Ry, ..., Rs}
c) s < |Aql, and s = |Ag] & Upen ST"W = D(kA)

d) W= {X € Uy,ex S™W : Hom (R;, S'X) = 0 Vi, VI > 0}



Figure 2: Example of V (e) and U (o) in ZA,

e) Hy Ry, ..., Hy R, form a system of representatives of the isomor-
phism classes of indecomposable projectives of W°, and HY), in-

duces an equivalence between the full subcategories {Ry,..., Rs}
and {H), Ry, ..., H),Rs} of DP(kA).

Proof. 1st step: The following variant of a construction by Parthasara-
thy [10] allows us to use induction on |Ag|.

Let W be a separated aisle in D°(kA) and Q a source (3.1) of ind W.
We may assume that A admits a unique source g and that @ = (0,q). Let
Q be the full subcategory of D’(kA) whose objects are the direct sums
of objects S"Q, n € Z. The tilting set {(0,7) : 7 € Ag, 7 # q} C k(ZA)
yields a fully faithful S-functor D*(kA’) — D(kA) (2.1), where A’ is
obtained from A by omitting the vertex ¢ and all arrows originating
in g. The essential image of this S-functor equals +Q. We claim that
W =UxYV, where U = WN+ Qand ¥V = WnN Q. Obviously, we have
W DU * V. Conversely, let X be an indecomposable in VW which is not
isomorphic to . We have the triangle X145 — X — X< — SX.4 (1.3).
The assumptions on X imply that X< lies in SV. Thus, as an extension
of X by STXCcVCW, Xig lies in WwWnto=u.

2nd step: b) Let the numbering be chosen in such a way that Hom (R;, R;) =
0Vi < 7. We apply the construction of the first step to the source Q = R,
of indW. Let X € WN*(SW) be indecomposable. We have the triangle
Xig = X — X9 — SX.4. As in the first step, either X & R, or
X< € SV and in this case we infer X<¢ = 0 and X € U N+ (SU). The



claim now follows from the induction hypothesis.

a) Because of b) we only have to show surjectivity. In the setting of
the first step let Ry = Q). We complete R; to a system of representatives
{Ry, ..., R} of the indecomposables of W N+ (SW). Then {Rs,..., R}
is a system of representatives of the indecomposables of U N+ (SU). Ac-
cording to the induction hypothesis, we have U = F(Ry,..., Rs), and
therefore W =U xV = F(Ry, ..., Ry).

The proof of ¢) is left to the reader. d) Obviously, W is contained
in the aisle given in the assertion. Conversely, let X = S7"Y (Y €
W,n € N) and Hom (R;, S'X) = 0V, VI > 0. By induction we conclude
S™Yy, € U. Using Hom (R, SU) = 0 and the triangle Yy, = Yig —
Y — Y2 — SYig we infer Hom (S7'R;, S™"Y<) = 0 for all [ > 0 and
Sy e e V.

e) From Hom (Ry, SW) = 0 it follows that R; = H)), R, is projective
in W?. The rest of the assertion follows from the

Lemma. Let U,V be aisles in a triangulated category T such that
UCLY and let W =U % V. (cf. proposition 1.4)

a) V' C WY and HY| WP is right adjoint to this inclusion.

b) HYIW is exact and HY,|U° is left adjoint to Hy| WP and fully
faithful.

¢) For each A € W° we have an ezxact sequence
HYHLA — A — HY,AY — 0

d) H),|W Nt (SW) is fully faithful and for X € U we have H),X =
HO,HYX .

We leave the proof of the lemma to the reader (compare with [3]).

5.2 In the setting of 5.1 let {T71,...,T,} be a tilting set in D°(kA). Sup-

pose that the numbering has been chosen in such a way that
Hom (7;,7;) = 0 Vj > i. Let p: {1,...,s} — N be a non-decreasing
function with p(1) = 0.



Proposition.
a) Ry =SSPy, ... Ry := SPOT, form a silting set in D*(EA).

b) Withd = F(1i,...,T;), W = F(Ri,...,Rs) we have for each
1€ Z

UNS™W ={X €U’ : Hom (T}, X) = 0 for each j with i < p(j)}
W={XclU:H,XcU' nS'W,VicZ)

¢) The full subcategory {Ry,..., Rs} of D°(kA) is isomorphic to the
disjoint sum of the full subcategories C; = {T; : p(i) = j},j € N,
Of {Tl, e ,TS}.

We leave the proof to the reader.

5.3 Theorem. Each silting set in D(kA,) (cf. section 4) is of the form

given in 5.2

Proof. Let {Ry, ..., R} be a silting set in D°(kA,).

st step: {Ry,..., R} is contained in a complete silting set (= silting
set of maximal cardinality).

If s <nwehave 71 # 0 (5.1 ¢), where 7 = U,en S~ F (R, . .., Rs).
Because gldimkA < oo we can find an indecomposable Ry € 7+ such
that Hom (R, S'R;) =0 for all I >0, i =1,...,s. Then {Ry,... R} is
a silting set. The claim now follows by induction on n — s.

2nd step: By the first step we may assume n = s. Let the numbering
of the R; be non-decreasing with respect to the order on ind Db(kffn)
generated by the arrows of ZA,. With the notations of the first step
of the proof of theorem 5.1 we set () = R;. The induction hypothesis
applied to {Ry,..., R,} C 1Q yields a tilting set {T5,...,T,} which
corresponds to a complete tilting set in D°(kA’). Therefore the con-
nected components of the spectrum of {T5,...,T,} are precisely the in-

tersections of {Ty,...,T,} with the connected components of ind Q.



Figure 3: A silting set in 7D,

Let C be a connected component of ind+Q. Because Hom (Q, ?)|C # 0
and {Ts,...,T,} NC is a complete tilting set in C, Hom (Q,?) does not
vanish on SH{Ty,...,T,} NC for some | € Z. Hence we may assume
that {Q,Ts,...,T,} is connected. Because {X € C : Hom (Q, X) # 0}
is linearly ordered by X < X' :& Hom (X, X’) # 0 (cf. figure 2),
{Q, T, ..., T,} must be a tilting set in D(kA,). Setting T} = Q we
have R; = SPOT; for some function p: {1,...,n} — Z with p(1) = 0. It
is easy to see that Hom (7}, 7}) # 0 implies p(i) < p(j).

5.4 Remarks: a) Silting sets can always be completed (cf. the first step
of the above proof) but in general, tilting sets cannot : {(0,1),(3,3)} C
ZAs.

b) The silting set of figure 3 is not of the form given in 5.2 since 5.2 ¢)

cannot be satisfied.
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