Ann. scient. Éc. Norm. Sup.,
4^{e} série, t. 27, 1994, p. 63 à 102.

DERIVING DG CATEGORIES

Bernhard Keller ${ }^{1}$

14 July 1993

Abstract. We investigate the (unbounded) derived category of a differential Z-graded category (=DG category). As a first application, we deduce a 'triangulated analogue‘ (4.3) of a theorem of Freyd's [5, Ex. 5.3 H] and Gabriel's [6, Ch. V] characterizing module categories among abelian categories. After adapting some homological algebra we go on to prove a 'Morita theorem" (8.2) generalizing results of [19] and [20]. Finally, we develop a formalism for Koszul duality [1] in the context of DG augmented categories.

Summary

We give an account of the contents of this paper for the special case of DG algebras. Let k be a commutative ring and A a $D G(k$ - $)$ algebra, i.e. a Z-graded k-algebra

$$
A=\coprod_{p \in \mathrm{Z}} A^{p}
$$

endowed with a differential d of degree 1 such that

$$
d(a b)=(d a) b+(-1)^{p} a(d b)
$$

for all $a \in A^{p}, b \in A$. A $D G$ (right) A-module is a \mathbf{Z}-graded A-module $M=\coprod_{p \in \mathrm{Z}} M^{p}$ endowed with a differential d of degree 1 such that

$$
d(m a)=(d m) a+(-1)^{p} m(d a)
$$

for all $m \in M^{p}, a \in A$. A morphism of $D G A$-modules is a homogeneous morphism of degree 0 of the underlying graded A-modules commuting with the differentials. The DG A-modules form an abelian category $\mathcal{C} A$. A morphism $f: M \rightarrow N$ of $\mathcal{C} A$ is nutl-homotopic if $f=d r+r d$ for some homogeneous morphism $r: M \rightarrow N$ of degree -1 of the underlying graded A-modules. The homotopy category $\mathcal{H} A$ has the same objects as $\mathcal{C} A$. Its morphisms are residue classes of morphisms of $\mathcal{C} A$ modulo null-homotopic morphisms. It is a triangulated [23] category (2.2). A quasi-isomorphism is a morphism of $\mathcal{C} A$ inducing isomorphisms in homology. The derived category

[^0]$\mathcal{D} A$ is the localization [23] of $\mathcal{H} A$ with respect to the quasi-isomorphisms (4.1). It has infinite direct sums. Let $\mathcal{H}_{p} A$ be the smallest strictly (=closed under isomorphisms) full triangulated subcategory of $\mathcal{H} A$ containing A and closed under infinite direct sums. Each $D G A$-module M is quasi-isomorphic to a module $\boldsymbol{p} M \in \mathcal{H}_{p} A$. (3.1). The canonical projection $\mathcal{H} A \rightarrow \mathcal{D} A$ restricts to an equivalence $\mathcal{H}_{p} A \rightarrow \mathcal{D} A$ (4.1). This is classical [11, VI, 10.2] for right bounded modules over negative DG algebras (i.e. $M^{p}=0$ for all $p \gg 0$ and $A^{p}=0$ for all $p>0$).

The algebra A considered as a right $D G A$-module is small in $\mathcal{D} A$, i.e. the functor $(\mathcal{D} A)(A, ?)$ commutes with infinite direct sums. Moreover A is a generator of $\mathcal{D} A$, i.e. $\mathcal{D} A$ coincides with its smallest strictly full triangulated subcategory containing A and closed under infinite direct sums. Now suppose that \mathcal{E} is a Frobenius category [9] with infinite direct sums and that the associated stable category $\underline{\mathcal{E}}$ admits a small generator X. Then there is a $D G$ algebra A and an S-equivalence $G: \underline{\mathcal{E}} \rightarrow \mathcal{D} A$ with $G X \xrightarrow{\sim} A(4.3)$. This is an analogue of Freyd's and Gabriel's characterization of module categories among abelian categories [5, Ex. 5.3 H$][6, \mathrm{Ch} . \mathrm{V}]$. It suggests that in the study of triangulated categories, categories of DG modules might take the rôle that module categories play in the theory of abelian categories.

Let B and C be DG algebras. A quasi-equivalence $C \rightarrow B$ is a B - C-bimodule (i.e. a right- B -left- C-bimodule) E containing an element $e \in \mathrm{Z}^{0} E$ such that the maps

$$
B \rightarrow E, b \mapsto e b \text { and } C \rightarrow E, c \mapsto c e
$$

induce isomorphisms in homology. For example, if we are given a quasi-isomorphism $\varphi: C \rightarrow B$, we can take $E={ }_{\varphi} B_{B}$ and $e=1$. Suppose that A is a DG algebra which is flat as a k-module. There is an A-C-bimodule X such that

$$
\mathbf{L}\left(? \otimes_{C} X\right): \mathcal{D} C \rightarrow \mathcal{D} A, M \mapsto(\boldsymbol{p} M) \otimes_{C} X
$$

is an equivalence iff C is quasi-equivalent to $B=\mathcal{H o m}(T, T)$ for some module $T \in \mathcal{H}_{p} A$ which is a small generator of $\mathcal{D} A(8.2)$. Here $\mathcal{H o m}(T, T)$ is the DG algebra whose nth component consists of the homogeneous graded morphisms $f: T \rightarrow T$ of degree n and whose differential maps f to $d \circ f-(-1)^{n} f \circ d$. It follows from ideas of Ravenel's [18] that a $D G A$-module is small in $\mathcal{D} A$ iff it is contained in the smallest strictly full triangulated subcategory of $\mathcal{D} A$ containing A and closed under forming direct summands. We reproduce A. Neeman's proof of this result [17, 2.2] in 5.3.

By applying suitable truncation functors to our DG algebras (9.1) we also generalize a result of [20] on realizing S-equivalences as derived functors (cf. also [13]).

Now suppose that k is a field. A $D G$ augmented algebra is a DG algebra A endowed with a DG module \bar{A} whose homology is isomorphic to k viewed as a DG k-module concentrated in degree 0 . There is a $D G$ algebra A^{*} and an $A-A^{*}$-bimodule X such that $\mathbf{L}\left(X \otimes_{A}\right.$?): $\mathcal{D} A^{*} \rightarrow \mathcal{D} A$ maps A^{*} to \bar{A} and gives rise to an equivalence between the triangulated subcategories generated by A^{*} and $\bar{A}(10.2)$. We put $\overline{A^{*}}=\mathbf{R H o m}_{A}(X, D A)$, where $D A=\operatorname{Hom}_{k}(A, k)$. Then $\left(A^{*}, \overline{A^{*}}\right)$ is a DG augmented algebra called the Koszul dual (cf. [1]) of (A, \bar{A}). It is unique up to a quasi-equivalence compatible with the augmentation. For example, if $A=U(\mathfrak{G})$ for some Lie algebra \mathfrak{G}, then A^{*}
may be taken to be $\operatorname{Hom}_{k}(\Lambda \mathfrak{G}, k)$ with the shuffle product and the usual derivation (6.5). Let $A^{\vee}=D D A$. There is a canonical $A^{* *}-A^{\vee}$-bimodule Y which in many cases gives rise to a quasiequivalence $A^{\vee} \xrightarrow{\sim} A^{* *}(10.3)$. We consider three special cases where A^{\vee} is quasi-equivalent to $A^{* *}$ and $\mathcal{D} A$ is related to $\mathcal{D} A^{*}$ by a fully faithful embedding (10.5).

I am grateful to A. Neeman for pointing out Theorem 5.3 to me and calling my attention to his elegant proof in [17]. I thank the referee for his careful reading of the manuscript.

1. Graded categories and DG categories

1.1 Graded categories. Let k be a commutative ring. The tensor product over k will be denoted by \otimes. A graded category is a k-linear category \mathcal{A} whose morphism spaces are \mathbf{Z}-graded k-modules

$$
\mathcal{A}(A, B)=\coprod_{p \in \mathbb{Z}} \mathcal{A}(A, B)^{p}
$$

such that the composition maps

$$
\mathcal{A}(A, B) \otimes \mathcal{A}(B, C) \rightarrow \mathcal{A}(A, C)
$$

are homogeneous of degree $0, \forall A, B, C \in \mathcal{A}$. A simple example is the category Gra k of graded k-modules $V=\coprod_{p \in \mathrm{Z}} V^{p}$ with

$$
(\operatorname{Gra} k)(V, W)^{p}=\left\{f \in \operatorname{Hom}_{k}(V, W): f\left(V^{q}\right) \subset W^{p+q}, \forall q\right\}
$$

A graded category \mathcal{A} is concentrated in degree 0 if $\mathcal{A}(A, B)^{p}=0$ for all $p \neq 0, A, B \in \mathcal{A}$. It is then completely determined by the k-linear category \mathcal{A}^{0} having the same objects as \mathcal{A} and the morphism spaces $\mathcal{A}^{0}(A, B)=\mathcal{A}(A, B)^{0}$.

If \mathcal{A} and \mathcal{B} are graded categories, a graded functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is a k-linear functor whose associated maps

$$
F(A, B): \mathcal{A}(A, B) \rightarrow \mathcal{B}(F A, F B)
$$

are homogeneous of degree $0, \forall A, B \in \mathcal{A}$.
Let \mathcal{A} be a small graded category. The opposite graded category $\mathcal{A}^{\text {op }}$ has the same objects as \mathcal{A}, its morphism spaces are $\mathcal{A}^{\mathrm{op}}(A, B)=\mathcal{A}(B, A)$, and the composition is given by

$$
\mathcal{A}^{\mathrm{op}}(A, B)^{p} \otimes \mathcal{A}^{\mathrm{op}}(B, C)^{q} \rightarrow \mathcal{A}^{\mathrm{op}}(A, C)^{p+q}, g \otimes f \longmapsto(-1)^{p q} f g
$$

A graded (right) \mathcal{A}-module is a graded functor $M: \mathcal{A}^{\mathrm{op}} \rightarrow$ Gra k. For each $A \in \mathcal{A}$ we denote by A^{\wedge} the free \mathcal{A}-module $\mathcal{A}(?, A)$. By definition

$$
A^{\wedge}(f) g=(-1)^{p q} g \circ f, \forall f \in \mathcal{A}(C, B)^{p}, \forall g \in \mathcal{A}(B, A)^{q}
$$

We define $\mathcal{G} \mathcal{A}$ to be the category whose objects are graded \mathcal{A}-modules and whose morphism spaces $(\mathcal{G \mathcal { A }})(M, N)$ consist of the morphisms of functors $f: M \rightarrow N$ such that $f A: M A \rightarrow N A$ is homogeneous of degree 0 for each $A \in \mathcal{A}$.

If \mathcal{A} is concentrated in degree $0, \mathcal{G} \mathcal{A}$ identifies with the category of sequences $\left(M_{n}\right)_{n \in Z}$ of \mathcal{A}^{0}-modules ($=k$-linear contravariant functors from \mathcal{A}^{0} to the category of k-modules).

We endow $\mathcal{G} \mathcal{A}$ with the shift $M \mapsto M[1]$: By definition,

$$
(M[1] A)^{p}=(M A)^{p+1} \text { and }(M[1] a)(m)=(-1)^{p q}(M a)(m)
$$

for $a \in \mathcal{A}(B, A)^{p}$ and $m \in(M A)^{q}$. For a morphism $f: M \rightarrow N$ we put $(f[1] A)^{p}=(f A)^{p+1}$. The shift functor is clearly an autormorphism. Its nth iterate is denoted by $M \mapsto M[n], n \in \mathbf{Z}$.

The graded category Gra \mathcal{A} has the same objects as $\mathcal{G} \mathcal{A}$ and the morphisms spaces

$$
(\operatorname{Gra} \mathcal{A})(M, N) \xrightarrow{\sim} \coprod_{p \in \mathrm{Z}}(\mathcal{G} \mathcal{A})(M, N[p])
$$

The composition of morphisms produced by $f: M \rightarrow N[q]$ and $g: L \rightarrow M[p]$ is given by $f[p] \circ g$. We extend the shift functor to an automorphism of Gra \mathcal{A} in the obvious way.
1.2 Differential graded categories. A differential graded category (=DG category) is a graded category \mathcal{A} whose morphism spaces are endowed with differentials d (i.e. homogeneous maps d of degree 1 with $d^{2}=0$) such that

$$
d(f g)=(d f) g+(-1)^{p} f(d g), \forall f \in \mathcal{A}(B, C)^{p}, \forall g \in \mathcal{A}(A, B)
$$

A simple example is the category Dif k of differential k-modules whose morphism spaces

$$
(\operatorname{Dif} k)(V, W) \stackrel{\sim}{\rightarrow}(\operatorname{Gra} k)(V, W)
$$

are endowed with the differential mapping $\left(f^{p}\right) \in(\operatorname{Gra} k)(V, W)^{n}$ to

$$
\left(d \circ f^{p}-(-1)^{n} f^{p+1} \circ d\right)
$$

If \mathcal{A} and \mathcal{B} are $D G$ categories, a $D G$ functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is a graded functor such that $F(d f)=d(F f)$ for all morphisms f of \mathcal{A}. A quasi-isomorphism $F: \mathcal{A} \rightarrow \mathcal{B}$ is a DG functor inducing a bijection obj $\mathcal{A} \rightarrow \operatorname{obj} \mathcal{B}$ and quasi-isomorphisms $\mathcal{A}(A, B) \rightarrow \mathcal{A}(F A, F B)$ for all $A, B \in \mathcal{A}$.

Let \mathcal{A} be a small DG category. Its opposite $\mathcal{A}^{\mathrm{op}}$ is the opposite graded category of \mathcal{A} endowed with the same differential as \mathcal{A}.

A $D G$ (right) \mathcal{A}-module is a DG functor $M: \mathcal{A}^{\mathrm{op}} \rightarrow$ Dif k. Denote by $M \mid$ the underlying graded \mathcal{A}-module of M. The objects of the $D G$ category $\operatorname{Dif} \mathcal{A}$ are the DG \mathcal{A}-modules, its morphism spaces are the graded k-modules

$$
(\operatorname{Dif} \mathcal{A})(M, N)=(\operatorname{Gra} \mathcal{A})(M|, N|)
$$

endowed with the differential given by

$$
d f=d \circ f-(-1)^{p} f \circ d
$$

for each homogeneous f of degree p. One easily verifies that this is well defined.

If \mathcal{A} is concentrated in degree 0 , $D G \mathcal{A}$-modules are in bijection with differential complexes of \mathcal{A}^{0}-modules.

For each $A \in \mathcal{A}$, the underlying graded module of the free module A^{\wedge} is the free graded module associated with A. The differential of $A^{\wedge}(B)$ equals that of $\mathcal{A}(B, A)$. For each DG \mathcal{A}-module M and each $A \in \mathcal{A}$, the map

$$
(\operatorname{Dif} \mathcal{A})\left(A^{\wedge}, M\right) \simeq M(A), f \longmapsto(f A)\left(\mathbf{1}_{A}\right)
$$

is an isomorphism of DG k-modules ('Yoneda-isomorphism').
We lift the shift functor from graded modules to DG modules by defining the differential of $M[1]$ to be $-d[1]$, where $d: M \rightarrow M[1]$ is the differential of M.

2. Homotopy categories

$2.1 k$-linear structures. Let \mathcal{A} be a DG category. The category $\mathcal{C} \mathcal{A}$ (resp. $\mathcal{H} \mathcal{A}$) has the same objects as Dif \mathcal{A}. Its morphism spaces are

$$
(\mathcal{C} \mathcal{A})(M, N)=\mathrm{Z}^{0}(\operatorname{Dif} \mathcal{A})(M, N) \operatorname{resp} .(\mathcal{H} \mathcal{A})(M, N)=\mathrm{H}^{0}(\operatorname{Dif} \mathcal{A})(M, N)
$$

Thus the morphisms of $\mathcal{C} \mathcal{A}$ are homogeneous of degree 0 and commute with the differential. The morphisms of $\mathcal{H} \mathcal{A}$ are residue classes \bar{f} of morphisms f of $\mathcal{C} \mathcal{A}$ modulo null-homotopic morphisms, which by definition are of the form $d r+r d$ for some morphism $r: M \rightarrow N[-1]$ of $\mathcal{G} \mathcal{A}$. We have a canonical projection functor $\mathcal{C} \mathcal{A} \rightarrow \mathcal{H} \mathcal{A}$. Two DG modules are homotopy equivalent if they become isomorphic in $\mathcal{H} \mathcal{A}$. If \mathcal{A} is concentrated in degree $0, \mathcal{C} \mathcal{A}$ (resp. $\mathcal{H} \mathcal{A}$) identifies with the category (resp. the homotopy category) of differential complexes of \mathcal{A}^{0}-modules.
2.2 Exact and triangulated structures. We endow $\mathcal{C} \mathcal{A}$ with an exact structure [16] by defining a conflation (=admissible short exact sequence [7, $\S 9],[12$, App. A]) to be a sequence

$$
L \xrightarrow{i} M \xrightarrow{p} N
$$

such that the underlying sequence of graded \mathcal{A}-modules is split short exact.
We endow $\mathcal{H} \mathcal{A}$ with the suspension functor $S: \mathcal{H} \mathcal{A} \rightarrow \mathcal{H} \mathcal{A}, M \mapsto S M=M[1]$. We define a triangle of $\mathcal{H} \mathcal{A}$ to be an S-sequence [14] isomorphic to some

$$
L \stackrel{\bar{i}}{\rightarrow} M \xrightarrow{\bar{p}} N \xrightarrow{\bar{e}} S L
$$

where (i, p) is a conflation and $e=r d s$, where r and s are chosen homogeneous morphisms of degree 0 such that $p s=\mathbf{1}_{N}, r i=\mathbf{1}_{L}$ and $r s=0$.

Lemma.
a) $\mathcal{C} \mathcal{A}$ is a Frobenius category [9].
b) $\mathcal{H} \mathcal{A}$ is a triangulated category [23].

Proof. a) Let $F: \mathcal{C} \mathcal{A} \rightarrow \mathcal{G} \mathcal{A}$ be the forgetful functor. For each $N \in \mathcal{G} \mathcal{A}$, let $F_{\rho} N$ resp. $F_{\lambda} N$ be the DG \mathcal{A}-modules defined by

$$
\begin{array}{rll}
\left(F_{\rho} N\right)(A)=N A \oplus(N A)[1], & d=\left[\begin{array}{ll}
0 & \mathbf{1} \\
0 & 0
\end{array}\right], & \left(F_{\rho} N\right)(a)=\left[\begin{array}{cc}
N a & 0 \\
d N a & (-1)^{p} N a
\end{array}\right] \\
\left(F_{\lambda} N\right)(A)=(N A)[-1] \oplus N A, & d=\left[\begin{array}{ll}
0 & \mathbf{1} \\
0 & 0
\end{array}\right], & \left(F_{\lambda} N\right)(a)=\left[\begin{array}{cc}
(-1)^{p} N a & 0 \\
(-1)^{p} d N a & N a
\end{array}\right],
\end{array}
$$

where $A \in \mathcal{A}^{\mathrm{op}}$ and $a \in \mathcal{A}^{\mathrm{op}}(A, B)^{p}$. For each $M \in \mathcal{C} \mathcal{A}$, define morphisms of DG \mathcal{A}-modules $\Phi M=\left[\begin{array}{ll}\mathbf{1} & d\end{array}\right]^{t}: M \rightarrow F_{\rho} F M$ and $\Psi M=\left[\begin{array}{lll}-d & \mathbf{1}\end{array}\right]: F_{\lambda} F M \rightarrow M$. We have bijections

$$
\begin{array}{lll}
(\mathcal{G} \mathcal{A})(F M, N) \sim(\mathcal{C \mathcal { A }})\left(M, F_{\rho} N\right) & \quad, & f \mapsto\left(F_{\rho} f\right)(\Phi M) \\
(\mathcal{G \mathcal { A }})(N, F M) \xrightarrow{\sim}(\mathcal{C} \mathcal{A})\left(F_{\lambda} N, M\right) & , & f \mapsto(\Psi M)\left(F_{\lambda} f\right)
\end{array}
$$

Thus $F_{\rho} N$ is injective and $F_{\lambda} N$ is projective in $\mathcal{C} \mathcal{A}$ for each $N \in \mathcal{G} \mathcal{A}$. Since ΦM and ΨM fit into conflations

$$
M \xrightarrow{\Phi M} F_{\rho} F M \longrightarrow M[1], M[-1] \longrightarrow F_{\lambda} F M \xrightarrow{\Psi M} M,
$$

we can conclude that $\mathcal{C} \mathcal{A}$ has enough projectives and enough injectives. Moreover, M is itself projective (resp. injective) iff it is a direct summand of $F_{\rho} F M$ (resp. of $F_{\lambda} F M$). Since $F_{\rho} F M \xrightarrow{\sim}$ $\left(F_{\lambda} F M\right)[1]$, we infer that M is projective iff it is injective. For later use, we introduce the notations $P M=F_{\rho} F M$ and $I M=F_{\lambda} F M$.
b) $\mathcal{H} \mathcal{A}$ identifies with the stable category associated with $\mathcal{C} \mathcal{A}$. Thus the assertion follows from [9, 9.4].

3. Resolution

3.1 P-resolutions. Let \mathcal{A} be a DG category. Its homology category $\mathrm{H}^{*} \mathcal{A}$ is the graded category with the same objects as \mathcal{A} and with the morphism spaces

$$
\left(\mathrm{H}^{*} \mathcal{A}\right)(A, B)=\coprod_{n \in \mathrm{Z}} \mathrm{H}^{n} \mathcal{A}(A, B) .
$$

We have a canonical functor $\mathrm{H}^{*}: \mathcal{C} \mathcal{A} \rightarrow \operatorname{Gra~}^{*} \mathcal{A}$ defined by

$$
\left(\mathrm{H}^{*} M\right)(A)=\coprod_{n \in \mathrm{Z}} \mathrm{H}^{n} M(A)
$$

It induces a functor

$$
\mathcal{H} \mathcal{A} \rightarrow \mathcal{G} \mathrm{H}^{*} \mathcal{A}
$$

which will also be denoted by H^{*}.
A DG module N is acyclic if $\mathrm{H}^{*} N=0$. A DG module Q is relatively projective (cf. [15, X, §10]) if, in $\mathcal{C} \mathcal{A}$, it is a direct summand of a direct sum of modules of the form $A^{\wedge}[n], A \in \mathcal{A}, n \in \mathbf{Z}$. A DG module has property (P) if it is homotopy equivalent to a DG module P admitting a filtration

$$
0=F_{-1} \subset F_{0} \subset F_{1} \subset \ldots F_{p} \subset F_{p+1} \ldots \subset P, p \in \mathbf{N}
$$

in $\mathcal{C} \mathcal{A}$ such that
(F1) P is the union of the $F_{p}, p \in \mathbf{N}$,
(F2) the inclusion morphism $F_{p-1} \subset F_{p}$ splits in $\mathcal{G} \mathcal{A}, \forall p \in \mathbf{N}$,
(F3) the subquotient F_{p} / F_{p-1} is isomorphic in $\mathcal{C} \mathcal{A}$ to a relatively projective module, $\forall p \in \mathbf{N}$.
Note that (F1) and (F2) imply that the following sequence (*) is split exact in $\mathcal{G} \mathcal{A}$ and hence produces a triangle in $\mathcal{H} \mathcal{A}$

$$
\coprod_{p \in \mathrm{~N}} F_{p} \xrightarrow{\Phi} \coprod_{q \in \mathrm{~N}} F_{q} \xrightarrow{\text { can }} P ;
$$

here Φ has the components

$$
F_{p} \stackrel{[1-\imath]^{t}}{ } F_{p} \oplus F_{p+1} \xrightarrow{\text { can }} \coprod_{q \in \mathrm{~N}} F_{q}, \iota=\mathrm{incl} .
$$

If \mathcal{A} is concentrated in degree 0 , a DG module P with (F1), (F2) and (F3) yields a complex of projective \mathcal{A}^{0}-modules. Conversely a right bounded complex of projective \mathcal{A}^{0}-modules gives rise to a DG module P with (F1), (F2) and (F3): Indeed, if $P^{q}=0$ for $q>0$, we can take $F_{p}=\coprod_{q>-p} P^{q}$.

Theorem.

a) We have $(\mathcal{H} \mathcal{A})(P, N)=0$ for each acyclic N and each P with property (P).
b) For each $M \in \mathcal{H} \mathcal{A}$ there is a triangle of $\mathcal{H} \mathcal{A}$

$$
\boldsymbol{p} M \rightarrow M \rightarrow \boldsymbol{a} M \rightarrow S \boldsymbol{p} M
$$

where $\boldsymbol{a} M$ is acyclic and $\boldsymbol{p} M$ has property (P).
c) Let

$$
\ldots \rightarrow \overline{Q_{n}} \rightarrow \overline{Q_{n-1}} \rightarrow \ldots \rightarrow \overline{Q_{1}} \rightarrow \overline{Q_{0}} \rightarrow \mathrm{H}^{*} M \rightarrow 0
$$

be a projective resolution of $\mathrm{H}^{*} M$ in $\mathcal{G} \mathrm{H}^{*} \mathcal{A}$ such that $\overline{Q_{n}} \xrightarrow{\sim} \mathrm{H}^{*} Q_{n}$ for a relatively projective $Q_{n} \in \mathcal{C A}, \forall n$. Then $\boldsymbol{p} M$ is homotopy equivalent to a module P admitting a filtration F_{p} with (F1), (F2) and such that $F_{p} / F_{p-1} \xrightarrow{\sim} Q_{p}[p]$ in $\mathcal{C} \mathcal{A}, \forall p$.

We shall refer to $\boldsymbol{p} M$ as a P-resolution of M. If \mathcal{A} is concentrated in degree 0 , assertion c) implies that if M is a (possibly unbounded) complex of \mathcal{A}^{0}-modules and Q_{*}^{p} a given projective resolution of its p th homology, then M is quasi-isomorphic to a complex $\boldsymbol{p} M$ whose nth component is $\coprod_{p-q=n} Q_{q}^{p}$.

We define $\mathcal{H}_{p} \mathcal{A}$ to be the full subcategory of $\mathcal{H} \mathcal{A}$ formed by the modules with property (P). Applying suitable Hom-functors to the triangle of b) and using a) we see that we have

$$
(\mathcal{H} \mathcal{A})(P, \boldsymbol{p} M) \stackrel{\sim}{\rightarrow}(\mathcal{H} \mathcal{A})(P, M) \text { and }(\mathcal{H} \mathcal{A})(M, N) \simeq(\mathcal{H} \mathcal{A})(\boldsymbol{a} M, N)
$$

for all $P \in \mathcal{H}_{p} \mathcal{A}$ and all acyclic N. In particular, if $(\mathcal{H} \mathcal{A})(M, N)=0$ for each acyclic N, we have $0=(\mathcal{H} \mathcal{A})(M, \boldsymbol{a} M) \simeq(\mathcal{H} \mathcal{A})(\boldsymbol{a} M, \boldsymbol{a} M)$, so that $\boldsymbol{a} M=0$ and, by b), $\boldsymbol{p} M \xrightarrow{\sim} M$. Hence a $D G$
module M lies in $\mathcal{H}_{p} \mathcal{A}$ iff $(\mathcal{H} \mathcal{A})(M, N)=0$ for each acyclic N. Therefore $\mathcal{H}_{p} \mathcal{A}$ is a triangulated subcategory of $\mathcal{H} \mathcal{A}$. The inclusion $\mathcal{H}_{p} \mathcal{A} \subset \mathcal{H} \mathcal{A}$ admits the right S-adjoint [14] $M \mapsto \boldsymbol{p} M$.

It follows from a) that each triangle

$$
P \rightarrow M \rightarrow N \rightarrow P[1],
$$

where N is acyclic and P has property (P), is canonically isomorphic to the triangle of b). If $\left(M_{i}\right)_{i \in I}$ is a family of modules, we can apply this to the triangle

$$
\amalg^{p M_{i}} \rightarrow \amalg^{M_{i}} \rightarrow \amalg^{a M_{i}} \rightarrow \amalg^{p M_{i}[1]}
$$

to conclude that \boldsymbol{p} and \boldsymbol{a} commute with infinite direct sums.
Proof. a) The assertion holds for each P of the form $A^{\wedge}[n], A \in \mathcal{A}, n \in \mathbf{Z}$, since

$$
(\mathcal{H} \mathcal{A})\left(A^{\wedge}[n], N\right)=\mathrm{H}^{0}(\operatorname{Dif} \mathcal{A})\left(A^{\wedge}, N[-n]\right)=\mathrm{H}^{-n} N(A)=0
$$

for each acyclic N. Hence it holds for relatively projective P. It also holds if $F_{p}=P$ for $p \gg 0$ since such a P lies in the triangulated subcategory generated by the relatively projectives. In the general case, we apply $\mathcal{H} \mathcal{A}(?, N)$ to the triangle produced by the sequence (*) and obtain an exact sequence

$$
\prod_{q \in \mathrm{Z}}(\mathcal{H} \mathcal{A})\left(F_{q}, N\right) \leftarrow(\mathcal{H} \mathcal{A})(P, N) \leftarrow \prod_{p \in \mathrm{Z}}(\mathcal{H} \mathcal{A})\left(F_{p}[1], N\right)
$$

Its outer terms vanish by the foregoing case.
b), c) Following [15, XII, 11] we endow $\mathcal{C} \mathcal{A}$ with another exact structure: Its class of conflations \mathcal{E} consists of the sequences

$$
L \rightarrow M \rightarrow N
$$

such that

$$
\begin{aligned}
& 0 \rightarrow L(A)^{n} \rightarrow M(A)^{n} \rightarrow N(A)^{n} \rightarrow 0 \\
\text { and } \quad & 0 \rightarrow \mathrm{H}^{n} L(A) \rightarrow \mathrm{H}^{n} M(A) \rightarrow \mathrm{H}^{n} N(A) \rightarrow 0
\end{aligned}
$$

are short exact sequences of k-modules, for all $A \in \mathcal{A}, n \in \mathbf{Z}$. This is equivalent to requiring that

$$
\begin{aligned}
& 0 \rightarrow L(A)^{n} \rightarrow M(A)^{n} \rightarrow N(A)^{n} \rightarrow 0 \\
\text { and } \quad & 0 \rightarrow \mathrm{Z}^{n} L(A) \rightarrow \mathrm{Z}^{n} M(A) \rightarrow \mathrm{Z}^{n} N(A) \rightarrow 0
\end{aligned}
$$

be short exact for all $A \in \mathcal{A}, n \in \mathbf{Z}$. The isomorphisms

$$
\begin{aligned}
& (\mathcal{C} \mathcal{A})\left(A^{\wedge}[-n], M\right)=\mathrm{Z}^{0}(\operatorname{Dif} \mathcal{A})\left(A^{\wedge}, M[n]\right)=\mathrm{Z}^{n} M(A) \\
& (\mathcal{C} \mathcal{A})\left(P^{\wedge}[-n], M\right)=M(A)^{n}
\end{aligned}
$$

(2.2) show that if Q is relatively projective, then Q and $P Q$ are \mathcal{E}-projective. It is also clear that for each module M we may find an \mathcal{E}-projective $Q^{\prime}=Q \oplus P Q^{\prime \prime}$ and a morphism $p: Q^{\prime} \rightarrow M$ inducing surjections

$$
Q^{\prime}(A)^{n} \rightarrow M(A)^{n} \text { and } \mathrm{Z}^{n} Q^{\prime}(A) \rightarrow \mathrm{Z}^{n} M(A), \forall A \in \mathcal{A}, \forall n \in \mathbf{Z}
$$

If $K \rightarrow Q^{\prime}$ is a kernel of p in $\mathcal{C} \mathcal{A}$, it is clear that $K \rightarrow Q^{\prime} \rightarrow M$ is indeed a conflation. Thus, $\mathcal{C} \mathcal{A}$ has enough \mathcal{E}-projectives and we can inductively construct an \mathcal{E}-resolution of M, i.e. an \mathcal{E}-acyclic complex [12, 4.1]

$$
\ldots \rightarrow Q_{n}^{\prime} \rightarrow Q_{n-1}^{\prime} \rightarrow \ldots \rightarrow Q_{1}^{\prime} \rightarrow Q_{0}^{\prime} \xrightarrow{\varepsilon} M \rightarrow 0
$$

with \mathcal{E}-projective $Q_{n}^{\prime}=Q_{n} \oplus P Q_{n}^{\prime \prime}$, where Q_{n} and $Q_{n}^{\prime \prime}$ are relatively projective. Under the hypotheses of c), we can refine this construction as follows: The map

$$
(\mathcal{C} \mathcal{A})(Q, M) \rightarrow\left(\mathcal{G} \mathrm{H}^{*} \mathcal{A}\right)\left(\mathrm{H}^{*} Q, \mathrm{H}^{*} M\right)
$$

is clearly surjective if Q is of the form $A^{\wedge}[n]$ for some $A \in \mathcal{A}, n \in \mathbf{Z}$. Hence it is surjective for relatively projective Q. We can therefore lift the given morphism $\overline{Q_{0}} \rightarrow \mathrm{H}^{*} M$ to a morphism $p: Q_{0} \rightarrow M$ of $\mathcal{C} \mathcal{A}$. Now we choose an \mathcal{E}-projective $P Q_{0}^{\prime \prime}$, with relatively projective $Q_{0}^{\prime \prime}$, and a morphism $q: P Q_{0}^{\prime \prime} \rightarrow M$ inducing epimorphisms

$$
P Q_{0}^{\prime \prime}(A)^{n} \rightarrow M(A)^{n}, \forall A \in \mathcal{A}, \forall n \in \mathbf{Z}
$$

Then

$$
Q_{0}^{\prime}=Q_{0} \oplus P Q_{0}^{\prime \prime} \xrightarrow{[p q]} M
$$

is the required deflation (=admissible epimorphism) with \mathcal{E}-projective Q_{0}^{\prime}. Observe that, since $P Q_{0}^{\prime \prime}$ is null-homotopic, Q_{0}^{\prime} is homotopy equivalent to Q_{0}. Since $\mathrm{H}^{*}: \mathcal{C} \mathcal{A} \rightarrow \mathcal{G} \mathrm{H}^{*} \mathcal{A}$ carries \mathcal{E} conflations to short exact sequences, we can successively lift the given resolution of $\mathrm{H}^{*} M$ to an \mathcal{E}-acyclic sequence

$$
\ldots \rightarrow Q_{n}^{\prime} \rightarrow Q_{n-1}^{\prime} \rightarrow \ldots \rightarrow Q_{1}^{\prime} \rightarrow Q_{0}^{\prime} \stackrel{\varepsilon}{\longrightarrow} M \rightarrow 0
$$

such that $Q_{n}^{\prime}=Q_{n} \oplus P Q_{n}^{\prime \prime}$ for all $n \in \mathbf{N}$. If

$$
K=\left(\ldots \rightarrow K^{n} \xrightarrow{d_{K}^{n}} K^{n+1} \rightarrow \ldots\right), n \in \mathbf{Z}
$$

is a differential complex over $\mathcal{C} \mathcal{A}$, its total module Tot K has the underlying graded module

$$
\coprod_{n \in \mathrm{Z}} K^{n}[-n]
$$

and the differential

$$
d=d_{K^{n}[-n]}+d_{K}^{n}
$$

Put

$$
\boldsymbol{p} M=\operatorname{Tot}\left(\ldots \rightarrow Q_{m}^{\prime} \rightarrow Q_{m-1}^{\prime} \rightarrow \ldots \rightarrow Q_{1}^{\prime} \rightarrow Q_{0}^{\prime} \rightarrow 0 \rightarrow 0 \rightarrow \ldots\right)
$$

and

$$
F_{p}^{\prime}=\operatorname{Tot}\left(\ldots \rightarrow 0 \rightarrow 0 \rightarrow Q_{p}^{\prime} \rightarrow Q_{p-1}^{\prime} \rightarrow \ldots \rightarrow Q_{1}^{\prime} \rightarrow Q_{0}^{\prime} \rightarrow 0 \rightarrow 0 \rightarrow \ldots\right), p \geq 0
$$

Then $\boldsymbol{p} M$ with the filtration by the F_{p}^{\prime} clearly satisfies (F1) and (F2), and $F_{p}^{\prime} / F_{p-1}^{\prime}=Q_{p}^{\prime}[p]$, $\forall p$. By the lemma we will prove in 3.4, this implies that $\boldsymbol{p} M$ has property (P). The morphism
$\varepsilon: Q_{0}^{\prime} \rightarrow M$ induces a morphism $\varphi: \boldsymbol{p} M \rightarrow M$. It remains to be shown that $\mathrm{H}^{*} \varphi$ is invertible or, equivalently, that

$$
N=\operatorname{Tot}\left(\ldots \rightarrow Q_{m}^{\prime} \rightarrow \ldots \rightarrow Q_{1}^{\prime} \rightarrow Q_{0}^{\prime} \rightarrow M \rightarrow 0 \rightarrow \ldots\right)
$$

is acyclic. This follows from the lemma we will prove in 3.3 applied to each $N(A), A \in \mathcal{A}$.
3.2 I-resolutions. We record without proof the following 'dual' of 3.1. Fix an injective generator E of the category of k-modules. For each $A \in \mathcal{A}$ define the \mathcal{A}-module A^{\vee} by

$$
B \mapsto(\operatorname{Dif} k)(\mathcal{A}(A, B), E)
$$

where E is viewed as a DG k-module concentrated in degree 0 . A DG \mathcal{A}-module is relatively injective if, in $\mathcal{C} \mathcal{A}$, it is a direct summand of a direct product of modules $A^{\vee}[n], A \in \mathcal{A}, n \in \mathbf{Z}$. A DG module has property (I) if it is homotopy equivalent to a DG module I admitting a filtration

$$
I=F_{0} \supset F_{1} \supset \ldots \supset F_{p} \supset F_{p+1} \supset \ldots, p \in \mathbf{N}
$$

such that
(F1') the canonical morphism $I \rightarrow \lim _{\leftarrow} I / F_{p}$ is invertible,
(F2') the inclusion morphism $F_{p+1} \subset F_{p}$ splits in $\mathcal{G} \mathcal{A}$ for all $p \in \mathbf{N}$,
(F3') the subquotient F_{p} / F_{p+1} is isomorphic in $\mathcal{C} \mathcal{A}$ to a relatively injective module, $\forall p \in \mathbf{N}$.
By ($\mathrm{F} 1^{\prime}$) and ($\mathrm{F} 2^{\prime}$) the following sequence ($*^{\prime}$) is split exact in $\mathcal{G} \mathcal{A}$ and hence produces a triangle in $\mathcal{H} \mathcal{A}$

$$
I \xrightarrow{\mathrm{can}} \prod_{p \in \mathrm{~N}} I / F_{p} \xrightarrow{\Phi^{\prime}} \prod_{q \in \mathrm{~N}} I / F_{q}
$$

here Φ^{\prime} has the components

$$
\prod_{p \in \mathrm{~N}} I / F_{p} \xrightarrow{\mathrm{can}} I / F_{q+1} \oplus I / F_{q} \xrightarrow{[-\pi]^{1]}} I / F_{q}
$$

where π is the canonical projection $I / F_{q+1} \rightarrow I / F_{q}$.
Theorem.
a) We have $(\mathcal{H} \mathcal{A})(N, I)=0$ for each acyclic N and each I with property (I).
b) For each $M \in \mathcal{H} \mathcal{A}$ there is a triangle of $\mathcal{H} \mathcal{A}$

$$
\boldsymbol{a}^{\prime} M \rightarrow M \rightarrow \boldsymbol{i} M \rightarrow S \boldsymbol{a}^{\prime} M
$$

where $\boldsymbol{a}^{\prime} M$ is acyclic and $\boldsymbol{i} M$ has property (I).
c) Let

$$
0 \rightarrow \mathrm{H}^{*} M \rightarrow \overline{J_{0}} \rightarrow \overline{J_{1}} \rightarrow \ldots \rightarrow \overline{J_{n}} \rightarrow \overline{J_{n+1}} \rightarrow \ldots
$$

be an injective resolution of $\mathrm{H}^{*} M$ in $\mathcal{G} \mathrm{H}^{*} \mathcal{A}$ such that $\overline{J_{n}} \simeq \mathrm{H}^{*} J_{n}$ for a relatively injective $J_{n} \in \mathcal{C A}, \forall n$. Then $\boldsymbol{i} M$ is homotopy equivalent to a module I admitting a decreasing filtration F_{p} with ($F 1^{\prime}$) and ($F 2^{\prime}$) and such that $F_{p} / F_{p+1} \stackrel{\sim}{\rightarrow} J_{p}[-p]$ in $\mathcal{C A}$ for all $p \in \mathbf{N}$.

3.3 Acyclic total complexes. Let

$$
N=\coprod_{p, q \in \mathbb{Z}} N^{p q}
$$

be a bigraded abelian group with commuting differentials d_{I} and $d_{I I}$ of bidegree $(1,0)$ and $(0,1)$, respectively. Let $\operatorname{Tot} N$ and $\widehat{\operatorname{Tot}} N$ be the differential graded groups with components

$$
(\operatorname{Tot} N)^{n}=\coprod_{p+q=n} N^{p q} \text { resp. }(\widehat{\operatorname{Tot}} N)^{n}=\prod_{p+q=n} N^{p q}, n \in \mathbf{Z},
$$

and the differential given by

$$
d t=d_{I} t+(-1)^{p} d_{I I} t, t \in N^{p q} .
$$

For $r \in \mathbf{Z}$ denote by $N^{* r}$ (resp. $B^{* r}, Z^{* r}, H^{* r}$) the differential graded groups with components

$$
N^{n r}\left(\text { resp. } \operatorname{Im} d_{I I}^{n, r-1}, \operatorname{Ker} d_{I I}^{n r}, \operatorname{Ker} d_{I I}^{n r} / \operatorname{Im} d_{I I}^{n, r-1}\right), n \in \mathbf{Z},
$$

and the differential induced by d_{I}.
Lemma. If $N^{* r}$ and $H^{* r}$ are acyclic for all $r \in \mathbf{Z}$, then $\operatorname{Tot} N$ and $\widehat{\operatorname{Tot}} N$ are acyclic.
Proof. If $N^{* r}$ is acyclic for all $r \in \mathbf{Z}$, the same holds for the $B^{* r}$. Thus if $N^{* r}$ and $H^{* r}$ are acyclic for all $r \in \mathbf{Z}$, then so are the $Z^{* r}$. To prove that $\operatorname{Tot} N$ is acyclic we consider the differential bigraded subgroups $N_{m} \subset N, m \geq 1$, with $N_{m}^{* r}=0$ for $r \notin[-m, m], N_{m}^{* r}=N^{* r}$ for $r \in[-m, m-1]$, and $N_{m}^{* m}=Z^{* m}$. Clearly each Tot N_{m} admits a finite filtration with acyclic subquotients and hence is acyclic. Since we have

$$
\operatorname{Tot} N \simeq \operatorname{Tot} \lim _{\longrightarrow} N_{m} \simeq \underset{\longrightarrow}{\lim } \operatorname{Tot} N_{m}
$$

the assertion follows. Similarly, to prove that $\widehat{\operatorname{Tot}} N$ is acyclic, we consider the quotients Q_{m} of N, $m \geq 1$, with $Q_{m}^{* r}=0$ for $r \notin[-m, m], Q_{m}^{* r}=N_{m}^{* r}$ for $r \in[-m+1, m]$ and $Q_{m}^{*,-m}=B^{*,-m+1}$. As above, each $\widehat{\operatorname{Tot}} Q_{m}$ is acyclic and we have

$$
\widehat{\operatorname{Tot}} N \underset{\sim}{\sim} \widehat{\operatorname{Tot}} \underset{-}{\lim } Q_{m} \underset{\rightarrow}{\sim} \underset{\sim}{\lim } \widehat{\operatorname{Tot}} Q_{m}
$$

Moreover for each $m \geq 1$, the components of the canonical morphism

$$
p_{m}: \widehat{\operatorname{Tot}} Q_{m+1} \rightarrow \widehat{\operatorname{Tot}} Q_{m}
$$

are surjective. Therefore, p_{m} also induces surjections onto the groups $B^{n} \widehat{\operatorname{Tot}} Q_{m}=Z^{n} \widehat{\operatorname{Tot}} Q_{m}$, $n \in \mathbf{Z}$. By the Mittag-Leffler-criterion [8, $\left.0_{I I I}, 13.1\right], \widehat{\operatorname{Tot}} N$ is acyclic.
3.4 Adjusting limits. Let P^{\prime} be a DG \mathcal{A}-module and

$$
F_{0}^{\prime} \subset F_{1}^{\prime} \subset \ldots \subset F_{p}^{\prime} \subset \ldots \subset P^{\prime}
$$

a filtration satisfying (F1) and (F2). Suppose that for each $p \geq 1$ a DG module Q_{p} and a homotopy equivalence $F_{p}^{\prime} / F_{p-1}^{\prime} \xrightarrow{\sim} Q_{p}$ are given.

Lemma. The $D G$ module P^{\prime} is homotopy equivalent to a $D G$ module P admitting a filtration F_{p} satisfying (F1) and (FQ) and such that F_{p} / F_{p-1} is isomorphic to Q_{p} in $\mathcal{C} \mathcal{A}, \forall p$.

Proof. We will inductively construct a sequence

$$
F_{0} \subset F_{1} \subset \ldots \subset F_{p} \subset \ldots
$$

and a sequence of homotopy equivalences $\overline{f_{p}}: F_{p}^{\prime} \rightarrow F_{p}$ such that the squares

$$
\begin{aligned}
F_{p}^{\prime} & \rightarrow \frac{F_{p+1}^{\prime}}{f_{p} \downarrow} \\
F_{p} & \rightarrow F_{p+1}^{f_{p+1}}
\end{aligned}
$$

are commutative (in $\mathcal{H} \mathcal{A}$), the sequence F_{p} satisfies (F 2) and $F_{p} / F_{p-1} \xrightarrow{\sim} Q_{p}$ in $\mathcal{C} \mathcal{A}, \forall p$. Of course, we put $F_{0}=Q_{0}$ and let $\overline{f_{0}}: F_{0}^{\prime} \rightarrow F_{0}$ be the given homotopy equivalence. Suppose that the construction has been completed for all $p<n$. We have

$$
\operatorname{Ext}_{\mathcal{C A}}\left(F_{n}^{\prime} / F_{n-1}^{\prime}, F_{n-1}^{\prime}\right) \stackrel{\sim}{\rightarrow} \operatorname{Ext}_{\mathcal{C A}}\left(Q_{n}, F_{n-1}\right)
$$

where $\operatorname{Ext}_{\mathcal{C A}}$ denotes classes of extensions in the exact category $\mathcal{C} \mathcal{A}(2.2)$. We choose a conflation

$$
F_{n-1} \rightarrow F_{n} \rightarrow Q_{n}
$$

whose class corresponds to that of the given extension of $F_{n}^{\prime} / F_{n-1}^{\prime}$ by F_{n-1}^{\prime}. Then we have a commutative diagram

$$
\begin{array}{rllll}
F_{n-1}^{\prime} & \rightarrow F_{n}^{\prime} \rightarrow & F_{n}^{\prime} / F_{n-1} & \rightarrow & F_{n-1}^{\prime}[1] \\
\hline f_{n-1} \downarrow & & \downarrow & & \downarrow \overline{f_{n-1}}[1] \\
F_{n-1} & \rightarrow F_{n} \rightarrow & Q_{n} & \rightarrow & F_{n-1}[1]
\end{array}
$$

We choose $\overline{f_{n}}$ so as to fit into the diagram. Now let P be the union of the F_{p}. Using the sequence $(*)$ of 3.1 we get triangles

$$
\begin{aligned}
& \coprod_{p \in \mathrm{Z}} F_{p}^{\prime} \xrightarrow{\Phi} \coprod_{q \in \mathrm{Z}} F_{q}^{\prime} \longrightarrow P^{\prime} \longrightarrow S \coprod_{p \in \mathrm{Z}} F_{p}^{\prime} \\
& \coprod_{p \in \mathrm{Z}} F_{p} \xrightarrow{\bar{\Phi}} \coprod_{q \in \mathrm{Z}} F_{q} \longrightarrow P \longrightarrow S \coprod_{p \in \mathrm{Z}} F_{p}
\end{aligned}
$$

The $\overline{f_{p}}$ yield a commutative square

$$
\begin{array}{rlll}
\coprod_{p \in \mathrm{Z}} F_{p}^{\prime} & \xrightarrow{\bar{\Phi}} & \coprod_{q \in \mathrm{Z}} F_{q}^{\prime} \\
\bar{a} \downarrow & & \downarrow \bar{b} \\
\coprod_{p \in \mathrm{Z}} F_{p} & \xrightarrow{\Phi} & \coprod_{q \in \mathrm{Z}} F_{q}
\end{array}
$$

where \bar{a} and \bar{b} are homotopy equivalences. Using axiom TR3 [23, Ch. I, $\S 1]$ and the five lemma we see that P is homotopy equivalent to P^{\prime}.

4. Derived categories and stable categories

4.1 Derived categories. Let \mathcal{A} be a small DG category. Let Σ be the class of quasiisomorphisms of $\mathcal{H} \mathcal{A}$ (i.e. morphisms \bar{s} such that $\mathrm{H}^{*} \bar{s}$ is invertible). By definition [11, Ch. VI, 10] the derived category of \mathcal{A} is the localization $\mathcal{D} \mathcal{A}=(\mathcal{H} \mathcal{A})\left[\Sigma^{-1}\right]$ [23]. It follows from theorem 3.1 that the canonical functor $\mathcal{H} \mathcal{A} \rightarrow \mathcal{D} \mathcal{A}$ induces an equivalence $\mathcal{H}_{p} \mathcal{A} \rightarrow \mathcal{D} \mathcal{A}$. If \mathcal{A} is concentrated in degree $0, \mathcal{D} \mathcal{A}$ identifies with the unbounded derived category of the category of \mathcal{A}^{0}-modules. As in the case of the derived category of an exact category, one constructs [7, 12.3] a functor which completes the images in $\mathcal{D} \mathcal{A}$ of pointwise short exact sequences of $\mathcal{C A}$ into triangles.

Since (infinite) direct sums of acyclic modules are acyclic, $\mathcal{D A}$ has direct sums, and the canonical functors $\mathcal{C A} \rightarrow \mathcal{H} \mathcal{A} \rightarrow \mathcal{D A}$ commute with direct sums.
4.2 Small objects and generators. Let \mathcal{A} be a small DG category and \mathcal{T} a k-linear triangulated category with infinite direct sums. An object $X \in \mathcal{T}$ is small if $\mathcal{T}(X$, ?) commutes with (infinite) direct sums. By the five lemma, if two vertices of a triangle of \mathcal{T} are small, then so is the third one. Each A^{\wedge} is small in $\mathcal{D A}$. Indeed, let $\left(M_{i}\right)_{i \in I}$ be a family of modules and $A \in \mathcal{A}$. Then

$$
(\mathcal{D A})\left(A^{\wedge}, \coprod_{i \in I} M_{i}\right) \sim H^{0} \coprod M_{i}(A) \simeq \coprod H^{0} M_{i}(A) \simeq \coprod_{i \in I}(\mathcal{D A})\left(A^{\wedge}, M_{i}\right) .
$$

Let $\mathcal{H}_{p}^{b} \mathcal{A}$ be the smallest strictly (=closed under ismorphisms) full triangulated subcategory of $\mathcal{H}_{p} \mathcal{A}$ containing the $A^{\wedge}, A \in \mathcal{A}$.

A set $\mathcal{X} \subset \mathcal{T}$ is a set of generators if \mathcal{T} coincides with its smallest strictly full triangulated subcategory containing \mathcal{X} and closed under direct sums. It follows from the sequence (*) of 3.1 that the $A^{\wedge}, A \in \mathcal{A}$, form a set of generators for $\mathcal{D} \mathcal{A}$.

Let $F, F^{\prime}: \mathcal{D} \mathcal{A} \rightarrow \mathcal{T}$ be two k-linear S-functors commuting with direct sums and $\mu: F \rightarrow F^{\prime}$ a morphism of S-functors [14].

Lemma.
a) The restriction of F to $\mathcal{H}_{p}^{b} \mathcal{A}$ is fully faithful iff F induces bijections

$$
(\mathcal{D A})\left(A^{\wedge}, B^{\wedge}[n]\right) \rightarrow \mathcal{T}\left(F A^{\wedge}, F B^{\wedge}[n]\right)
$$

for all $A, B \in \mathcal{A}, n \in \mathbf{Z}$.
b) F is fully faithful if $F \mid \mathcal{H}_{p}^{b} \mathcal{A}$ is fully faithful and $F A^{\wedge}$ is small for each $A \in \mathcal{A}$.
c) F is an equivalence iff $F \mid \mathcal{H}_{p}^{b} \mathcal{A}$ is fully faithful and the $F A^{\wedge}, A \in \mathcal{A}$, form a set of small generators for \mathcal{T}.
d) The morphism $\mu: F \rightarrow F^{\prime}$ is invertible iff μA^{\wedge} is invertible for each $A \in \mathcal{A}$.

Proof. a) results from 'devissage' (cf. e.g. [9, 10.10]).
b) Let $A \in \mathcal{A}$. By the five lemma, the modules M such that the map

$$
(\mathcal{D} \mathcal{A})\left(A^{\wedge}, M\right) \rightarrow \mathcal{T}\left(F A^{\wedge}, F M\right)
$$

is bijective form a strictly full triangulated subcategory of $\mathcal{D} \mathcal{A}$. It contains all the generators $B^{\wedge}, B \in \mathcal{A}$, and is closed under infinite direct sums (since both, A^{\wedge} and $F A^{\wedge}$, are small and F commutes with infinite direct sums). This subcategory therefore coincides with $\mathcal{D} \mathcal{A}$. The same argument shows that for fixed $M \in \mathcal{D} \mathcal{A}$, the map

$$
(\mathcal{D} \mathcal{A})(L, M) \rightarrow \mathcal{T}(F L, F M)
$$

is bijective for each $L \in \mathcal{D} \mathcal{A}$.
c) is now clear.
d) The DG modules M with invertible μM form a strictly full triangulated subcategory of $\mathcal{D} \mathcal{A}$ which moreover is closed under infinite direct sums. This subcategory equals $\mathcal{D} \mathcal{A}$ iff it contains the $A^{\wedge}, A \in \mathcal{A}$, as these form a set of generators for $\mathcal{D} \mathcal{A}$.
4.3 Stable categories. Let \mathcal{E} be a k-linear Frobenius category [9] with (infinite) direct sums. Since \mathcal{E} has enough injectives, it is clear that direct sums of conflations (=admissible short exact sequences) of \mathcal{E} are conflations. Moreover, direct sums of injectives (=projectives in \mathcal{E}) are injective. In particular, the associated stable category $\underline{\mathcal{E}}$ is a triangulated category with infinite direct sums. Suppose that $\underline{\mathcal{E}}$ admits a set of small generators $\mathcal{X} \subset \underline{\mathcal{E}}$.

Theorem. (cf. [5, Ex. 5.3 H]) There is a $D G$ category \mathcal{A} and an S-equivalence $G: \underline{\mathcal{E}} \rightarrow \mathcal{D} \mathcal{A}$ giving rise to an equivalence between $\mathcal{X} \subset \underline{\mathcal{E}}$ and the full subcategory of $\mathcal{D} \mathcal{A}$ formed by the free modules $A^{\wedge}, A \in \mathcal{A}$.

Proof. Let $\widetilde{\mathcal{E}}$ be the category of acyclic [14, 1.5] differential complexes

$$
P=\left(\ldots \rightarrow P^{n} \xrightarrow{d} P^{n-1} \rightarrow \ldots\right), n \in \mathbf{Z}
$$

with projective components $P^{n} \in \mathcal{E}$. Endow $\widetilde{\mathcal{E}}$ with the pointwise split short exact sequences. Then $\widetilde{\mathcal{E}}$ is a Frobenius category and it is easy to see that the functor $P \mapsto \mathrm{Z}^{0} P$ induces an S-equivalence

$$
G_{1}: \underline{\widetilde{\mathcal{E}}} \rightarrow \underline{\mathcal{E}}
$$

For each $X \in \mathcal{X}$, choose $\tilde{X} \in \widetilde{\mathcal{E}}$ with $\mathrm{Z}^{0} \tilde{X} \xrightarrow{\sim} X$. Let \mathcal{A} be the DG category whose objects are the \tilde{X} and whose morphism spaces are

$$
\mathcal{A}(\tilde{X}, \tilde{Y}) \stackrel{\sim}{\mathcal{H} o m}(\tilde{X}, \tilde{Y})
$$

where for $P, Q \in \widetilde{\mathcal{E}}$, the DG k-module $\mathcal{H o m}(P, Q)$ has the components

$$
\prod_{p \in \mathbf{Z}} \mathcal{E}\left(P^{p}, Q^{n+p}\right), n \in \mathbf{Z}
$$

and the differential given by $d\left(f^{p}\right)=\left(d \circ f^{p}-(-1)^{n} f^{p+1} \circ d\right)$. Note that

$$
\underline{\widetilde{\mathcal{E}}}\left(P, S^{n} Q\right) \stackrel{\sim}{\rightarrow} \mathrm{H}^{n} \mathcal{H} o m(P, Q)
$$

It is clear that the composition of the exact functor

$$
\tilde{\mathcal{E}} \rightarrow \mathcal{C} \mathcal{A}, \quad P \mapsto(\tilde{X} \mapsto \mathcal{H o m}(\tilde{X}, P))
$$

with the canonical projection $\mathcal{C} \mathcal{A} \rightarrow \mathcal{D} \mathcal{A}$ vanishes on projectives of $\widetilde{\mathcal{E}}$ (=null-homotopic complexes in $\widetilde{\mathcal{E}}$) and hence induces an S-functor

$$
G_{2}: \underline{\widetilde{\mathcal{E}}} \rightarrow \mathcal{D} \mathcal{A}
$$

For $\tilde{X} \in \tilde{\mathcal{X}}$ the module $G_{2} \tilde{X}$ is isomorphic to \tilde{X}^{\wedge}, the free module associated with $\tilde{X} \in \mathcal{A}$. If P_{i}, $i \in I$, is a family in $\widetilde{\mathcal{E}}$ and $\tilde{X} \in \tilde{\mathcal{X}}$, the nth homology of the morphism

$$
\coprod \mathcal{H o m}\left(\tilde{X}, P_{i}\right) \rightarrow \mathcal{H o m}\left(\tilde{X}, \coprod P_{i}\right)
$$

identifies with

$$
\coprod \underline{\tilde{\mathcal{E}}}\left(\tilde{X}, S^{n} P_{i}\right) \rightarrow \underline{\tilde{\mathcal{E}}}\left(\tilde{X}, \coprod S^{n} P_{i}\right)
$$

which is bijective since \tilde{X} is small in $\widetilde{\mathcal{E}}$. Hence G_{2} commutes with direct sums. We have already seen that G_{2} induces bijections

$$
\underline{\tilde{\mathcal{E}}}\left(\tilde{X}, S^{n} \tilde{Y}\right) \simeq \mathrm{H}^{n} \mathcal{H} \operatorname{om}(\tilde{X}, \tilde{Y}) \simeq \mathrm{H}^{n} \mathcal{A}(\tilde{X}, \tilde{Y}) \simeq(\mathcal{D} \mathcal{A})\left(G_{2} \tilde{X}, S^{n} G_{2} \tilde{Y}\right), \tilde{X}, \tilde{Y} \in \tilde{\mathcal{X}}, n \in \mathbf{Z}
$$

By the argument of 4.2 b), we conclude that G_{2} is fully faithful. The essential image of G_{2} contains the generators $A^{\wedge}, A \in \mathcal{A}$, of $\mathcal{D} \mathcal{A}$. So G_{2} is essentially surjective. We let G be the composition of G_{2} with an S-quasi-inverse of G_{1}.

5. Small objects

Let \mathcal{A} be a small $D G$ category. Each free module $A^{\wedge}, A \in \mathcal{A}$, is small in $\mathcal{D} \mathcal{A}$, and so are the objects of the smallest strictly full triangulated subcategory of $\mathcal{D} \mathcal{A}$ containing the $A^{\wedge}, A \in \mathcal{A}$, and closed under forming direct summands. Ravenel's ideas [18] imply that this subcategory coincides with the full subcategory of small objects of $\mathcal{D} \mathcal{A}$. In 5.3 , we give A. Neeman's proof [17, 2.2] of Ravenel's result.
5.1 Homotopy limits and small objects. Let \mathcal{T} be a triangulated category with (infinite) sums. Let

$$
X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} \ldots \rightarrow X_{p} \xrightarrow{f_{p}} X_{p+1} \rightarrow \ldots, p \in \mathbf{N}
$$

be a sequence of morphisms of \mathcal{T}. Let there be given a homotopy limit of the sequence, i.e. an object X with morphisms $\psi_{p}: X_{p} \rightarrow X$ fitting into a triangle

$$
\coprod X_{p} \xrightarrow{\Phi} \coprod X_{q} \xrightarrow{\Psi} X \rightarrow S \coprod X_{p}
$$

where Φ is defined as in 3.1 and Ψ has the components ψ_{q}. Note that a homotopy limit is unique up to non-unique isomorphism.

Let $M \in \mathcal{T}$ be small. Then $\mathcal{T}(M, ?)$ commutes with direct sums and thus transforms the above triangle into the long exact sequence

$$
\ldots \rightarrow \coprod \mathcal{T}\left(M, X_{p}\right) \xrightarrow{\Phi_{*}} \coprod \mathcal{T}\left(M, X_{q}\right) \xrightarrow{\Psi_{*}} \mathcal{T}(M, X) \rightarrow \ldots
$$

It is easy to see that $(S \Phi)_{*}$ is injective. We therefore have an isomorphism

$$
\lim _{-} \mathcal{T}\left(M, X_{p}\right) \xrightarrow{\sim} \operatorname{Cok} \Phi_{*} \xrightarrow{\sim} \mathcal{T}(M, X)
$$

5.2 Brown's representability theorem. Keep the hypotheses of 5.1 and assume that \mathcal{T} admits a set of small generators \mathcal{X}. For completeness we include a proof of the following

Theorem. [3] A cohomological functor $F: \mathcal{T} \rightarrow(\mathcal{A} b)^{\text {op }}$ is representable iff it commutes with direct sums.

Remark. More precisely, the proof will show that each such F is represented by the homotopy limit of a sequence

$$
X_{0} \xrightarrow{f_{0}} X_{1} \rightarrow \ldots \rightarrow X_{p} \xrightarrow{f_{p}} X_{p+1} \rightarrow \ldots, p \in \mathbf{N}
$$

where X_{0} as well as the cone (=third corner of a triangle) over each f_{p} is an (infinite) sum of objects $S^{n} X, X \in \mathcal{X}, n \in \mathbf{Z}$. In particular, each $M \in \mathcal{T}$ is the homotopy limit of such a sequence, as we see by taking $F=\mathcal{T}(?, M)$.

Proof. We have to prove that the condition is sufficient. Let \mathcal{X}^{+}be the class of direct sums of objects $S^{n} X, n \in \mathbf{Z}, X \in \mathcal{X}$. For each $M \in \mathcal{T}$ put $M^{\wedge}=\mathcal{T}(M, ?)$. Since \mathcal{X} is a set, there is an $X_{0} \in \mathcal{X}^{+}$and a morphism $\pi_{0}: X_{0}^{\wedge} \rightarrow F$ inducing a surjection

$$
X_{0}^{\wedge}\left(S^{n} X\right) \rightarrow F S^{n} X
$$

for all $X \in \mathcal{X}, n \in \mathbf{Z}$. We will inductively construct a sequence

$$
X_{0} \xrightarrow{f_{0}} X_{1} \rightarrow \ldots \rightarrow X_{p} \xrightarrow{f_{p}} X_{p+1} \rightarrow \ldots, p \in \mathbf{N}
$$

and morphisms $\pi_{p+1}: X_{p+1}^{\wedge} \rightarrow F$ such that $\pi_{p+1} f_{p}^{\wedge}=\pi_{p}$. Suppose that for some $p \geq 0$ we have constructed X_{p} and π_{p}. Choose $Z_{p} \in \mathcal{X}^{+}$admitting a morphism $\rho_{p}: Z_{p} \rightarrow X_{p}$ which induces a surjection

$$
Z_{p}^{\wedge}\left(S^{n} X\right) \rightarrow \operatorname{Ker} \pi_{p}\left(S^{n} X\right)
$$

for all $X \in \mathcal{X}, n \in \mathbf{Z}$. Define X_{p+1} by the triangle

$$
Z_{p} \xrightarrow{\rho_{p}} X_{p} \xrightarrow{f_{p}} X_{p+1} \rightarrow S Z_{p} .
$$

Since we have an exact sequence

$$
F Z_{p} \stackrel{F \rho_{p}}{\leftarrow} F X_{p} \leftarrow F X_{p+1}
$$

and by definition $\pi_{p} \rho_{p}^{\wedge}=0$, we can choose $\pi_{p+1}: X_{p+1}^{\wedge} \rightarrow F$ such that $\pi_{p+1} f_{p}^{\wedge}=\pi_{p}$. Define X_{∞} by the triangle

$$
\coprod_{p \in \mathrm{~N}} X_{p} \xrightarrow{\Phi} \coprod_{q \in \mathrm{~N}} X_{q} \xrightarrow{\Psi} X_{\infty} \rightarrow S \coprod_{p \in \mathrm{~N}} X_{p}
$$

where Φ has the components

$$
X_{p} \xrightarrow{\left[1-f_{p}\right]^{t}} X_{p} \oplus X_{p+1} \xrightarrow{\text { can }} \coprod_{q \in \mathrm{~N}} X_{q} .
$$

Since $F: \mathcal{T} \rightarrow(\mathcal{A} b)^{\text {op }}$ commutes with direct sums, it takes sums of \mathcal{T} to products of $\mathcal{A} b$. Thus we have an exact sequence

$$
\prod_{p \in \mathrm{~N}} F X_{p} \leftarrow \prod_{q \in \mathrm{~N}} F X_{q} \leftarrow F X_{\infty}
$$

which shows that there is a morphism $\pi_{\infty}: X_{\infty}^{\wedge} \rightarrow F$ such that $\pi_{\infty} \Psi_{q}^{\wedge}=\pi_{q}^{\wedge}$ for all $q \in \mathbf{N}$. By an easy diagram chase we see that π_{∞} induces an isomorphism

$$
\mathcal{T}\left(S^{n} X, X_{\infty}\right) \rightarrow F S^{n} X
$$

for all $X \in \mathcal{X}, n \in \mathbf{Z}$. Since \mathcal{X} generates \mathcal{T}, we can conclude that π_{∞} is an isomorphism.
5.3 Small objects. Keep the hypotheses of 5.2. If \mathcal{U} and \mathcal{V} are classes of objects of \mathcal{T}, we denote by $\mathcal{U} * \mathcal{V}$ the class of objects X occuring in a triangle

$$
U \rightarrow X \rightarrow V \rightarrow S U
$$

with $U \in \mathcal{U}, V \in \mathcal{V}$. The octahedral axiom implies that the operation $*$ is associative. The objects of $\mathcal{X} * \mathcal{X} * \ldots * \mathcal{X}$ (n factors) are called extensions of length n of objects of \mathcal{X}. The following theorem and its proof can be found in [17, 2.2].

Theorem. [18] [17] Each small object of \mathcal{T} is a direct summand of an extension of objects $S^{n} X, X \in \mathcal{X}, n \in \mathbf{Z}$.

Remarks. a) We will of course apply the theorem to the case where \mathcal{T} is the derived category of a DG algebra \mathcal{A} and where \mathcal{X} consists of the free modules $A^{\wedge}, A \in \mathcal{A}$.
b) One can adapt the proof of $[19,6.3]$ to show that, if \mathcal{A} is a negative DG category, i.e. $\mathcal{A}(A, B)^{n}=0$ for all $n>0, A, B \in \mathcal{A}$, then each small object of $\mathcal{D} \mathcal{A}$ is an extension of $\mathcal{D} \mathcal{A}$-direct summands of finite sums of free modules $A^{\wedge}, A \in \mathcal{A}$.

Proof. [17] Let M be a small object of \mathcal{T}. Choose a sequence

$$
X_{0} \xrightarrow{f_{0}} X_{1} \rightarrow \ldots \rightarrow X_{p} \xrightarrow{f_{p}} X_{p+1} \rightarrow \ldots, p \in \mathbf{N}
$$

as in remark 5.2. By 5.1 we have an isomorphism

$$
\lim _{-} \mathcal{T}\left(M, X_{p}\right) \xrightarrow{\sim} \mathcal{T}(M, M)
$$

In particular, the identity of M factors through some X_{p}, which means that M is a direct summand of X_{p}. Now X_{p} is an extension of sums of objects $S^{n} X, X \in \mathcal{X}, n \in \mathbf{Z}$. So we can apply the following lemma to $Z^{\prime}=0$ and $Z=X_{p}$ to obtain the commutative square

$$
\begin{array}{rll}
M^{\prime} & \rightarrow & M \\
\downarrow & & \downarrow \\
0 & \rightarrow & X_{p}
\end{array}
$$

where the cone on the first line is an extension $M^{\prime \prime}$ of objects $S^{n} X, X \in \mathcal{X}, n \in \mathbf{Z}$. Since $M \rightarrow X_{p}$ is a (split) monomorphism, the morphism $M^{\prime} \rightarrow M$ vanishes and thus M is a direct summand of $M^{\prime \prime}$.

Lemma. [17, 2.3] Let $M \in \mathcal{T}$ be small and let $c: Z^{\prime} \rightarrow Z$ be a morphism whose mapping cone is an extension of (infinite) sums of objects $S^{n} X, X \in \mathcal{X}, n \in \mathbf{Z}$. Then each diagram

may be completed to a commutative square

such that the cone over b is an extension of objects $S^{n} X, X \in \mathcal{X}, n \in \mathbf{Z}$.
Proof. By assumption the cone $Z^{\prime \prime}$ over c is an extension of sums of objects $S^{n} X, X \in \mathcal{X}$, $n \in \mathbf{Z}$. We proceed by induction on the length l of $Z^{\prime \prime}$. If we have $l=1$, then $Z^{\prime \prime}$ is itself a sum of objects $S^{n} X, X \in \mathcal{X}, n \in \mathbf{Z}$. By the smallness of Y, the composition $M \rightarrow Z \rightarrow Z^{\prime \prime}$ factors through a finite subsum $M^{\prime \prime} \subset Z^{\prime \prime}$. We find the required square by completing

$$
\begin{array}{rlllll}
M & \rightarrow & M^{\prime \prime} & & \\
& & \downarrow & & \downarrow \\
Z^{\prime} & & & \\
& Z & \rightarrow & Z^{\prime \prime} & \rightarrow & S Z^{\prime}
\end{array}
$$

to a morphism of triangles

If we have $l>1$, then $Z^{\prime \prime}$ occurs in a triangle

$$
Z_{0}^{\prime \prime} \rightarrow Z^{\prime \prime} \rightarrow Z_{1}^{\prime \prime} \rightarrow S Z_{0}^{\prime \prime}
$$

where both, $Z_{0}^{\prime \prime}$ and $Z_{1}^{\prime \prime}$, are of length $<l$. By forming an octahedron over

$$
Z \rightarrow Z^{\prime \prime} \rightarrow Z_{1}^{\prime \prime}
$$

we see that c is the composition of two morphisms c_{0} and c_{1} whose cones are $Z_{0}^{\prime \prime}$ and $Z_{1}^{\prime \prime}$. By the induction hypothesis we have a commutative diagram

where the cones of b_{0} and b_{1} are extensions of objects of \mathcal{X}. By the octahedral axiom the same holds for $b=b_{1} b_{0}$.

6. Standard functors

6.1 Hom and tensor. Let \mathcal{A} and \mathcal{B} be small DG categories. The tensor product $\mathcal{A} \otimes \mathcal{B}$ is the DG category whose objects are the pairs (A, B) of objects $A \in \mathcal{A}, B \in \mathcal{B}$, and whose morphism spaces are

$$
(\mathcal{A} \otimes \mathcal{B})\left((A, B),\left(A^{\prime}, B^{\prime}\right)\right) \xrightarrow{\sim} \mathcal{A}\left(A, A^{\prime}\right) \otimes \mathcal{B}\left(B, B^{\prime}\right)
$$

The composition of $\mathcal{A} \otimes \mathcal{B}$ is given by the formula

$$
\left(f^{\prime} \otimes g^{\prime}\right)(f \otimes g)=(-1)^{p q} f^{\prime} f \otimes g^{\prime} g
$$

for $f \in \mathcal{A}\left(A, A^{\prime}\right)^{p}$ and $g^{\prime} \in \mathcal{B}\left(B^{\prime}, B^{\prime \prime}\right)^{q}$.
Let X be an \mathcal{A} - \mathcal{B}-bimodule, i.e. a module over $\mathcal{A} \otimes \mathcal{B}^{\circ p}$. It gives rise to a pair of adjoint DG functors
$\operatorname{Dif} \mathcal{A}$
$T_{X} \uparrow \downarrow H_{X}$
$\operatorname{Dif} \mathcal{B}$
which are defined as follows

$$
\begin{aligned}
\left(H_{X} M\right)(B) & =(\operatorname{Dif} \mathcal{A})(X(?, B), M) \\
\left(T_{X} N\right)(A) & =\operatorname{Cok}\left(\coprod_{B, C \in \mathcal{B}} N C \otimes \mathcal{B}(B, C) \otimes X(A, B) \xrightarrow{\nu} \coprod_{B \in \mathcal{B}} N B \otimes X(A, B)\right)
\end{aligned}
$$

where $\nu(n \otimes f \otimes x)=(N n)(f) \otimes x-n \otimes X(A, f)(x)$. Observe that for each $B \in \mathcal{B}$ we have $T_{X} B^{\wedge} \xrightarrow{\sim} X(?, B)$ since

$$
(\operatorname{Dif} \mathcal{A})\left(T_{X} B^{\wedge}, M\right)=(\operatorname{Dif} \mathcal{B})\left(B^{\wedge}, H_{X} M\right)=\left(H_{X} M\right)(B)=(\operatorname{Dif} \mathcal{A})(X(?, B), M)
$$

for each $M \in \operatorname{Dif} \mathcal{A}$. For brevity, we put $X^{B}=X(?, B)$.

The functors H_{X} and T_{X} induce a pair of adjoint functors between $\mathcal{H} \mathcal{A}$ and $\mathcal{H B}$ which will also be denoted by H_{X} and T_{X}. We denote by $\mathbf{L} T_{X}$ the left derived functor of T_{X}, i.e. the composition

$$
\mathcal{D B} \rightarrow \mathcal{H}_{p} \mathcal{B} \xrightarrow{T_{X}} \mathcal{H} \mathcal{A} \rightarrow \mathcal{D} \mathcal{A}, N \mapsto T_{X} \boldsymbol{p} N
$$

Observe that $\mathbf{L} T_{X}$ commutes with direct sums since \boldsymbol{p} and T_{X} do.
Lemma.
a) $\mathbf{L} T_{X}$ is an equivalence iff the morphisms $\mathcal{B}(B, C) \rightarrow(\operatorname{Dif} \mathcal{A})\left(X^{B}, X^{C}\right)$ induce isomorphisms in homology, $\forall B, C \in \mathcal{B}$, and the $X^{B}, B \in \mathcal{B}$, form a set of small generators for $\mathcal{D} \mathcal{A}$.
b) A morphism $X \rightarrow X^{\prime}$ of \mathcal{A} - \mathcal{B}-bimodules is a quasi-isomorphism iff the induced morphism $\mathbf{L} T_{X} \rightarrow \mathbf{L} T_{X^{\prime}}$ is invertible.
c) Suppose that X has property (P) over $\mathcal{A} \otimes \mathcal{B}^{\circ p}$. If \mathcal{A} is k-flat, then T_{X} preserves acyclicity. If \mathcal{B} is k-projective, then T_{X} preserves property (P). If k is a field then $T_{X} N$ has property (P) for each $D G \mathcal{B}$-module N.

Proof. a) follows from 4.2 c), and b) from 4.2 d). It suffices to prove c) for the case where $X=\left(A^{\prime}, B^{\prime}\right)^{\wedge}$ for some $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{A} \otimes \mathcal{B}^{\circ p}$. Then we have $T_{X} N=N\left(B^{\prime}\right) \otimes_{k} \mathcal{A}\left(A^{\prime}, ?\right)$. So the first two assertions are clear. To prove the last one, we fix an acyclic DG \mathcal{A}-module M and observe that

$$
(\operatorname{Dif} \mathcal{A})\left(T_{X} N, M\right) \stackrel{\sim}{\rightarrow}(\operatorname{Dif} k)\left(N\left(B^{\prime}\right), M\left(A^{\prime}\right)\right)
$$

Since k is a field, $M\left(A^{\prime}\right)$ is even null-homotopic. Hence we have $(\mathcal{H} \mathcal{A})\left(T_{X} N, M\right)=0$, and the assertion follows from 3.1.

Example. Let $F: \mathcal{B} \rightarrow \mathcal{A}$ be a $D G$ functor and put $X(A, B)=\mathcal{A}(A, F B)$ for $A \in \mathcal{A}, B \in \mathcal{B}$. Then clearly $X^{B}=(F B)^{\wedge}$. Hence $\mathbf{L} T_{X}$ is an equivalence iff $\mathrm{H}^{*} F: \mathrm{H}^{*} \mathcal{A} \rightarrow \mathrm{H}^{*} \mathcal{B}$ is an equivalence.
6.2 Right projective bimodules. We keep the assumptions of 6.1 and assume in addition that X^{B} has property (P) for each $B \in \mathcal{B}$. Since

$$
\left(H_{X} M\right)(B)=(\operatorname{Dif} \mathcal{A})\left(X^{B}, M\right)
$$

it follows from theorem 3.1 that $H_{X} M$ is acyclic for each acyclic M. The induced functor $\mathcal{D} \mathcal{A} \rightarrow \mathcal{D B}$ will be denoted by $\mathbf{R} H_{X}$. We have

$$
(\mathcal{H} \mathcal{A})\left(T_{X} P, M\right)=(\mathcal{H B})\left(P, H_{X} M\right)=0
$$

whenever P has property (P) and M is acyclic. By 3.1 we conclude that T_{X} preserves property (P). Using this we see that

$$
(\mathcal{D} \mathcal{A})\left(\mathbf{L} T_{X} N, M\right)=(\mathcal{H} \mathcal{A})\left(T_{X} \boldsymbol{p} N, M\right)=(\mathcal{H B})\left(\boldsymbol{p} N, H_{X} M\right)=(\mathcal{D B})\left(N, \mathbf{R} H_{X} M\right)
$$

i.e. that $\mathbf{R} H_{X}$ is a right adjoint of $\mathbf{L} T_{X}$.

Now define a \mathcal{B} - \mathcal{A}-module X^{\top} by

$$
X^{\top}(B, A)=(\operatorname{Dif} \mathcal{A})\left(X^{B}, A^{\wedge}\right)
$$

For each $M \in \operatorname{Dif} \mathcal{A}$, we have a canonical morphism $T_{X}{ }^{\top} M \rightarrow H_{X} M$.
Lemma.
a) The morphism $\mathbf{L} T_{X} \top M \rightarrow \mathbf{R} H_{X} M$ is invertible for all $M \in \mathcal{H}_{p}^{b} \mathcal{A}$. It is invertible for all M iff the X^{B} are small in $\mathcal{D} \mathcal{A}, \forall B \in \mathcal{B}$.
b) If $\mathbf{L} T_{X}: \mathcal{D B} \rightarrow \mathcal{D} \mathcal{A}$ is an equivalence, its quasi-inverse is isomorphic to $\mathbf{L} T_{X^{\top}}$.

Proof. a) The morphism is clearly invertible for free M. By 'devissage' it is invertible for $M \in \mathcal{H}_{p}^{b} \mathcal{A}$. Since H_{X} commutes with infinite direct sums iff the X^{B} are small, the second assertion follows from 4.2 d).
b) If $\mathbf{L} T_{X}$ is an equivalence then so is $\mathbf{R} H_{X}$. In particular, $\mathbf{R} H_{X}$ commutes with direct sums. The assertion now follows from a) and 4.2 d).

Example. Keep the notations of example 6.1. If $\mathbf{L} T_{X}$ is an equivalence, a quasi-inverse is given by $\mathbf{L} T_{X}{ }^{\top}$.
6.3 Flat targets. We keep the assumptions of 6.1 and assume in addition that \mathcal{A} is k - $f l a t$, i.e. $\mathcal{A}(A, B)$ is a flat k-module, $\forall A, B \in \mathcal{A}$. Let $\boldsymbol{p} X$ be a P-resolution of X over $\mathcal{A} \otimes \mathcal{B}^{\text {op }}$. Note that for $B \in \mathcal{B}$ the \mathcal{A}-module $(\boldsymbol{p} X)^{B}$ need not have property (P) (unless $\mathcal{B}\left(B^{\prime}, B\right)$ is projective over k for each $\left.B^{\prime} \in \mathcal{B}\right)$. In particular, the canonical morphism $\boldsymbol{p}\left(X^{B}\right) \rightarrow(\boldsymbol{p} X)_{B}$ of $\mathcal{H} \mathcal{A}$ need not be a quasi-isomorphism.

Lemma.
a) We have $\mathbf{L} T_{X} N \xrightarrow{\sim} T_{\boldsymbol{p} X} N$ for each $N \in \mathcal{D B}$.
b) Let \mathcal{C} be another $D G$ category and Y a \mathcal{B}-C-bimodule. We have $\mathbf{L} T_{X} \mathbf{L} T_{Y} \underset{\sim}{\sim} \mathbf{L} T_{Z}$, where $Z=T_{\boldsymbol{p} X} Y$.

Proof. a) By 6.1 b) we have $\mathbf{L} T_{\boldsymbol{p} X} \xrightarrow{\sim} \mathbf{L} T_{X}$. So we only have to show that $\mathbf{L} T_{\boldsymbol{p} X} N \xrightarrow{\sim} T_{\boldsymbol{p} X} N$ for each $N \in \mathcal{D B}$. It is enough to check that $T_{\boldsymbol{p} X} N$ is acyclic for each acyclic N. Now $T_{\boldsymbol{p} X} N$ inherits from $\boldsymbol{p} X$ a complete filtration which splits in $\mathcal{G} \mathcal{A}$ and has subquotients $T_{Q} N$, where Q is relative projective. So it is enough to show that $T_{F} N$ is acyclic for each $F=\left(A^{\prime}, B^{\prime}\right)^{\wedge}$, $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{A}^{\mathrm{op}} \otimes \mathcal{B}$. But

$$
\left(T_{F} N\right)(A) \simeq \mathcal{A}\left(A, A^{\prime}\right) \otimes N\left(B^{\prime}\right)
$$

b) follows from a) and the fact that $T_{\boldsymbol{p} X} T_{Y} \xrightarrow{\sim} T_{Z}$ as functors $\operatorname{Dif} \mathcal{C} \rightarrow \operatorname{Dif} \mathcal{A}$.
6.4 Tensor functors and DG functors. Let \mathcal{A} and \mathcal{B} be small DG categories. Let F : $\operatorname{Dif} \mathcal{B} \rightarrow \operatorname{Dif} \mathcal{A}$ be an arbitrary DG functor. Its left derived functor is the composition

$$
\mathcal{D B} \rightarrow \mathcal{H}_{p} \mathcal{B} \xrightarrow{F} \mathcal{H} \mathcal{A} \rightarrow \mathcal{D} \mathcal{A}, N \mapsto F \boldsymbol{p} N
$$

Let X be the bimodule $X(A, B)=\left(F B^{\wedge}\right)(A)=(\operatorname{Dif} \mathcal{A})\left(A^{\wedge}, F B^{\wedge}\right)$. For each \mathcal{B}-module N, the canonical morphism

$$
N B \xrightarrow[\rightarrow]{\sim}(\operatorname{Dif} \mathcal{B})\left(B^{\wedge}, N\right) \rightarrow(\operatorname{Dif} \mathcal{A})\left(F B^{\wedge}, F N\right)=(\operatorname{Dif} \mathcal{A})(X(?, B), F N)=\left(H_{X} F N\right)(B)
$$

comes from a natural morphism $N \rightarrow H_{X} F N$. By adjunction, we obtain $T_{X} N \rightarrow F N$. The induced morphism

$$
\mathbf{L} T_{X} N \rightarrow \mathbf{L} F N
$$

is clearly invertible for $N=B^{\wedge}[n], B \in \mathcal{B}, n \in \mathbf{Z}$. This implies the first assertion of the following lemma. The second one follows from lemma 4.2.

Lemma. The canonical morphism

$$
\mathbf{L} T_{X} N \rightarrow \mathbf{L} F N
$$

is invertible for each $N \in \mathcal{H}_{p}^{b} \mathcal{B}$. It is invertible for all $N \in \mathcal{D B}$ iff $\mathbf{L} F$ commutes with direct sums.
6.5 Example: Lie algebra cohomology. Let R be a k-algebra with 1 and L a (k, R)-Lie algebra [21, $\S 2]$, i.e. L is a Lie algebra over R, and R is endowed with a left L-module structure such that

$$
[X, r Y]=(X r) Y+r[X, Y]
$$

for all $X, Y \in L, r \in R$. In addition, we assume that L is projective as an R-module. For example this holds for the ($\mathbf{R}, C^{\infty}(M)$)-Lie algebra formed by the C^{∞}-vector fields on a C^{∞}-manifold M [21, $\S 4]$. Let the Lie algebra Z be the semi-direct product of L by R and let A be the 'universal algebra of differential operators generated by R and $L^{6}: A$ is an associative k-algebra endowed with a k-linear morphism $\iota: Z \rightarrow A$ which is universal for the properties

$$
\iota([U, V])=[\iota(U), \iota(V)] \text { and } \iota(r U)=\iota(r) \iota(U)
$$

for all $U, V \in Z, r \in R$. The canonical Z-action on R uniquely extends to an A-module structure. Let ε denote the map $A \rightarrow R, a \mapsto a .1$.

Let E be the graded exterior R-algebra over L and let X be the differential complex with components $X^{n}=A \otimes_{R} E^{-n}$ and the differential [21, $\left.\S 4\right]$

$$
\begin{aligned}
d\left(a \otimes X_{1} \wedge \ldots \wedge X_{n}\right)= & \sum_{i=1}^{n}(-1)^{i-1} a X_{i} \otimes X_{1} \wedge \ldots \widehat{X_{i}} \ldots \wedge X_{n} \\
& +\sum_{j<k}(-1)^{j+k} a \otimes\left[X_{j}, X_{k}\right] \wedge X_{1} \wedge \ldots \widehat{X_{j}} \ldots \widehat{X_{k}} \ldots \wedge X_{n}
\end{aligned}
$$

The complex X together with the augmentation $\varepsilon: X^{0} \rightarrow R$ is a projective resolution of the left A-module $R[21, \S 4]$. The corresponding quasi-isomorphism $X \rightarrow R$ will also be denoted by ε.

Let B be the DG R-module (Dif A^{op}) (X, R). We will freely make use of the identifications

$$
B=\left(\operatorname{Dif} A^{\mathrm{op}}\right)(X, R)=\operatorname{Hom}_{A}\left(A \otimes_{R} E, R\right)=\operatorname{Hom}_{R}(E, R)
$$

Endowed with the 'shuffle product' B becomes a DG algebra [10, $\S 9]$: Recall that for $f \in B^{p}$, $g \in B^{q}$, and $n=p+q$, one puts

$$
(f g)\left(X_{1} \wedge \ldots \wedge X_{n}\right)=\sum \sigma_{i j} f\left(X_{i_{1}}, \ldots, X_{i_{p}}\right) g\left(X_{j_{1}}, \ldots, X_{j_{q}}\right)
$$

where $\sigma_{i j}$ is the parity of the permutation

$$
1 \mapsto i_{1}, \ldots, p \mapsto i_{p}, p+1 \mapsto j_{1}, \ldots, p+q \mapsto j_{q}
$$

and the sum ranges over all tuples i, j with $i_{1}<\ldots<i_{p}, j_{1}<\ldots<j_{q}$ and $\{1, \ldots, p+q\}=$ $\left\{i_{1}, \ldots, i_{p}\right\} \cup\left\{j_{1}, \ldots, j_{q}\right\}$.

Let $f \in B^{p}$. We define a DG left B-module structure on X by putting $f .\left(a \otimes X_{1} \wedge \ldots \wedge X_{n}\right)=0$ for $p>n$ and, with the same notations as for the shuffle product,

$$
f\left(a \otimes X_{1} \wedge \ldots \wedge X_{n}\right)=\sum \sigma_{i j} a \otimes f\left(X_{i_{1}}, \ldots, X_{i_{p}}\right) X_{j_{1}} \wedge \ldots \wedge X_{j_{q}}
$$

for $p<n$ and $p+q=n$. It is clear that the actions of A and B on X commute among each other and agree on R so that X becomes an A^{op} - B-bimodule. Note that $X \mid A^{\mathrm{op}}$ has property (P) (3.1).

Lemma.

a) The functors $\mathbf{L} T_{X}: \mathcal{D} B \rightarrow \mathcal{D} A^{\mathrm{op}}$ and $\mathbf{R} H_{X}$ induce quasi-inverse S-equivalences between $\mathcal{H}_{p}^{b} B$ and the full triangulated subcategory of $\mathcal{D} A^{\mathrm{op}}$ generated by R.
b) If L is finitely generated over R, then $\mathbf{L} T_{X}: \mathcal{D} B \rightarrow \mathcal{D} A^{\text {op }}$ is fully faithful and $\mathbf{R} H_{X} \sim \mathbf{L} T_{X^{\top}}$.

Proof. a) By 4.2 a) we have to check that the morphism of complexes

$$
\lambda: B \rightarrow\left(\operatorname{Dif} A^{\mathrm{op}}\right)(X, X)
$$

mapping f to left multiplication by f is a quasi-isomorphism. By definition the composition of λ with

$$
\varepsilon_{*}:\left(\operatorname{Dif} A^{\mathrm{op}}\right)(X, X) \rightarrow\left(\operatorname{Dif} A^{\mathrm{op}}\right)(X, R)
$$

is the identity. Since $\varepsilon: X \rightarrow R$ is a quasi-isomorphism and X has property $(\mathrm{P}), \varepsilon_{*}$ is a quasiisomorphism. Hence so is λ.
b) If L is finitely generated, $X \mid A^{\mathrm{op}}$ is a bounded complex of finitely generated projective A-modules. In particular, X is small in $\mathcal{D} A^{\text {op }}$. The assertion now follows from 4.2 b) and 6.2 a).
6.6 Example: Bar resolution. Let \mathcal{A} be a small DG category. Let \tilde{Y} be the bar resolution [4, IX, $\S 6]$ of \mathcal{A}, i.e. the complex of \mathcal{A} - \mathcal{A}-bimodules with $\tilde{Y}(A, B)^{n}=0$ for $n>0$ and

$$
\tilde{Y}^{-n}(A, C)=\coprod_{B_{0}, \ldots, B_{n}} \mathcal{A}\left(B_{0}, C\right) \otimes \mathcal{A}\left(B_{1}, B_{0}\right) \otimes \ldots \otimes \mathcal{A}\left(B_{n}, B_{n-1}\right) \otimes \mathcal{A}\left(A, B_{n}\right), n \geq 0
$$

endowed with the differential d of degree 1 with

$$
d\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n} \otimes a_{n+1}\right)=\sum_{i=0}^{n}(-1)^{i} a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n+1}
$$

Let Y be the total module of \tilde{Y} (cf. the proof of 3.1). Define I to be the \mathcal{A} - \mathcal{A}-bimodule $I(A, B)=$ $\mathcal{A}(A, B)$. By $[4, \mathrm{IX}, \S 6]$ we have a quasi-isomorphism $\varepsilon: Y \rightarrow I$ induced by the composition map

$$
\coprod_{B_{0}} \mathcal{A}\left(B_{0}, C\right) \otimes \mathcal{A}\left(A, B_{0}\right) \rightarrow \mathcal{A}(A, C) .
$$

The maps

$$
\tilde{Y}^{-n} \rightarrow \coprod_{p+q=n} \tilde{Y}^{-p} \otimes \tilde{Y}^{-q}
$$

given by

$$
a_{0} \otimes \ldots \otimes a_{n+1} \mapsto\left(a_{0} \otimes \ldots \otimes a_{p} \otimes 1 \otimes 1 \otimes a_{p+1} \otimes \ldots \otimes a_{n+1}\right)
$$

yield a morphism

$$
\Delta: Y \rightarrow Y \circ Y
$$

where by definition ? $\circ Y=T_{Y}$. We have commutative diagrams

Now let \mathcal{B} be a set of DG \mathcal{A}-modules. The above diagrams ensure that we can make \mathcal{B} into a DG category by requiring that

$$
\mathcal{B}(L, M) \stackrel{\sim}{\rightarrow}(\operatorname{Dif} \mathcal{A})(Y \circ L, M)
$$

that the identity $\mathbf{1}_{L}^{\mathcal{B}}$ corresponds to the composition

$$
Y \circ L \xrightarrow{\varepsilon \circ L} I \circ L \xrightarrow{\text { can }} L,
$$

and that the composition of two morphisms of \mathcal{B} coming from $g: Y \circ L \rightarrow M$ and $f: Y \circ M \rightarrow N$ is given by the composition

$$
Y \circ L \xrightarrow{\Delta \circ L}(Y \circ Y) \circ L \xrightarrow{\mathrm{can}} Y \circ(Y \circ L) \xrightarrow{Y \circ g} Y \circ M \xrightarrow{f} N .
$$

We then have a canonical \mathcal{A} - \mathcal{B}-bimodule $X(A, L):=(Y \circ L)(A)$, where the action of $g: Y \circ L \rightarrow M$ is given by the composition

$$
Y \circ L \xrightarrow{\Delta \circ L}(Y \circ Y) \circ L \xrightarrow{\mathrm{can}} Y \circ(Y \circ Y) \xrightarrow{Y \circ g} Y \circ M
$$

Now suppose that k is a field. Then each \tilde{Y}^{n} is relatively projective over $\mathcal{A} \otimes \mathcal{A}^{\text {op }}$. Since Y admits the filtration $F^{p}=\coprod_{n \geq-p} \tilde{Y}^{n}$, it has property (P) over $\mathcal{A} \otimes \mathcal{A}^{\text {op }}$. Using 6.1 b) and c) we infer that the composition η

$$
Y \circ M \xrightarrow{\varepsilon \circ M} I \circ M \xrightarrow{\mathrm{can}} M
$$

is a P-resolution for each DG \mathcal{A}-module M. Therefore the morphism

$$
\eta_{*}:(\operatorname{Dif} \mathcal{A})(Y \circ L, Y \circ M) \rightarrow(\operatorname{Dif} \mathcal{A})(Y \circ L, M), L, M \in \mathcal{B}
$$

is a quasi-isomorphism. And so is the canonical morphism

$$
\mathcal{B}(L, M) \rightarrow(\operatorname{Dif} \mathcal{A})\left(X^{L}, X^{M}\right)=(\operatorname{Dif} \mathcal{A})(Y \circ L, Y \circ M)
$$

since it has η_{*} as a left inverse. Using 4.2 we infer the
Lemma.
a) The restriction of $\mathbf{L} T_{X}$ to $\mathcal{H}_{p}^{b} \mathcal{B}$ is fully faithful.
b) If each $L \in \mathcal{B}$ is small in $\mathcal{D} \mathcal{A}$, then $\mathbf{L} T_{X}$ is fully faithful.
c) $\mathbf{L} T_{X}$ is an equivalence iff the objects of \mathcal{B} form a set of small generators for $\mathcal{D} \mathcal{A}$.

7. Quasi-Functors and Lifts

7.1 Quasi-functors. Let \mathcal{A} and \mathcal{B} be small DG categories. Denote by $\underline{\mathcal{A}}$ the full subcategory of $\mathcal{D} \mathcal{A}$ whose objects are the $A^{\wedge}, A \in \mathcal{A}$, and by $\mathbf{Z} \underline{\mathcal{A}}$ the full subcategory whose objects are the $A^{\wedge}[n], n \in \mathbf{Z}, A \in \mathcal{A}$. Note that we have

$$
(\mathbf{Z} \underline{\mathcal{A}})\left(A^{\wedge}[n], B^{\wedge}[m]\right)=\mathrm{H}^{m-n} \mathcal{A}(A, B)
$$

for all $A, B \in \mathcal{A}, n, m \in \mathbf{Z}$.
Let X be an \mathcal{A} - \mathcal{B}-bimodule. By definition, X is a quasi-functor $\mathcal{B} \rightarrow \mathcal{A}$ if it satisfies the conditions of the following lemma. Note that in this case $\mathbf{L} T_{X}$ gives rise to a functor $\mathbf{Z} \underline{\mathcal{B}} \rightarrow \mathbf{Z} \underline{\mathcal{A}}$ and hence to a functor $\mathrm{H}^{*} \mathcal{B} \rightarrow \mathrm{H}^{*} \mathcal{A}$.

Lemma. The following are equivalent
i) $\mathbf{L} T_{X}$ gives rise to a functor $\underline{\mathcal{B}} \rightarrow \underline{\mathcal{A}}$.
ii) For each $B \in \mathcal{B}$ the functor $(\mathcal{D} \mathcal{A})\left(?, X^{B}\right)$ is representable by an object of $\underline{\mathcal{A}}$.
iii) For each $B \in \mathcal{B}$ there is an $A \in \mathcal{A}$ and an element $x_{B} \in Z^{0} X(A, B)$ such that for each $A^{\prime} \in \mathcal{A}$ the morphism

$$
\mathcal{A}\left(A^{\prime}, A\right) \rightarrow X\left(A^{\prime}, B\right), f \mapsto X(f, B)\left(x_{B}\right)
$$

induces isomorphisms in homology.

Proof. Exercise.

Suppose for example that \mathcal{A} and \mathcal{B} are concentrated in degree 0 . Then \mathcal{A}^{0} is equivalent to $\underline{\mathcal{A}}$. Thus by i), a quasi-functor X yields a functor $F^{0}: \mathcal{B}^{0} \rightarrow \mathcal{A}^{0}$; hence a functor $F: \mathcal{B} \rightarrow \mathcal{A}$. It is easy to see that in $\mathcal{D}\left(\mathcal{A} \otimes \mathcal{B}^{\circ}\right), X$ is isomorphic to the bimodule $(A, B) \mapsto \mathcal{A}(A, F B)$.
7.2 Quasi-equivalences. Keep the hypotheses of 7.1. By definition, X is a quasi-equivalence if the conditions of the following lemma hold. In this case \mathcal{B} is quasi-equivalent to \mathcal{A}.

Lemma. The following are equivalent
i) $\mathbf{L} T_{X}$ is an equivalence giving rise to an equivalence $\underline{\mathcal{B}} \rightarrow \underline{\mathcal{A}}$.
ii) $\mathbf{L} T_{X}$ gives rise to equivalences $\mathbf{Z} \underline{\mathcal{B}} \rightarrow \mathbf{Z} \underline{\mathcal{A}}$ and $\underline{\mathcal{B}} \rightarrow \underline{\mathcal{A}}$.
iii) There is a subset $D \subset \mathcal{A} \times \mathcal{B}$ projecting onto \mathcal{A} as well as onto \mathcal{B}, and for each $(A, B) \in D$ there is an element $x_{A B} \in Z^{0} X(A, B)$ such that the morphisms

$$
\begin{array}{ll}
\mathcal{A}\left(A^{\prime}, A\right) \rightarrow X\left(A^{\prime}, B\right) & , \quad f \mapsto X(f, B)\left(x_{A B}\right) \\
\mathcal{B}\left(B, B^{\prime}\right) \rightarrow X\left(A, B^{\prime}\right) & , \quad g \mapsto X(A, g)\left(x_{A B}\right)
\end{array}
$$

induce isomorphisms in homology for each $A^{\prime} \in \mathcal{A}, B^{\prime} \in \mathcal{B}$.

Proof. Exercise.

Example. Each DG functor $F: \mathcal{B} \rightarrow \mathcal{A}$ inducing an equivalence $\mathrm{H}^{*} F: \mathrm{H}^{*} \mathcal{B} \rightarrow \mathrm{H}^{*} \mathcal{A}$ yields a quasi-equivalence $X(A, B)=\mathcal{A}(A, F B)$. If \mathcal{A} and \mathcal{B} are concentrated in degree 0 , each quasiequivalence comes from an equivalence $F: \mathcal{B} \rightarrow \mathcal{A}$.

REMARK. If k is a field, 'quasi-equivalence' is an equivalence relation (6.1 c and 6.2 b imply reflexivity; 6.3 b implies transitivity).
7.3 Lifts. Let \mathcal{A} be a small DG category. Let $\mathcal{U} \subset \mathcal{D} \mathcal{A}$ be a full small subcategory and $\mathbf{Z} \mathcal{U} \subset \mathcal{D} \mathcal{A}$ the full subcategory whose objects are the $U[n], U \in \mathcal{U}, n \in \mathbf{Z}$. A lift of \mathcal{U} is a DG category \mathcal{B} together with an \mathcal{A} - \mathcal{B}-bimodule X such that $\mathbf{L} T_{X}$ gives rise to equivalences $\mathbf{Z} \underline{\mathcal{B}} \underset{\sim}{\sim} \mathbf{Z} \mathcal{U}$ and $\mathcal{B} \xrightarrow{\sim} \mathcal{U}$.

Examples. With the notations of $6.5,(B, X)$ is a lift of $\mathcal{U}=\{R\}$. - If k is a field, any $\mathcal{U} \subset \mathcal{D} \mathcal{A}$ may be lifted using the bar resolution of 6.6.

The definition of a lift implies in particular that $\mathbf{L} T_{X}$ induces an equivalence from $\mathcal{H}_{p}^{b} \mathcal{B}$ onto the triangulated subcategory of $\mathcal{D} \mathcal{A}$ generated by $\mathcal{U}\left(4.2\right.$ a). If X^{B} has property (P) for each $B \in \mathcal{B}$,
a quasi-inverse is induced by $\mathbf{R} H_{X}$. Indeed, if $M \in \mathcal{H}_{p}^{b} \mathcal{B}$, we have

$$
(\mathcal{D B})\left(S^{n} B^{\wedge}, \mathbf{R} H_{X} \mathbf{L} T_{X} M\right) \stackrel{\sim}{\rightarrow}(\mathcal{D} \mathcal{A})\left(\mathbf{L} T_{X} S^{n} B^{\wedge}, \mathbf{L} T_{X} M\right) \simeq(\mathcal{D B})\left(S^{n} B^{\wedge}, M\right)
$$

since $\mathbf{L} T_{X}$ is fully faithful on $\mathcal{H}_{p}^{b} \mathcal{B}$. This means that $\mathbf{R} H_{X} \mathbf{L} T_{X} M \leftarrow M$ is invertible.
We see from 6.1 that $\mathbf{L} T_{X}$ is itself an equivalence iff the objects of \mathcal{U} form a system of small generators for $\mathcal{D} \mathcal{A}$.

If \mathcal{U} is given, we can always construct a standard lift by taking \mathcal{B} to be the full subcategory of $\operatorname{Dif} \mathcal{A}$ formed by chosen objects $\boldsymbol{p} U, U \in \mathcal{U}$, and X to be the bimodule

$$
(A, \boldsymbol{p} U) \mapsto(\boldsymbol{p} U)(A), \boldsymbol{p} U \in \mathcal{B}, A \in \mathcal{A}
$$

Now let (\mathcal{B}, X) be any lift of \mathcal{U} such that X^{B} has property (P) for each $B \in \mathcal{B}$. Let \mathcal{C} be a DG category and $F: \operatorname{Dif} \mathcal{C} \rightarrow \operatorname{Dif} \mathcal{A}$ a DG functor such that $\mathbf{L} F: \mathcal{D \mathcal { C }} \rightarrow \mathcal{D} \mathcal{A}$ induces a functor $\underline{\mathcal{C}} \rightarrow \mathcal{U}$.

Lemma. Put $Y(B, C)=\left(H_{X} F C^{\wedge}\right)(B)$.
a) $\mathbf{L} T_{Y}$ induces a functor $\underline{\mathcal{C}} \rightarrow \underline{\mathcal{B}}$; hence Y is a quasi-functor. It is a quasi-equivalence if $\mathbf{L} F$ induces an equivalence $\mathbf{Z} \underline{\mathcal{C}} \rightarrow \mathbf{Z U}$.
b) There is a canonical morphism
$\mathbf{L} T_{X} \mathbf{L} T_{Y} M \rightarrow \mathbf{L} F M$,
which is invertible for $M \in \mathcal{H}_{p}^{b} \mathcal{C}$. It is invertible for arbitrary $M \in \mathcal{D} \mathcal{C}$ iff $\mathbf{L} F$ commutes with direct sums.
c) If (\mathcal{C}, Z) is a lift of \mathcal{U} and $F=T_{Z}$, then Y is a quasi-equivalence $\mathcal{C} \rightarrow \mathcal{B}$ and we have $\mathbf{L} T_{X} \mathbf{L} T_{Y} \sim \mathbf{L} T_{Z}$. If moreover Z_{C} has property (P) for each $C \in \mathcal{C}$, then $\mathbf{R} H_{Y} \mathbf{R} H_{X} \xrightarrow{\sim}$ $\mathbf{R} H_{Z}$.

Remark. In 10.3 we will need the following fact. Suppose that F, T_{X} and T_{Y} all preserve acyclicity so that their derived functors are isomorphic to the functors induced by them. Then the morphism of b) is produced by the composition

$$
T_{X} T_{Y} \xrightarrow{T_{X}^{\alpha}} T_{X} H_{X} F \xrightarrow{\Phi F} F
$$

which is even defined as a morphism of DG functors. Here $\alpha: T_{Y} \rightarrow H_{X} F$ denotes the canonical morphism constructed in 6.4 , and Φ the adjunction morphism.

Proof. a) Consider the functor $G=H_{X} \circ F: \operatorname{Dif} \mathcal{C} \rightarrow \operatorname{Dif} \mathcal{B}$. We have $\mathbf{L} G=\mathbf{R} H_{X} \mathbf{L} F$. So $\mathbf{L} G$ induces a functor $\underline{\mathcal{C}} \rightarrow \underline{\mathcal{B}}$. By definition we have $Y(B, C)=\left(G C^{\wedge}\right)(B)$. Hence we have a morphism $T_{Y} \rightarrow G$ such that $\mathbf{L} T_{Y} M \rightarrow \mathbf{L} G M$ is invertible for each $M \in \mathcal{H}_{p}^{b} \mathcal{C}$ (6.4). So $\mathbf{L} T_{Y}$ induces a functor $\underline{\mathcal{C}} \rightarrow \underline{\mathcal{B}}$. We have morphisms

$$
\mathbf{L} T_{X} \mathbf{L} T_{Y} \rightarrow \mathbf{L} T_{X} \mathbf{L} G=\mathbf{L} T_{X} \mathbf{R} H_{X} \mathbf{L} F \rightarrow \mathbf{L} F
$$

which are invertible on $\mathcal{H}_{p}^{b} \mathcal{C}$. Thus $\mathbf{L} T_{X}$ induces an equivalence $\mathbf{Z} \underline{\mathcal{C}} \rightarrow \mathbf{Z} \underline{\mathcal{B}}$ iff $\mathbf{L} F$ induces an equivalence $\mathbf{Z C} \rightarrow \mathbf{Z} \mathcal{U}$. The second assertion now follows from 7.2.
b) follows from the proof of a) and 4.2 d).

The first two assertions of c) are immediate form a) and b). The last assertion is clear since if $\mathbf{L} T_{Y}$ is an equivalence and $\mathbf{L} T_{X} \mathbf{L} T_{Y} \xrightarrow{\sim} \mathbf{L} T_{Z}$, then $\mathbf{R} H_{Y} \mathbf{R} H_{X}$ is right adjoint to $\mathbf{L} T_{Z}$.
7.4 On the unicity of lifts. Keep the hypotheses of 7.3 and assume in addition that \mathcal{A} is k-flat. Since X^{B} has property $(\mathrm{P}), \forall B \in \mathcal{B}$, we have a well defined pair of adjoint functors

$$
\begin{array}{rll}
H_{X}^{!}: \mathcal{D}\left(\mathcal{A} \otimes \mathcal{C}^{\mathrm{op}}\right) \rightarrow \mathcal{D}\left(\mathcal{B} \otimes \mathcal{C}^{o p}\right) & \quad, & Z \mapsto H_{X} Z \\
T_{X}^{!}: \mathcal{D}\left(\mathcal{B} \otimes \mathcal{C}^{\mathrm{op}}\right) \rightarrow \mathcal{D}\left(\mathcal{A} \otimes \mathcal{C}^{\mathrm{op}}\right) & , & Y \mapsto T_{X} \boldsymbol{p} Y
\end{array}
$$

Lemma. For each $Y \in \mathcal{D}\left(\mathcal{B} \otimes \mathcal{C}^{\text {op }}\right)$ we have

$$
\mathbf{L} T_{X} \mathbf{L} T_{Y} \xrightarrow{\sim} \mathbf{L} T_{Z},
$$

where $Z=T_{X}^{\prime} Y$. Moreover T_{X}^{\prime} induces an equivalence between the full subcategories

$$
\begin{aligned}
&\left\{Y: \mathbf{L} T_{Y} \text { gives rise to a functor } \underline{\mathcal{C}} \rightarrow \underline{\mathcal{B}}\right\} \subset \\
& \text { and }\left\{Z: \mathbf{D}\left(\mathcal{B} \otimes \mathcal{C}^{\mathrm{op}}\right)\right. \\
&\text { T } \left._{Z} \text { gives rise to a functor } \underline{\mathcal{C}} \rightarrow \mathcal{U}\right\} \subset \\
& \mathcal{D}\left(\mathcal{A} \otimes \mathcal{C}^{\mathrm{op}}\right) .
\end{aligned}
$$

Proof. We have $T_{X} \boldsymbol{p} Y \simeq T_{\boldsymbol{p}_{X}} \boldsymbol{p} Y$ by 6.1 b) and $T_{\boldsymbol{p} X} \boldsymbol{p} Y \xrightarrow{\sim} T_{\boldsymbol{p} X} Y$ by the k-flatness of $\mathcal{A}(6.3 \mathrm{a})$. So we have $T_{X}^{!} Y \xrightarrow{\sim} T_{\boldsymbol{p} X} Y$. By 6.3 b) this implies the first assertion. Since $\mathbf{L} T_{X}$ gives rise to a functor $\underline{\mathcal{B}} \rightarrow \mathcal{U}$, we infer that T_{X}^{\prime} induces indeed a functor between the given subcategories. Suppose that $\mathbf{L} T_{Y}$ gives rise to a functor $\underline{\mathcal{C}} \rightarrow \underline{\mathcal{B}}$. We have to show that the canonical morphism $\boldsymbol{p} Y \rightarrow H_{X} T_{X} \boldsymbol{p} Y$ of $\mathcal{H}\left(\mathcal{B} \otimes \mathcal{C}^{\text {op }}\right)$ is a quasi-isomorphism. But we have already seen that $H_{X} T_{X} \boldsymbol{p} Y \xrightarrow{\sim} H_{X} T_{\boldsymbol{p} X} Y$, and on the other hand, for each $B \in \mathcal{B}$, we have

$$
(\boldsymbol{p} Y)_{B} \simeq Y_{B} \xrightarrow{\sim} H_{X} T_{X} \boldsymbol{p}\left(Y_{B}\right) \stackrel{\sim}{\sim} H_{X} T_{\boldsymbol{p} X} Y_{B},
$$

where we use 6.3 a) for the third isomorphism and the fact that $Y_{B} \in \mathcal{U}$ for the second one. Now suppose that $\mathbf{L} T_{Z}$ gives rise to a functor $\underline{\mathcal{C}} \rightarrow \underline{\mathcal{A}}$. We have to show that the canonical morphism $T_{X} \boldsymbol{p}\left(H_{X} Z\right) \rightarrow Z$ of $\mathcal{D}\left(\mathcal{A} \otimes \mathcal{C}^{\mathrm{op}}\right)$ is invertible. As above we have $T_{X} \boldsymbol{p}\left(H_{X} Z\right) \xrightarrow{\sim} T_{\boldsymbol{p} X} H_{X} Z$ and

$$
Z_{C} \simeq T_{X} \boldsymbol{p} H_{X} Z_{C} \simeq T_{\boldsymbol{p} X} H_{X} Z_{C}
$$

where we use $Z_{C} \in \mathcal{U}$ for the first isomorphism and 6.3 a) for the second one.

8. Application: Derived equivalences

8.1 Arbitrary targets. Let \mathcal{A} and \mathcal{C} be small $D G$ categories.

Theorem. Assertion i) implies ii), and ii) implies iii).
i) There is a $D G$ functor $H: \operatorname{Dif} \mathcal{C} \rightarrow \operatorname{Dif} \mathcal{A}$ such that $\mathbf{L} H: \mathcal{D C} \rightarrow \mathcal{D} \mathcal{A}$ is an equivalence.
ii) \mathcal{C} is quasi-equivalent to a full $D G$ subcategory \mathcal{B} of $\operatorname{Dif} \mathcal{A}$ whose objects have property (P) and form a set of small generators for $\mathcal{D} \mathcal{A}$.
iii) There are a $D G$ category \mathcal{B} and $D G$ functors

$$
\operatorname{Dif} \mathcal{C} \xrightarrow{G} \operatorname{Dif} \mathcal{B} \xrightarrow{F} \operatorname{Dif} \mathcal{A}
$$

such that $\mathbf{L} G$ and $\mathbf{L} F$ are equivalences.

Proof. i) implies ii): By 6.4 we have $\mathbf{L} H \xrightarrow{\sim} \mathbf{L} T_{Z}$ for some \mathcal{A} - \mathcal{C}-bimodule Z. So (\mathcal{C}, Z) is a lift of $\mathcal{U}=\left\{\mathbf{L} H C^{\wedge}: C \in \mathcal{C}\right\}$. Take \mathcal{B} to be a standard lift of \mathcal{U}. The assertion then follows from 7.3 c) and 4.2 c).
ii) implies iii): By 7.2 we have an equivalence $\mathbf{L} T_{X}: \mathcal{D C} \rightarrow \mathcal{D B}$ and by 7.3 an equivalence $\mathbf{L} F: \mathcal{D B} \rightarrow \mathcal{D} \mathcal{A}$.
8.2 Flat targets. Let \mathcal{A} and \mathcal{C} be small DG categories and assume that \mathcal{A} is k-flat.

Theorem. The following are equivalent
i) There is an \mathcal{A} - \mathcal{C}-bimodule X such that $\mathbf{L} T_{X}: \mathcal{D C} \rightarrow \mathcal{D} \mathcal{A}$ is an equivalence.
ii) \mathcal{C} is quasi-equivalent to a full $D G$ subcategory \mathcal{B} of $\operatorname{Dif} \mathcal{A}$ whose objects have property (P) and form a set of small generators for $\mathcal{D} \mathcal{A}$.

Proof. i) implies ii) by 8.1. Conversely, ii) implies i) by 8.1 iii), 6.4 and 6.3 b).
Remark. Recall from section 5 that a DG module is small in $\mathcal{D} \mathcal{A}$ iff it is contained in the smallest strictly full triangulated subcategory of $\mathcal{D} \mathcal{A}$ containing the free modules and closed under forming direct summands.

9. Application: Stalk categories

9.1 Modules over $H^{0} \mathcal{A}$. Let \mathcal{A} be a small DG category. Let $\mathrm{H}^{0} \mathcal{A}$ (resp. $\tau^{\leq 0} \mathcal{A}$) be the DG category with the same objects as \mathcal{A} and with the morphism spaces

$$
\left(\mathrm{H}^{0} \mathcal{A}\right)(A, B)=\mathrm{H}^{0} \mathcal{A}(A, B), A, B \in \mathcal{A}
$$

viewed as DG k-modules concentrated in degree 0 (resp.

$$
\left(\tau^{\leq 0} \mathcal{A}\right)(A, B)=\tau^{\leq 0} \mathcal{A}(A, B), A, B \in \mathcal{A}
$$

where $\tau^{\leq 0} K$ denotes the subcomplex C of K with $C^{n}=0$ for $n>0, C^{0}=Z^{0} K$, and $C^{n}=K^{n}$ for $n<0$). We have the obvious functors

$$
\mathrm{H}^{0} \mathcal{A} \stackrel{\pi}{\longleftrightarrow} \tau^{\leq 0} \mathcal{A} \xrightarrow{\iota} \mathcal{A}
$$

As in example 6.1, they yield functors

$$
\mathcal{D} \mathrm{H}^{\mathrm{0}} \mathcal{A} \stackrel{\mathrm{~L} T_{X}}{\leftrightarrows} \mathcal{D} \tau^{\leq 0} \mathcal{A} \xrightarrow{\mathrm{~L} T_{Y}} \mathcal{D} \mathcal{A}
$$

where $X(A, B)=\left(\mathrm{H}^{0} \mathcal{A}\right)(A, \pi B)$ and $Y(A, B)=\mathcal{A}(A, \iota B)$. The functor $\mathbf{L} T_{X}$ is an equivalence iff \mathcal{A} satisfies the 'Toda-condition' (cf. [22])

$$
\mathrm{H}^{n} \mathcal{A}(A, B)=0, \forall n<0, \forall A, B \in \mathcal{A}
$$

In this case (example 6.2), we have a canonical functor from $\mathcal{D} \mathrm{H}^{0} \mathcal{A}$ to $\mathcal{D} \mathcal{A}$ given simply by the composition

$$
\mathcal{D} \mathrm{H}^{0} \mathcal{A} \xrightarrow{\mathrm{~L} T_{X} \mathrm{\top}} \mathcal{D} \tau^{\leq 0} \mathcal{A} \xrightarrow{\mathrm{~L} T_{Y}} \mathcal{D} \mathcal{A}
$$

If \mathcal{A} is k-flat, this simplifies to

$$
\mathcal{D} \mathrm{H}^{0} \mathcal{A} \xrightarrow{\mathrm{~L} T_{Z}} \mathcal{D} \mathcal{A}
$$

where Z is the $\mathcal{A}-\mathrm{H}^{0} \mathcal{A}$-bimodule $T_{\boldsymbol{p} Y} X^{\top}$ (6.3b).
9.2 Equivalences. Let \mathcal{B} be a small k-linear category. We identify \mathcal{B} with a DG category concentrated in degree 0 . Let \mathcal{A} be an arbitrary small DG category.

Theorem. (cf. [19], [12]) The following are equivalent
i) There are $D G$ categories $\mathcal{A}_{1}, \mathcal{A}_{2}$ and $D G$ functors

$$
\operatorname{Dif} \mathcal{B} \xrightarrow{F_{3}} \operatorname{Dif} \mathcal{A}_{2} \xrightarrow{F_{2}} \operatorname{Dif} \mathcal{A}_{1} \xrightarrow{F_{1}} \operatorname{Dif} \mathcal{A}
$$

such that $\mathbf{L} F_{1}, \mathbf{L} F_{2}$ and $\mathbf{L} F_{3}$ are equivalences.
ii) There is an S-equivalence $\mathcal{D B} \xrightarrow{\sim} \mathcal{D} \mathcal{A}$.
iii) \mathcal{B} is equivalent to a full subcategory \mathcal{U} of $\mathcal{D} \mathcal{A}$ whose objects form a set of small generators and satisfy $(\mathcal{D} \mathcal{A})(U, V[n])=0$ for all $n \neq 0, U, V \in \mathcal{U}$.

Remark. We refer to $[19,6.4]$ for more precise information in the case where \mathcal{A} and \mathcal{B} are rings.

Proof. By 4.2 c), ii) implies iii). To prove that iii) implies i), let \mathcal{A}_{1} be a full subcategory of Dif \mathcal{A} consisting of chosen objects $\boldsymbol{p} U, U \in \mathcal{U}$. Let $F_{1}=T_{X}$ where $X\left(A, A_{1}\right)=A_{1}(A)$. By 6.1,
$\mathbf{L} F_{1}$ is an equivalence. By the assumption on \mathcal{U} we have $\mathrm{H}^{n} \mathcal{A}_{1}(A, B)=0$ for $n \neq 0$ and arbitrary $A, B \in \mathcal{A}_{1}$, and $\mathrm{H}^{0} \mathcal{A}_{1}$ is equivalent to \mathcal{B}. Now the assertion is clear from 9.1.

Using 6.3 b) and 6.4 we find the
Corollary. (cf. [20]) If \mathcal{A} is k-flat, the following are equivalent
i) There is an \mathcal{A} - \mathcal{B}-bimodule X such that $\mathbf{L} T_{X}: \mathcal{D B} \rightarrow \mathcal{D} \mathcal{A}$ is an equivalence.
ii) There is an S-equivalence $\mathcal{D B} \rightarrow \mathcal{D} \mathcal{A}$.
iii) \mathcal{B} is equivalent to a full subcategory \mathcal{U} of $\mathcal{D} \mathcal{A}$ whose objects form a set of small generators and satisfy $(\mathcal{D} \mathcal{A})(U, V[n])=0$ for all $n \neq 0, U, V \in \mathcal{U}$.

Remark. We refer to [20] for more precise information in the case where \mathcal{A} and \mathcal{B} are rings. A straightforward construction of the bimodule in this case is given in [13].

10. Application: Koszul duality for DGA categories

10.1 Preliminaries. Suppose that k is a field. Define the functor $D: \operatorname{Dif} k \rightarrow \operatorname{Dif} k$ by

$$
D M=(\operatorname{Dif} k)(M, k)
$$

where k is viewed as a DG k-module concentrated in degree 0 . Let \mathcal{A} be a DG k-category. For each $A \in \mathcal{A}$ we define the \mathcal{A}-module A^{\vee} by

$$
A^{\vee}(B)=D \mathcal{A}(A, B), B \in \mathcal{A}
$$

For each DG module M and each $A \in \mathcal{A}$ we have a canonical isomorphism of DG k-modules

$$
\begin{aligned}
(\operatorname{Dif} \mathcal{A})\left(M, A^{\vee}\right) & \stackrel{\sim}{ } D M(A) \\
\varphi & \longmapsto\left(m \longmapsto((\varphi A)(m))\left(\mathbf{1}_{A}\right)\right)
\end{aligned}
$$

In particular, we have a canonical morphism

$$
\mathcal{A}(A, B) \rightarrow D D \mathcal{A}(A, B) \stackrel{\sim}{\rightarrow} D A^{\vee}(B) \underset{\rightarrow}{\sim}(\operatorname{Dif} \mathcal{A})\left(A^{\vee}, B^{\vee}\right)
$$

which is a quasi-isomorphism if $\operatorname{dim} \mathrm{H}^{n} \mathcal{A}(A, B)<\infty$ for each $n \in \mathbf{Z}$. So in this case the full subcategory \mathcal{A}^{\vee} of $\operatorname{Dif} \mathcal{A}$ formed by the $A^{\vee}, A \in \mathcal{A}$, is quasi-equivalent to \mathcal{A}.

Fix $A \in \mathcal{A}$. To compute $(\mathcal{D} \mathcal{A})\left(?, A^{\vee}\right)$, we first remark that if N is acyclic, we have

$$
(\mathcal{H} \mathcal{A})\left(N, A^{\vee}\right)=\mathrm{H}^{0} D N(A)=0
$$

Therefore

$$
(\mathcal{D} \mathcal{A})\left(M, A^{\vee}\right) \underset{\rightarrow}{\sim}(\mathcal{H} \mathcal{A})\left(\boldsymbol{p} M, A^{\vee}\right) \simeq(\mathcal{H} \mathcal{A})\left(M, A^{\vee}\right) \underset{\sim}{\sim} \mathrm{H}^{0} D M(A)
$$

and in particular $H^{n} \mathcal{A}^{\vee}\left(A^{\vee}, B^{\vee}\right) \simeq(\mathcal{D} \mathcal{A})\left(A^{\vee}, B^{\vee}[n]\right)$. So if we define the \mathcal{A} - \mathcal{A}^{\vee}-bimodule X_{\vee} by $\left(A, B^{\vee}\right) \mapsto B^{\vee}(A)$, then $\left(\mathcal{A}^{\vee}, X_{\vee}\right)$ is a lift (7.3) of $\left\{A^{\vee}: A \in \mathcal{A}\right\} \subset \mathcal{D} \mathcal{A}$.
10.2 The Koszul dual. Suppose from now on that \mathcal{A} is an augmented DG category (=DGA category) i.e.
a) Distinct objects of \mathcal{A} are non-isomorphic.
b) For each $A \in \mathcal{A}$ a $D G$ module \bar{A} is given such that $\mathrm{H}^{0} \bar{A}(A) \xrightarrow{\sim} k$ and $\mathrm{H}^{n} \bar{A}(B)=0$ whenever $n \neq 0$ or $B \neq A$.

Now let $\left(\mathcal{A}^{*}, X\right)$ be a lift (7.3) of $\{\bar{A}: A \in \mathcal{A}\} \subset \mathcal{D} \mathcal{A}$. After deleting some objects from \mathcal{A}^{*} we may (and will) assume that we have a bijection $A \longmapsto A^{*}$ between the objects of \mathcal{A} and those of \mathcal{A}^{*} such that $\mathbf{L} T_{X} A^{* \wedge} \underset{\sim}{\sim} \bar{A}$ for each $A \in \mathcal{A}$. By 6.3 a) we also may (and will) assume that X has property (P) as a bimodule. Since k is a field, this implies in particular that $X\left(?, A^{*}\right)$ has property (P) for each $A^{*} \in \mathcal{A}^{*}(6.1 \mathrm{c})$. Hence the functors H_{X} and T_{X} both preserve acyclicity and induce a pair of adjoint functors between $\mathcal{D} \mathcal{A}^{*}$ and $\mathcal{D} \mathcal{A}$, which will also be denoted by T_{X} and H_{X}.

We make \mathcal{A}^{*} into an augmented DG category by putting

$$
\overline{A^{*}}=H_{X} A^{\vee}
$$

This is a good definition since indeed

$$
\begin{aligned}
\mathrm{H}^{n} \overline{A^{*}}\left(B^{*}\right) & \sim \sim\left(\mathcal{D} \mathcal{A}^{*}\right)\left(B^{* \wedge}, \overline{A^{*}}[n]\right) \sim\left(\mathcal{D} \mathcal{A}^{*}\right)\left(B^{* \wedge}, H_{X} A^{\vee}[n]\right) \\
& \simeq(\mathcal{D} \mathcal{A})\left(T_{X} B^{* \wedge}, A^{\vee}[n]\right) \simeq(\mathcal{D} \mathcal{A})\left(\bar{B}, A^{\vee}[n]\right) \\
& \simeq H^{n} D \bar{B}(A) .
\end{aligned}
$$

We define \mathcal{A}^{*} with the $\overline{A^{*}}, A^{*} \in \mathcal{A}^{*}$, to be the Koszul dual of the DGA category \mathcal{A} (cf. [1]). We sum up our notations in the diagram

$$
\begin{array}{ccc}
\bar{A} & \mathcal{D} \mathcal{A} & A^{\vee} \\
\uparrow & T_{X} \uparrow \downarrow H_{X} & \downarrow \\
A^{* \wedge} & \mathcal{D} \mathcal{A}^{*} & \frac{A^{*}}{}
\end{array}
$$

If \mathcal{B} is another DGA category, a quasi-functor $Y: \mathcal{B} \rightarrow \mathcal{A}$ is compatible with the augmentations if $H_{Y} \bar{A} \xrightarrow{\sim} \bar{B}$ whenever $T_{Y} B^{\wedge} \xrightarrow{\sim} A^{\wedge}$.

By 7.3 c) the Koszul dual is determined by the above construction up to a quasi-equivalence compatible with the augmentation, i.e. if X^{\prime} and $\mathcal{A}^{* \prime}$ result from different choices made in the construction, there is an $\mathcal{A}^{* \prime}-\mathcal{A}^{*}$-bimodule Y having property (P) such that $T_{Y}: \mathcal{D} \mathcal{A}^{*} \rightarrow \mathcal{D} \mathcal{A}^{* \prime}$ satisfies $T_{X} T_{Y} \xrightarrow{\sim} T_{X}, T_{Y} A^{* \wedge} \xrightarrow{\sim} A^{* / \wedge}$ and

$$
H_{Y} \overline{A^{* \prime}} \xrightarrow{\sim} H_{Y} H_{X^{\prime}} A^{\vee} \xrightarrow{\sim} H_{X} A^{\vee} \xrightarrow{\sim} \overline{A^{*}}
$$

for each $A \in \mathcal{A}$.

The Koszul dual defined in [2] is quasi-equivalent to the full subcategory of Dif \mathcal{A}^{*} formed by the $A^{* \wedge}[n(A)]$, where $n: \mathcal{A} \rightarrow \mathbf{Z}$ is a given 'weight function' for \mathcal{A}. Note that the morphism spaces of this category simply identify with the shifted spaces

$$
\mathcal{A}^{*}\left(A^{*}, B^{*}\right)[n(B)-n(A)], A, B \in \mathcal{A}
$$

Examples. a) Let \mathfrak{G} be a k-Lie algebra and $U(\mathfrak{G})$ its universal enveloping algebra. In the notations of 6.5 (with $R=k$), the Koszul dual of $A=U(\mathfrak{G})$ is quasi-equivalent to B.
b) Let V be a finite-dimensional k-vector space, $D V$ its dual over $k, \Lambda D V$ the exterior algebra on $D V$, and $S V$ the graded symmetric algebra on V. View $A=\Lambda D V$ as a DG algebra concentrated in degree 0 , and $B=S V$ as a DG algebra with the components $B^{n}=S^{n} V$ and vanishing differential. Define (commuting) right and left A-actions on ΛV by

$$
\begin{aligned}
& v^{*} \cdot\left(v_{1} \wedge \ldots \wedge v_{n}\right)=\sum_{i=1}^{n}(-1)^{i+1} v^{*}\left(v_{i}\right) v_{1} \wedge \ldots \widehat{v_{i}} \ldots \wedge v_{n} \\
& \left(v_{1} \wedge \ldots \wedge v_{n}\right) \cdot v^{*}=\sum_{i=1}^{n}(-1)^{n+i} v^{*}\left(v_{i}\right) v_{1} \wedge \ldots \widehat{v_{i}} \ldots \wedge v_{n}
\end{aligned}
$$

Endow the graded A - B-bimodule $X=S V \otimes \Lambda V$ with the differential

$$
d: X^{p} \rightarrow X^{p+1}, x \mapsto(-1)^{p} \sum_{i=1}^{n}\left(v_{i} \otimes v_{i}^{*}\right) x
$$

where the $v_{i}, 1 \leq i \leq n$, form a basis of V and $\left(v_{i}^{*}\right)$ is the dual basis. Then (B, X) is a lift of the trivial A-module k. Hence the Koszul dual of A is quasi-equivalent to B.
c) Let V be a finite-dimensional k-vector space, $I \subset \mathbf{Z}$ an interval and \mathcal{A}_{I} the DG category concentrated in degree 0 whose objects are the $i \in I$ and whose morphism spaces are the

$$
\mathcal{A}_{I}(i, j)=S^{j-i} V
$$

concentrated in degree 0 . For each $i \in I$ let $\bar{\imath}$ be the $\mathrm{DG} \mathcal{A}_{I}$-module concentrated in degree 0 with $\bar{\imath}(j)=k$ for $i=j$ and $\bar{\imath}(j)=0$ for $i \neq j$. Let \mathcal{B}_{I} be the DG category whose objects are the symbols $i^{*}, i \in I$ and whose morphism spaces are the stalk complexes

$$
\mathcal{B}_{I}\left(i^{*}, j^{*}\right)=\left(\Lambda^{i-j} D V\right)[j-i]
$$

Let X_{I} be the $\mathcal{A}_{I}-\mathcal{B}_{I}$-bimodule given by

$$
X_{I}\left(i, j^{*}\right)^{n}=\Lambda^{-n} V \otimes S^{n+j-i} V
$$

endowed with the differential given by left multiplication by $\sum_{i=1}^{n} v_{i}^{*} \otimes v_{i}$, where the $v_{i}, 1 \leq i \leq n$, form a basis of V and $\left(v_{i}^{*}\right)$ is the dual basis. Then $\left(\mathcal{B}_{I}, X_{I}\right)$ is a lift of $\{\bar{\imath}: i \in I\} \subset \mathcal{D} \mathcal{A}_{I}$. So the Koszul dual of \mathcal{A}_{I} is quasi-equivalent to \mathcal{B}_{I}. Clearly, the modules $i^{\vee}, i \in I$, are the unions of their finite-dimensional submodules and the functor $i^{\wedge} \longmapsto i^{\vee}$ is an equivalence. It therefore follows from the lemma on the 'symmetric' case (10.5) that the Koszul dual of \mathcal{B}_{I} is quasi-equivalent to \mathcal{A}_{I}.
10.3 The double dual. The composition of H_{X} with the functor $T_{X_{\vee}}: \mathcal{D} \mathcal{A}^{\vee} \rightarrow \mathcal{D} \mathcal{A}$ of 10.1 induces a functor $\mathcal{A}^{\vee} \rightarrow\left\{\overline{A^{*}}: A \in \mathcal{A}\right\} \subset \mathcal{D} \mathcal{A}^{*}$. Thus (7.3 a), we have a quasi-functor $Y: \mathcal{A}^{\vee} \rightarrow \mathcal{A}^{* *}$, which is a quasi-equivalence iff the restriction of $H_{X}: \mathcal{D} \mathcal{A} \rightarrow \mathcal{D} \mathcal{A}^{*}$ to the subcategory formed by the $A^{\vee}[n], A \in \mathcal{A}, n \in \mathbf{Z}$, is fully faithful.

We endow \mathcal{A}^{\vee} with the augmentation defined by

$$
\overline{A^{\vee}}\left(B^{\vee}\right)=D(\operatorname{Dif} \mathcal{A})\left(\bar{A}, B^{\vee}\right) \xrightarrow{\sim} D D \bar{A}(B)
$$

Lemma. The quasi-functor $Y: \mathcal{A}^{\vee} \rightarrow \mathcal{A}^{* *}$ is compatible with the augmentations.

Proof. Let $\left(\mathcal{A}^{* *}, X_{*}\right)$ be the chosen lift for the $\overline{A^{*}}, A \in \mathcal{A}$. Recall that we assume that X_{*} has property (P) as a bimodule. Fix $A \in \mathcal{A}$. We have to show that $\overline{A^{\vee}} \sim H_{Y} \overline{A^{* *}}$. By definition $H_{Y} \overline{A^{* *}}=H_{Y} H_{X_{*}} A^{* \vee}$. We will show that $H_{Y} H_{X_{*}} A^{* \vee} \xrightarrow{\sim} \overline{A^{\vee}}$ by explicitly exhibiting a quasiisomorphism. For short we write ${ }^{\vee}(?, ?)$ for ($\left.\operatorname{Dif} \mathcal{A}^{\vee}\right)(?, ?), \ldots$ We have the following series of morphisms of DG k-modules, functorial in $B^{\vee} \in \mathcal{A}^{\vee}$

$$
\begin{aligned}
\left(H_{Y} H_{X_{*}} A^{* \vee}\right)\left(B^{\vee}\right) & \xrightarrow{\sim}{ }^{\vee}\left(B^{\vee \wedge}, H_{Y} H_{X_{*}} A^{* \vee}\right) \xrightarrow{\sim}{ }^{*}\left(T_{X_{*}} T_{Y} B^{\vee \wedge}, A^{* \vee}\right) \\
& \xrightarrow{\sim} D^{*}\left(A^{* \wedge}, T_{X_{*}} T_{Y} B^{\vee \wedge}\right) \leftarrow D^{*}\left(A^{* \wedge}, H_{X} T_{X_{\vee}} B^{\vee \wedge}\right) .
\end{aligned}
$$

The last arrow is induced by the morphism

$$
T_{X_{*}} T_{Y} \rightarrow H_{X} T_{X \vee}
$$

of DG functors Dif $\mathcal{A}^{\vee} \rightarrow \operatorname{Dif} \mathcal{A}^{*}$ exhibited in remark 7.3. It is a quasi-isomorphism since $B^{\vee \wedge} \in$ $\mathcal{H}_{p}^{b} \mathcal{A}^{\vee}(7.3 \mathrm{~b})$. We continue the series of morphisms:

$$
\begin{aligned}
D^{*}\left(A^{* \wedge}, H_{X} T_{X \vee} B^{\vee \wedge}\right) & \stackrel{\sim}{ } D\left(T_{X} A^{* \wedge}, T_{X \vee} B^{\vee \wedge}\right) \\
& \stackrel{\sim}{ } D\left(T_{X} A^{* \wedge}, B^{\vee}\right)
\end{aligned}
$$

since by construction $T_{X_{\vee}} B^{\vee \wedge} \xrightarrow{\sim} X_{\vee}\left(?, B^{\vee}\right) \xrightarrow{\sim} B^{\vee}$ in Dif \mathcal{A}. Now since $T_{X} A^{* \wedge}$ is quasi-equivalent to \bar{A}, we have a quasi-isomorphism

$$
D\left(T_{X} A^{* \wedge}, B^{\vee}\right) \leftarrow D\left(\bar{A}, B^{\vee}\right)
$$

By definition the last term is isomorphic to $\overline{A^{\vee}}\left(B^{\vee}\right)$.
10.4 Properties of \mathcal{A}^{*}. Let M be a DG \mathcal{A}-module and $n \in \mathbf{N}$. By definition we have $\operatorname{sdim} M \leq n$ (resp. $\operatorname{pdim} M \leq n$, resp. $\operatorname{idim} M \leq n)$ if there is a sequence

$$
0=M_{-1} \rightarrow M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow \ldots \rightarrow M_{n}=M
$$

of morphisms of $\mathcal{D} \mathcal{A}$ such that in each triangle

$$
M_{i-1} \rightarrow M_{i} \rightarrow Q_{i} \rightarrow M_{i-1}[1], 0 \leq i \leq n
$$

the module Q_{i} is isomorphic to a finite direct sum of modules of the form $\bar{A}[n]$ (resp. $A^{\wedge}[n]$, resp. $A^{\vee}[n]$), $A \in \mathcal{A}, n \in \mathbf{Z}$. The (possibly infinite) numbers $\operatorname{sdim} M, \operatorname{pdim} M$ and $\operatorname{idim} M$ are referred to as the semi-simple, the projective, and the injective dimension of M, respectively.

Let $\nu: \operatorname{Dif} \mathcal{A} \rightarrow \operatorname{Dif} \mathcal{A}$ be the functor defined by

$$
(\nu M)(A)=D(\operatorname{Dif} \mathcal{A})\left(M, A^{\wedge}\right)
$$

For example, we have $\nu A^{\wedge}=A^{\vee}$ by the definition of A^{\vee} for each $A \in \mathcal{A}$. We have a natural transformation

$$
D(\operatorname{Dif} \mathcal{A})(M, N) \rightarrow(\operatorname{Dif} \mathcal{A})(N, \nu M)
$$

which is defined as follows: Given a linear form φ on $(\operatorname{Dif} \mathcal{A})(M, N)$ and an $f \in(\operatorname{Dif} \mathcal{A})\left(A^{\wedge}, N\right) \simeq$ $N(A)$, the associated linear form on ($\operatorname{Dif} \mathcal{A})\left(M, A^{\wedge}\right)$ maps g to $\varphi(f g)$. Clearly this is an isomorphism for $M=B^{\wedge}[n], B \in \mathcal{A}, n \in \mathbf{Z}$, and therefore a quasi-isomorphism for $M \in \mathcal{H}_{p}^{b} \mathcal{A}$.

Lemma.
a) If $\operatorname{sdim} M<\infty$ and $\operatorname{pdim} M<\infty$ then $H_{X} \mathbf{L} \nu M \xrightarrow{\sim}(\mathbf{L} \nu) H_{X} M$ in $\mathcal{D} \mathcal{A}^{*}$.
b) For each $A \in \mathcal{A}$ we have

1) $\operatorname{pdim} \overline{A^{*}} \leq \operatorname{sdim} A^{\vee}$
2) $\operatorname{sdim} A^{* \wedge} \leq i \operatorname{dim} \bar{A}$
3) $i \operatorname{dim} \overline{A^{*}} \leq \operatorname{sdim} A^{\wedge}$
4) $\operatorname{sdim} A^{* \vee} \leq p \operatorname{dim} \bar{A}$

Proof. a) Since $\operatorname{sdim} M<\infty$, we have $T_{X} M \in \mathcal{H}_{p}^{b} \mathcal{A}^{*}$ and $M \xrightarrow{\sim} T_{X} N$ for $N \xrightarrow{\sim} H_{X} M$. We assume that N (and hence $T_{X} N$) has property (P). We have to show that $H_{X} \nu T_{X} N \sim \sim \sim N$. We write * $(?, ?)$ and $(?, ?)$ instead of $\left(\operatorname{Dif} \mathcal{A}^{*}\right)(?, ?)$ and $(\operatorname{Dif} \mathcal{A})(?, ?)$. We have the following series of quasi-isomorphisms functorial in $A^{*} \in \mathcal{A}^{*}$

$$
\left(H_{X} \nu T_{X} N\right)\left(A^{*}\right) \rightarrow^{*}\left(A^{* \wedge}, H_{X} \nu T_{X} N\right) \rightarrow\left(T_{X} A^{* \wedge}, \nu T_{X} N\right) .
$$

Since $T_{X} N \in \mathcal{H}_{p}^{b} \mathcal{A}$ and $N \in \mathcal{H}_{p}^{b} \mathcal{A}^{*}$, we also have the following quasi-isomorphisms:

$$
\left(T_{X} A^{* \wedge}, \nu T_{X} N\right) \rightarrow D\left(T_{X} N, T_{X} A^{* \wedge}\right) \rightarrow D^{*}\left(N, A^{* \wedge}\right)=(\nu N)\left(A^{*}\right)
$$

b) Assertions 1) and 2) are trivial since $H_{X} \bar{B} \xrightarrow[\rightarrow]{\sim} B^{* \wedge}, B \in \mathcal{A}$, and $H_{X} A^{\vee}=\bar{A}, A \in \mathcal{A}$. For 3) we use that

$$
\overline{A^{*}} \sim H_{X} A^{\vee} \underset{\sim}{\sim} H_{X} \nu A^{\wedge} \xrightarrow{\sim}(\mathbf{L} \nu) H_{X} A^{\wedge}
$$

if $\operatorname{sdim} A^{\wedge}<\infty$, and $B^{* \vee}=(\mathbf{L} \nu) H_{X} \bar{B}$ for each $B \in \mathcal{A}$. For 4) we use that $A^{* \vee} \xrightarrow{\sim} \mathbf{L} \nu H_{X} \bar{A} \xrightarrow{\sim}$ $H_{X} \mathbf{L} \nu \bar{A}$ if $\operatorname{pdim} \bar{A}<\infty$ and $\overline{B^{*}}=H_{X} \mathbf{L} \nu B^{\wedge}$ for each $B \in \mathcal{A}$.
10.5 Three special cases. We consider three cases where \mathcal{A}^{\vee} is quasi-equivalent to $\mathcal{A}^{* *}$, and there is a fully faithful embedding relating $\mathcal{D} \mathcal{A}$ and $\mathcal{D} \mathcal{A}^{*}$.

Lemma. (The 'finite' case) Suppose that pdim $\bar{A}<\infty$ and $\operatorname{sdim} A^{\wedge}<\infty$ for all $A \in \mathcal{A}$.
a) $\operatorname{sdim} A^{* \vee}<\infty$ and idim $\overline{A^{*}}<\infty$ for all $A^{*} \in \mathcal{A}^{*}$.
b) T_{X} and H_{X} are quasi-inverse equivalences between $\mathcal{D} \mathcal{A}^{*}$ and $\mathcal{D} \mathcal{A}$.
c) We have quasi-equivalences $\mathcal{A} \xrightarrow{\sim} \mathcal{A}^{\vee} \xrightarrow{\sim} \mathcal{A}^{* *}$.

Examples. a) The category \mathcal{B}_{I} of 10.2 c) for finite I.
b) Let Λ be a finite-dimensional k-algebra of finite global dimension all of whose simple modules are one-dimensional. We take \mathcal{A} to be the k-linear category formed by chosen representatives of the indecomposable projective A-modules and for each $A \in \mathcal{A}$ we take \bar{A} to be the head of A.

Proof. a) holds by 10.4 b).
b) Since $\operatorname{pdim} \bar{A}<\infty$, we have $\bar{A} \in \mathcal{H}_{p}^{b} \mathcal{A}$ for each $A \in \mathcal{A}$. Moreover, since sdim $B^{\wedge}<\infty$, the triangulated subcategory generated by the \bar{A} contains each $B^{\wedge}, B \in \mathcal{A}$. Hence the $\bar{A}, A \in \mathcal{A}$, form a system of small generators for $\mathcal{D \mathcal { A }}$ and the assertion follows from 6.1 a) and 6.2.
c) Since H_{X} is fully faithful, \mathcal{A}^{\vee} is quasi-equivalent to $\mathcal{A}^{* *}(10.3)$. Since sdim $A^{\wedge}<\infty$ for all $A \in \mathcal{A}$, we have

$$
\infty>\operatorname{dim} \mathrm{H}^{n} A^{\wedge}(B)=\operatorname{dim} \mathrm{H}^{n} \mathcal{A}(A, B)
$$

for all $A, B \in \mathcal{A}$ so that $\mathcal{A} \rightarrow \mathcal{A}^{\vee}$ is a quasi-equivalence (example 7.2).
Lemma. (The 'exterior' case) Suppose that $\operatorname{sdim} A^{\wedge}<\infty$ and $\operatorname{sdim} A^{\vee}<\infty$ for all $A \in \mathcal{A}$.
a) $p \operatorname{dim} \overline{A^{*}}<\infty$ and $\operatorname{idim} \overline{A^{*}}<\infty$ for each $A^{*} \in \mathcal{A}^{*}$.
b) T_{X} and H_{X} induce quasi-inverse equivalences between $\mathcal{H}_{p}^{b} \mathcal{A}^{*}$ and the smallest full triangulated subcategory of $\mathcal{D} \mathcal{A}$ containing the $\bar{A}, A \in \mathcal{A}$.
c) $T_{X^{\top}}: \mathcal{D} \mathcal{A} \rightarrow \mathcal{D} \mathcal{A}^{*}$ is fully faithful.
d) We have quasi-equivalences $\mathcal{A} \simeq \mathcal{A}^{\vee} \simeq \mathcal{A}^{* *}$.

Remark. Part b) yields theorem 16 of [2].

Examples. a) Example 10.2 b).
b) The category \mathcal{B}_{I} of example 10.2 c).
c) If Λ is a finite-dimensional algebra of arbitrary global dimension with one-dimensional simples, we can proceed as in example b) of the 'finite case'.

Proof. a) holds by 10.4 b). By the definition of 'lift' (7.3) we have b).
c) Let \mathcal{T} be the full triangulated subcategory of $\mathcal{D} \mathcal{A}$ generated by the $\bar{A}, A \in \mathcal{A}$. The restriction of H_{X} to \mathcal{T} is fully faithful (7.3). Since $\mathcal{H}_{p}^{b} \mathcal{A}$ is contained in \mathcal{T}, H_{X} is fully faithful on $\mathcal{H}_{p}^{b} \mathcal{A}$, and $H_{X} A^{\wedge}$ lies in $\mathcal{H}_{p}^{b} \mathcal{A}^{*}$ for each $A \in \mathcal{A}$. In particular, $H_{X} A^{\wedge}$ is small for each $A \in \mathcal{A}$. Since $T_{X^{\top}}$ agrees with H_{X} on $\mathcal{H}_{p}^{b} \mathcal{A}(6.2 \mathrm{a})$, the assertion follows from 4.2 b$)$.
d) Since the $A^{\vee}, A \in \mathcal{A}$, lie in \mathcal{T}, \mathcal{A}^{\vee} is quasi-equivalent to $\mathcal{A}^{* *}$. Since the $A^{\wedge}, A \in \mathcal{A}$, lie in \mathcal{T}, we have

$$
\infty>\operatorname{dim} \mathrm{H}^{n} A^{\wedge}(B)=\operatorname{dim} \mathrm{H}^{n} \mathcal{A}(B, A)
$$

for all $A, B \in \mathcal{A}$, so that $\mathcal{A} \rightarrow \mathcal{A}^{\vee}$ is a quasi-equivalence (example 7.1).

Lemma. (The 'symmetric' case) Suppose that $\operatorname{pdim} \bar{A}<\infty$ and $\operatorname{dim} \bar{A}<\infty$ for all $A \in \mathcal{A}$.
a) $\operatorname{sdim} A^{* \wedge}<\infty$ and $\operatorname{sdim} A^{* \vee}<\infty$ for all $A^{*} \in \mathcal{A}^{*}$.
b) T_{X} and H_{X} induce quasi-inverse equivalences between $\mathcal{H}_{p}^{b} \mathcal{A}^{*}$ and the smallest full triangulated subcategory of $\mathcal{D} \mathcal{A}$ containing the $\bar{A}, A \in \mathcal{A}$.
c) $T_{X}: \mathcal{D} \mathcal{A}^{*} \rightarrow \mathcal{D} \mathcal{A}$ is fully faithful.
d) We have a quasi-equivalence $\mathcal{A}^{\vee} \rightarrow \mathcal{A}^{* *}$ if each $B^{\vee}, B \in \mathcal{A}$, lies in the smallest triangulated subcategory of $\mathcal{D} \mathcal{A}$ closed under direct sums and containing the $\bar{A}, A \in \mathcal{A}$.

Examples. In example 10.2 a), we have $\mathrm{p} \operatorname{dim} \bar{A}<\infty$ and $\operatorname{idim} \bar{A}<\infty$ if \mathfrak{G} is finite-dimensional. This also holds in 10.2 c). For 10.2 c) the assumption of d) is satisfied as well.

Proof. a) holds by 10.4 b). By the definition of 'lift‘ (7.3) we have b).
c) and d): By 4.2 b), T_{X} is fully faithful. So T_{X} induces an equivalence onto its image, which is precisely the smallest strictly full triangulated subcategory containing the $\bar{A}, A \in \mathcal{A}$, and closed under direct sums. A quasi-inverse is induced by H_{X}. Thus the restriction of H_{X} to the subcategory of $\mathcal{D} \mathcal{A}$ formed by the $B^{\vee}, B \in \mathcal{A}$, is fully faithful. Now d) follows by 10.3 .

References

[1] A. A. Beilinson, V. Ginsburg, V. A. Schechtman, Koszul duality, Journal of geometry and physics, 5 (1988), 317-350.
[2] A. A. Beilinson, V. Ginsburg, W. Soergel, Koszul duality patterns in representation theory, preprint, 1991.
[3] E. H. Brown, Cohomology theories, Ann. of Math., 75 (1962), 467-484.
[4] H. Cartan, S. Eilenberg, Homological algebra, Princeton University Press, 1956.
[5] P. Freyd, Abelian categories, Harper, 1966.
[6] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323-448.
[7] P. Gabriel, A. V. Roiter, Representations of finite-dimensional algebras, to appear in the Encyclopaedia of Mathematical Sciences of the Soviet Academy of Sciences.
[8] A. Grothendieck, Eléments de Géométrie algébrique III, Etude cohomologique des faisceaux cohérents, Publ. Math. IHES, 11 (1961).
[9] D. Happel, On the derived Category of a finite-dimensional Algebra, Comment. Math. Helv., 62 (1987), 339-389.
[10] G. Hochschild, B. Kostant, A. Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc., 102 (1962), 383-408.
[11] L. Illusie, Complexe cotangent et déformations II, Springer LNM, 283, 1972.
[12] B. Keller, Chain complexes and stable categories, Manus. Math., 67 (1990), 379-417.
[13] B. Keller, A remark on tilting theory and DG algebras, Manus. Math. 79 (1993), 247-252.
[14] B. Keller, D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris, 305, Série I, 1987, 225-228.
[15] S. Maclane, Homology, Springer-Verlag, 1963.
[16] D. Quillen, Higher Algebraic K-theory I, Springer LNM, 341, 1973, 85-147.
[17] A. Neeman, The Connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Preprint.
[18] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. of Math., 106, 1984, 351-414.
[19] J. Rickard, Morita theory for Derived Categories, Journal of the London Math. Soc., 39 (1989), 436-456.
[20] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc., 43 (1991), 37-48.
[21] G. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc., 108 (1965), 195-222.
[22] H. Toda, Composition methods in homotopy groups of spheres, Princeton University Press, 1962.
[23] J.-L. Verdier, Catégories dérivées, état 0, SGA $41 / 2$, Springer LNM, 569, 1977, 262-311.
B. Keller, Univ. Paris 7, U.F.R. de Math., Tour 45/55, 5e étage,

2, pl. Jussieu, 75251 Paris, France
keller@mathp7.jussieu.fr

[^0]: ${ }^{1}$ Supported by a grant of the Swiss National Foundation

