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DA is the localization [23] of HA with respect to the quasi-isomorphisms (4.1). It has in�nitedirect sums. Let HpA be the smallest strictly (=closed under isomorphisms) full triangulatedsubcategory of HA containing A and closed under in�nite direct sums. Each DG A-module M isquasi-isomorphic to a module pM 2 HpA. (3.1). The canonical projection HA ! DA restricts toan equivalence HpA ! DA (4.1). This is classical [11, VI, 10.2] for right bounded modules overnegative DG algebras (i.e. Mp = 0 for all p� 0 and Ap = 0 for all p > 0).The algebra A considered as a right DG A-module is small in DA, i.e. the functor (DA) (A; ?)commutes with in�nite direct sums. Moreover A is a generator of DA, i.e. DA coincides with itssmallest strictly full triangulated subcategory containing A and closed under in�nite direct sums.Now suppose that E is a Frobenius category [9] with in�nite direct sums and that the associatedstable category E admits a small generator X. Then there is a DG algebra A and an S-equivalenceG : E ! DA with GX �! A (4.3). This is an analogue of Freyd's and Gabriel's characterization ofmodule categories among abelian categories [5, Ex. 5.3 H] [6, Ch. V]. It suggests that in the studyof triangulated categories, categories of DG modules might take the rôle that module categoriesplay in the theory of abelian categories.Let B and C be DG algebras. A quasi-equivalence C ! B is a B-C-bimodule (i.e. a right-B-left-C-bimodule) E containing an element e 2 Z0E such that the mapsB ! E ; b 7! eb and C ! E ; c 7! ceinduce isomorphisms in homology. For example, if we are given a quasi-isomorphism ' : C ! B,we can take E =' BB and e = 1. Suppose that A is a DG algebra which is at as a k-module.There is an A-C-bimodule X such thatL(?
C X) : DC !DA ; M 7! (pM )
C X ;is an equivalence i� C is quasi-equivalent to B = Hom (T; T ) for some module T 2 HpA which isa small generator of DA (8.2). Here Hom (T; T ) is the DG algebra whose nth component consistsof the homogeneous graded morphisms f : T ! T of degree n and whose di�erential maps f tod � f � (�1)nf � d. It follows from ideas of Ravenel's [18] that a DG A-module is small in DA i�it is contained in the smallest strictly full triangulated subcategory of DA containing A and closedunder forming direct summands. We reproduce A. Neeman's proof of this result [17, 2.2] in 5.3.By applying suitable truncation functors to our DG algebras (9.1) we also generalize a resultof [20] on realizing S-equivalences as derived functors (cf. also [13]).Now suppose that k is a �eld. A DG augmented algebra is a DG algebra A endowed with a DGmodule A whose homology is isomorphic to k viewed as a DG k-module concentrated in degree0. There is a DG algebra A� and an A-A�-bimodule X such that L(X
A?) : DA� ! DA mapsA� to A and gives rise to an equivalence between the triangulated subcategories generated by A�and A (10.2). We put A� = RHomA(X;DA), where DA = Hom k(A; k). Then (A�; A�) is a DGaugmented algebra called the Koszul dual (cf. [1]) of (A;A). It is unique up to a quasi-equivalencecompatible with the augmentation. For example, if A = U (G) for some Lie algebra G, then A�2



may be taken to be Hom k(�G; k) with the shu�e product and the usual derivation (6.5). LetA_ = DDA. There is a canonical A��-A_-bimodule Y which in many cases gives rise to a quasi-equivalence A_ �! A�� (10.3). We consider three special cases where A_ is quasi-equivalent to A��and DA is related to DA� by a fully faithful embedding (10.5).I am grateful to A. Neeman for pointing out Theorem 5.3 to me and calling my attention tohis elegant proof in [17]. I thank the referee for his careful reading of the manuscript.1. Graded categories and DG categories1.1 Graded categories. Let k be a commutative ring. The tensor product over k will bedenoted by 
. A graded category is a k-linear category A whose morphism spaces are Z-gradedk-modules A (A;B) =ap2ZA (A;B)psuch that the composition maps A (A;B)
 A (B;C)! A (A;C)are homogeneous of degree 0, 8A;B;C 2 A. A simple example is the category Gra k of gradedk-modules V = `p2Z V p with(Grak) (V;W )p = ff 2 Hom k(V;W ) : f(V q) � W p+q ; 8 qg:A graded category A is concentrated in degree 0 if A (A;B)p = 0 for all p 6= 0, A;B 2 A. Itis then completely determined by the k-linear category A0 having the same objects as A and themorphism spaces A0 (A;B) = A (A;B)0.If A and B are graded categories, a graded functor F : A ! B is a k-linear functor whoseassociated maps F (A;B) : A (A;B)! B (FA;FB)are homogeneous of degree 0, 8A;B 2 A.Let A be a small graded category. The opposite graded category Aop has the same objects asA, its morphism spaces are Aop (A;B) = A (B;A), and the composition is given byAop (A;B)p 
Aop (B;C)q !Aop (A;C)p+q ; g 
 f 7! (�1)pqfg:A graded (right) A-module is a graded functor M : Aop ! Gra k. For each A 2 A we denoteby A^ the free A-module A (?; A). By de�nitionA^(f)g = (�1)pqg � f ; 8 f 2 A (C;B)p ; 8 g 2 A (B;A)q :We de�ne GA to be the category whose objects are graded A-modules and whose morphism spaces(GA) (M;N ) consist of the morphisms of functors f : M ! N such that fA : MA ! NA ishomogeneous of degree 0 for each A 2 A. 3



If A is concentrated in degree 0, GA identi�es with the category of sequences (Mn)n2Z ofA0-modules (=k-linear contravariant functors from A0 to the category of k-modules).We endow GA with the shift M 7!M [1]: By de�nition,(M [1]A)p = (MA)p+1 and (M [1]a)(m) = (�1)pq(Ma)(m)for a 2 A (B;A)p and m 2 (MA)q . For a morphism f :M ! N we put (f [1]A)p = (fA)p+1 . Theshift functor is clearly an autormorphism. Its nth iterate is denoted by M 7!M [n], n 2 Z.The graded category GraA has the same objects as GA and the morphisms spaces(GraA) (M;N ) �!ap2Z(GA) (M;N [p]):The composition of morphisms produced by f :M ! N [q] and g : L !M [p] is given by f [p] � g.We extend the shift functor to an automorphism of GraA in the obvious way.1.2 Di�erential graded categories. A di�erential graded category (=DG category) is agraded category A whose morphism spaces are endowed with di�erentials d (i.e. homogeneousmaps d of degree 1 with d2 = 0) such thatd(fg) = (df)g + (�1)pf(dg) ; 8 f 2 A (B;C)p ; 8 g 2 A (A;B):A simple example is the category Difk of di�erential k-modules whose morphism spaces(Difk) (V;W ) �! (Gra k) (V;W )are endowed with the di�erential mapping (fp) 2 (Gra k) (V;W )n to(d � fp � (�1)nfp+1 � d):If A and B are DG categories, a DG functor F : A ! B is a graded functor such thatF (df) = d(Ff) for all morphisms f of A. A quasi-isomorphism F : A ! B is a DG functor inducinga bijection objA ! objB and quasi-isomorphisms A (A;B)!A (FA;FB) for all A;B 2 A.Let A be a small DG category. Its opposite Aop is the opposite graded category of A endowedwith the same di�erential as A.A DG (right) A-module is a DG functorM : Aop ! Difk. Denote byM j the underlying gradedA-module ofM . The objects of the DG category DifA are the DG A-modules, its morphism spacesare the graded k-modules (DifA) (M;N ) = (GraA) (M j ; N j );endowed with the di�erential given bydf = d � f � (�1)pf � d;for each homogeneous f of degree p. One easily veri�es that this is well de�ned.4



If A is concentrated in degree 0, DG A-modules are in bijection with di�erential complexes ofA0-modules.For each A 2 A, the underlying graded module of the free module A^ is the free graded moduleassociated with A. The di�erential of A^(B) equals that of A (B;A). For each DG A-module Mand each A 2 A, the map (DifA) (A^;M ) �!M (A) ; f 7! (fA)(1A):is an isomorphism of DG k-modules ('Yoneda-isomorphism`).We lift the shift functor from graded modules to DG modules by de�ning the di�erential ofM [1] to be �d[1], where d :M !M [1] is the di�erential of M .2. Homotopy categories2.1 k-linear structures. Let A be a DG category. The category CA (resp. HA) has the sameobjects as DifA. Its morphism spaces are(CA) (M;N ) = Z0 (DifA) (M;N ) resp. (HA) (M;N ) = H0(DifA) (M;N ):Thus the morphisms of CA are homogeneous of degree 0 and commute with the di�erential. Themorphisms of HA are residue classes f of morphisms f of CA modulo null-homotopic morphisms,which by de�nition are of the form dr+ rd for some morphism r :M ! N [�1] of GA. We have acanonical projection functor CA ! HA. Two DG modules are homotopy equivalent if they becomeisomorphic in HA. If A is concentrated in degree 0, CA (resp. HA) identi�es with the category(resp. the homotopy category) of di�erential complexes of A0-modules.2.2 Exact and triangulated structures. We endow CA with an exact structure [16] byde�ning a conation (=admissible short exact sequence [7, x9], [12, App. A]) to be a sequenceL i!M p! Nsuch that the underlying sequence of graded A-modules is split short exact.We endow HA with the suspension functor S : HA ! HA ; M 7! SM = M [1]. We de�ne atriangle of HA to be an S-sequence [14] isomorphic to someL i!M p! N e! SL ;where (i; p) is a conation and e = rds, where r and s are chosen homogeneous morphisms ofdegree 0 such that ps = 1N , ri = 1L and rs = 0.Lemma.a) CA is a Frobenius category [9].b) HA is a triangulated category [23]. 5



Proof. a) Let F : CA ! GA be the forgetful functor. For each N 2 GA, let F�N resp. F�Nbe the DG A-modules de�ned by(F�N )(A) = NA� (NA)[1] ; d = � 0 10 0 � ; (F�N )(a) = � Na 0dNa (�1)pNa �(F�N )(A) = (NA)[�1]� NA ; d = � 0 10 0 � ; (F�N )(a) = � (�1)pNa 0(�1)pdNa Na � ;where A 2 Aop and a 2 Aop (A;B)p. For each M 2 CA, de�ne morphisms of DG A-modules�M = [1 d]t :M ! F�FM and 	M = [�d 1] : F�FM !M . We have bijections(GA) (FM;N ) �! (CA) (M;F�N ) ; f 7! (F�f)(�M )(GA) (N;FM ) �! (CA) (F�N;M ) ; f 7! (	M )(F�f):Thus F�N is injective and F�N is projective in CA for each N 2 GA. Since �M and 	M �t intoconations M �M�! F�FM �!M [1] ; M [�1] �! F�FM 	M�!M ;we can conclude that CA has enough projectives and enough injectives. Moreover, M is itselfprojective (resp. injective) i� it is a direct summand of F�FM (resp. of F�FM ). Since F�FM �!(F�FM )[1], we infer thatM is projective i� it is injective. For later use, we introduce the notationsPM = F�FM and IM = F�FM .b) HA identi�es with the stable category associated with CA. Thus the assertion follows from[9, 9.4]. 3. Resolution3.1 P-resolutions. Let A be a DG category. Its homology category H�A is the graded categorywith the same objects as A and with the morphism spaces(H�A) (A;B) = an2ZHnA (A;B):We have a canonical functor H� : CA ! GraH�A de�ned by(H�M )(A) = an2ZHnM (A):It induces a functor HA ! GH�Awhich will also be denoted by H�.A DG module N is acyclic if H�N=0. A DG module Q is relatively projective (cf. [15, X, x10])if, in CA, it is a direct summand of a direct sum of modules of the form A^[n], A 2 A, n 2 Z. ADG module has property (P) if it is homotopy equivalent to a DG module P admitting a �ltration0 = F�1 � F0 � F1 � : : :Fp � Fp+1 : : : � P ; p 2Nin CA such that 6



(F1) P is the union of the Fp, p 2N,(F2) the inclusion morphism Fp�1 � Fp splits in GA, 8 p 2 N,(F3) the subquotient Fp=Fp�1 is isomorphic in CA to a relatively projective module, 8 p 2N.Note that (F1) and (F2) imply that the following sequence (�) is split exact in GA and henceproduces a triangle in HA ap2NFp ��! aq2NFq can�! P ;here � has the components Fp [1 ��]t�! Fp � Fp+1 can�! aq2NFq ; � = incl :If A is concentrated in degree 0, a DG module P with (F1), (F2) and (F3) yields a complex ofprojective A0-modules. Conversely a right bounded complex of projective A0-modules gives rise toa DG module P with (F1), (F2) and (F3): Indeed, if P q = 0 for q > 0, we can take Fp = `q>�p P q.Theorem.a) We have (HA) (P;N ) = 0 for each acyclic N and each P with property (P).b) For each M 2 HA there is a triangle of HApM !M ! aM ! SpM;where aM is acyclic and pM has property (P).c) Let : : :! Qn ! Qn�1 ! : : :! Q1 ! Q0 ! H�M ! 0be a projective resolution of H�M in GH�A such that Qn �! H�Qn for a relatively projectiveQn 2 CA, 8n. Then pM is homotopy equivalent to a module P admitting a �ltration Fpwith (F1), (F2) and such that Fp=Fp�1 �! Qp[p] in CA, 8 p.We shall refer to pM as a P-resolution of M . If A is concentrated in degree 0, assertion c)implies that if M is a (possibly unbounded) complex of A0-modules and Qp� a given projectiveresolution of its pth homology, thenM is quasi-isomorphic to a complex pM whose nth componentis `p�q=nQpq .We de�ne HpA to be the full subcategory of HA formed by the modules with property (P).Applying suitable Hom-functors to the triangle of b) and using a) we see that we have(HA) (P;pM ) �! (HA) (P;M ) and (HA) (M;N ) � (HA) (aM;N )for all P 2 HpA and all acyclic N . In particular, if (HA) (M;N ) = 0 for each acyclic N , we have0 = (HA) (M;aM ) � (HA) (aM;aM ), so that aM = 0 and, by b), pM �! M . Hence a DG7



module M lies in HpA i� (HA) (M;N ) = 0 for each acyclic N . Therefore HpA is a triangulatedsubcategory of HA. The inclusion HpA � HA admits the right S-adjoint [14] M 7! pM .It follows from a) that each triangleP !M ! N ! P [1];where N is acyclic and P has property (P), is canonically isomorphic to the triangle of b). If(Mi)i2I is a family of modules, we can apply this to the triangleapMi !aMi !aaMi !apMi[1]to conclude that p and a commute with in�nite direct sums.Proof. a) The assertion holds for each P of the form A^[n], A 2 A, n 2 Z, since(HA) (A^[n]; N ) = H0(DifA)(A^; N [�n]) = H�nN (A) = 0for each acyclic N . Hence it holds for relatively projective P . It also holds if Fp = P for p � 0since such a P lies in the triangulated subcategory generated by the relatively projectives. In thegeneral case, we apply HA (?; N ) to the triangle produced by the sequence (�) and obtain an exactsequence Yq2Z(HA) (Fq ; N ) (HA) (P;N ) Yp2Z(HA) (Fp[1]; N ):Its outer terms vanish by the foregoing case.b), c) Following [15, XII, 11] we endow CA with another exact structure: Its class of conationsE consists of the sequences L!M ! Nsuch that 0! L(A)n !M (A)n ! N (A)n ! 0and 0! HnL(A)! HnM (A)! HnN (A)! 0are short exact sequences of k-modules, for all A 2 A, n 2 Z. This is equivalent to requiring that0! L(A)n !M (A)n ! N (A)n ! 0and 0! ZnL(A)! ZnM (A)! ZnN (A)! 0be short exact for all A 2 A, n 2 Z. The isomorphisms(CA) (A^[�n];M ) = Z0 (DifA) (A^;M [n]) = ZnM (A)(CA) (PA^[�n];M ) =M (A)n(2.2) show that if Q is relatively projective, then Q and PQ are E-projective. It is also clear thatfor each module M we may �nd an E-projective Q0 = Q � PQ00 and a morphism p : Q0 ! Minducing surjectionsQ0(A)n !M (A)n and ZnQ0(A)! ZnM (A) ; 8A 2 A; 8n 2 Z:8



If K ! Q0 is a kernel of p in CA, it is clear that K ! Q0 !M is indeed a conation. Thus, CAhas enough E-projectives and we can inductively construct an E-resolution of M , i.e. an E-acycliccomplex [12, 4.1] : : :! Q0n ! Q0n�1! : : :! Q01 ! Q00 "�!M ! 0with E-projective Q0n = Qn � PQ00n, where Qn and Q00n are relatively projective. Under the hy-potheses of c), we can re�ne this construction as follows: The map(CA) (Q;M )! (GH�A) (H�Q;H�M )is clearly surjective if Q is of the form A^[n] for some A 2 A, n 2 Z. Hence it is surjective forrelatively projective Q. We can therefore lift the given morphism Q0 ! H�M to a morphismp : Q0 ! M of CA. Now we choose an E-projective PQ000 , with relatively projective Q000 , and amorphism q : PQ000 !M inducing epimorphismsPQ000(A)n !M (A)n ; 8A 2 A; 8n 2 Z:Then Q00 = Q0 � PQ000 [p q]�!Mis the required deation (=admissible epimorphism) with E-projective Q00. Observe that, sincePQ000 is null-homotopic, Q00 is homotopy equivalent to Q0. Since H� : CA ! GH�A carries E-conations to short exact sequences, we can successively lift the given resolution of H�M to anE-acyclic sequence : : :! Q0n ! Q0n�1! : : :! Q01 ! Q00 "�!M ! 0such that Q0n = Qn � PQ00n for all n 2N. IfK = (: : :! Kn dnK�! Kn+1 ! : : :) ; n 2 Zis a di�erential complex over CA, its total module TotK has the underlying graded modulean2ZKn[�n]and the di�erential d = dKn[�n] + dnK:Put pM = Tot (: : :! Q0m ! Q0m�1 ! : : :! Q01 ! Q00 ! 0! 0! : : :)and F 0p = Tot (: : :! 0! 0! Q0p ! Q0p�1 ! : : :! Q01 ! Q00 ! 0! 0! : : :) ; p � 0:Then pM with the �ltration by the F 0p clearly satis�es (F1) and (F2), and F 0p=F 0p�1 = Q0p[p],8 p. By the lemma we will prove in 3.4, this implies that pM has property (P). The morphism9



" : Q00 !M induces a morphism ' : pM !M . It remains to be shown that H�' is invertible or,equivalently, that N = Tot (: : :! Q0m ! : : :! Q01 ! Q00 !M ! 0! : : :)is acyclic. This follows from the lemma we will prove in 3.3 applied to each N (A), A 2 A.3.2 I-resolutions. We record without proof the following 'dual` of 3.1. Fix an injectivegenerator E of the category of k-modules. For each A 2 A de�ne the A-module A_ byB 7! (Difk) (A (A;B); E);where E is viewed as a DG k-module concentrated in degree 0. A DG A-module is relativelyinjective if, in CA, it is a direct summand of a direct product of modules A_[n], A 2 A, n 2 Z. ADG module has property (I) if it is homotopy equivalent to a DG module I admitting a �ltrationI = F0 � F1 � : : : � Fp � Fp+1 � : : : ; p 2N ;such that(F1') the canonical morphism I ! lim � I=Fp is invertible,(F2') the inclusion morphism Fp+1 � Fp splits in GA for all p 2N,(F3') the subquotient Fp=Fp+1 is isomorphic in CA to a relatively injective module, 8 p 2 N.By (F1') and (F2') the following sequence (�0) is split exact in GA and hence produces a trianglein HA I can�! Yp2N I=Fp �0�! Yq2N I=Fq ;here �0 has the componentsYp2N I=Fp can�! I=Fq+1 � I=Fq [�� 1]�! I=Fq ;where � is the canonical projection I=Fq+1 ! I=Fq.Theorem.a) We have (HA) (N; I) = 0 for each acyclic N and each I with property (I).b) For each M 2 HA there is a triangle of HAa0M !M ! iM ! Sa0M ;where a0M is acyclic and iM has property (I).10



c) Let 0! H�M ! J0 ! J1 ! : : :! Jn ! Jn+1 ! : : :be an injective resolution of H�M in GH�A such that Jn �! H�Jn for a relatively injectiveJn 2 CA, 8n. Then iM is homotopy equivalent to a module I admitting a decreasing �ltrationFp with (F1') and (F2') and such that Fp=Fp+1 �! Jp[�p] in CA for all p 2N.3.3 Acyclic total complexes. Let N = ap;q2ZNpqbe a bigraded abelian group with commuting di�erentials dI and dII of bidegree (1; 0) and (0; 1),respectively. Let TotN anddTotN be the di�erential graded groups with components(TotN )n = ap+q=nNpq resp. (dTotN )n = Yp+q=nNpq ; n 2 Z ;and the di�erential given by dt = dIt+ (�1)pdIIt ; t 2 Npq:For r 2 Z denote by N�r (resp. B�r , Z�r , H�r) the di�erential graded groups with componentsNnr (resp. Imdn;r�1II ; Ker dnrII ; Ker dnrII =Imdn;r�1II ) ; n 2 Z ;and the di�erential induced by dI .Lemma. If N�r and H�r are acyclic for all r 2 Z, then TotN and dTotN are acyclic.Proof. If N�r is acyclic for all r 2 Z, the same holds for the B�r . Thus if N�r and H�rare acyclic for all r 2 Z, then so are the Z�r . To prove that TotN is acyclic we consider thedi�erential bigraded subgroups Nm � N , m � 1, with N�rm = 0 for r 62 [�m;m], N�rm = N�r forr 2 [�m;m � 1], and N�mm = Z�m. Clearly each TotNm admits a �nite �ltration with acyclicsubquotients and hence is acyclic. Since we haveTotN � Tot lim�!Nm � lim�! TotNm ;the assertion follows. Similarly, to prove thatdTotN is acyclic, we consider the quotients Qm of N ,m � 1, with Q�rm = 0 for r 62 [�m;m], Q�rm = N�rm for r 2 [�m + 1;m] and Q�;�mm = B�;�m+1. Asabove, each dTotQm is acyclic and we havedTotN �!dTot lim � Qm �! lim �dTotQm:Moreover for each m � 1, the components of the canonical morphismpm :dTotQm+1 !dTotQm11



are surjective. Therefore, pm also induces surjections onto the groups BndTotQm = ZndTotQm,n 2 Z. By the Mittag-Le�er-criterion [8, 0III , 13.1],dTotN is acyclic.3.4 Adjusting limits. Let P 0 be a DG A-module andF 00 � F 01 � : : : � F 0p � : : : � P 0a �ltration satisfying (F1) and (F2). Suppose that for each p � 1 a DG moduleQp and a homotopyequivalence F 0p=F 0p�1 �! Qp are given.Lemma. The DG module P 0 is homotopy equivalent to a DG module P admitting a �ltrationFp satisfying (F1) and (F2) and such that Fp=Fp�1 is isomorphic to Qp in CA, 8 p.Proof. We will inductively construct a sequenceF0 � F1 � : : : � Fp � : : :and a sequence of homotopy equivalences fp : F 0p ! Fp such that the squaresF 0p ! F 0p+1fp # # fp+1Fp ! Fp+1are commutative (in HA), the sequence Fp satis�es (F2) and Fp=Fp�1 �! Qp in CA, 8 p. Ofcourse, we put F0 = Q0 and let f0 : F 00 ! F0 be the given homotopy equivalence. Suppose thatthe construction has been completed for all p < n. We haveExtCA(F 0n=F 0n�1; F 0n�1) �! ExtCA(Qn; Fn�1) ;where ExtCA denotes classes of extensions in the exact category CA (2.2). We choose a conationFn�1! Fn ! Qnwhose class corresponds to that of the given extension of F 0n=F 0n�1 by F 0n�1. Then we have acommutative diagram F 0n�1 ! F 0n ! F 0n=Fn�1 ! F 0n�1[1]fn�1 # # # fn�1[1]Fn�1 ! Fn ! Qn ! Fn�1[1]We choose fn so as to �t into the diagram. Now let P be the union of the Fp. Using the sequence(�) of 3.1 we get triangles ap2ZF 0p ��!aq2ZF 0q �! P 0 �! Sap2ZF 0pap2ZFp ��!aq2ZFq �! P �! Sap2ZFp:12



The fp yield a commutative square `p2Z F 0p ��! `q2Z F 0qa # # b`p2Z Fp ��! `q2Z Fqwhere a and b are homotopy equivalences. Using axiom TR3 [23, Ch. I, x1] and the �ve lemma wesee that P is homotopy equivalent to P 0.4. Derived categories and stable categories4.1 Derived categories. Let A be a small DG category. Let � be the class of quasi-isomorphisms of HA (i.e. morphisms s such that H�s is invertible). By de�nition [11, Ch. VI, 10]the derived category of A is the localization DA = (HA)[��1] [23]. It follows from theorem 3.1that the canonical functor HA ! DA induces an equivalence HpA! DA. If A is concentrated indegree 0, DA identi�es with the unbounded derived category of the category of A0-modules. Asin the case of the derived category of an exact category, one constructs [7, 12.3] a functor whichcompletes the images in DA of pointwise short exact sequences of CA into triangles.Since (in�nite) direct sums of acyclic modules are acyclic, DA has direct sums, and the canonicalfunctors CA ! HA ! DA commute with direct sums.4.2 Small objects and generators. Let A be a small DG category and T a k-linear trian-gulated category with in�nite direct sums. An object X 2 T is small if T (X; ?) commutes with(in�nite) direct sums. By the �ve lemma, if two vertices of a triangle of T are small, then so is thethird one. Each A^ is small in DA. Indeed, let (Mi)i2I be a family of modules and A 2 A. Then(DA)(A^;ai2IMi) �! H0aMi(A) �!aH0Mi(A) �!ai2I(DA)(A^;Mi):Let HbpA be the smallest strictly (=closed under ismorphisms) full triangulated subcategory ofHpA containing the A^, A 2 A.A set X � T is a set of generators if T coincides with its smallest strictly full triangulatedsubcategory containing X and closed under direct sums. It follows from the sequence (�) of 3.1that the A^, A 2 A, form a set of generators for DA.Let F; F 0 : DA ! T be two k-linear S-functors commuting with direct sums and � : F ! F 0 amorphism of S-functors [14].Lemma.a) The restriction of F to HbpA is fully faithful i� F induces bijections(DA) (A^; B^[n])! T (FA^; FB^[n])for all A;B 2 A, n 2 Z. 13



b) F is fully faithful if F jHbpA is fully faithful and FA^ is small for each A 2 A.c) F is an equivalence i� F jHbpA is fully faithful and the FA^, A 2 A, form a set of smallgenerators for T .d) The morphism � : F ! F 0 is invertible i� �A^ is invertible for each A 2 A.Proof. a) results from 'devissage` (cf. e.g. [9, 10.10]).b) Let A 2 A. By the �ve lemma, the modules M such that the map(DA) (A^;M )! T (FA^; FM )is bijective form a strictly full triangulated subcategory of DA. It contains all the generatorsB^, B 2 A, and is closed under in�nite direct sums (since both, A^ and FA^, are small and Fcommutes with in�nite direct sums). This subcategory therefore coincides with DA. The sameargument shows that for �xed M 2 DA, the map(DA) (L;M )! T (FL;FM )is bijective for each L 2 DA.c) is now clear.d) The DG modulesM with invertible �M form a strictly full triangulated subcategory of DAwhich moreover is closed under in�nite direct sums. This subcategory equals DA i� it containsthe A^, A 2 A, as these form a set of generators for DA.4.3 Stable categories. Let E be a k-linear Frobenius category [9] with (in�nite) direct sums.Since E has enough injectives, it is clear that direct sums of conations (=admissible short exactsequences) of E are conations. Moreover, direct sums of injectives (=projectives in E) are injective.In particular, the associated stable category E is a triangulated category with in�nite direct sums.Suppose that E admits a set of small generators X � E .Theorem. (cf. [5, Ex. 5.3 H]) There is a DG category A and an S-equivalence G : E ! DAgiving rise to an equivalence between X � E and the full subcategory of DA formed by the freemodules A^, A 2 A.Proof. Let eE be the category of acyclic [14, 1.5] di�erential complexesP = (: : :! Pn d! Pn�1! : : :) ; n 2 Zwith projective components Pn 2 E . Endow eE with the pointwise split short exact sequences. TheneE is a Frobenius category and it is easy to see that the functor P 7! Z0 P induces an S-equivalenceG1 : eE ! E :14



For each X 2 X , choose eX 2 eE with Z0 eX �! X. Let A be the DG category whose objects are theeX and whose morphism spaces are A ( eX; eY ) �!Hom ( eX; eY ) ;where for P;Q 2 eE , the DG k-module Hom (P;Q) has the componentsYp2Z E (P p; Qn+p) ; n 2 Z ;and the di�erential given by d(fp) = (d � fp � (�1)nfp+1 � d). Note thateE (P; SnQ) �! HnHom (P;Q):It is clear that the composition of the exact functoreE ! CA ; P 7! ( eX 7! Hom ( eX;P ))with the canonical projection CA ! DA vanishes on projectives of eE (=null-homotopic complexesin eE ) and hence induces an S-functor G2 : eE ! DA:For eX 2 eX the module G2 eX is isomorphic to eX^, the free module associated with eX 2 A. If Pi,i 2 I, is a family in eE and eX 2 eX , the nth homology of the morphismaHom ( eX;Pi)!Hom ( eX;aPi)identi�es with a eE ( eX;SnPi)! eE ( eX;aSnPi) ;which is bijective since eX is small in eE . Hence G2 commutes with direct sums. We have alreadyseen that G2 induces bijectionseE ( eX;Sn eY ) �! HnHom ( eX; eY ) �! HnA ( eX; eY ) �! (DA) (G2 eX;SnG2 eY ) ; eX; eY 2 eX ; n 2 Z:By the argument of 4.2 b), we conclude that G2 is fully faithful. The essential image of G2 containsthe generators A^, A 2 A, of DA. So G2 is essentially surjective. We let G be the composition ofG2 with an S-quasi-inverse of G1. 5. Small objectsLet A be a small DG category. Each free module A^, A 2 A, is small in DA, and so are theobjects of the smallest strictly full triangulated subcategory of DA containing the A^, A 2 A, andclosed under forming direct summands. Ravenel's ideas [18] imply that this subcategory coincideswith the full subcategory of small objects of DA. In 5.3, we give A. Neeman's proof [17, 2.2] ofRavenel's result. 15



5.1 Homotopy limits and small objects. Let T be a triangulated category with (in�nite)sums. Let X0 f0! X1 f1! : : :! Xp fp! Xp+1 ! : : : ; p 2 Nbe a sequence of morphisms of T . Let there be given a homotopy limit of the sequence, i.e. anobject X with morphisms  p : Xp ! X �tting into a triangleaXp �!aXq 	! X ! SaXp ;where � is de�ned as in 3.1 and 	 has the components  q. Note that a homotopy limit is uniqueup to non-unique isomorphism.LetM 2 T be small. Then T (M; ?) commutes with direct sums and thus transforms the abovetriangle into the long exact sequence: : :!a T (M;Xp) ��!a T (M;Xq) 	�! T (M;X) ! : : :It is easy to see that (S�)� is injective. We therefore have an isomorphismlim�! T (M;Xp) �! Cok�� �! T (M;X):5.2 Brown's representability theorem. Keep the hypotheses of 5.1 and assume that Tadmits a set of small generators X . For completeness we include a proof of the followingTheorem. [3] A cohomological functor F : T ! (Ab)op is representable i� it commutes withdirect sums.Remark. More precisely, the proof will show that each such F is represented by the homotopylimit of a sequence X0 f0! X1 ! : : :! Xp fp! Xp+1 ! : : : ; p 2N ;where X0 as well as the cone (=third corner of a triangle) over each fp is an (in�nite) sum ofobjects SnX, X 2 X , n 2 Z. In particular, each M 2 T is the homotopy limit of such a sequence,as we see by taking F = T (?;M ).Proof. We have to prove that the condition is su�cient. Let X+ be the class of direct sumsof objects SnX, n 2 Z, X 2 X . For each M 2 T put M^ = T (M; ?). Since X is a set, there is anX0 2 X+ and a morphism �0 : X0̂ ! F inducing a surjectionX0̂ (SnX)! FSnXfor all X 2 X , n 2 Z. We will inductively construct a sequenceX0 f0! X1 ! : : :! Xp fp! Xp+1 ! : : : ; p 2N ;16



and morphisms �p+1 : Xp̂+1 ! F such that �p+1fp̂ = �p. Suppose that for some p � 0 we haveconstructed Xp and �p. Choose Zp 2 X+ admitting a morphism �p : Zp ! Xp which induces asurjection Zp̂ (SnX) ! Ker �p(SnX)for all X 2 X , n 2 Z. De�ne Xp+1 by the triangleZp �p! Xp fp! Xp+1 ! SZp:Since we have an exact sequence FZp F�p FXp  FXp+1and by de�nition �p�p̂ = 0, we can choose �p+1 : Xp̂+1 ! F such that �p+1fp̂ = �p. De�ne X1by the triangle ap2NXp �! aq2NXq 	! X1 ! S ap2NXp ;where � has the components Xp [1 �fp]t�! Xp �Xp+1 can�! aq2NXq :Since F : T ! (Ab)op commutes with direct sums, it takes sums of T to products of Ab. Thus wehave an exact sequence Yp2NFXp  Yq2NFXq  FX1 ;which shows that there is a morphism �1 : X1̂ ! F such that �1	q̂ = �q̂ for all q 2N. By aneasy diagram chase we see that �1 induces an isomorphismT (SnX;X1)! FSnXfor all X 2 X , n 2 Z. Since X generates T , we can conclude that �1 is an isomorphism.5.3 Small objects. Keep the hypotheses of 5.2. If U and V are classes of objects of T , wedenote by U � V the class of objects X occuring in a triangleU ! X ! V ! SUwith U 2 U , V 2 V. The octahedral axiom implies that the operation � is associative. The objectsof X �X � : : :�X (n factors) are called extensions of length n of objects of X . The following theoremand its proof can be found in [17, 2.2].Theorem. [18] [17] Each small object of T is a direct summand of an extension of objectsSnX, X 2 X , n 2 Z.Remarks. a) We will of course apply the theorem to the case where T is the derived categoryof a DG algebra A and where X consists of the free modules A^, A 2 A.17



b) One can adapt the proof of [19, 6.3] to show that, if A is a negative DG category, i.e.A (A;B)n = 0 for all n > 0, A;B 2 A, then each small object of DA is an extension of DA-directsummands of �nite sums of free modules A^, A 2 A.Proof. [17] Let M be a small object of T . Choose a sequenceX0 f0! X1 ! : : :! Xp fp! Xp+1 ! : : : ; p 2N ;as in remark 5.2. By 5.1 we have an isomorphismlim�! T (M;Xp) �! T (M;M ):In particular, the identity ofM factors through someXp, which means thatM is a direct summandof Xp. Now Xp is an extension of sums of objects SnX, X 2 X , n 2 Z. So we can apply thefollowing lemma to Z 0 = 0 and Z = Xp to obtain the commutative squareM 0 ! M# #0 ! Xp ;where the cone on the �rst line is an extension M 00 of objects SnX, X 2 X , n 2 Z. Since M ! Xpis a (split) monomorphism, the morphismM 0 !M vanishes and thus M is a direct summand ofM 00.Lemma. [17, 2.3] Let M 2 T be small and let c : Z 0 ! Z be a morphism whose mapping coneis an extension of (in�nite) sums of objects SnX, X 2 X , n 2 Z. Then each diagramM#Z0 c! Zmay be completed to a commutative squareM 0 b! M# #Z 0 c! Zsuch that the cone over b is an extension of objects SnX, X 2 X , n 2 Z.Proof. By assumption the cone Z 00 over c is an extension of sums of objects SnX, X 2 X ,n 2 Z. We proceed by induction on the length l of Z 00. If we have l = 1, then Z 00 is itself a sumof objects SnX, X 2 X , n 2 Z. By the smallness of Y , the composition M ! Z ! Z 00 factorsthrough a �nite subsum M 00 � Z 00. We �nd the required square by completingM ! M 00# #Z0 c! Z ! Z 00 ! SZ 0to a morphism of triangles M 0 b! M ! M 00 ! SM 0# # # #Z0 c! Z ! Z 00 ! SZ 0:18



If we have l > 1, then Z 00 occurs in a triangleZ000 ! Z 00 ! Z 001 ! SZ 000where both, Z 000 and Z 001 , are of length < l. By forming an octahedron overZ ! Z 00 ! Z 001we see that c is the composition of two morphisms c0 and c1 whose cones are Z 000 and Z 001 . By theinduction hypothesis we have a commutative diagramM 0 b0! M1 b1! M# # #Z0 c0! Z1 c1! Z ;where the cones of b0 and b1 are extensions of objects of X . By the octahedral axiom the sameholds for b = b1b0. 6. Standard functors6.1 Hom and tensor. Let A and B be small DG categories. The tensor product A
B is theDG category whose objects are the pairs (A;B) of objects A 2 A, B 2 B, and whose morphismspaces are (A 
 B) ((A;B); (A0; B0)) �!A (A;A0)
 B (B;B0):The composition of A
 B is given by the formula(f 0 
 g0)(f 
 g) = (�1)pqf 0f 
 g0gfor f 2 A (A;A0)p and g0 2 B (B0; B00)q .Let X be an A-B-bimodule, i.e. a module over A 
 Bop. It gives rise to a pair of adjoint DGfunctors DifATX "# HXDifBwhich are de�ned as follows(HXM )(B) = (DifA) (X(?; B);M )(TXN )(A) = Cok (`B;C2B NC 
 B (B;C)
X(A;B) �!`B2B NB 
X(A;B)) ;where �(n 
 f 
 x) = (Nn)(f) 
 x � n 
 X(A; f)(x). Observe that for each B 2 B we haveTXB^ �! X(?; B) since(DifA) (TXB^;M ) = (DifB) (B^;HXM ) = (HXM )(B) = (DifA) (X(?; B);M )for each M 2 DifA. For brevity, we put XB = X(?; B).19



The functors HX and TX induce a pair of adjoint functors between HA and HB which will alsobe denoted by HX and TX . We denote by LTX the left derived functor of TX , i.e. the compositionDB ! HpB TX�! HA ! DA ; N 7! TXpN:Observe that LTX commutes with direct sums since p and TX do.Lemma.a) LTX is an equivalence i� the morphisms B (B;C)! (DifA) (XB ; XC) induce isomorphismsin homology, 8B;C 2 B, and the XB , B 2 B, form a set of small generators for DA.b) A morphism X ! X 0 of A-B-bimodules is a quasi-isomorphism i� the induced morphismLTX ! LTX0 is invertible.c) Suppose that X has property (P) over A
 Bop. If A is k-at, then TX preserves acyclicity.If B is k-projective, then TX preserves property (P). If k is a �eld then TXN has property(P) for each DG B-module N .Proof. a) follows from 4.2 c), and b) from 4.2 d). It su�ces to prove c) for the case whereX = (A0; B0)^ for some (A0; B0) 2 A
Bop. Then we have TXN = N (B0)
kA (A0; ?). So the �rsttwo assertions are clear. To prove the last one, we �x an acyclic DG A-module M and observethat (DifA) (TXN;M ) �! (Difk) (N (B0);M (A0)):Since k is a �eld, M (A0) is even null-homotopic. Hence we have (HA) (TXN;M ) = 0, and theassertion follows from 3.1.Example. Let F : B ! A be a DG functor and put X(A;B) = A (A;FB) for A 2 A, B 2 B.Then clearly XB = (FB)^. Hence LTX is an equivalence i� H�F : H�A ! H�B is an equivalence.6.2 Right projective bimodules. We keep the assumptions of 6.1 and assume in additionthat XB has property (P) for each B 2 B. Since(HXM )(B) = (DifA) (XB ;M ) ;it follows from theorem 3.1 thatHXM is acyclic for each acyclicM . The induced functor DA ! DBwill be denoted by RHX . We have(HA) (TXP;M ) = (HB) (P;HXM ) = 0whenever P has property (P) and M is acyclic. By 3.1 we conclude that TX preserves property(P). Using this we see that(DA) (LTXN;M ) = (HA) (TXpN;M ) = (HB) (pN;HXM ) = (DB) (N;RHXM ) ;20



i.e. that RHX is a right adjoint of LTX .Now de�ne a B-A-module X> byX>(B;A) = (DifA) (XB ; A^):For each M 2 DifA, we have a canonical morphism TX>M ! HXM .Lemma.a) The morphism LTX>M ! RHXM is invertible for all M 2 HbpA. It is invertible for all Mi� the XB are small in DA, 8B 2 B.b) If LTX : DB ! DA is an equivalence, its quasi-inverse is isomorphic to LTX> .Proof. a) The morphism is clearly invertible for free M . By 'devissage` it is invertible forM 2 HbpA. Since HX commutes with in�nite direct sums i� the XB are small, the second assertionfollows from 4.2 d).b) If LTX is an equivalence then so is RHX . In particular, RHX commutes with direct sums.The assertion now follows from a) and 4.2 d).Example. Keep the notations of example 6.1. If LTX is an equivalence, a quasi-inverse is givenby LTX> .6.3 Flat targets. We keep the assumptions of 6.1 and assume in addition that A is k-at, i.e.A (A;B) is a at k-module, 8A;B 2 A. Let pX be a P-resolution of X over A 
 Bop. Note thatfor B 2 B the A-module (pX)B need not have property (P) (unless B (B0; B) is projective over kfor each B0 2 B). In particular, the canonical morphism p(XB) ! (pX)B of HA need not be aquasi-isomorphism.Lemma.a) We have LTXN �! TpXN for each N 2 DB.b) Let C be another DG category and Y a B-C-bimodule. We have LTXLTY �! LTZ , whereZ = TpXY .Proof. a) By 6.1 b) we have LTpX �! LTX . So we only have to show that LTpXN �! TpXNfor each N 2 DB. It is enough to check that TpXN is acyclic for each acyclic N . Now TpXNinherits from pX a complete �ltration which splits in GA and has subquotients TQN , whereQ is relative projective. So it is enough to show that TFN is acyclic for each F = (A0; B0)^,(A0; B0) 2 Aop 
 B. But (TFN )(A) �!A (A;A0) 
N (B0):b) follows from a) and the fact that TpXTY �! TZ as functors DifC ! DifA.21



6.4 Tensor functors and DG functors. Let A and B be small DG categories. Let F :DifB ! DifA be an arbitrary DG functor. Its left derived functor is the compositionDB ! HpB F!HA ! DA ; N 7! FpNLet X be the bimodule X(A;B) = (FB^)(A) = (DifA) (A^; FB^). For each B-module N , thecanonical morphismNB �! (DifB) (B^; N )! (DifA) (FB^; FN ) = (DifA) (X(?; B); FN ) = (HXFN )(B)comes from a natural morphism N ! HXFN . By adjunction, we obtain TXN ! FN . Theinduced morphism LTXN ! LFNis clearly invertible for N = B^[n], B 2 B, n 2 Z. This implies the �rst assertion of the followinglemma. The second one follows from lemma 4.2.Lemma. The canonical morphism LTXN ! LFNis invertible for each N 2 HbpB. It is invertible for all N 2 DB i� LF commutes with direct sums.6.5 Example: Lie algebra cohomology. Let R be a k-algebra with 1 and L a (k;R)-Liealgebra [21, x2], i.e. L is a Lie algebra over R, and R is endowed with a left L-module structuresuch that [X; rY ] = (Xr)Y + r[X;Y ]for all X;Y 2 L, r 2 R. In addition, we assume that L is projective as an R-module. For examplethis holds for the (R; C1(M ))-Lie algebra formed by the C1-vector �elds on a C1-manifoldM[21, x4]. Let the Lie algebra Z be the semi-direct product of L by R and let A be the 'universalalgebra of di�erential operators generated by R and L`: A is an associative k-algebra endowedwith a k-linear morphism � : Z ! A which is universal for the properties�([U; V ]) = [�(U ); �(V )] and �(rU ) = �(r)�(U )for all U; V 2 Z, r 2 R. The canonical Z-action on R uniquely extends to an A-module structure.Let " denote the map A! R; a 7! a:1.Let E be the graded exterior R-algebra over L and let X be the di�erential complex withcomponents Xn = A 
R E�n and the di�erential [21, x4]d(a
X1 ^ : : :^Xn) = nXi=1(�1)i�1aXi 
X1 ^ : : :cXi : : :^Xn+Xj<k(�1)j+ka
 [Xj; Xk] ^X1 ^ : : :cXj : : :cXk : : :^Xn:22



The complex X together with the augmentation " : X0 ! R is a projective resolution of the leftA-module R [21, x4]. The corresponding quasi-isomorphism X ! R will also be denoted by ".Let B be the DG R-module (DifAop) (X;R). We will freely make use of the identi�cationsB = (DifAop) (X;R) = HomA(A 
R E;R) = HomR(E;R):Endowed with the 'shu�e product` B becomes a DG algebra [10, x9] : Recall that for f 2 Bp,g 2 Bq , and n = p+ q, one puts(fg)(X1 ^ : : :^Xn) =X�ijf(Xi1 ; : : : ; Xip) g(Xj1 ; : : : ; Xjq) ;where �ij is the parity of the permutation1 7! i1 ; : : : ; p 7! ip ; p+ 1 7! j1 ; : : : ; p+ q 7! jq ;and the sum ranges over all tuples i; j with i1 < : : : < ip, j1 < : : : < jq and f1; : : : ; p + qg =fi1; : : : ; ipg [ fj1; : : : ; jqg.Let f 2 Bp. We de�ne a DG left B-module structure on X by putting f:(a
X1^ : : :^Xn) = 0for p > n and, with the same notations as for the shu�e product,f(a 
X1 ^ : : :^Xn) =X�ija
 f(Xi1 ; : : : ; Xip) Xj1 ^ : : :^Xjqfor p < n and p+ q = n. It is clear that the actions of A and B on X commute among each otherand agree on R so that X becomes an Aop-B-bimodule. Note that XjAop has property (P) (3.1).Lemma.a) The functors LTX : DB ! DAop and RHX induce quasi-inverse S-equivalences betweenHbpB and the full triangulated subcategory of DAop generated by R.b) If L is �nitely generated over R, then LTX : DB ! DAop is fully faithful and RHX � LTX> .Proof. a) By 4.2 a) we have to check that the morphism of complexes� : B ! (DifAop) (X;X)mapping f to left multiplication by f is a quasi-isomorphism. By de�nition the composition of �with "� : (DifAop) (X;X) ! (DifAop) (X;R)is the identity. Since " : X ! R is a quasi-isomorphism and X has property (P), "� is a quasi-isomorphism. Hence so is �.b) If L is �nitely generated, XjAop is a bounded complex of �nitely generated projectiveA-modules. In particular, X is small in DAop. The assertion now follows from 4.2 b) and 6.2 a).23



6.6 Example: Bar resolution. Let A be a small DG category. Let eY be the bar resolution[4, IX, x6] of A, i.e. the complex of A-A-bimodules with eY (A;B)n = 0 for n > 0 andeY �n(A;C) = aB0 ;:::;BnA (B0; C)
 A (B1; B0)
 : : :
 A (Bn; Bn�1)
 A (A;Bn) ; n � 0endowed with the di�erential d of degree 1 withd(a0 
 a1 
 : : :
 an 
 an+1) = nXi=0(�1)ia0 
 : : :
 aiai+1 
 : : :
 an+1Let Y be the total module of eY (cf. the proof of 3.1). De�ne I to be the A-A-bimodule I(A;B) =A (A;B). By [4, IX, x6] we have a quasi-isomorphism " : Y ! I induced by the composition mapaB0 A (B0; C)
 A (A;B0)!A (A;C):The maps eY �n ! ap+q=n eY �p 
 eY �qgiven by a0 
 : : :
 an+1 7! (a0 
 : : :
 ap 
 1
 1
 ap+1 
 : : :
 an+1)yield a morphism � : Y ! Y � Y;where by de�nition ? � Y = TY . We have commutative diagramsY ��! Y � Yk # Y � "Y can�! Y � I Y ��! Y � Yk # " � YY can�! I � Y Y ��! Y � Y Y ���! Y � (Y � Y )k # canY ��! Y � Y ��Y�! (Y � Y ) � Y:Now let B be a set of DG A-modules. The above diagrams ensure that we can make B into a DGcategory by requiring that B (L;M ) �! (DifA) (Y � L;M ) ;that the identity 1BL corresponds to the compositionY � L "�L�! I � L can�! L ;and that the composition of two morphisms of B coming from g : Y �L!M and f : Y �M ! Nis given by the compositionY � L ��L�! (Y � Y ) � L can�! Y � (Y � L) Y �g�! Y �M f! N:We then have a canonical A-B-bimoduleX(A;L) := (Y �L)(A), where the action of g : Y �L!Mis given by the compositionY � L ��L�! (Y � Y ) � L can�! Y � (Y � Y ) Y �g�! Y �M:24



Now suppose that k is a �eld. Then each eY n is relatively projective over A
Aop. Since Y admitsthe �ltration F p = `n��p eY n, it has property (P) over A 
 Aop. Using 6.1 b) and c) we inferthat the composition � Y �M "�M�! I �M can�!Mis a P-resolution for each DG A-module M . Therefore the morphism�� : (DifA) (Y � L; Y �M )! (DifA) (Y � L;M ) ; L;M 2 B ;is a quasi-isomorphism. And so is the canonical morphismB (L;M )! (DifA) (XL; XM ) = (DifA) (Y � L; Y �M )since it has �� as a left inverse. Using 4.2 we infer theLemma.a) The restriction of LTX to HbpB is fully faithful.b) If each L 2 B is small in DA, then LTX is fully faithful.c) LTX is an equivalence i� the objects of B form a set of small generators for DA.7. Quasi-functors and lifts7.1 Quasi-functors. Let A and B be small DG categories. Denote by A the full subcategoryof DA whose objects are the A^, A 2 A, and by ZA the full subcategory whose objects are theA^[n], n 2 Z, A 2 A. Note that we have(ZA) (A^[n]; B^[m]) = Hm�nA (A;B)for all A;B 2 A, n;m 2 Z.Let X be an A-B-bimodule. By de�nition, X is a quasi-functor B ! A if it satis�es theconditions of the following lemma. Note that in this case LTX gives rise to a functor ZB ! ZAand hence to a functor H�B ! H�A.Lemma. The following are equivalenti) LTX gives rise to a functor B ! A.ii) For each B 2 B the functor (DA) (?; XB) is representable by an object of A.iii) For each B 2 B there is an A 2 A and an element xB 2 Z0X(A;B) such that for eachA0 2 A the morphism A (A0; A)! X(A0; B) ; f 7! X(f;B)(xB)induces isomorphisms in homology. 25



Proof. Exercise.Suppose for example that A and B are concentrated in degree 0. Then A0 is equivalent to A.Thus by i), a quasi-functor X yields a functor F 0 : B0 ! A0; hence a functor F : B ! A. It iseasy to see that in D(A
 Bop), X is isomorphic to the bimodule (A;B) 7! A (A;FB).7.2 Quasi-equivalences. Keep the hypotheses of 7.1. By de�nition, X is a quasi-equivalenceif the conditions of the following lemma hold. In this case B is quasi-equivalent to A.Lemma. The following are equivalenti) LTX is an equivalence giving rise to an equivalence B ! A.ii) LTX gives rise to equivalences ZB ! ZA and B ! A.iii) There is a subset D � A � B projecting onto A as well as onto B, and for each (A;B) 2 Dthere is an element xAB 2 Z0X(A;B) such that the morphismsA (A0; A)! X(A0; B) ; f 7! X(f;B)(xAB )B (B;B0)! X(A;B0) ; g 7! X(A; g)(xAB)induce isomorphisms in homology for each A0 2 A, B0 2 B.Proof. Exercise.Example. Each DG functor F : B ! A inducing an equivalence H�F : H�B ! H�A yieldsa quasi-equivalence X(A;B) = A (A;FB). If A and B are concentrated in degree 0, each quasi-equivalence comes from an equivalence F : B ! A.Remark. If k is a �eld, 'quasi-equivalence` is an equivalence relation (6.1 c and 6.2 b implyreexivity; 6.3 b implies transitivity).7.3 Lifts. Let A be a small DG category. Let U � DA be a full small subcategory andZU � DA the full subcategory whose objects are the U [n], U 2 U , n 2 Z. A lift of U is a DGcategory B together with an A-B-bimodule X such that LTX gives rise to equivalences ZB �! ZUand B �! U . ZB ��! ZU# #DB LTX�! DA:Examples. With the notations of 6.5, (B;X) is a lift of U = fRg. | If k is a �eld, anyU � DA may be lifted using the bar resolution of 6.6.The de�nition of a lift implies in particular that LTX induces an equivalence fromHbpB onto thetriangulated subcategory of DA generated by U (4.2 a). If XB has property (P) for each B 2 B,26



a quasi-inverse is induced by RHX . Indeed, if M 2 HbpB, we have(DB) (SnB^;RHXLTXM ) �! (DA) (LTXSnB^;LTXM ) � (DB) (SnB^;M )since LTX is fully faithful on HbpB. This means that RHXLTXM  M is invertible.We see from 6.1 that LTX is itself an equivalence i� the objects of U form a system of smallgenerators for DA.If U is given, we can always construct a standard lift by taking B to be the full subcategory ofDifA formed by chosen objects pU , U 2 U , and X to be the bimodule(A;pU ) 7! (pU )(A) ; pU 2 B; A 2 A:Now let (B; X) be any lift of U such that XB has property (P) for each B 2 B. Let C be a DGcategory and F : DifC ! DifA a DG functor such that LF : DC ! DA induces a functor C ! U .DC  C# LF #DB LTX�! DA  U" "B ! ULemma. Put Y (B;C) = (HXFC^)(B).a) LTY induces a functor C ! B ; hence Y is a quasi-functor. It is a quasi-equivalence if LFinduces an equivalence ZC ! ZU .b) There is a canonical morphism LTXLTYM ! LFM ;which is invertible forM 2 HbpC. It is invertible for arbitraryM 2 DC i� LF commutes withdirect sums.c) If (C; Z) is a lift of U and F = TZ , then Y is a quasi-equivalence C ! B and we haveLTXLTY �! LTZ . If moreover ZC has property (P) for each C 2 C, then RHYRHX �!RHZ.Remark. In 10.3 we will need the following fact. Suppose that F , TX and TY all preserveacyclicity so that their derived functors are isomorphic to the functors induced by them. Then themorphism of b) is produced by the compositionTXTY TX�! TXHXF �F! Fwhich is even de�ned as a morphism of DG functors. Here � : TY ! HXF denotes the canonicalmorphism constructed in 6.4, and � the adjunction morphism.27



Proof. a) Consider the functor G = HX � F : DifC ! DifB. We have LG = RHXLF . SoLG induces a functor C ! B. By de�nition we have Y (B;C) = (GC^)(B). Hence we have amorphism TY ! G such that LTYM ! LGM is invertible for each M 2 HbpC (6.4). So LTYinduces a functor C ! B. We have morphismsLTXLTY ! LTXLG = LTXRHXLF ! LFwhich are invertible on HbpC. Thus LTX induces an equivalence ZC ! ZB i� LF induces anequivalence ZC ! ZU . The second assertion now follows from 7.2.b) follows from the proof of a) and 4.2 d).The �rst two assertions of c) are immediate form a) and b). The last assertion is clear since ifLTY is an equivalence and LTXLTY �! LTZ , then RHYRHX is right adjoint to LTZ .7.4 On the unicity of lifts. Keep the hypotheses of 7.3 and assume in addition that A isk-at. Since XB has property (P), 8B 2 B, we have a well de�ned pair of adjoint functorsH !X : D(A 
 Cop)!D(B 
 Cop) ; Z 7! HXZT !X : D(B 
 Cop)!D(A
 Cop) ; Y 7! TXpYLemma. For each Y 2 D(B 
 Cop) we haveLTXLTY �! LTZ ;where Z = T !XY . Moreover T !X induces an equivalence between the full subcategoriesfY : LTY gives rise to a functor C ! Bg � D(B 
 Cop)and fZ : LTZ gives rise to a functor C ! Ug � D(A
 Cop):Proof. We have TXpY � TpXpY by 6.1 b) and TpXpY �! TpXY by the k-atness ofA (6.3 a). So we have T !XY �! TpXY . By 6.3 b) this implies the �rst assertion. Since LTXgives rise to a functor B ! U , we infer that T !X induces indeed a functor between the givensubcategories. Suppose that LTY gives rise to a functor C ! B. We have to show that thecanonical morphism pY ! HXTXpY of H(B 
 Cop) is a quasi-isomorphism. But we have alreadyseen that HXTXpY �! HXTpXY , and on the other hand, for each B 2 B, we have(pY )B �! YB �! HXTXp(YB) �! HXTpXYB ;where we use 6.3 a) for the third isomorphism and the fact that YB 2 U for the second one. Nowsuppose that LTZ gives rise to a functor C ! A. We have to show that the canonical morphismTXp(HXZ)! Z of D(A 
 Cop) is invertible. As above we have TXp(HXZ) �! TpXHXZ andZC � TXpHXZC � TpXHXZC ;where we use ZC 2 U for the �rst isomorphism and 6.3 a) for the second one.28



8. Application: Derived equivalences8.1 Arbitrary targets. Let A and C be small DG categories.Theorem. Assertion i) implies ii), and ii) implies iii).i) There is a DG functor H : DifC ! DifA such that LH : DC ! DA is an equivalence.ii) C is quasi-equivalent to a full DG subcategory B of DifA whose objects have property (P) andform a set of small generators for DA.iii) There are a DG category B and DG functorsDifC G! DifB F! DifAsuch that LG and LF are equivalences.Proof. i) implies ii): By 6.4 we have LH �! LTZ for some A-C-bimodule Z. So (C; Z) is alift of U = fLHC^ : C 2 Cg. Take B to be a standard lift of U . The assertion then follows from7.3 c) and 4.2 c).ii) implies iii): By 7.2 we have an equivalence LTX : DC ! DB and by 7.3 an equivalenceLF : DB ! DA.8.2 Flat targets. Let A and C be small DG categories and assume that A is k-at.Theorem. The following are equivalenti) There is an A-C-bimodule X such that LTX : DC ! DA is an equivalence.ii) C is quasi-equivalent to a full DG subcategory B of DifA whose objects have property (P) andform a set of small generators for DA.Proof. i) implies ii) by 8.1. Conversely, ii) implies i) by 8.1 iii), 6.4 and 6.3 b).Remark. Recall from section 5 that a DG module is small in DA i� it is contained in thesmallest strictly full triangulated subcategory of DA containing the free modules and closed underforming direct summands. 9. Application: Stalk categories9.1 Modules over H0A. Let A be a small DG category. Let H0A (resp. ��0A) be the DGcategory with the same objects as A and with the morphism spaces(H0A) (A;B) = H0A (A;B) ; A;B 2 A;29



viewed as DG k-modules concentrated in degree 0 (resp.(��0A) (A;B) = ��0A (A;B) ; A;B 2 A;where ��0K denotes the subcomplex C of K with Cn = 0 for n > 0, C0 = Z0K, and Cn = Knfor n < 0). We have the obvious functorsH0A � � ��0A ��! A:As in example 6.1, they yield functorsDH0A LTX � D��0A LTY�! DA ;where X(A;B) = (H0A) (A; �B) and Y (A;B) = A (A; �B). The functor LTX is an equivalence i�A satis�es the 'Toda-condition` (cf. [22])HnA (A;B) = 0 ; 8n < 0 ; 8A;B 2 A:In this case (example 6.2), we have a canonical functor from DH0A to DA given simply by thecomposition DH0A LTX>�! D��0A LTY�! DA:If A is k-at, this simpli�es to DH0A LTZ�! DA ;where Z is the A-H0A-bimodule TpYX> (6.3 b).9.2 Equivalences. Let B be a small k-linear category. We identify B with a DG categoryconcentrated in degree 0. Let A be an arbitrary small DG category.Theorem. (cf. [19], [12]) The following are equivalenti) There are DG categories A1, A2 and DG functorsDifB F3! DifA2 F2! DifA1 F1! DifAsuch that LF1, LF2 and LF3 are equivalences.ii) There is an S-equivalence DB �!DA.iii) B is equivalent to a full subcategory U of DA whose objects form a set of small generatorsand satisfy (DA) (U; V [n]) = 0 for all n 6= 0, U; V 2 U .Remark. We refer to [19, 6.4] for more precise information in the case where A and B arerings.Proof. By 4.2 c), ii) implies iii). To prove that iii) implies i), let A1 be a full subcategory ofDifA consisting of chosen objects pU , U 2 U . Let F1 = TX where X(A;A1) = A1(A). By 6.1,30



LF1 is an equivalence. By the assumption on U we have HnA1 (A;B) = 0 for n 6= 0 and arbitraryA;B 2 A1, and H0A1 is equivalent to B. Now the assertion is clear from 9.1.Using 6.3 b) and 6.4 we �nd theCorollary. (cf. [20]) If A is k-at, the following are equivalenti) There is an A-B-bimodule X such that LTX : DB ! DA is an equivalence.ii) There is an S-equivalence DB ! DA.iii) B is equivalent to a full subcategory U of DA whose objects form a set of small generatorsand satisfy (DA) (U; V [n]) = 0 for all n 6= 0, U; V 2 U .Remark. We refer to [20] for more precise information in the case where A and B are rings.A straightforward construction of the bimodule in this case is given in [13].10. Application: Koszul duality for DGA categories10.1 Preliminaries. Suppose that k is a �eld. De�ne the functor D : Difk! Difk byDM = (Difk) (M;k) ;where k is viewed as a DG k-module concentrated in degree 0. Let A be a DG k-category. Foreach A 2 A we de�ne the A-module A_ byA_(B) = DA (A;B) ; B 2 A:For each DG module M and each A 2 A we have a canonical isomorphism of DG k-modules(DifA) (M;A_) �! DM (A)' 7! (m 7! (('A)(m))(1A)):In particular, we have a canonical morphismA (A;B)! DDA (A;B) �! DA_(B) �! (DifA) (A_; B_) ;which is a quasi-isomorphism if dimHnA (A;B) < 1 for each n 2 Z. So in this case the fullsubcategory A_ of DifA formed by the A_, A 2 A, is quasi-equivalent to A.Fix A 2 A. To compute (DA) (?; A_), we �rst remark that if N is acyclic, we have(HA) (N;A_) = H0DN (A) = 0:Therefore (DA) (M;A_) �! (HA) (pM;A_) � (HA) (M;A_) �! H0DM (A) ;31



and in particular HnA_ (A_; B_) �! (DA) (A_ ; B_[n]). So if we de�ne the A-A_-bimodule X_ by(A;B_) 7! B_(A), then (A_; X_) is a lift (7.3) of fA_ : A 2 Ag � DA.10.2 The Koszul dual. Suppose from now on that A is an augmented DG category (=DGAcategory) i.e.a) Distinct objects of A are non-isomorphic.b) For each A 2 A a DG module A is given such that H0A(A) �! k and HnA(B) = 0 whenevern 6= 0 or B 6= A.Now let (A�; X) be a lift (7.3) of fA : A 2 Ag � DA. After deleting some objects from A� wemay (and will) assume that we have a bijection A 7! A� between the objects of A and those ofA� such that LTXA�^ �! A for each A 2 A. By 6.3 a) we also may (and will) assume that X hasproperty (P) as a bimodule. Since k is a �eld, this implies in particular that X(?; A�) has property(P) for each A� 2 A� (6.1 c). Hence the functors HX and TX both preserve acyclicity and inducea pair of adjoint functors between DA� and DA, which will also be denoted by TX and HX .We make A� into an augmented DG category by puttingA� = HXA_:This is a good de�nition since indeedHnA�(B�) �! (DA�) (B�^; A�[n]) �! (DA�) (B�^;HXA_[n])�! (DA) (TXB�^; A_[n]) �! (DA) (B;A_[n])�! HnDB(A):We de�ne A� with the A�, A� 2 A�, to be the Koszul dual of the DGA category A (cf. [1]). Wesum up our notations in the diagram A DA A_" TX "# HX #A�^ DA� A�:If B is another DGA category, a quasi-functor Y : B ! A is compatible with the augmentationsif HYA �! B whenever TYB^ �! A^.By 7.3 c) the Koszul dual is determined by the above construction up to a quasi-equivalencecompatible with the augmentation, i.e. if X 0 and A�0 result from di�erent choices made in theconstruction, there is an A�0-A�-bimodule Y having property (P) such that TY : DA� ! DA�0satis�es TX0TY �! TX , TYA�^ �! A�0^ andHYA�0 �! HYHX0A_ �! HXA_ �! A�for each A 2 A. 32



The Koszul dual de�ned in [2] is quasi-equivalent to the full subcategory of DifA� formed bythe A�^[n(A)], where n : A ! Z is a given 'weight function` for A. Note that the morphism spacesof this category simply identify with the shifted spacesA� (A�; B�)[n(B)� n(A)] ; A;B 2 A:Examples. a) Let G be a k-Lie algebra and U (G) its universal enveloping algebra. In thenotations of 6.5 (with R = k), the Koszul dual of A = U (G) is quasi-equivalent to B.b) Let V be a �nite-dimensional k-vector space, DV its dual over k, �DV the exterior algebra onDV , and SV the graded symmetric algebra on V . View A = �DV as a DG algebra concentrated indegree 0, and B = SV as a DG algebra with the components Bn = SnV and vanishing di�erential.De�ne (commuting) right and left A-actions on �V byv�:(v1 ^ : : :^ vn) = nXi=1(�1)i+1v�(vi)v1 ^ : : : bvi : : :^ vn(v1 ^ : : :^ vn):v� = nXi=1(�1)n+iv�(vi)v1 ^ : : : bvi : : :^ vn:Endow the graded A-B-bimodule X = SV 
 �V with the di�erentiald : Xp ! Xp+1 ; x 7! (�1)p nXi=1(vi 
 v�i )x ;where the vi, 1 � i � n, form a basis of V and (v�i ) is the dual basis. Then (B;X) is a lift of thetrivial A-module k. Hence the Koszul dual of A is quasi-equivalent to B.c) Let V be a �nite-dimensional k-vector space, I � Z an interval and AI the DG categoryconcentrated in degree 0 whose objects are the i 2 I and whose morphism spaces are theAI (i; j) = Sj�iVconcentrated in degree 0. For each i 2 I let { be the DG AI-module concentrated in degree 0 with{(j) = k for i = j and {(j) = 0 for i 6= j. Let BI be the DG category whose objects are the symbolsi�, i 2 I and whose morphism spaces are the stalk complexesBI (i�; j�) = (�i�jDV )[j � i]:Let XI be the AI-BI-bimodule given byXI (i; j�)n = ��nV 
 Sn+j�iVendowed with the di�erential given by left multiplication byPni=1 v�i 
vi, where the vi, 1 � i � n,form a basis of V and (v�i ) is the dual basis. Then (BI ; XI) is a lift of f{ : i 2 Ig � DAI . So theKoszul dual of AI is quasi-equivalent to BI . Clearly, the modules i_, i 2 I, are the unions of their�nite-dimensional submodules and the functor i^ 7! i_ is an equivalence. It therefore follows fromthe lemma on the 'symmetric` case (10.5) that the Koszul dual of BI is quasi-equivalent to AI .33



10.3 The double dual. The composition of HX with the functor TX_ : DA_ ! DA of10.1 induces a functor A_ ! fA� : A 2 Ag � DA�. Thus (7.3 a), we have a quasi-functorY : A_ ! A��, which is a quasi-equivalence i� the restriction of HX : DA ! DA� to thesubcategory formed by the A_[n], A 2 A, n 2 Z, is fully faithful.DA_ TX_�! DATY # TX "# HXDA�� �!TX� DA�:We endow A_ with the augmentation de�ned byA_(B_) = D(DifA) (A;B_) �! DDA(B):Lemma. The quasi-functor Y : A_ !A�� is compatible with the augmentations.Proof. Let (A��; X�) be the chosen lift for the A�, A 2 A. Recall that we assume that X�has property (P) as a bimodule. Fix A 2 A. We have to show that A_ �! HYA��. By de�nitionHYA�� = HYHX�A�_. We will show that HYHX�A�_ �! A_ by explicitly exhibiting a quasi-isomorphism. For short we write _(?; ?) for (DifA_)(?; ?), : : : . We have the following series ofmorphisms of DG k-modules, functorial in B_ 2 A_(HYHX�A�_)(B_) �! _(B_^;HYHX�A�_) �! �(TX�TYB_^ ; A�_)�! D �(A�^; TX�TYB_^) D �(A�^;HXTX_B_^):The last arrow is induced by the morphismTX�TY ! HXTX_of DG functors DifA_ ! DifA� exhibited in remark 7.3. It is a quasi-isomorphism since B_^ 2HbpA_ (7.3 b). We continue the series of morphisms:D �(A�^;HXTX_B_^) �! D (TXA�^; TX_B_^)�! D (TXA�^; B_)since by construction TX_B_^ �! X_(?; B_) �! B_ in DifA. Now since TXA�^ is quasi-equivalentto A, we have a quasi-isomorphismD (TXA�^; B_) D (A;B_):By de�nition the last term is isomorphic to A_(B_).10.4 Properties of A�. Let M be a DG A-module and n 2 N. By de�nition we havesdimM � n (resp. pdimM � n, resp. idimM � n) if there is a sequence0 =M�1 !M0 !M1 !M2 ! : : :!Mn =M34



of morphisms of DA such that in each triangleMi�1 !Mi ! Qi !Mi�1[1] ; 0 � i � n ;the module Qi is isomorphic to a �nite direct sum of modules of the form A[n] (resp. A^[n], resp.A_[n]), A 2 A, n 2 Z. The (possibly in�nite) numbers sdimM , pdimM and idimM are referredto as the semi-simple, the projective, and the injective dimension of M , respectively.Let � : DifA ! DifA be the functor de�ned by(�M )(A) = D(DifA) (M;A^):For example, we have �A^ = A_ by the de�nition of A_ for each A 2 A. We have a naturaltransformation D(DifA) (M;N )! (DifA) (N; �M )which is de�ned as follows: Given a linear form ' on (DifA) (M;N ) and an f 2 (DifA) (A^; N ) � N (A), the associated linear form on (DifA) (M;A^) maps g to '(fg). Clearly this is an isomor-phism for M = B^[n], B 2 A, n 2 Z, and therefore a quasi-isomorphism for M 2 HbpA.Lemma.a) If sdimM <1 and pdimM <1 then HXL�M �! (L�)HXM in DA�.b) For each A 2 A we have1) pdimA� � sdimA_ 2) sdimA�^ � idimA3) idimA� � sdimA^ 4) sdimA�_ � pdimAProof. a) Since sdimM < 1, we have TXM 2 HbpA� and M �! TXN for N �! HXM . Weassume that N (and hence TXN ) has property (P). We have to show that HX�TXN �! �N . Wewrite �(?; ?) and (?; ?) instead of (DifA�) (?; ?) and (DifA) (?; ?). We have the following series ofquasi-isomorphisms functorial in A� 2 A�(HX�TXN )(A�)! �(A�^;HX�TXN )! (TXA�^; �TXN ):Since TXN 2 HbpA and N 2 HbpA�, we also have the following quasi-isomorphisms:(TXA�^; �TXN )! D(TXN; TXA�^)! D �(N;A�^) = (�N )(A�):b) Assertions 1) and 2) are trivial since HXB �! B�^, B 2 A, and HXA_ = A, A 2 A. For 3)we use that A� �! HXA_ �! HX�A^ �! (L�)HXA^if sdimA^ < 1, and B�_ = (L�)HXB for each B 2 A. For 4) we use that A�_ �! L�HXA �!HXL�A if pdimA <1 and B� = HXL�B^ for each B 2 A.10.5 Three special cases. We consider three cases where A_ is quasi-equivalent to A��, andthere is a fully faithful embedding relating DA and DA�.Lemma. (The '�nite` case) Suppose that pdimA <1 and sdimA^ <1 for all A 2 A.35



a) sdimA�_ <1 and idimA� <1 for all A� 2 A�.b) TX and HX are quasi-inverse equivalences between DA� and DA.c) We have quasi-equivalences A �!A_ �!A��.Examples. a) The category BI of 10.2 c) for �nite I.b) Let � be a �nite-dimensional k-algebra of �nite global dimension all of whose simple modulesare one-dimensional. We take A to be the k-linear category formed by chosen representatives ofthe indecomposable projective A-modules and for each A 2 A we take A to be the head of A.Proof. a) holds by 10.4 b).b) Since pdimA < 1, we have A 2 HbpA for each A 2 A. Moreover, since sdimB^ < 1, thetriangulated subcategory generated by the A contains each B^, B 2 A. Hence the A, A 2 A, forma system of small generators for DA and the assertion follows from 6.1 a) and 6.2.c) Since HX is fully faithful, A_ is quasi-equivalent to A�� (10.3). Since sdimA^ < 1 for allA 2 A, we have 1 > dimHnA^(B) = dimHnA (A;B)for all A;B 2 A so that A ! A_ is a quasi-equivalence (example 7.2).Lemma. (The 'exterior` case) Suppose that sdimA^ <1 and sdimA_ <1 for all A 2 A.a) pdimA� <1 and idimA� <1 for each A� 2 A�.b) TX and HX induce quasi-inverse equivalences between HbpA� and the smallest full triangulatedsubcategory of DA containing the A, A 2 A.c) TX> : DA ! DA� is fully faithful.d) We have quasi-equivalences A �!A_ �!A��.Remark. Part b) yields theorem 16 of [2].Examples. a) Example 10.2 b).b) The category BI of example 10.2 c).c) If � is a �nite-dimensional algebra of arbitrary global dimension with one-dimensional sim-ples, we can proceed as in example b) of the '�nite case`.Proof. a) holds by 10.4 b). By the de�nition of 'lift` (7.3) we have b).c) Let T be the full triangulated subcategory of DA generated by the A, A 2 A. The restrictionof HX to T is fully faithful (7.3). Since HbpA is contained in T , HX is fully faithful on HbpA, andHXA^ lies in HbpA� for each A 2 A. In particular, HXA^ is small for each A 2 A. Since TX>agrees with HX on HbpA (6.2 a), the assertion follows from 4.2 b).36



d) Since the A_, A 2 A, lie in T , A_ is quasi-equivalent to A��. Since the A^, A 2 A, lie inT , we have 1 > dimHnA^(B) = dimHnA (B;A)for all A;B 2 A, so that A! A_ is a quasi-equivalence (example 7.1).Lemma. (The 'symmetric` case) Suppose that pdimA <1 and idimA <1 for all A 2 A.a) sdimA�^ <1 and sdimA�_ <1 for all A� 2 A�.b) TX and HX induce quasi-inverse equivalences between HbpA� and the smallest full triangulatedsubcategory of DA containing the A, A 2 A.c) TX : DA� !DA is fully faithful.d) We have a quasi-equivalence A_ !A�� if each B_, B 2 A, lies in the smallest triangulatedsubcategory of DA closed under direct sums and containing the A, A 2 A.Examples. In example 10.2 a), we have pdimA <1 and idimA <1 ifG is �nite-dimensional.This also holds in 10.2 c). For 10.2 c) the assumption of d) is satis�ed as well.Proof. a) holds by 10.4 b). By the de�nition of 'lift` (7.3) we have b).c) and d): By 4.2 b), TX is fully faithful. So TX induces an equivalence onto its image,which is precisely the smallest strictly full triangulated subcategory containing the A, A 2 A, andclosed under direct sums. A quasi-inverse is induced by HX . Thus the restriction of HX to thesubcategory of DA formed by the B_, B 2 A, is fully faithful. Now d) follows by 10.3.References[1] A. A. Beilinson, V. Ginsburg, V. A. Schechtman, Koszul duality, Journal of geometry andphysics, 5 (1988), 317-350.[2] A. A. Beilinson, V. Ginsburg, W. Soergel, Koszul duality patterns in representation theory,preprint, 1991.[3] E. H. Brown, Cohomology theories, Ann. of Math., 75 (1962), 467-484.[4] H. Cartan, S. Eilenberg, Homological algebra, Princeton University Press, 1956.[5] P. Freyd, Abelian categories, Harper, 1966.[6] P. Gabriel, Des cat�egories ab�eliennes, Bull. Soc. Math. France, 90 (1962), 323-448.[7] P. Gabriel, A. V. Roiter, Representations of �nite-dimensional algebras, to appear in theEncyclopaedia of Mathematical Sciences of the Soviet Academy of Sciences.[8] A. Grothendieck, El�ements de G�eom�etrie alg�ebrique III, Etude cohomologique des faisceauxcoh�erents, Publ. Math. IHES, 11 (1961).[9] D. Happel, On the derived Category of a �nite-dimensional Algebra, Comment. Math. Helv.,62 (1987), 339-389. 37
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