Aisles in derived categories

B. Keller D. Vossieck
Bull. Soc. Math. Belg. 40 (1988), 239-253.

Summary

The aim of the present paper is to demonstrate the usefulness of aisles for studying the tilting theory of $\mathcal{D}^{b}(\bmod A)$, where A is a finitedimensional algebra. In section 1 , we establish the equivalence of "aisles" with "t-structures" in the sense of [3] and give a characterization of aisles in molecular categories. Section 2 contains an application to the generalized tilting theory of hereditary algebras. Using aisles, we then give a geometrical proof of the theorem of Happel [7] which states that a finitedimensional algebra which shares its derived category with a Dynkinalgebra A can be transformed into A by a finite number of reflections. The techniques developed so far naturally lead to the classification of the tilting sets in $\mathcal{D}^{b}\left(\bmod k \vec{A}_{n}\right)$ presented in section 5. Finally, we consider the classification problem for aisles in $\mathcal{D}^{b}(\bmod A)$, where A is a Dynkin-algebra. We reduce it to the classification of the silting sets in $\mathcal{D}^{b}(\bmod A)$, which we carry out for $\Delta=\vec{A}_{n}$.

We thank P. Gabriel for lectures on these topics and for his helpful criticisms during the preparation of the manuscript.

Notations

Let A be a finite-dimensional algebra over a field k. We denote by

- $\bmod A$ the category of finitely generated right A-modules,
- $\operatorname{proj} A$ the full subcategory of $\bmod A$ consisting of the projective A-modules,
- $\mathcal{C}^{-}(\operatorname{proj} A)$ the category of differential complexes over $\operatorname{proj} A$ which are bounded above,
- $\mathcal{C}^{b}(\operatorname{proj} A)$ the full subcategory of $\mathcal{C}^{-}(\operatorname{proj} A)$ consisting of the complexes which are bounded above and below,
- $\mathcal{C}_{b}^{-}(\operatorname{proj} A)$ the full subcategory of $\mathcal{C}^{-}(\operatorname{proj} A)$ consisting of the complexes X such that $H^{i} X=0$ for almost all $i \in \mathbf{Z}$,
- $\mathcal{H}^{b}(\operatorname{proj} A)$ the homotopy category obtained from $\mathcal{C}^{b}(\operatorname{proj} A)$ by factoring out the ideal of the morphisms homotopic to zero [12],
- $\mathcal{D}^{b}(A):=\mathcal{D}^{b}(\bmod A)$ the bounded derived category [12] of the abelian category $\bmod A$.

1 Aisles

1.1 Let \mathcal{T} be a triangulated category with suspension functor S. A full additive subcategory \mathcal{U} of \mathcal{T} is called an aisle in \mathcal{T} if
a) $S \mathcal{U} \subset \mathcal{U}$,
b) \mathcal{U} is stable under extensions, i.e. for each triangle $X \rightarrow Y \rightarrow Z \rightarrow$ $S X$ of \mathcal{T} we have $Y \in \mathcal{U}$ whenever $X, Z \in \mathcal{U}$,
c) the inclusion $\mathcal{U} \rightarrow \mathcal{T}$ admits a right adjoint $\mathcal{T} \rightarrow \mathcal{U}, X \mapsto X_{\mathcal{U}}$.

For each full subcategory \mathcal{V} of \mathcal{T} we denote by \mathcal{V}^{\perp} (resp. $\left.{ }^{\perp} \mathcal{V}\right)$ the full additive subcategory consisting of the objects $Y \in \mathcal{T}$ satisfying $\operatorname{Hom}(X, Y)=0($ resp. $\operatorname{Hom}(Y, X)=0)$ for all $X \in \mathcal{V}$.

The following proposition shows that the assignment $\mathcal{U} \mapsto\left(\mathcal{U}, S \mathcal{U}^{\perp}\right)$ is a bijection between the aisles \mathcal{U} in \mathcal{T} and the t-structures on \mathcal{T} (in the sense of [3]).

Proposition. A strictly (=closed under isomorphisms) full subcategory \mathcal{U} of \mathcal{T} is an aisle iff it satisfies a) and c^{\prime})
c') for each object X of \mathcal{T} there is a triangle $X_{\mathcal{U}} \rightarrow X \rightarrow X^{\mathcal{U}^{\perp}} \rightarrow S X_{\mathcal{U}}$ with $X_{\mathcal{U}} \in \mathcal{U}$ and $X^{\mathcal{U}^{\perp}} \in \mathcal{U}^{\perp}$.

Proof. Suppose \mathcal{U} satisfies a) and c'). The long exact sequence arising from the triangle in c') shows that $\operatorname{Hom}\left(U, X_{\mathcal{U}}\right) \xrightarrow{\sim} \operatorname{Hom}(U, X)$ for each $U \in \mathcal{U}$. If $U \rightarrow X \rightarrow V \rightarrow S U$ is a triangle and $U, V \in \mathcal{U}$ then $\operatorname{Hom}(X, ?)$ vanishes on \mathcal{U}^{\perp} and $X^{\mathcal{U}^{\perp}}$. In particular, the morphism $X^{\mathcal{U}^{\perp}} \rightarrow S X_{\mathcal{U}}$ of c') has a retraction, hence $X^{\mathcal{U}^{\perp}}=0$ and $X \cong X_{\mathcal{U}}$ lies in \mathcal{U}. Conversely, let \mathcal{U} satisfy a),b),c). According to b), \mathcal{U} is strictly full. In order to prove c), we form a triangle $X_{\mathcal{U}} \xrightarrow{\varphi} X \xrightarrow{\psi} Y \xrightarrow{\varepsilon} S X_{\mathcal{U}}$ over the adjunction morphism φ. Let $V \in \mathcal{U}$ and $f \in \operatorname{Hom}(V, Y)$. We insert f into a morphism of triangles

$$
\begin{array}{ccccccc}
X_{\mathcal{U}} & \xrightarrow{h} & W & \rightarrow & V & \xrightarrow{\varepsilon f} & S X_{\mathcal{U}} \\
\| & & \downarrow g & & \downarrow f & & \| \\
X_{\mathcal{U}} & \xrightarrow{\varphi} & X & \xrightarrow{\psi} & Y & \xrightarrow{\varepsilon} & S X_{\mathcal{U}}
\end{array}
$$

According to b), W lies in \mathcal{U}. By assumption, g factors uniquely through φ. Therefore, h has a retraction and $\varepsilon f=0$. So f factors through ψ and even through $\psi \varphi=0$ since $V \in \mathcal{U}$.
1.2 For certain triangulated categories, condition 1.1c) can still be weakened. We call an additive category \mathcal{T} a molecular category if each object of \mathcal{T} is a finite direct sum of objects with local endomorphism rings. In particular, if A is a finite-dimensional algebra over a field k, the category $\mathcal{D}^{b}(A)$ is a molecular category: For all $X, Y \in \mathcal{D}^{b}(A)$, we have $\operatorname{dim}_{k} \operatorname{Hom}(X, Y)<\infty$ and for each indecomposable U of $\mathcal{D}^{b}(A), \operatorname{End}(U)$ is local since $\operatorname{End}_{\mathcal{C}^{-}(\operatorname{proj} A)}(V)$ is local for each indecomposable V of $\mathcal{C}^{-}(\operatorname{proj} A)$.

If \mathcal{T} is a molecular category, we denote by ind \mathcal{T} a full subcategory of \mathcal{T} whose objects form a system of representatives for the isomorphism classes of indecomposables of \mathcal{T}.
1.3 Proposition. Let \mathcal{T} be a triangulated molecular category and \mathcal{U} a full additive subcategory which is closed under taking direct summands. The subcategory \mathcal{U} is an aisle in \mathcal{T} iff it satisfies a), b) and c").
c") For each object X of \mathcal{T} the functor $\operatorname{Hom}(?, X) \mid \mathcal{U}$ is finitely generated, i.e. there is $U \in \mathcal{U}$ and an epimorphism $\operatorname{Hom}_{\mathcal{U}}(?, U) \rightarrow$ $\operatorname{Hom}_{\mathcal{T}}(?, X) \mid \mathcal{U}$.

Proof. The claim follows from the

Lemma. Let \mathcal{S} be a suspended [9] molecular category and $F: \mathcal{S}^{\mathrm{op}} \rightarrow A b$ a cohomological functor, i.e. for each triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} S X$ of \mathcal{S} the sequence $F X \stackrel{F u}{\leftarrow} F Y \stackrel{F v}{\leftarrow} F Z$ is exact. The functor F is representable iff it is finitely generated.

Proof. Let F be finitely generated. Because \mathcal{S} is a molecular category F has a projective cover $\operatorname{Hom}_{\mathcal{S}}(?, X) \xrightarrow{\varphi} F$ in the abelian category of the additive functors $\mathcal{S}^{\mathrm{Op}} \rightarrow A b$. We shall show that φ is a monomorphism. Let $Y \in \mathcal{S}$ and $f \in \operatorname{Hom}(Y, X)$ such that $\varphi \circ \operatorname{Hom}(?, f)=0$. We form a triangle $Y \xrightarrow{f} X \xrightarrow{g} Z \xrightarrow{h} S Y$ in \mathcal{S}. By the "Yoneda Lemma" we conclude from the exactness of $F Y \stackrel{F f}{\leftarrow} F X \stackrel{F g}{\leftrightarrows} F Z$ that φ factors through $\operatorname{Hom}(?, g)$. By construction of $\varphi, \operatorname{Hom}(?, g)$ admits a retraction. Hence g admits a retraction and $f=0$.
1.4 Proposition. Let \mathcal{U}, \mathcal{V} be aisles in a triangulated category \mathcal{T} such that $\mathcal{V} \subset \mathcal{U}^{\perp}$. Then $\mathcal{W}:=\mathcal{U} * \mathcal{V}=\{X \in \mathcal{T}$: There is a triangle $U \rightarrow X \rightarrow V \rightarrow S U$ with $U \in \mathcal{U}, V \in \mathcal{V}\}$ is also an aisle in \mathcal{T} (cf. [3, 1.4])

Proof. We shall verify the conditions of Proposition 1.1. Only c') is not immediate from the definitions. Let $X \in \mathcal{T}$. We form a diagram

where triangles are marked by Δ and tailed arrows denote morphisms of degree 1. By definition, $Y \in \mathcal{W}, X^{\mathcal{U}^{\perp} \mathcal{V}^{\perp}} \in \mathcal{V}^{\perp}$. Since $X^{\mathcal{U}^{\perp} \mathcal{V}^{\perp}}$ is
an extension of $S\left(\left(X^{\mathcal{U}^{\perp}}\right)_{\mathcal{V}}\right)$ by $X^{\mathcal{U}^{\perp}}$ it also lies in \mathcal{U}^{\perp}, hence in $\mathcal{W}^{\perp}=$ $\mathcal{U}^{\perp} \cap \mathcal{V}^{\perp}$. We obtain the required triangle $Y \rightarrow X \rightarrow X^{\mathcal{U}^{\perp} \mathcal{V}^{\perp}} \rightarrow S Y$ by forming an octahedron with base $X \rightarrow X^{\mathcal{U}^{\perp}} \rightarrow X^{\mathcal{U}^{\perp} \mathcal{V}^{\perp}}$.

2 Tilting sets

2.1 Let A be a finite-dimensional algebra over a field k. We consider the problem of determining all finite-dimensional k-algebras B such that $\mathcal{D}^{b}(B)$ is S-equivalent [9] to $\mathcal{D}^{b}(A)$.

A tilting set (cf. [7]) in $\mathcal{D}^{b}(A)$ is a finite subset $\left\{T_{1}, \ldots, T_{s}\right\} \subset$ ind $\mathcal{D}^{b}(A)$ such that $\operatorname{Hom}\left(S^{l} T_{i}, T_{j}\right)=0$ for all i, j and all integers $l \neq 0$.

Each fully faithful S-functor $F: \mathcal{D}^{b}(B) \rightarrow \mathcal{D}^{b}(A)$ gives rise to the tilting set $\left\{T \in \operatorname{ind} \mathcal{D}^{b}(A): T \cong F P\right.$ for some indecomposable projective B-module $P\}$. Conversely, let $\left\{T_{1}, \ldots, T_{s}\right\}$ be a tilting set and $B:=$ End $\left(\oplus_{i=1}^{s} T_{i}\right)$. By [9, 3.2], the obvious functor from $\operatorname{proj} B$ to $\mathcal{D}^{b}(A)$ extends to a fully faithful S-functor $E: \mathcal{H}^{b}(\operatorname{proj} B) \rightarrow \mathcal{D}^{b}(A)$ (put $\mathcal{E}:=$ $\mathcal{C}_{b}^{-}(\operatorname{proj} A)$ in $\left.[9,3.2]\right)$. We make the additional assumptions
a) $\operatorname{Hom}\left(T_{i}, T_{j}\right)=0 \forall i>j$ and $\operatorname{Hom}\left(T_{i}, T_{i}\right)$ is a skew field $\forall i$.
b) $\operatorname{gldim} A<\infty$.

Assumption a) implies gldim $B<\infty$. By composing E with a quasiinverse of the equivalence $\mathcal{H}^{b}(\operatorname{proj} B) \rightarrow \mathcal{D}^{b}(B)$ we obtain a fully faithful S-functor $F: \mathcal{D}^{b}(B) \rightarrow \mathcal{D}^{b}(A)$.

Proposition. The essential image of F is an aisle in $\mathcal{D}^{b}(A)$. In particular, F has a right adjoint.

Proof. Let \mathcal{U}_{i} be the strictly full triangulated subcategory of $\mathcal{D}^{b}(A)$ generated by T_{i}. Since $\mathcal{D}^{b}\left(\operatorname{End}\left(T_{i}\right)\right) \xrightarrow{\sim} \mathcal{U}_{i}$, assumption b) and proposition 1.3 imply that \mathcal{U}_{i} is an aisle in $\mathcal{D}^{b}(A)$. The essential image of F equals $\mathcal{U}_{s} * \mathcal{U}_{s-1} * \cdots * \mathcal{U}_{2} * \mathcal{U}_{1}$ (by [3, 1.3.10], $*$ is associative). The claim now follows from proposition 1.4.
2.2 Theorem. Let A be a hereditary finite-dimensional k-algebra and $\left\{T_{1}, \ldots, T_{s}\right\}$ a tilting set in $\mathcal{D}^{b}(A)$. The functor F is an S-equivalence iff s equals the number of isomorphism classes of simple A-modules.

Proof. By [7, 7.3] assumption a) is satisfied for an appropriate numbering of the T_{i} and, since A is hereditary, so is assumption b). An S-equivalence $\mathcal{D}^{b}(B) \xrightarrow{\sim} \mathcal{D}^{b}(A)$ induces an isomorphism of the Grothen-dieck-groups $K_{0}(B) \xrightarrow{\sim} K_{0}(A)$. Therefore, since s equals the number of isomorphism classes of simple B-modules, the condition is necessary. For the converse, it is enough to show that $\left\{F X: X \in \mathcal{D}^{b}(B)\right\}^{\perp}=0$, by proposition 2.1. Let $Y \in \mathcal{D}^{b}(A)$ be indecomposable and such that $\operatorname{Hom}(F X, Y)=0, \forall X \in \mathcal{D}^{b}(B)$. This implies $<[F X],[Y]>=0$, where [.] denotes the canonical map $\mathcal{D}^{b}(A) \rightarrow K_{0}(A)$ and $<., .>$ denotes the canonical bilinear form on $K_{0}(A)[7]$. F induces a section $K_{0}(B) \rightarrow K_{0}(A)$ (the right adjoint of F yields a retraction). Since $\operatorname{rank} K_{0}(B)=s=\operatorname{rank} K_{0}(A)$, we have $K_{0}(A)=\left\{[F X]: X \in \mathcal{D}^{b}(B)\right\}$, hence $[Y]=0$ and, since A is hereditary and Y is indecomposable, $Y=0$ [7].

3 Dynkin-algebras

3.1 Let B be a basic, connected, finite-dimensional algebra over an algebraically closed field k. Assume that there exists a simple, projective, non-injective right B-module P. Define Q by $B \cong Q \oplus P$. Then $T=\tau^{-} P \oplus Q$ is a tilting module in $\bmod B$ (cf. [5], [8]), where $\tau^{-} P$ denotes a preimage of P under the Auslander-Reiten-translation. The derived functors $F=\underline{\mathrm{R}} \operatorname{Hom}_{B}(T, ?): \mathcal{D}^{b}(B) \rightarrow \mathcal{D}^{b}\left(B_{P}\right)$ and $G=\underline{\mathrm{L}}\left(? \otimes_{B_{P}} T\right)$ are quasi-inverse S-equivalences, where $B_{P}=\operatorname{End}\left(T_{B}\right)$ is obtained from B by reflection in P [4]. Thus, the derived category $\mathcal{D}^{b}(B)$ is "invariant under reflections". Conversely, we have the

Theorem. (Happel) Let $\mathcal{D}^{b}(B)$ be S-equivalent to $\mathcal{D}^{b}(A)$ where A is a Dynkin-algebra (=path algebra [6, 4.1] of a Dynkin quiver). Then A is obtained from B by a finite number of reflections.

Proof. Let $\mathcal{U}=\left\{X \in \mathcal{D}^{b}(B): H^{i} X=0 \forall i>0\right\}$ be the natural aisle in $\mathcal{D}^{b}(B)[3,1.3 .1], \mathcal{V}$ the natural aisle in $\mathcal{D}^{b}(A)$ and $E: \mathcal{D}^{b}(B) \rightarrow \mathcal{D}^{b}(A)$ an S-equivalence with $[\mathcal{V}] \subset[E \mathcal{U}]$, where [?] denotes the set of isomorphism classes of indecomposables in ?. If $[\mathcal{V}]=[E \mathcal{U}], E$ induces an equivalence
of the hearts (=hearts of the corresponding t -structures) of \mathcal{U} and \mathcal{V}, i.e. of $\bmod B$ and $\bmod A$. In general, $[\mathcal{V}]$ is obtained from $[E \mathcal{U}]$ by the omission of finitely many isomorphism classes, as it is apparent from Happel's description of ind $\mathcal{D}^{b}(A)[7]$. By induction, we are reduced to the case $[\mathcal{V}]=[E \mathcal{U}] \backslash\{E M\}$, where M is a source of ind \mathcal{U}, i.e. $\operatorname{Hom}(V, M)=$ $0 \forall V \in \operatorname{ind} \mathcal{U}, V \neq M$ and $S^{-} M \notin \mathcal{U}$. The sources of ind \mathcal{U} are isomorphic to the simple projectives of $\bmod B$. It is therefore enough to prove the
3.2 Lemma. In the setting of $3.1 \operatorname{let} \mathcal{U}$ be the natural aisle in $\mathcal{D}^{b}(B), \mathcal{W}$ the natural aisle in $\mathcal{D}^{b}\left(B_{P}\right)$ and \mathcal{W}^{\prime} its essential image under G. Then $\mathcal{W}^{\prime}=\{X \in \mathcal{U}: P$ is not a direct summand of $X\}$.

Proof. Let $\mathcal{U}_{P}=\{X \in \mathcal{U}: P$ is not a direct summand of $X\}$. It follows from $\operatorname{pdim}_{B_{P}} T \leq 1$ that $G \mathcal{W}^{\perp} \subset S \mathcal{U}^{\perp}$ hence $S \mathcal{U} \subset \mathcal{W}^{\prime}$. We also have $S \mathcal{U} \subset \mathcal{U}_{P}$ and $\mathcal{U}_{P}=(S \mathcal{U}) *\left(\mathcal{U}_{P} \cap \bmod B\right), \mathcal{W}^{\prime}=(S \mathcal{U}) *\left(\mathcal{W}^{\prime} \cap \bmod B\right)$. By [2], $\mathcal{U}_{P} \cap \bmod B$ is just the torsion theory generated by T, which by [5] coincides with the essential image of $\bmod B_{P}$ under $H^{0} G \cong$? $\otimes_{B_{P}} T$.

4 Complete tilting sets in $\mathcal{D}^{b}\left(k \vec{A}_{n}\right)$

Let A be a finite-dimensional algebra over a field k. We define the spectrum of a tilting set M in $\mathcal{D}^{b}(A)$ as the full subcategory of $\mathcal{D}^{b}(A)$ whose objects are the elements of M. We call a tilting set in $\mathcal{D}^{b}(A)$ complete if its cardinality equals the number of isomorphism classes of simple A modules.

Let A be the path algebra of the quiver $\vec{A}_{n}: 1 \rightarrow 2 \rightarrow \ldots \rightarrow n[6]$. We identify $[7]$ the category ind $\mathcal{D}^{b}(A)$ with the mesh-category $k\left(\mathbf{Z} \vec{A}_{n}\right)$ [11, 2.1] of the translation quiver $\mathbf{Z} \vec{A}_{n}$:

By an \vec{A}_{n}-quiver we mean an oriented tree K having n vertices and whose set of arrows is decomposed into a class of α-arrows and a class of β-arrows such that in each vertex of K there terminate at most one α arrow and one β-arrow and there originate at most one α-arrow and one β-arrow. Now let K be an \vec{A}_{n}-quiver. For each vertex x of K let x^{α} (resp. x_{α}) be the number of vertices y of K such that the shortest walk from y to x ends (resp. begins) with an α-arrow terminating (resp. originating) in x. Analogously, we define x^{β} and x_{β}. Then there is exactly one map of the underlying sets of vertices $K_{0} \rightarrow\left(\mathbf{Z} \vec{A}_{n}\right)_{0}, x \mapsto(g x, h x)$ such that
a) $\min _{x \in K} g x=0$,
b) $(g y, h y)=\left(g x, h x+x^{\beta}+y_{\beta}+1\right)$ for each α-arrow $x \xrightarrow{\alpha} y$ and
c) $(g y, h y)=\left(g x+x^{\alpha}+y_{\alpha}+1, h x-x^{\alpha}-y_{\alpha}-1\right)$ for each β-arrow $x \xrightarrow{\beta} y$.

Because $h x=1+x^{\alpha}+x_{\beta}$, this map is indeed well defined. Let M_{K} denote its image.

Theorem. The assignment $K \mapsto M_{K}$ induces a bijection from the isomorphism classes of \vec{A}_{n}-quivers to the complete tilting sets M in ind $\mathcal{D}^{b}\left(k \vec{A}_{n}\right)=$ $k\left(\mathbf{Z} \vec{A}_{n}\right)$ with $\min _{(g, h) \in M} g=0$. Moreover, the spectrum of M_{K} is described by the quiver K bound by all possible relations $\alpha \beta=0$ and $\beta \alpha=0$ (cf. [1]).

Proof. Let K be an \vec{A}_{n}-tree. We call $x \in K_{0}$ a knot of K if x is contained in a full subtree of one of the forms

$$
\bullet \stackrel{\alpha}{\rightarrow} x \xrightarrow{\alpha} \bullet, \bullet \stackrel{\alpha}{\rightarrow} x \stackrel{\beta}{\leftarrow} \bullet, \bullet \stackrel{\beta}{\leftarrow} x \xrightarrow{\alpha} \bullet, \bullet \stackrel{\beta}{\leftarrow} x \stackrel{\beta}{\leftarrow} \bullet .
$$

The other vertices of K are called peaks. We term $(g, h) \in\left(\mathbf{Z} \vec{A}_{n}\right)_{0}$ a marginal vertex if $h=1$ or $h=n$ and we call the other vertices of $\mathbf{Z} \vec{A}_{n}$ inner vertices. We use induction on the number m of knots of K.

If $m=0, K$ has one of the forms

$$
K_{\alpha}=\bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} \bullet \xrightarrow{\alpha} \ldots
$$

or

$$
K_{\beta}=\bullet \xrightarrow{\beta} \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} \ldots
$$

Figure 1: $\mathbf{Z} \vec{A}_{n}$ with given vertex P

It is easy to see that the corresponding sets $M_{K_{\alpha}}, M_{K_{\beta}}$ are exactly the complete tilting sets M of ind $\mathcal{D}^{b}\left(k \vec{A}_{n}\right)$ which only consist of marginal vertices and satisfy $\min _{(g, h) \in M} g=0$.

Now let $m>0$. We first describe the complete tilting sets in $k\left(\mathbf{Z} \vec{A}_{n}\right)$ which contain a given inner vertex P. The tilting sets $\left\{X_{1}, \ldots, X_{r}, P\right\}$ and $\left\{Y_{1}, \ldots, Y_{s}, P\right\}$ (cf. Fig. 1) give rise to fully faithful embeddings $j_{X}: \mathcal{D}^{b}\left(k \vec{A}_{r+1}\right) \rightarrow \mathcal{D}^{b}\left(k \vec{A}_{n}\right)$ and $j_{Y}: \mathcal{D}^{b}\left(k \vec{A}_{s+1}\right) \rightarrow \mathcal{D}^{b}\left(k \vec{A}_{n}\right)$. We may assume that $j_{X}\left(\mathbf{Z} \vec{A}_{r+1}\right)_{0} \subset\left(\mathbf{Z} \vec{A}_{n}\right)_{0}$ and $j_{Y}\left(\mathbf{Z} \vec{A}_{s+1}\right)_{0} \subset\left(\mathbf{Z} \vec{A}_{n}\right)_{0}$, in particular $j_{X} P_{X}=P$ and $j_{Y} P_{Y}=P$ where $P_{X}=(0, r+1) \in\left(\mathbf{Z} \vec{A}_{r+1}\right)_{0}$ and $P_{Y}=$ $(0, s+1) \in\left(\mathbf{Z} \vec{A}_{s+1}\right)_{0}$. With these notations, the complete tilting sets M in $k\left(\mathbf{Z} \vec{A}_{n}\right)$ containing P are exactly the sets $j_{X}(L) \cup j_{Y}(N)$ where $L \subset$ $\left(\mathbf{Z} \vec{A}_{r+1}\right)_{0}$ and $N \subset\left(\mathbf{Z} \vec{A}_{s+1}\right)_{0}$ are complete tilting sets containing P_{X} and P_{Y}, respectively. Here, the set of marginal points of M equals $\left\{j_{X}(R)\right.$: R is a marginal point of $\left.L \backslash P_{X}\right\} \cup\left\{j_{Y}(R): R\right.$ is a marginal point of $\left.N \backslash P_{Y}\right\}$. For the corresponding spectra we have the pushout diagram

k	$\xrightarrow{i_{X}}$	L
$i_{Y} \downarrow$		$\downarrow j_{X}$
N	$\xrightarrow{j_{Y}}$	M

where k is considered as a category with one object and i_{X} and i_{Y} are fully faithful with $i_{X}(k)=P_{X}$ and $i_{Y}(k)=P_{Y}$. Combined with the induction hypothesis, this description shows that the spectra of the complete tilting sets in $k\left(\mathbf{Z} \vec{A}_{n}\right)$ are described by the \vec{A}_{n}-quivers with all relations $\alpha \beta=0=\beta \alpha$ and that peaks are mapped to marginal points by the
corresponding isomorphisms of categories. So let M be a complete tilting set in $k\left(\mathbf{Z} \vec{A}_{n}\right)$ whose spectrum is described by K. We claim that the corresponding bijection $e: K_{0} \rightarrow M \subset\left(\mathbf{Z} \vec{A}_{n}\right)_{0}$ satisfies conditions b) and c). This is obvious if x, y are peaks of K since then $e x, e y$ are marginal points. If for example x is a knot we apply the above construction with $P=e x$ and the claim follows from the induction hypothesis.

5 Aisles in $\mathcal{D}^{b}(k \Delta)$

5.1 Let \mathcal{U} be an aisle in a triangulated category \mathcal{T}. The heart of \mathcal{U} is the full subcategory $\mathcal{U}^{0}=\mathcal{U} \cap \mathcal{U}^{\perp}$ of \mathcal{T}; the associated cohomology functor $H_{\mathcal{U}}^{0}: \mathcal{T} \rightarrow \mathcal{U}^{0}$ is given by $X \mapsto\left(X_{\mathcal{U}}\right)^{S \mathcal{U}^{\perp}}$ [3, 1.3.1-6]. The aisle \mathcal{U} is faithful if the inclusion $\mathcal{U}^{0} \rightarrow \mathcal{T}$ extends to an S-equivalence $\mathcal{D}^{b}\left(\mathcal{U}^{0}\right) \rightarrow \bigcup_{n \in \mathrm{~N}} S^{-n} \mathcal{U}$; it is separated if $\bigcap_{n \in \mathrm{~N}} S^{n} \mathcal{U}=0$.

Let $k \Delta$ be the path algebra [6] of a Dynkin-quiver Δ. For each subset $M \subset \operatorname{ind} \mathcal{D}^{b}(k \Delta)$ let $\mathcal{F}(M)$ be the smallest strictly full subcategory of $\mathcal{D}^{b}(k \Delta)$ which contains M and is stable under S and closed under extensions and direct summands. By proposition 1.3, $\mathcal{F}(M)$ is an aisle. The assignment $\left\{T_{1}, \ldots, T_{s}\right\} \mapsto \mathcal{F}\left(T_{1}, \ldots, T_{s}\right)$ is a bijection between the tilting sets in $\mathcal{D}^{b}(k \Delta)$ and the faithful aisles. We shall generalize the concept of a tilting set in order to obtain an analogous description of all separated aisles in $\mathcal{D}^{b}(k \Delta)$.

A silting set in $\mathcal{D}^{b}(k \Delta)$ is a finite subset $\left\{R_{1}, \ldots, R_{s}\right\} \subset$ ind $\mathcal{D}^{b}(k \Delta)$ such that $\operatorname{Hom}\left(R_{i}, S^{l} R_{j}\right)=0 \forall i, j$ and $\forall l>0$.

Theorem.

a) The assignment $\left\{R_{1}, \ldots, R_{s}\right\} \mapsto \mathcal{F}\left(R_{1}, \ldots, R_{s}\right)$ is a bijection between the silting sets in $\mathcal{D}^{b}(k \Delta)$ and the separated aisles in $\mathcal{D}^{b}(k \Delta)$. If $\left\{R_{1}, \ldots, R_{s}\right\}$ is a silting set and $\mathcal{W}=\mathcal{F}\left(R_{1}, \ldots, R_{s}\right)$ we have
b) $\mathcal{W} \cap \perp(S \mathcal{W}) \cap \operatorname{ind} \mathcal{D}^{b}(k \Delta)=\left\{R_{1}, \ldots, R_{s}\right\}$
c) $s \leq\left|\Delta_{0}\right|$, and $s=\left|\Delta_{0}\right| \Leftrightarrow \bigcup_{n \in \mathrm{~N}} S^{-n} \mathcal{W}=\mathcal{D}^{b}(k \Delta)$
d) $\mathcal{W}=\left\{X \in \cup_{n \in \mathrm{~N}} S^{-n} \mathcal{W}: \operatorname{Hom}\left(R_{i}, S^{l} X\right)=0 \forall i, \forall l>0\right\}$

Figure 2: Example of $\mathcal{V}(\bullet)$ and $\mathcal{U}(\circ)$ in $\mathbf{Z} \vec{A}_{n}$
e) $H_{\mathcal{W}}^{0} R_{1}, \ldots, H_{\mathcal{W}}^{0} R_{s}$ form a system of representatives of the isomorphism classes of indecomposable projectives of \mathcal{W}^{0}, and $H_{\mathcal{W}}^{0}$ induces an equivalence between the full subcategories $\left\{R_{1}, \ldots, R_{s}\right\}$ and $\left\{H_{\mathcal{W}}^{0} R_{1}, \ldots, H_{\mathcal{W}}^{0} R_{s}\right\}$ of $\mathcal{D}^{b}(k \Delta)$.

Proof. 1st step: The following variant of a construction by Parthasarathy [10] allows us to use induction on $\left|\Delta_{0}\right|$.

Let \mathcal{W} be a separated aisle in $\mathcal{D}^{b}(k \Delta)$ and Q a source (3.1) of ind \mathcal{W}. We may assume that Δ admits a unique source q and that $Q=(0, q)$. Let \mathcal{Q} be the full subcategory of $\mathcal{D}^{b}(k \Delta)$ whose objects are the direct sums of objects $S^{n} Q, n \in \mathbf{Z}$. The tilting set $\left\{(0, r): r \in \Delta_{0}, r \neq q\right\} \subset k(\mathbf{Z} \Delta)$ yields a fully faithful S-functor $\mathcal{D}^{b}\left(k \Delta^{\prime}\right) \rightarrow \mathcal{D}^{b}(k \Delta)(2.1)$, where Δ^{\prime} is obtained from Δ by omitting the vertex q and all arrows originating in q. The essential image of this S-functor equals ${ }^{\perp} \mathcal{Q}$. We claim that $\mathcal{W}=\mathcal{U} * \mathcal{V}$, where $\mathcal{U}=\mathcal{W} \cap^{\perp} \mathcal{Q}$ and $\mathcal{V}=\mathcal{W} \cap \mathcal{Q}$. Obviously, we have $\mathcal{W} \supset \mathcal{U} * \mathcal{V}$. Conversely, let X be an indecomposable in \mathcal{W} which is not isomorphic to Q. We have the triangle $X_{\perp_{\mathcal{Q}}} \rightarrow X \rightarrow X^{\mathcal{Q}} \rightarrow S X_{\perp_{\mathcal{Q}}}$ (1.3). The assumptions on X imply that $X^{\mathcal{Q}}$ lies in $S \mathcal{V}$. Thus, as an extension of X by $S^{-} X^{\mathcal{Q}} \in \mathcal{V} \subset \mathcal{W}, X_{\perp_{\mathcal{Q}}}$ lies in $\mathcal{W} \cap^{\perp} \mathcal{Q}=\mathcal{U}$.

2nd step: b) Let the numbering be chosen in such a way that $\operatorname{Hom}\left(R_{j}, R_{i}\right)=$ $0 \forall i<j$. We apply the construction of the first step to the source $Q=R_{1}$ of ind \mathcal{W}. Let $X \in \mathcal{W} \cap^{\perp}(S \mathcal{W})$ be indecomposable. We have the triangle $X_{\perp_{\mathcal{Q}}} \rightarrow X \rightarrow X^{\mathcal{Q}} \rightarrow S X_{\perp_{\mathcal{Q}}}$. As in the first step, either $X \cong R_{1}$ or $X^{\mathcal{Q}} \in S \mathcal{V}$ and in this case we infer $X^{\mathcal{Q}}=0$ and $X \in \mathcal{U} \cap^{\perp}(S \mathcal{U})$. The
claim now follows from the induction hypothesis.
a) Because of b) we only have to show surjectivity. In the setting of the first step let $R_{1}=Q$. We complete R_{1} to a system of representatives $\left\{R_{1}, \ldots, R_{s}\right\}$ of the indecomposables of $\mathcal{W} \cap^{\perp}(S \mathcal{W})$. Then $\left\{R_{2}, \ldots, R_{s}\right\}$ is a system of representatives of the indecomposables of $\mathcal{U} \cap^{\perp}(S \mathcal{U})$. According to the induction hypothesis, we have $\mathcal{U}=\mathcal{F}\left(R_{2}, \ldots, R_{s}\right)$, and therefore $\mathcal{W}=\mathcal{U} * \mathcal{V}=\mathcal{F}\left(R_{1}, \ldots, R_{s}\right)$.

The proof of c) is left to the reader. d) Obviously, \mathcal{W} is contained in the aisle given in the assertion. Conversely, let $X=S^{-n} Y(Y \in$ $\mathcal{W}, n \in \mathbf{N})$ and $\operatorname{Hom}\left(R_{i}, S^{l} X\right)=0 \forall i, \forall l>0$. By induction we conclude $S^{-n} Y_{\mathcal{U}} \in \mathcal{U}$. Using $\operatorname{Hom}\left(R_{1}, S \mathcal{U}\right)=0$ and the triangle $Y_{\mathcal{U}} \cong Y_{\perp_{\mathcal{Q}}} \rightarrow$ $Y \rightarrow Y^{\mathcal{Q}} \rightarrow S Y_{\perp_{\mathcal{Q}}}$ we infer $\operatorname{Hom}\left(S^{-l} R_{1}, S^{-n} Y^{\mathcal{Q}}\right)=0$ for all $l>0$ and $S^{-n} Y^{\mathcal{Q}} \in \mathcal{V}$.
e) $\operatorname{From} \operatorname{Hom}\left(R_{1}, S \mathcal{W}\right)=0$ it follows that $R_{1} \cong H_{\mathcal{W}}^{0} R_{1}$ is projective in \mathcal{W}^{0}. The rest of the assertion follows from the

Lemma. Let \mathcal{U}, \mathcal{V} be aisles in a triangulated category \mathcal{T} such that $\mathcal{U} \subset^{\perp} \mathcal{V}$ and let $\mathcal{W}=\mathcal{U} * \mathcal{V}$. (cf. proposition 1.4)
a) $\mathcal{V}^{0} \subset \mathcal{W}^{0}$ and $H_{\mathcal{V}}^{0} \mid \mathcal{W}^{0}$ is right adjoint to this inclusion.
b) $H_{\mathcal{U}}^{0} \mid \mathcal{W}^{0}$ is exact and $H_{\mathcal{W}}^{0} \mid \mathcal{U}^{0}$ is left adjoint to $H_{\mathcal{U}}^{0} \mid \mathcal{W}^{0}$ and fully faithful.
c) For each $A \in \mathcal{W}^{0}$ we have an exact sequence

$$
H_{\mathcal{W}}^{0} H_{\mathcal{U}}^{0} A \rightarrow A \rightarrow H_{\mathcal{W}}^{0} A^{\mathcal{U}^{\perp}} \rightarrow 0
$$

d) $H_{\mathcal{W}}^{0} \mid \mathcal{W} \cap^{\perp}(S \mathcal{W})$ is fully faithful and for $X \in \mathcal{U}$ we have $H_{\mathcal{W}}^{0} X \cong$ $H_{\mathcal{W}}^{0} H_{\mathcal{U}}^{0} X$.

We leave the proof of the lemma to the reader (compare with [3]).
5.2 In the setting of 5.1 let $\left\{T_{1}, \ldots, T_{s}\right\}$ be a tilting set in $\mathcal{D}^{b}(k \Delta)$. Suppose that the numbering has been chosen in such a way that $\operatorname{Hom}\left(T_{j}, T_{i}\right)=0 \forall j>i$. Let $p:\{1, \ldots, s\} \rightarrow \mathbf{N}$ be a non-decreasing function with $p(1)=0$.

Proposition.

a) $R_{1}:=S^{p(1)} T_{1}, \ldots, R_{s}:=S^{p(s)} T_{s}$ form a silting set in $\mathcal{D}^{b}(k \Delta)$.
b) With $\mathcal{U}=\mathcal{F}\left(T_{1}, \ldots, T_{s}\right), \mathcal{W}=\mathcal{F}\left(R_{1}, \ldots, R_{s}\right)$ we have for each $i \in \mathbf{Z}$

$$
\begin{gathered}
\mathcal{U}^{0} \cap S^{-i} \mathcal{W}=\left\{X \in \mathcal{U}^{0}: \operatorname{Hom}\left(T_{j}, X\right)=0 \text { for each } j \text { with } i<p(j)\right\} \\
\mathcal{W}=\left\{X \in \mathcal{U}: H_{\mathcal{U}}^{i} X \in \mathcal{U}^{0} \cap S^{i} \mathcal{W}, \forall i \in \mathbf{Z}\right\}
\end{gathered}
$$

c) The full subcategory $\left\{R_{1}, \ldots, R_{s}\right\}$ of $\mathcal{D}^{b}(k \Delta)$ is isomorphic to the disjoint sum of the full subcategories $C_{j}=\left\{T_{i}: p(i)=j\right\}, j \in \mathbf{N}$, of $\left\{T_{1}, \ldots, T_{s}\right\}$.

We leave the proof to the reader.
5.3 Theorem. Each silting set in $\mathcal{D}^{b}\left(k \vec{A}_{n}\right)$ (cf. section 4) is of the form given in 5.2

Proof. Let $\left\{R_{1}, \ldots, R_{s}\right\}$ be a silting set in $\mathcal{D}^{b}\left(k \vec{A}_{n}\right)$.
1st step: $\left\{R_{1}, \ldots, R_{s}\right\}$ is contained in a complete silting set ($=$ silting set of maximal cardinality).

If $s<n$ we have $\mathcal{T}^{\perp} \neq 0(5.1 \mathrm{c})$, where $\mathcal{T}=\bigcup_{m \in \mathrm{~N}} S^{-m} \mathcal{F}\left(R_{1}, \ldots, R_{s}\right)$. Because gldim $k \Delta<\infty$ we can find an indecomposable $R_{0} \in \mathcal{T}^{\perp}$ such that $\operatorname{Hom}\left(R_{0}, S^{l} R_{i}\right)=0$ for all $l>0, i=1, \ldots, s$. Then $\left\{R_{0}, \ldots R_{s}\right\}$ is a silting set. The claim now follows by induction on $n-s$.

2nd step: By the first step we may assume $n=s$. Let the numbering of the R_{i} be non-decreasing with respect to the order on $\operatorname{ind} \mathcal{D}^{b}\left(k \vec{A}_{n}\right)$ generated by the arrows of $\mathbf{Z} \vec{A}_{n}$. With the notations of the first step of the proof of theorem 5.1 we set $Q=R_{1}$. The induction hypothesis applied to $\left\{R_{2}, \ldots, R_{n}\right\} \subset{ }^{\perp} \mathcal{Q}$ yields a tilting set $\left\{T_{2}, \ldots, T_{n}\right\}$ which corresponds to a complete tilting set in $\mathcal{D}^{b}\left(k \Delta^{\prime}\right)$. Therefore the connected components of the spectrum of $\left\{T_{2}, \ldots, T_{n}\right\}$ are precisely the intersections of $\left\{T_{2}, \ldots, T_{n}\right\}$ with the connected components of ind ${ }^{\perp} \mathcal{Q}$.

Figure 3: A silting set in $\mathbf{Z} \vec{D}_{4}$

Let \mathcal{C} be a connected component of ind ${ }^{\perp} \mathcal{Q}$. Because $\operatorname{Hom}(Q, ?) \mid \mathcal{C} \neq 0$ and $\left\{T_{2}, \ldots, T_{n}\right\} \cap \mathcal{C}$ is a complete tilting set in \mathcal{C}, $\operatorname{Hom}(Q, ?)$ does not vanish on $S^{l}\left\{T_{2}, \ldots, T_{n}\right\} \cap \mathcal{C}$ for some $l \in \mathbf{Z}$. Hence we may assume that $\left\{Q, T_{2}, \ldots, T_{n}\right\}$ is connected. Because $\{X \in \mathcal{C}: \operatorname{Hom}(Q, X) \neq 0\}$ is linearly ordered by $X \leq X^{\prime}: \Leftrightarrow \operatorname{Hom}\left(X, X^{\prime}\right) \neq 0$ (cf. figure 2), $\left\{Q, T_{2}, \ldots, T_{n}\right\}$ must be a tilting set in $\mathcal{D}^{b}\left(k \vec{A}_{n}\right)$. Setting $T_{1}=Q$ we have $R_{i}=S^{p(i)} T_{i}$ for some function $p:\{1, \ldots, n\} \rightarrow \mathbf{Z}$ with $p(1)=0$. It is easy to see that $\operatorname{Hom}\left(T_{i}, T_{j}\right) \neq 0$ implies $p(i) \leq p(j)$.
5.4 Remarks: a) Silting sets can always be completed (cf. the first step of the above proof) but in general, tilting sets cannot : $\{(0,1),(3,3)\} \subset$ $\mathbf{Z} \overrightarrow{A_{3}}$.
b) The silting set of figure 3 is not of the form given in 5.2 since 5.2 c) cannot be satisfied.

References

[1] I. Assem, D. Happel, Generalized tilted algebras of type A_{n}, Comm. Alg. 9 (1981), 2101-2125; Erratum, Comm. Alg. 10 (1982), 1475
[2] M. Auslander, M. I. Platzeck, I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46
[3] A. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982)
[4] I. N. Bernstein, I. M. Gelfand, V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Uspekhi Mat. Nauk 28 (1973); translated in Russian Math. Surveys 28 (1973), 17-32
[5] K. Bongartz, Tilted algebras, Springer LNM 903 (1982), 26-38
[6] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Springer LNM 831 (1980), 1-71
[7] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), 339-389
[8] D. Happel, C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274(2) (1982), 399-443
[9] B. Keller, D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris 305 (1987), 225-228
[10] R. Parthasarathy, t-structures dans la catégorie dérivée associée aux représentations d'un carquois, C. R. Acad. Sci. Paris 304 (1987), 355-357
[11] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224
[12] J.-L. Verdier, Catégories dérivées, état 0, SGA $41 / 2$, Springer LNM 569 (1977), 262-311
B.K. : Mathematik, G 28.2, ETH-Zentrum, 8092 Zürich, Switzerland;
D.V. : Mathematisches Institut, Universität Zürich, Rämistrasse 74, 8051 Zürich, Switzerland

