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ABSTRACT. We investigate the (unbounded) derived category of a differential Z-graded category
(=DG category). As a first application, we deduce a ’triangulated analogue (4.3) of a theorem of
Freyd’s [5, Ex. 5.3 H] and Gabriel’s [6, Ch. V] characterizing module categories among abelian
categories. After adapting some homological algebra we go on to prove a "Morita theorem® (8.2)
generalizing results of [19] and [20]. Finally, we develop a formalism for Koszul duality [1] in the

context of DG augmented categories.

SUMMARY

We give an account of the contents of this paper for the special case of DG algebras. Let & be
a commutative ring and A a DG (k-)algebra, i.e. a Z-graded k-algebra
A=TJJar
pEZ

endowed with a differential d of degree 1 such that
d(ab) = (da)b + (—=1)Pa(db)

for all a € AP, b € A. A DG (right) A-module is a Z-graded A-module M = HpEZ MP endowed
with a differential d of degree 1 such that

d(ma) = (dm)a + (—=1)Pm(da)

for all m € M?, a € A. A morphism of DG A-modules is a homogeneous morphism of degree
0 of the underlying graded A-modules commuting with the differentials. The DG A-modules
form an abelian category CA. A morphism f : M — N of CA is null-homotopic if f = dr +rd
for some homogeneous morphism r : M — N of degree -1 of the underlying graded A-modules.
The homotopy category HA has the same objects as CA. Its morphisms are residue classes of
morphisms of CA modulo null-homotopic morphisms. It is a triangulated [23] category (2.2). A

quasi-tsomorphism is a morphism of CA inducing isomorphisms in homology. The derived category
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DA is the localization [23] of HA with respect to the quasi-isomorphisms (4.1). Tt has infinite
direct sums. Let H,A be the smallest strictly (=closed under isomorphisms) full triangulated
subcategory of HA containing A and closed under infinite direct sums. Fach DG A-module M is
quasi-isomorphic to a module pM € Hp,A. (3.1). The canonical projection HA — DA restricts to
an equivalence HpA — DA (4.1). This is classical [11, VI, 10.2] for right bounded modules over
negative DG algebras (i.e. MP =0 for all p > 0 and A? = 0 for all p > 0).

The algebra A considered as a right DG A-module is small in DA, i.e. the functor (DA) (A, 7)
commutes with infinite direct sums. Moreover A is a generator of DA, 1.e. DA coincides with 1its
smallest strictly full triangulated subcategory containing A and closed under infinite direct sums.
Now suppose that £ is a Frobenius category [9] with infinite direct sums and that the associated
stable category £ admits a small generator X. Then there is a DG algebra A and an S-equivalence
G: & — DA with GX = A (4.3). This is an analogue of Freyd’s and Gabriel’s characterization of
module categories among abelian categories [5, Ex. 5.3 H] [6, Ch. V]. It suggests that in the study
of triangulated categories, categories of DG modules might take the role that module categories
play in the theory of abelian categories.

Let B and C be DG algebras. A quasi-equivalence C' — B is a B-C-bimodule (i.e. a right-B-
left-C-bimodule) F containing an element e € 7° F such that the maps

B—F,b—eband C — FE 6 cr—ce

induce isomorphisms in homology. For example, if we are given a quasi-isomorphism ¢ : ' — B,
we can take /' =, Bp and e = 1. Suppose that A is a DG algebra which is flat as a k-module.
There 1s an A-C-bimodule X such that

L(?@c X) : DC — DA, M — (pM) @¢ X |

is an equivalence iff C is quasi-equivalent to B = Hom (T, T') for some module T € H, A which is
a small generator of DA (8.2). Here Hom (T,T) is the DG algebra whose nth component consists
of the homogeneous graded morphisms f : T' — T of degree n and whose differential maps f to
do f—(=1)"fod. It follows from ideas of Ravenel’s [18] that a DG A-module is small in DA iff
it 1s contained in the smallest strictly full triangulated subcategory of DA containing A and closed
under forming direct summands. We reproduce A. Neeman’s proof of this result [17, 2.2] in 5.3.

By applying suitable truncation functors to our DG algebras (9.1) we also generalize a result
of [20] on realizing S-equivalences as derived functors (cf. also [13]).

Now suppose that k is a field. A DG augmented algebra is a DG algebra A endowed with a DG
module A whose homology is isomorphic to k viewed as a DG k-module concentrated in degree
0. There is a DG algebra A* and an A-A*-bimodule X such that L(X®47) : DA* — DA maps
A* to A and gives rise to an equivalence between the triangulated subcategories generated by A*
and A (10.2). We put A* = RHom 4(X, DA), where DA = Hom (A, k). Then (A*, A*) is a DG
augmented algebra called the Koszul dual (cf. [1]) of (A, A). It is unigue up to a quasi-equivalence

compatible with the augmentation. For example, if A = U(&) for some Lie algebra &, then A*



may be taken to be Hom (A&, k) with the shuffle product and the usual derivation (6.5). Let
AY = DDA. There is a canonical A**-AY-bimodule ¥ which in many cases gives rise to a quasi-
equivalence AY = A** (10.3). We consider three special cases where AV is quasi-equivalent to A**
and DA is related to DA™ by a fully faithful embedding (10.5).

I am grateful to A. Neeman for pointing out Theorem 5.3 to me and calling my attention to

his elegant proof in [17]. T thank the referee for his careful reading of the manuscript.
1. GRADED CATEGORIES AND DG CATEGORIES

1.1 Graded categories. Let k be a commutative ring. The tensor product over k will be
denoted by ®. A graded category is a k-linear category A whose morphism spaces are Z-graded
k-modules

A(A B) =[] A4, BY

such that the composition maps
A(A,BY® A(B,C)— A(A,C)

are homogeneous of degree 0, VA B, C € A. A simple example is the category Grak of graded
k-modules V = HpEZ VP with

(Grak) (V, W)Y = {f € Homx(V,W) : f(VI) C WPT? Vq}.

A graded category A is concentrated in degree 0if A(A, B =0forallp#0, A, Be A Tt
is then completely determined by the k-linear category A° having the same objects as A and the
morphism spaces A" (4, B) = A (4, B)".

If A and B are graded categories, a graded functor F' : A — B is a k-linear functor whose
associated maps

F(A,B): A(A,B) — B(FA,FB)

are homogeneous of degree 0, VA B € A.
Let A be a small graded category. The opposite graded category A°P has the same objects as
A, its morphism spaces are A°P (A, B) = A (B, A), and the composition is given by

AP (A, BY © AP (B,C) — A% (4,CF , & [ — (~1)" fg.

A graded (right) A-module is a graded functor M : A°? — Grak. For each A € A we denote
by A" the free A-module A(7, A). By definition

AMNf)g = (=DPigof,VfEA(C,BF, Vg€ A(B, AN

We define GA to be the category whose objects are graded .A-modules and whose morphism spaces
(GA) (M, N) consist of the morphisms of functors f : M — N such that fA4 : MA — NA is
homogeneous of degree ( for each A € A.



If A is concentrated in degree 0, GA identifies with the category of sequences (M, )nez of
A%-modules (=k-linear contravariant functors from A" to the category of k-modules).

We endow G.A with the shift M — M[1]: By definition,
(M[1AY = (MAYP* and (M[La)(m) = (=1)P*(Ma)(m)

for a € A(B, A and m € (M A)!. For a morphism f : M — N we put (f[1]A)? = (fA)P*L. The
shift functor is clearly an autormorphism. Its nth iterate is denoted by M +— M[n], n € Z.
The graded category Gra. A has the same objects as G.A and the morphisms spaces

(GraA) (M, N) = H(gA) (M, Np]).

The composition of morphisms produced by f: M — NJq] and g : L — M][p] is given by f[p] o g.

We extend the shift functor to an automorphism of Gra A in the obvious way.

1.2 Differential graded categories. A differential graded category (=DG category) is a
graded category A whose morphism spaces are endowed with differentials d (i.e. homogeneous

maps d of degree 1 with d = 0) such that
d(fg) = (df)g + (=1 f(dg) , V[ € A(B,C), Vg € A(A, B).
A simple example is the category Difk of differential k-modules whose morphism spaces
(Difk) (V,W) = (Grak) (V, W)
are endowed with the differential mapping (f7) € (Gra k) (V, W)" to
(do fr = (=1)" 71 o d).

If A and B are DG categories, a DG functor F' : A — B is a graded functor such that
F(df) = d(F f) for all morphisms f of A. A quasi-isomorphism F : A — Bis a DG functor inducing
a bijection obj A — obj B and quasi-isomorphisms A (A, B) — A(F A, FB) for all A, B € A.

Let A be a small DG category. Its opposite A°P is the opposite graded category of A endowed
with the same differential as A.

A DG (right) A-moduleis a DG functor M : A°P — Difk. Denote by M| the underlying graded
A-module of M. The objects of the DG category Dif A are the DG A-modules, its morphism spaces
are the graded k-modules

(Dif A) (M, N) = (Gra A) (M|, N]),

endowed with the differential given by
df =dof—(=1)Ffod,

for each homogeneous f of degree p. One easily verifies that this is well defined.



If A is concentrated in degree 0, DG A-modules are in bijection with differential complexes of
AV-modules.

For each A € A, the underlying graded module of the free module A® is the free graded module
associated with A. The differential of A*(B) equals that of A (B, A). For each DG A-module M
and each A € A, the map

(Dif A) (A", M) = M(A), f— (fA)(1a).

is an isomorphism of DG k-modules ("Yoneda-isomorphism®).
We lift the shift functor from graded modules to DG modules by defining the differential of
MT[1] to be —d[1], where d : M — MT[1] is the differential of M.

2. HOMOTOPY CATEGORIES

2.1 k-linear structures. Let A be a DG category. The category CA (resp. H.A) has the same

objects as Dif A. Tts morphism spaces are
(CA)(M,N) = Z° (Dif A) (M, N) resp. (HA) (M, N) =H*(Dif A) (M, N).

Thus the morphisms of C.A are homogeneous of degree 0 and commute with the differential. The
morphisms of HA are residue classes f of morphisms f of CA modulo null-homotopic morphisms,
which by definition are of the form dr + rd for some morphism r : M — N[—1] of G.A. We have a
canonical projection functor CA — H.A. Two DG modules are homotopy equivalent if they become
isomorphic in HA. If A is concentrated in degree 0, CA (resp. H.A) identifies with the category

resp. the homotopy category) of differential complexes of A’-modules.
(resp. the h topy category) of differential pl f A%-modul

2.2 Exact and triangulated structures. We endow CA with an ezact structure [16] by
defining a conflation (=admissible short exact sequence [7, §9], [12, App. A]) to be a sequence

LAmME N

such that the underlying sequence of graded A-modules is split short exact.
We endow H.A with the suspension functor S : HA — HA, M — SM = M][1]. We define a

triangle of HA to be an S-sequence [14] isomorphic to some
LLmMEZNEsSL,

where (4,p) is a conflation and e = rds, where r and s are chosen homogeneous morphisms of

degree 0 such that ps = 1y, 72 = 11 and rs = 0.
LEMMA.
a) CA is a Frobenius category [9].

b) HA is a triangulated category [23].



ProOF. a) Let F' : CA — GA be the forgetful functor. For each N € GA, let F,N resp. FyN
be the DG A-modules defined by

(e =Naeanl, a=[ 0 8] @@= N

(FAN)(A) = (NA)[-1]e NA, d= [ 8 3 ] . (FaN)(a) = [ ((_—11)2)Pd]>fvaa ]\?a ] ’

where A € AP and a € A°P (A, B)?. For each M € CA, define morphisms of DG A-modules
OM =[1 d':M— F,FM and YM = [—d 1]: F\FM — M. We have bijections

(GA)(FM,N) = (CA) (M, F,N) [ (F,[)(®M)
(GA) (N, FM) = (CA) (FAN, M) , f (UM)(Fxf).

Thus F, N is injective and F\N is projective in CA for each N € GA. Since ®M and ¥M fit into
conflations
M2 M — M1, M[-1] — P FM 2 A

we can conclude that CA has enough projectives and enough injectives. Moreover, M is itself
projective (resp. injective) iff it is a direct summand of F,FM (resp. of FAFM). Since F,FM =
(F\F M)[1], we infer that M is projective iff it is injective. For later use, we introduce the notations
PM = F,FM and IM = F\FM.

b) H.A identifies with the stable category associated with C.A. Thus the assertion follows from
[9, 9.4].

3. RESOLUTION

3.1 P-resolutions. Let A be a DG category. Its homology category H* A is the graded category
with the same objects as .4 and with the morphism spaces

(H*A)(4,B) = [[ H" A (A, B).

nez
We have a canonical functor H* : CA — Gra H* A defined by

(H*M)(A) = J] H" M(A).
neZ
It induces a functor
HA— GH" A

which will also be denoted by H*.

A DG module N is acyclic if H* N=0. A DG module @ is relatively projective (cf. [15, X, §10])
if, in CA, it is a direct summand of a direct sum of modules of the form A"[n], A€ A, n€Z. A
DG module has property (P)if it is homotopy equivalent to a DG module P admitting a filtration

OIF_1CFQCFlc...FpCFp+1...CP,pEN

in CA such that



(F1) P is the union of the F},, p € N,
(F2) the inclusion morphism F,_1 C F), splits in GA, Vp € N,
(F3) the subquotient F},/F,_; is isomorphic in CA to a relatively projective module, Vp € N.

Note that (F1) and (F2) imply that the following sequence (*) is split exact in GA and hence
produces a triangle in H.A

[ can
Hr—=Irn=r;
pEN geEN

here ® has the components
F, [t -] Fy® Fpp1 = HFq, ¢ = 1incl.
4EN

If A is concentrated in degree 0, a DG module P with (F1), (F2) and (F3) yields a complex of
projective A%-modules. Conversely a right bounded complex of projective A%-modules gives rise to
a DG module P with (F1), (F2) and (F3): Indeed, if P? = 0 for ¢ > 0, we can take F,, = ]_[q>_p P,

THEOREM.

a) We have (HA) (P, N) =0 for each acyclic N and each P with property (P).

b) For each M € HA there is a triangle of HA

pM — M — aM — SpM,

where aM is acyclic and pM has property (P).

¢) Let
o= Qp— Q1 —...— Q1 —Qy—HM —0

be a projective resolution of H*M in GH* A such that Q,, = H*Q,, for a relatively projective
Qn € CA, Vn. Then pM s homotopy equivalent {o a module P admilling a filtration F)
with (F1), (F2) and such that F,/F,_1 = Qp[p] in CA, ¥p.

We shall refer to pM as a P-resolution of M. If A is concentrated in degree 0, assertion c)
implies that if M is a (possibly unbounded) complex of A%modules and QY a given projective
resolution of its pth homology, then M is quasi-isomorphic to a complex pM whose nth component
is Hp—q:n @y -

We define Hp.A to be the full subcategory of HA formed by the modules with property (P).

Applying suitable Hom-functors to the triangle of b) and using a) we see that we have
(HA) (P,pM) = (HA) (P, M) and (HA)(M,N) & (HA) (aM,N)

for all P € H,.A and all acyclic N. In particular, if (H.A) (M, N) = 0 for each acyclic N, we have
0= MHA) (M,aM) & (HA)(aM,aM), so that aM = 0 and, by b), pM = M. Hence a DG



module M lies in Hp A iff (HA) (M, N) = 0 for each acyclic N. Therefore H,A is a triangulated
subcategory of HA. The inclusion Hp.A C H.A admits the right S-adjoint [14] M +— pM.

It follows from a) that each triangle
P—M— N — P[1],

where N is acyclic and P has property (P), is canonically isomorphic to the triangle of b). If
(M;)ser is a family of modules, we can apply this to the triangle

HpMZ» — HMZ — HaMi — HpMz[l]

to conclude that p and @ commute with infinite direct sums.

PRrOOF. a) The assertion holds for each P of the form A*[n], A € A, n € Z, since
(HA) (AM[n], N) = HO(Dif A)(A", N[-n]) = H""N(A) = 0

for each acyclic N. Hence it holds for relatively projective P. It also holds if F, = P for p > 0
since such a P lies in the triangulated subcategory generated by the relatively projectives. In the
general case, we apply HA (7, N) to the triangle produced by the sequence (*) and obtain an exact

sequence

[THA) (Fy. N) — (HA) (P, N) — [[(HA) (F,[1], N).

Its outer terms vanish by the foregoing case.
b), ¢) Following [15, XTI, 11] we endow CA with another exact structure: Its class of conflations
& consists of the sequences

L—M—N
such that
0—L(A)" = M(A)" = NA)" =0
and 0— H"L(A) —=H"M(A) —H"N(A) —0
are short exact sequences of k-modules, for all A € A, n € Z. This is equivalent to requiring that
0— L(A)" = M(A)" = NA)" =0
and 0—7Z"L(A)—=Z"M(A)—=Z"N(4)—=0
be short exact for all A € A, n € Z. The isomorphisms
(CA) (AM=n], M) = Z° (Dif A) (A", M[n]) = Z" M(A)
(CA) (PAM—n], M) = M(A)"
(2.2) show that if @ is relatively projective, then @ and PQ are E-projective. It is also clear that

for each module M we may find an &-projective Q' = @ & PQ” and a morphism p : Q' — M

inducing surjections

Q' (A)" — M(A)" and Z" Q'(A) — Z" M(A) , YAE ANn €L



If K — ' is a kernel of p in CA, it is clear that K — @’ — M is indeed a conflation. Thus, C.A
has enough &-projectives and we can inductively construct an E-resolution of M, 1.e. an E-acyclic
complex [12, 4.1]

Q= Q== Q= Q= M — 0

with £-projective Q, = @, & PQ., where @, and Q! are relatively projective. Under the hy-

n’

potheses of ¢), we can refine this construction as follows: The map
(CA) (@, M) — (GH"A) (H*Q, H" M)

is clearly surjective if @ is of the form A”[n] for some A € A, n € Z. Hence it is surjective for
relatively projective . We can therefore lift the given morphism Qg — H*M to a morphism
p: Qo — M of CA. Now we choose an E-projective PQy, with relatively projective Qf, and a

morphism ¢ : PQy — M inducing epimorphisms
PRY(A) — M(A)* , YA€ AVneZ.
Then
/o e dl
Qyp=Qud PQy — M

is the required deflation (=admissible epimorphism) with E-projective Q. Observe that, since
PQy is null-homotopic, @} is homotopy equivalent to @q. Since H* : CA — GH" A carries &-
conflations to short exact sequences, we can successively lift the given resolution of H*M to an

E-acyclic sequence

. > Q;l > Q;l— .. Q/ Q6 lu 0
Suc a = n @ or all n E .

d%
K=(.—K'-%5 K" —~ ) neZ

is a differential complex over CA, its total module Tot K has the underlying graded module

II 57 -]

nez
and the differential

Put
pM=Tot(... - @, = Qb1 —...— Q] — Q) —0—=0—..)

and
FZ;:Tot(...—>0—>0—>Q;,—>Q;,_1—>...—>Q/1—>Q6—>0—>0—>...),pZO.

Then pM with the filtration by the F clearly satisfies (F1) and (F2), and Fy/F;_; = Q,[p],
Vp. By the lemma we will prove in 3.4, this implies that pM has property (P). The morphism



€: Qb — M induces a morphism o : pM — M. It remains to be shown that H"¢ is invertible or,

equivalently, that

N=Tot(... =@, —...— Q) —=Qy—M—=0—..)

m

is acyclic. This follows from the lemma we will prove in 3.3 applied to each N(A4), 4 € A.

3.2 I-resolutions. We record without proof the following ’dual® of 3.1. Fix an injective

generator I of the category of k-modules. For each A € A define the A-module AV by
B — (Difk) (A (A, B), E),

where E is viewed as a DG k-module concentrated in degree 0. A DG .A-module is relatively
injective if, in CA, it is a direct summand of a direct product of modules A¥[n], Ac A, ne€Z. A
DG module has property (I) if it is homotopy equivalent to a DG module I admitting a filtration

[=FodF>...0F F>...,peN,
such that

(F1°) the canonical morphism I — EIPI/FP Is invertible,

(F2’) the inclusion morphism Fpy1 C F), splits in GA for all p € N,

(F3’) the subquotient Fj,/Fpyq is isomorphic in CA to a relatively injective module, Vp € N.

By (F1°) and (F2’) the following sequence (+) is split exact in GA and hence produces a triangle
in HA
re [ e 2] 1/F

PEN geEN

here ® has the components

can -7 1
HI/FP—>I/Fq+1@I/Fq[—>]I/an
peN

where 7 is the canonical projection I/Fy41 — I/F,.
THEOREM.
a) We have (HA)(N,I) =0 for each acyclic N and each I with property (I).

b) For each M € HA there is a triangle of HA
aM—M—iM — Sa'M,

where a' M is acyclic and +M has property (I).

10



¢) Let

0—>H*M—>J_0—>J_1—>...—>ﬁ—>¢]n+1—>...

be an injective resolution of H*M in GH* A such that J, = H*J, for a relatively injective
Jn € CA, V. ThenaM is homotopy equivalent to « module I admitting a decreasing filtration
F, with (F1’) and (F2’) and such that F,/F,41 = J,[—p] in CA for all p € N.

3.3 Acyclic total complexes. Let

N = H NP4

p,9€Z

be a bigraded abelian group with commuting differentials dy and dry of bidegree (1,0) and (0, 1),
respectively. Let Tot N and Tot N be the differential graded groups with components

(Tot N)* = H NP resp. (’f(RN)": H NPl neZ,
p+g=n p+g=n

and the differential given by
dt =drt + (—1)Pdygt, t € NP1,

For r € Z denote by N*" (resp. B*", Z*" H*") the differential graded groups with components
N (resp. Imd?f_l, Ker d77, Ker d?}“/lmd?f_l ), neZ,
and the differential induced by d;.
LEMMA. If N*7 and H*" are acyclic for all r € Z, then Tot N and Tot N are acyclic.

Proor. If N*7 is acyclic for all » € Z, the same holds for the B*". Thus if N*" and H*"
are acyclic for all r € Z, then so are the Z*". To prove that Tot V is acyclic we consider the
differential bigraded subgroups N,, C N, m > 1, with N7 = 0 for » ¢ [—m, m], N7 = N*" for
r € [-m,m — 1], and N;™ = Z*". Clearly each Tot N, admits a finite filtration with acyclic

subquotients and hence is acyclic. Since we have
Tot N & Totlim N, < limTot N, ,

the assertion follows. Similarly, to prove that Tot NV is acyclic, we consider the quotients @, of NV,
m > 1, with Q57 = 0 for r & [-m,m], Q7 = N for r € [-m + 1,m] and Q=™ = B>+ As

above, each fo\tQm is acyclic and we have
Tot N = ﬂlflem = ILIP@ Q.
Moreover for each m > 1, the components of the canonical morphism
P Tot Qg1 — Tot Qn,

11



are surjective. Therefore, p,, also induces surjections onto the groups B"Tot Qm = 7" Tot Qm,

n € Z. By the Mittag-Leffler-criterion [8, Oyrr, 13.1], Tot N is acyclic.
3.4 Adjusting limits. Let P’ be a DG A-module and
FpCcFC...CF,C...CcPF

a filtration satisfying (F1) and (F2). Suppose that for each p > 1 a DG module ), and a homotopy

. P .
equivalence Fp/Fp_1 = (), are given.

LEMMA. The DG module P’ is homotopy equivalent to a DG module P admiiting a filtration
F, satisfying (F1) and (F2) and such that F,/F,_1 is isomorphic to Q, in CA, Vp.

Proor. We will inductively construct a sequence
FOCF1C...CFPC...

and a sequence of homotopy equivalences ﬁ : FZ; — Fj, such that the squares

o= P
il b fogt

F, — p+1

are commutative (in H.A), the sequence F, satisfies (F2) and F,/F,_1 = @, in CA, Vp. Of
course, we put Iy = Qo and let fy : Fj — Fy be the given homotopy equivalence. Suppose that

the construction has been completed for all p < n. We have
Exte(Fy/Fp_y, Fro1) = Extea(Qn, Fazt1)
where Extca denotes classes of extensions in the exact category CA (2.2). We choose a conflation
Foo1 =y — Qn

whose class corresponds to that of the given extension of F)/F)_, by F/_,. Then we have a

commutative diagram
Py =By — B/ — Fi(1]

fa1l ! | faza[1]
Fooy —F,— Qn - n—l[l]

We choose f,, so as to fit into the diagram. Now let P be the union of the Fp. Using the sequence
(*) of 3.1 we get triangles

HFZ;EHF(]/—}P/—“SVHFZ;

PEZ qEZ pEZ

3
Hn—=—lrn—r—sIH
PEZ qEZ pEZ

12



The ﬁ yield a commutative square

3
Hpez 7 — ez £y

a| I
T
HpEZ FP I HqEZ F‘]
where @ and b are homotopy equivalences. Using axiom TR3 [23, Ch. I, §1] and the five lemma we

see that P is homotopy equivalent to P’.
4. DERIVED CATEGORIES AND STABLE CATEGORIES

4.1 Derived categories. Let A be a small DG category. Let X be the class of quasi-
isomorphisms of HA (i.e. morphisms 5 such that H*S is invertible). By definition [11, Ch. VI, 10]
the derived category of A is the localization DA = (HA)[L71] [23]. It follows from theorem 3.1
that the canonical functor HA — DA induces an equivalence H,. A — DA. If A is concentrated in
degree 0, DA identifies with the unbounded derived category of the category of A%-modules. As
in the case of the derived category of an exact category, one constructs [7, 12.3] a functor which
completes the images in DA of pointwise short exact sequences of CA into triangles.

Since (infinite) direct sums of acyclic modules are acyclic, DA has direct sums, and the canonical

functors CA — HA — DA commute with direct sums.

4.2 Small objects and generators. Let A be a small DG category and 7 a k-linear trian-
gulated category with infinite direct sums. An object X € T is small if 7 (X, ?7) commutes with
(infinite) direct sums. By the five lemma, if two vertices of a triangle of 7 are small, then so is the
third one. Each A" is small in D.A. Indeed, let (M;);c; be a family of modules and A € A. Then

(DAYAN T Moy = BT ] Mu(A) = [T HOMi(4) = J](DAYA, My).
iel i€l
Let Hf,.A be the smallest strictly (=closed under ismorphisms) full triangulated subcategory of
HpA containing the A", A € A.

A set X C 7T is a set of generators if T coincides with its smallest strictly full triangulated
subcategory containing X’ and closed under direct sums. It follows from the sequence (%) of 3.1
that the A", A € A, form a set of generators for D.A.

Let F, F’ : DA — T be two k-linear S-functors commuting with direct sums and p: FF — F’ a
morphism of S-functors [14].

LEMMA.

a) The restriction of F' to Hf,.A s fully faithful off F induces bijections
(DA) (A", B [nl) — T (FA", FB[n])
forallAABe A, nel.
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b) F s fully faithful if F|Hf,.,4 is fully faithful and F A" is small for each A € A.

¢) Fis an equivalence iff F|Hf,.,4 is fully faithful and the FAN, A € A, form a set of small

generators for T.

d) The morphism p : F — F' is invertible iff pA" is invertible for each A € A.

PROOF. a) results from ’devissage’ (cf. e.g. [9, 10.10]).
b) Let A € A. By the five lemma, the modules M such that the map

(DA) (AN, M) — T (FA™, FM)

is bijective form a strictly full triangulated subcategory of D.A. It contains all the generators
B", B € A, and is closed under infinite direct sums (since both, A" and F A", are small and F
commutes with infinite direct sums). This subcategory therefore coincides with D.A. The same

argument shows that for fixed M € DA, the map
(DAY(L,M)— T (FL,FM)

is bijective for each L € DA.

¢) is now clear.

d) The DG modules M with invertible yM form a strictly full triangulated subcategory of D.A
which moreover is closed under infinite direct sums. This subcategory equals DA iff it contains

the A", A € A, as these form a set of generators for D.A.

4.3 Stable categories. Let £ be a k-linear Frobenius category [9] with (infinite) direct sums.
Since & has enough injectives, it is clear that direct sums of conflations (=admissible short exact
sequences) of £ are conflations. Moreover, direct sums of injectives (=projectives in &) are injective.
In particular, the associated stable category £ is a triangulated category with infinite direct sums.

Suppose that £ admits a set of small generators X' C £.

THEOREM. (cf. [5, Ex. 5.3 H]) There is a DG category A and an S-equivalence G : £ — DA
giving rise to an equivalence between X' C & and the full subcategory of DA formed by the free
modules AN, A c A.

PrOOF. Let & be the category of acyclic [14, 1.5] differential complexes
P=(..—pPLp-t_ ) neiz

with projective components P” € £. Endow & with the pointwise split short exact sequences. Then

& is a Frobenius category and it is easy to see that the functor P — Z° P induces an S-equivalence

G1:E—>§.



For each X € X', choose X € & with Z° X = X. Let A be the DG category whose objects are the

X and whose morphism spaces are

A(X,Y) = Hom(X,Y),
where for P, @) € <‘,~', the DG k-module Hom (P, Q) has the components

[[ewr.Q )y, nez,
peZ

and the differential given by d(f?) = (do f? — (=1)" f**! o d). Note that

E(P,S"Q) = H"Hom (P, Q).
It is clear that the composition of the exact functor
£ —CA, P— (X —Hom(X,P))

with the canonical projection C.A — D.A vanishes on projectives of g (=null-homotopic complexes

n <‘,~') and hence induces an S-functor
G2 : E — D.A

For X € X the module G2)~( is isomorphic to )?’\, the free module associated with X € A. If B,
t € 1, 1s a family in Eand X € .?F, the nth homology of the morphism

HHom ()?, P) — Hom ()?, HPZ)
identifies with
[[Ex. s"p) =X J]5"P),

which is bijective since X is small in &. Hence (s commutes with direct sums. We have already

seen that G5 induces bijections
E(X,5"Y) = H'"Hom (X,Y) = H'A(X,Y) = (DA) (G2X,5"GoY), X, Y €X , neZ.

By the argument of 4.2 b), we conclude that G is fully faithful. The essential image of G5 contains
the generators A", A € A, of DA. So G5 is essentially surjective. We let G be the composition of

(G5 with an S-quasi-inverse of G .

5. SMALL OBJECTS

Let A be a small DG category. FEach free module A", A € A, is small in DA, and so are the
objects of the smallest strictly full triangulated subcategory of DA containing the A", A € A, and
closed under forming direct summands. Ravenel’s ideas [18] imply that this subcategory coincides
with the full subcategory of small objects of DA. In 5.3, we give A. Neeman’s proof [17, 2.2] of

Ravenel’s result.
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5.1 Homotopy limits and small objects. Let 7 be a triangulated category with (infinite)
sums. Let

Xelx & ox, 2y~ peN

be a sequence of morphisms of 7. Let there be given a homotopy limit of the sequence, i.e. an

object X with morphisms ¢, : X, — X fitting into a triangle

Ix 21[x 2 x—s][x,

where @ is defined as in 3.1 and ¥ has the components 1,. Note that a homotopy limit is unique
up to non-unique isomorphism.
Let M € 7 be small. Then 7 (M, 7) commutes with direct sums and thus transforms the above

triangle into the long exact sequence
I X)) BT (M, X)) 22T (M, X) —
It is easy to see that (S®), is injective. We therefore have an isomorphism
l_iLnT(M,Xp) = Cok @, =7 (M, X).
5.2 Brown’s representability theorem. Keep the hypotheses of 5.1 and assume that 7
admits a set of small generators A'. For completeness we include a proof of the following

THEOREM. [3] A cohomological functor F : T — (Ab)°P is representable iff it commutes with

direct sums.

REMARK. More precisely, the proof will show that each such F' is represented by the homotopy
limit of a sequence

Xol X — X, X — .. peEN,

where X as well as the cone (=third corner of a triangle) over each f, is an (infinite) sum of
objects S” X, X € X', n € Z. In particular, each M € 7 is the homotopy limit of such a sequence,
as we see by taking F' =7 (7, M).

ProoF. We have to prove that the condition is sufficient. Let XT be the class of direct sums
of objects S"X, n € Z, X € X. Foreach M €7 put M* =7 (M,?). Since X is a set, there is an

Xo € X and a morphism 7y : X} — F inducing a surjection
X{(S"X) = FS"X
for all X € X', n € Z. We will inductively construct a sequence

Xol X — X, X — .. peEN,
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and morphisms mp41 : Xz/7\+1 — F such that ﬂ-p-l-lf];\ = m,. Suppose that for some p > 0 we have
constructed X, and m,. Choose Z, € X't admitting a morphism p, : Z, — X, which induces a
surjection

ZZ/,\ (S"X) — Kerm,(S"X)
for all X € X', n € Z. Define X, by the triangle

Z, % X, 2 X0 — S7,.

Since we have an exact sequence

FZ,"™ FX, — FXp

and by definition m,p = 0, we can choose w41 : Xy — F such that 711 ) = 7. Define X

by the triangle

I 2I0x S xe—s]]x.

PEN geEN pEN

where ¢ has the components
[1 _fp]t can
X, = Xy X — [[ X,
qeN

Since F': T — (Ab)°P commutes with direct sums, it takes sums of 7 to products of .Ab. Thus we
have an exact sequence

[IFx, =[] FX, = FXw
pEN geEN

which shows that there is a morphism 7o, : X2, — F such that 7, ¥} = 7 for all ¢ € N. By an

easy diagram chase we see that 7., induces an isomorphism
T(S"X, Xeo) = FS"X
for all X € X', n € Z. Since A generates 7, we can conclude that 7, is an 1somorphism.

5.3 Small objects. Keep the hypotheses of 5.2. If 4 and V are classes of objects of 7, we
denote by U *V the class of objects X occuring in a triangle

U—-X—-V—=5U

with U € U, V € V. The octahedral axiom implies that the operation * is associative. The objects
of ¥+ X*...xX (n factors) are called extensions of length n of objects of X. The following theorem
and its proof can be found in [17, 2.2].

TuEOREM. [18] [17] Each small object of T is a direct summand of an extension of objects
S"X, XeX, nel.

REMARKS. a) We will of course apply the theorem to the case where 7 is the derived category
of a DG algebra .4 and where X consists of the free modules A", 4 € A.
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b) One can adapt the proof of [19, 6.3] to show that, if A is a negative DG category, i.e.
A(A,B)* =0 for all n >0, A, B € A, then each small object of DA is an extension of D.A-direct

summands of finite sums of free modules A", A € A.
Proo¥r. [17] Let M be a small object of 7. Choose a sequence
fo Ip
Xo=X1—=.. =X, = X41 —...,peEN,
as in remark 5.2. By 5.1 we have an isomorphism
Um7 (M, X,) =T (M, M).

In particular, the identity of M factors through some X, which means that M is a direct summand
of Xp,. Now X, is an extension of sums of objects S” X, X € X', n € Z. So we can apply the

following lemma to Z’ = 0 and Z = X, to obtain the commutative square

M — M
! !
0 — X,,

where the cone on the first line is an extension M" of objects S”X, X € X, n € Z. Since M — X,

is a (split) monomorphism, the morphism M’ — M vanishes and thus M is a direct summand of

M.

LEMMA. [17, 2.3] Let M € T be small and lel ¢ : Z' — Z be a morphism whose mapping cone
is an extension of (infinite) sums of objects S" X, X € X, n € Z. Then each diagram

M
|
7=z
may be completed to a commutative square
M LM
| |
75 7

such that the cone over b is an extension of objects S X, X € X', n € Z.

PrOOF. By assumption the cone Z” over ¢ is an extension of sums of objects S"X, X € X,
n € Z. We proceed by induction on the length [ of 7. If we have [ = 1, then Z" is itself a sum
of objects S"X, X € X, n € Z. By the smallness of Y, the composition M — 7 — Z" factors
through a finite subsum M" C Z"”. We find the required square by completing

M . M//

! !
7Sz = oz = Sz

to a morphism of triangles

M = M —= M' — SM
7z S5z = z' - SZ.
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If we have [ > 1, then Z” occurs in a triangle
7z — 2" — 7 — Szl
where both, Z}/ and Z{, are of length < [. By forming an octahedron over
Z— 7" — 77

we see that ¢ is the composition of two morphisms ¢y and ¢; whose cones are 7} and Z;. By the
induction hypothesis we have a commutative diagram
M =2 M = M

! ! !
VAR

bl

where the cones of by and b; are extensions of objects of X'. By the octahedral axiom the same

holds for b = b1bg.

6. STANDARD FUNCTORS

6.1 Hom and tensor. Let .4 and B be small DG categories. The tensor product A® B is the
DG category whose objects are the pairs (A, B) of objects A € A, B € B, and whose morphism

sSpaces are

(A2 B)((4,B),(4",B")) = A(A, A) @ B(B,B).
The composition of A ® B is given by the formula
(fod)fog=ED"ffody

for fe A(A, A" and ¢’ € B(B', B").
Let X be an A-B-bimodule, i.e. a module over A @ B°P. It gives rise to a pair of adjoint DG

functors
Dif A
Tx 1] Hx
Dif B
which are defined as follows
(HxM)(B) = (DifA)(X(7,B),M)
(TxN)(A) = Cok(Ilpees NC©B(B,C) O X(A,B) % [[pes NB@ X(4,B)).

where v(n ®@ f @) = (Nn)(f) ® x —n @ X(A, f)(x). Observe that for each B € B we have
Tx B = X (7, B) since

(Dif A) (Tx B", M) = (Dif B) (B, Hx M) = (Hx M )(B) = (Dif A) (X(?, B), M)
for each M € Dif A. For brevity, we put X? = X(?7, B).
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The functors Hx and T’x induce a pair of adjoint functors between H.A and H /B which will also
be denoted by Hx and Tx. We denote by LTx the left derived functor of T'x, 1.e. the composition

DB — H,B X HA — DA, N TxpN.
Observe that LTx commutes with direct sums since p and Tx do.

LEMMA.

a) LTx is an equivalence iff the morphisms B(B,C) — (Dif A) (X2, X) induce isomorphisms
in homology, Y B,C € B, and the X®, B € B, form a set of small generators for DA.

b) A morphism X — X' of A-B-bimodules is a quasi-isomorphism iff the induced morphism
LT7x — LTx 1s invertible.

¢) Suppose that X has property (P) over A® B°P. If A is k-flat, then Tx preserves acyclicity.
If B is k-projective, then Tx preserves property (P). If k is a field then Tx N has property
(P) for each DG B-module N.

ProoOF. a) follows from 4.2 ¢), and b) from 4.2 d). Tt suffices to prove ¢) for the case where
X = (A, BY" for some (A, B') € A@ B°P. Then we have Tx N = N(B') @ A(A’, 7). So the first
two assertions are clear. To prove the last one, we fix an acyclic DG A-module M and observe
that
(Dif A) (Tx N, M) = (Dif k) (N(B’), M(A")).

Since k is a field, M(A’) is even null-homotopic. Hence we have (HA) (Tx N, M) = 0, and the

assertion follows from 3.1.

EXAMPLE. Let F' : B — A be a DG functor and put X(A,B) = A(A, FB) for Ac A, B e B.
Then clearly X? = (FB)". Hence LTx is an equivalence iff H*F : H*.A — H*B is an equivalence.

6.2 Right projective bimodules. We keep the assumptions of 6.1 and assume in addition

that XZ has property (P) for each B € B. Since
(Hx M)(B) = (Dt A) (X®, 1)

it follows from theorem 3.1 that H x M is acyclic for each acyclic M. The induced functor DA — DB
will be denoted by RHx. We have

(HA) (Tx P,M) = (HB) (P,Hx M) =0

whenever P has property (P) and M is acyclic. By 3.1 we conclude that Tx preserves property
(P). Using this we see that

(DA)(LTx N, M) = (HA) (TxpN, M) = (B) (pN, Hx M) = (DB) (N, RHx M) ,
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i.e. that RHx is a right adjoint of LT .
Now define a B-.A-module X T by

XT(B,4) = (Dif A) (XB, AM).
For each M € Dif A, we have a canonical morphism Tx+M — Hx M.

LEMMA.

a) The morphism LTxtM — RHx M is invertible for all M € H;A. It is invertible for all M
iff the XB are small in DA, VB € B.

b) If LTx : DB — DA is an equivalence, its quasi-inverse is isomorphic to LTy .

PRrROOF. a) The morphism is clearly invertible for free M. By ’devissage’ it is invertible for
M e Hf,.A. Since Hx commutes with infinite direct sums iff the X? are small, the second assertion
follows from 4.2 d).

b) If LTx is an equivalence then so is RHx. In particular, RHx commutes with direct sums.

The assertion now follows from a) and 4.2 d).

ExXAMPLE. Keep the notations of example 6.1. If LTx is an equivalence, a quasi-inverse is given

6.3 Flat targets. We keep the assumptions of 6.1 and assume in addition that A is k-flat, i.e.
A (A, B) is a flat k-module, VA, B € A. Let pX be a P-resolution of X over A @ B°P. Note that
for B € B the A-module (pX)® need not have property (P) (unless B (B, B) is projective over k
for each B’ € B). In particular, the canonical morphism p(X?) — (pX)p of H.A need not be a

quasi-isomorphism.
LEMMA.
a) We have LIx N = Tpx N for each N € DB.

b) Let C be another DG category and Y a B-C-bimodule. We have LTx LTy = LTz, where
Z =TpxY.

PrOOF. a) By 6.1 b) we have LTpx = LTx. So we only have to show that LTpx N = Tpx N
for each N € DB. It is enough to check that Tpx N is acyclic for each acyclic N. Now Tpx N
inherits from pX a complete filtration which splits in GA and has subquotients TN, where
@ is relative projective. So it is enough to show that Tp N is acyclic for each F = (A’, B/)",
(A", B") € A°P @ B. But

(TrN)(A) = A(A, Ao N(B').

b) follows from a) and the fact that TpxTy = Tz as functors Dif C — Dif A.
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6.4 Tensor functors and DG functors. Let .4 and B be small DG categories. Let F' :
Dif B — Dif A be an arbitrary DG functor. Its left derived functor is the composition

DB — H,B L HA -~ DA, N — FpN

Let X be the bimodule X (A4, B) = (FB")(A4) = (Dif A) (A", FB"). For each B-module N, the

canonical morphism
NB = (Dif B) (B", N) — (Dif A) (FB", FN) = (Dif A) (X(?, B), FN) = (Hx FN)(B)

comes from a natural morphism N — HxFN. By adjunction, we obtain Tx N — F'N. The
induced morphism

LTxN — LFN

is clearly invertible for N = B*[n], B € B, n € Z. This implies the first assertion of the following

lemma. The second one follows from lemma 4.2.
LEMMA. The canonical morphism
LTxN — LI'N
1s invertible for each N € Hf,[)’. It 1s invertible for all N € DB iff LF commutes with direct sums.

6.5 Example: Lie algebra cohomology. Let R be a k-algebra with 1 and L a (k, R)-Lie
algebra [21, §2], i.e. L is a Lie algebra over R, and R is endowed with a left L-module structure
such that

[X,rY] = (Xr)Y +r[X,Y]

for all X,Y € L, r € R. In addition, we assume that L 1s projective as an R-module. For example
this holds for the (R, C'°°(M))-Lie algebra formed by the C'*°-vector fields on a C'*°-manifold M
[21, §4]. Let the Lie algebra Z be the semi-direct product of L by R and let A be the "universal
algebra of differential operators generated by R and L“: A is an associative k-algebra endowed

with a k-linear morphism ¢ : 7 — A which is universal for the properties
([0, V]) = [(U), (V)] and o(rU) = o(r)e(T)

for all U,V € Z, r € R. The canonical Z-action on R uniquely extends to an A-module structure.
Let € denote the map A — R,a — a.l.

Let E be the graded exterior R-algebra over L and let X be the differential complex with
components X" = A @g E~" and the differential [21, §4]

da® XA AXy) = 3 (-D)TlaX; 0 X1 AL XA X,
i=1
+3 (D)o X, X AKX AL X X A X
<k
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The complex X together with the augmentation ¢ : X! — R is a projective resolution of the left
A-module R [21, §4]. The corresponding quasi-isomorphism X — R will also be denoted by «.
Let B be the DG R-module (Dif A°P) (X, R). We will freely make use of the identifications

B = (Dif A°P) (X, R) = Hom A(A @g E, R) = Hom g(F, R).

Endowed with the ’shuffle product B becomes a DG algebra [10, §9] : Recall that for f € BP,
g € BY, and n = p+ ¢, one puts

X1 A AXD) =D 0 f(Xiy, o, Xay) 9(Xy - XG,)

where 0;; is the parity of the permutation

=i, ..., p—=t,p+l—H,. ..., p+a—1]g,

and the sum ranges over all tuples ¢,j with i1 < ... < i, 1 < ... < joand {1,...,p+ ¢} =

{in, oo it U, -y de )
Let f € B?. We define a DG left B-module structure on X by putting f.(a®@ X1 A...AX,) =0

for p > n and, with the same notations as for the shuffle product,

fla® Xy A AX) =Y 0ia® f(Xiy, o, Xey) Xy AL AKX

tp

for p < n and p+ ¢ = n. It is clear that the actions of A and B on X commute among each other

and agree on R so that X becomes an A°P-B-bimodule. Note that X | A°P has property (P) (3.1).
LEMMA.

a) The functors LTx : DB — DA°P and RHx induce quasi-inverse S-equivalences between
HZB and the full triangulated subcategory of DA°P generated by R.

b) If L is finitely generated over R, then LTx : DB — DA®P is fully faithful and RHx & LTx.

PROOF. a) By 4.2 a) we have to check that the morphism of complexes
A: B — (Dif A°P) (X, X)
mapping f to left multiplication by f is a quasi-isomorphism. By definition the composition of A
with
g« 1 (DIf A°P) (X, X)) — (Dif A°P) (X, R)
is the identity. Since ¢ : X — R is a quasi-isomorphism and X has property (P), ¢, is a quasi-
isomorphism. Hence so is A.

b) If L is finitely generated, X|A°P is a bounded complex of finitely generated projective

A-modules. In particular, X is small in DA®P. The assertion now follows from 4.2 b) and 6.2 a).

23



6.6 Example: Bar resolution. Let A be a small DG category. Let Y be the bar resolution
[4, IX, §6] of A, i.e. the complex of A-A-bimodules with ?(A, B)* =0 for n > 0 and

Y(A,0)= J] A(By,C)®A(B1,Bo)®...0 A(By, Bu1) @ A(A, By), n >0
By,...,B,

endowed with the differential d of degree 1 with

n

dlag® a1 ®...Qap @ apy1) = Z(—l)iao @ @i @ ... @ Qg
i=0
Let Y be the total module of ¥ (cf. the proof of 3.1). Define T to be the A-A-bimodule I(A, B) =
A (A, B). By [4, IX, §6] we have a quasi-isomorphism ¢ : Y — I induced by the composition map

[T A By, €)@ A4, By) — A(A,C).

The maps
Foro [[ Fre v
ptg=n

given by
@ .. Qg1 — (A Q.. e Q1QLR a1 @ ... R dnt1)

yield a morphism

A:Y =Y oY,

where by definition 7 oY = Ty. We have commutative diagrams
Y A voy Y A vov ¥ 2 Yoy 2 vo(voY)
|| lYOE || lEOY || lcan

can

VY 2 Yol MG P Y 2 Yoy 22X (YoY)oV.

Now let B be a set of DG A-modules. The above diagrams ensure that we can make B into a DG
category by requiring that

B(L,M)= (Dif A)(Y oL, M),
that the identity 1? corresponds to the composition

VoL 2hror %

and that the composition of two morphisms of B coming from¢g:Y oL — M and f: YoM — N

is given by the composition

YoL2E (VoV)oL 2 vVo(YoL)X4yom LN

We then have a canonical A-B-bimodule X(A, L) := (Yo L)(A), where the actionof g : Yo L — M

is given by the composition

VoL2L (VoY)oL vVo(YoY) ey om.
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Now suppose that k is a field. Then each Y7 s relatively projective over A ® A°P. Since Y admits
the filtration F? = Hn>_p Y™, it has property (P) over A ® A°P. Using 6.1 b) and c) we infer

that the composition 5

coM can

YoM-—I1oM—M
is a P-resolution for each DG A-module M. Therefore the morphism
et (DIfA) (Y oL YoM)— (DifA)(YoL M), L,M€B,
is a quasi-isomorphism. And so is the canonical morphism
B(L, M) — (Dif A) (Xt XM) = (DifA) (Y o L, Y o M)

since it has 7, as a left inverse. Using 4.2 we infer the

LEMMA.

a) The restriction of LTx to Hf,[)’ 15 fully fauthful

b) If each L € B is small in DA, then LTx is fully faithful.

¢) LTx is an equivalence iff the objects of B form a set of small generators for DA.

7. QUASI—FUNCTORS AND LIFTS

7.1 Quasi-functors. Let A and B be small DG categories. Denote by A the full subcategory
of DA whose objects are the A", A € A, and by ZA the full subcategory whose objects are the
AMn],n € Z, A € A. Note that we have

(ZA) (A" [n], B*m]) = H" ™" A (4, B)

forall A, Be A nmek.
Let X be an A-B-bimodule. By definition, X is a gquasi-functor B — A if it satisfies the
conditions of the following lemma. Note that in this case LTx gives rise to a functor ZB — ZA

and hence to a functor H*B — H* A.
LEMMA. The following are equivalent
i) LTx gives rise to a functor B — A.
i) For each B € B the functor (DA)(?, XB) is representable by an object of A.

iii) For each B € B there is an A € A and an element xp € Z°X (A, B) such that for each
A’ € A the morphism

AA'A)— X(A',B), f— X(f,B)(zB)

imduces isomorphisms i homology.
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Proor. Exercise.

Suppose for example that A and B are concentrated in degree 0. Then A° is equivalent to A.
Thus by i), a quasi-functor X yields a functor F° : B — A" hence a functor F' : B — A. It is
easy to see that in D(A ® B°P), X is isomorphic to the bimodule (A, B) — A (A, FB).

7.2 Quasi-equivalences. Keep the hypotheses of 7.1. By definition, X is a quasi-equivalence

if the conditions of the following lemma hold. In this case B is quasi-equivalent to A.
LEMMA. The following are equivalent
i) LTx is an equivalence giving rise to an equivalence B — A.
it) LTx gives rise to equivalences ZB — ZA and B — A.

ii1) There is a subset D C A x B projecting onto A as well as onto B, and for each (A, B) € D
there is an element T g € ZOX(A, B) such that the morphisms

A(A/,A)HX(A/,B) , fHX(f’B)(l‘AB)
B(B,B/)HX(A,B/) , gHX(A’g)(xAB)

induce isomorphisms in homology for each A' € A, B' € B.

Proor. Exercise.

ExAMPLE. Each DG functor F' : B — A inducing an equivalence H*F : H*B — H"A yields
a quasi-equivalence X(A, B) = A(A, F'B). If A and B are concentrated in degree 0, each quasi-

equivalence comes from an equivalence F': B — A.

REMARK. If k is a field, ’quasi-equivalence® is an equivalence relation (6.1 ¢ and 6.2 b imply

reflexivity; 6.3 b implies transitivity).

7.3 Lifts. Let A be a small DG category. Let # C DA be a full small subcategory and
ZU C DA the full subcategory whose objects are the Uln], U € U, n € Z. A lift of U is a DG
category B together with an A-B-bimodule X such that L7x gives rise to equivalences ZB = ZU
and B = U.

78 = U
J J
pB X pA.

ExaMPLEs. With the notations of 6.5, (B, X) is a lift of ¥ = {R}. — If k is a field, any
U C DA may be lifted using the bar resolution of 6.6.

The definition of a lift implies in particular that LT induces an equivalence from H;B onto the

triangulated subcategory of DA generated by U (4.2 a). If XP has property (P) for each B € B,
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a quasi-inverse is induced by RHx. Indeed, if M € Hf,[)’, we have
(DB) (S"B",RHxLTx M) = (DA)(LTx S"B",LTx M) & (DB) (S*B", M)

since LTx is fully faithful on H;B. This means that RHxLTx M «— M is invertible.

We see from 6.1 that LTx is itself an equivalence iff the objects of i form a system of small
generators for DA.

If U is given, we can always construct a standard lift by taking B to be the full subcategory of
Dif A formed by chosen objects pU, U € U, and X to be the bimodule

(A, pU) — (pU)(A), pU € B, A € A.

Now let (B, X) be any lift of & such that X has property (P) for each B € B. Let C be a DG
category and F': Dif C — Dif A a DG functor such that LF : DC — DA induces a functor C — U.

DC — C
J LF J
pB X paA — u
1 1
B — U

LEMMA. Put Y(B,C) = (Hx FC")(B).

a) LTy induces a functor C — B ; hence Y is a quasi-functor. It is a quasi-equivalence if LF

nduces an equivalence ZC — ZU .

b) There is a canonical morphism
LIxL1Ty M — LFM |

which 1s invertible for M € HZC. It is wnvertible for arbitrary M € DC off LE commutes with

direct sums.

) If (C,7Z) is a lift of U and F = Ty, then Y is a quasi-equivalence C — B and we have
LTxLTy = LTgz. If moreover Z¢ has property (P) for each C € C, then RHyRHx =
RH,.

REMARK. In 10.3 we will need the following fact. Suppose that F', Tx and Ty all preserve
acyclicity so that their derived functors are isomorphic to the functors induced by them. Then the

morphism of b) is produced by the composition
TxTy 2 TxHxF 2L F

which i1s even defined as a morphism of DG functors. Here « : Ty — Hx F' denotes the canonical

morphism constructed in 6.4, and @ the adjunction morphism.
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ProoF. a) Consider the functor G = Hx o I : DifC — Dif B. We have LG = RHxLF. So
LG induces a functor € — B. By definition we have Y(B,C) = (GC")(B). Hence we have a
morphism Ty — G such that LTy M — LGM is invertible for each M € HZC (6.4). So LTy

induces a functor C — B. We have morphisms
LTxL1ly — LIxLG = LIxRHxLF — LF

which are invertible on Hf,C. Thus LTx induces an equivalence ZC — ZB iff LF induces an
equivalence ZC — ZiU . The second assertion now follows from 7.2.

b) follows from the proof of a) and 4.2 d).

The first two assertions of ¢) are immediate form a) and b). The last assertion is clear since if

L7y is an equivalence and LTx LTy = LTy, then RHyRHx is right adjoint to LT .

7.4 On the unicity of lifts. Keep the hypotheses of 7.3 and assume in addition that A is
k-flat. Since XZ has property (P), V B € B, we have a well defined pair of adjoint functors

Hy :D(A®CP)—=DBaCP) , Zw— HxZ
T% :D(BRCP)—=DADCP) | YV —TxpY

LEMMA. For each Y € D(B ® C°P) we have
LTxLTy = L1y,
where 7 = T)!(Y. Moreover T)!( mduces an equivalence between the full subcategories

{Y : LTy gives rise to a functor C — B} C DB CP)

and {7 : LTy gives rise to a functor C —U} C D(A® CP).

Proo¥. We have TxpY & TpxpY by 6.1 b) and TpxpY = TpxY by the k-flatness of
A (6.3 a). So we have TxY = TpxY. By 6.3 b) this implies the first assertion. Since LTx
gives rise to a functor B — U, we infer that 7% induces indeed a functor between the given
subcategories. Suppose that LTy gives rise to a functor C — B. We have to show that the
canonical morphism pY — HxTxpY of H(B ® C°P) is a quasi-isomorphism. But we have already
seen that HxTxpY = HxTpxY, and on the other hand, for each B € B, we have

(pY)p = Yp = HxIxp(Yp) = HxTpxYs,

where we use 6.3 a) for the third isomorphism and the fact that Y € U for the second one. Now
suppose that LTy gives rise to a functor C — A. We have to show that the canonical morphism

Txp(HxZ) — Z of D(A @ C°P) is invertible. As above we have Txp(HxZ) = Tpx Hx Z and
Ze & TxpHxZc < TpxHx Zc

where we use Z¢ € U for the first isomorphism and 6.3 a) for the second one.
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8. APPLICATION: DERIVED EQUIVALENCES

8.1 Arbitrary targets. Let .4 and C be small DG categories.
THEOREM. Assertion i) implies i), and ii) implies iii).
i) There is a DG functor H : DifC — Dif A such that LH : DC — DA is an equivalence.

i) C is quasi-equivalent to a full DG subcategory B of Dif A whose objects have property (P) and

form a set of small generators for DA.
iit) There are a DG category B and DG functors
pif¢ < DifB L Dif A
such that LG and LF are equivalences.
PROOF. i) implies ii): By 6.4 we have LH = LTy for some A-C-bimodule Z. So (C,7) is a

lift of U = {LHC" : C € C}. Take B to be a standard lift of . The assertion then follows from

7.3 ¢) and 4.2 ¢).
i) implies 1ii): By 7.2 we have an equivalence LTx : DC — DB and by 7.3 an equivalence

LF:DB—DA.
8.2 Flat targets. Let A and C be small DG categories and assume that A is k-flat.
THEOREM. The following are equivalent
i) There is an A-C-bimodule X such that LTx : DC — DA is an equivalence.
i) C is quasi-equivalent to a full DG subcategory B of Dif A whose objects have property (P) and
form a set of small generators for DA.
PrROOF. i) implies ii) by 8.1. Conversely, ii) implies i) by 8.1 iii), 6.4 and 6.3 b).

REMARK. Recall from section 5 that a DG module is small in DA iff it is contained in the
smallest strictly full triangulated subcategory of DA containing the free modules and closed under

forming direct summands.
9. APPLICATION: STALK CATEGORIES

9.1 Modules over HA. Let A be a small DG category. Let H°A (resp. 7<°A) be the DG

category with the same objects as A and with the morphism spaces

(H°A)(A,B) =H°A(A,B), A B € A,
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viewed as DG k-modules concentrated in degree 0 (resp.
(=°A) (A, B) == A(A,B), A,BE A,
where 7<YK denotes the subcomplex C of K with C* = 0 forn > 0, C® = Z°K, and C"* = K"
for n < 0). We have the obvious functors
HOA & 7S04 = A
As in example 6.1, they yield functors

LT X LTY

PH°A X DrS0A 22X DA |

where X(A, B) = (H°A) (A, 7B) and Y (A, B) = A(A,1B). The functor LTx is an equivalence iff
A satisfies the "Toda-condition® (cf. [22])

H"A(A,B)=0,¥Y¥n<0,YA BeA

In this case (example 6.2), we have a canonical functor from DH®A to DA given simply by the
composition

PHOA "IET pr<o g K p g,

If A is k-flat, this simplifies to

LTy

DHA 2 DA,

where Z is the A-H° A-bimodule prXT (6.3 b).

9.2 Equivalences. Let B be a small k-linear category. We identify B with a DG category
concentrated in degree 0. Let A be an arbitrary small DG category.

THEOREM. (cf. [19], [12]) The following are equivalent
i) There are DG categories Ay, As and DG functors
Dif 8 22 Dif A, &2 Dif A, £ Dif A
such that LFy, LFs and LFs3 are equivalences.
i1) There is an S-equivalence DB = DA.
iit) B is equivalent to a full subcategory U of DA whose objects form a set of small generators
and satisfy (DA)(U,V[n]) =0 for alln £0, U,V € Y.
REMARK. We refer to [19, 6.4] for more precise information in the case where A and B are
rings.

PRrROOF. By 4.2 ¢), ii) implies iii). To prove that iii) implies i), let A; be a full subcategory of
Dif A consisting of chosen objects pU, U € U. Let Fy = Tx where X (4, 4;) = A;(A). By 6.1,
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LF) is an equivalence. By the assumption on ¢ we have H" 4; (A, B) = 0 for n # 0 and arbitrary
A, B € Ay, and H A; is equivalent to B. Now the assertion is clear from 9.1.

Using 6.3 b) and 6.4 we find the

COROLLARY. (cf. [20]) If A is k-flat, the following are equivalent

i) There is an A-B-bimodule X such that LTx : DB — DA is an equivalence.
it) There is an S-equivalence DB — DA.

iit) B is equivalent to a full subcategory U of DA whose objects form a set of small generators
and satisfy (DA)(U,V[n]) =0 for alln £0, U,V € Y.

REMARK. We refer to [20] for more precise information in the case where A and B are rings.

A straightforward construction of the bimodule in this case is given in [13].
10. ApprLicAaTION: KOSZUL DUALITY FOR DGA CATEGORIES

10.1 Preliminaries. Suppose that k is a field. Define the functor D : Difk — Difk by
DM = (Ditk) (M, k),

where k is viewed as a DG k-module concentrated in degree 0. Let A be a DG k-category. For
each A € A we define the A-module AV by

AY(B)=DA(A,B), Be A.
For each DG module M and each A € A we have a canonical isomorphism of DG k-modules

(Dif A) (M, AY) = DM(A)
p = (m—=((pA)(m))(1a)).
In particular, we have a canonical morphism
A(A,B) — DDA(A, B) = DAY(B) = (Dif A) (AY, BY),

which is a quasi-isomorphism if dimH"A (A4, B) < oo for each n € Z. So in this case the full
subcategory AV of Dif A formed by the AV, A € A, is quasi-equivalent to A.
Fix A € A. To compute (DA) (7, AY), we first remark that if N is acyclic, we have

(HA) (N, AY)=H"DN(A) = 0.
Therefore

(DA) (M, AV) = (HA) (pM, AY) & (HA) (M, AV) = H°DM(A),
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and in particular H" AY (4", BY) = (D.A) (AY, BY[n]). So if we define the A-AY-bimodule Xy by
(A, BY) — BY(A), then (AY, Xy) is alift (7.3) of {AY : A € A} CDA.

10.2 The Koszul dual. Suppose from now on that A is an augmented DG category (=DGA

category) i.e.
a) Distinct objects of A are non-isomorphic.

b) For each A € A a DG module A is given such that H°A(A) = k and H"A(B) = 0 whenever
n#0or B#£ A

Now let (A*, X) be a lift (7.3) of {A: A € A} C DA. After deleting some objects from A* we
may (and will) assume that we have a bijection A — A* between the objects of A and those of
A* such that LTx A*" = A for each A € A. By 6.3 a) we also may (and will) assume that X has
property (P) as a bimodule. Since £ is a field, this implies in particular that X (7, A*) has property
(P) for each A* € A* (6.1 ¢). Hence the functors Hx and Tx both preserve acyclicity and induce
a pair of adjoint functors between DA* and DA, which will also be denoted by Tx and Hx.

We make A" into an augmented DG category by putting

A= Hx AY.

This is a good definition since indeed

H*A*(B*) = (DA*)(B*", A*[n]) = (DA*) (B*", Hx AY[n])
= (DA)(Tx B*", AV[n]) = (DA) (B, AV [n])
= H"DB(A).

We define A* with the A* A* € A*, to be the Koszul dual of the DGA category A (cf. [1]). We
sum up our notations in the diagram

A DA AY

T Ix 1l Hx |

A*A DA Ax.
If B is another DGA category, a quasi-functor Y : B — A is compatible with the augmentations
if Hy A = B whenever Ty B = AM.
By 7.3 ¢) the Koszul dual is determined by the above construction up to a quasi-equivalence
compatible with the augmentation, i.e. if X’ and A* result from different choices made in the
construction, there is an A*-A*-bimodule ¥ having property (P) such that 7y : DA* — DA

satisfies Tx: Ty = Tx, Ty A*N = A*" and
Hy A7 = Hy Hx AV = Hx AV = A

for each A € A.
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The Koszul dual defined in [2] is quasi-equivalent to the full subcategory of Dif A* formed by
the A*"[n(A)], where n : A — 7Z is a given ’weight function‘ for A. Note that the morphism spaces
of this category simply identify with the shifted spaces

A* (A%, B)[n(B) — n(A)], A, B € A

EXAMPLES. a) Let & be a k-Lie algebra and U(®) its universal enveloping algebra. In the
notations of 6.5 (with R = k), the Koszul dual of A = U(®) is quasi-equivalent to B.

b) Let V be a finite-dimensional k-vector space, DV its dual over k, ADV the exterior algebra on
DV and SV the graded symmetric algebraon V. View 4 = ADV as a DG algebra concentrated in
degree 0, and B = SV as a DG algebra with the components B™ = S™V and vanishing differential.
Define (commuting) right and left A-actions on AV by

n

V(v AL AY,) = Z(—l)”lv*(vi)vl/\...@.../\vn
i=1
n

(1 AL Aop)0™ = Z(—l)""'lv*(vi)vl/\...@.../\vn.
i=1

Endow the graded A-B-bimodule X = SV ® AV with the differential

d:XP — XPH g (1) (0 @ o)
i=1
where the v;, 1 < i < n, form a basis of V and (v}) is the dual basis. Then (B, X) is a lift of the
trivial A-module k. Hence the Koszul dual of A is quasi-equivalent to B.
¢) Let V be a finite-dimensional k-vector space, I C Z an interval and .A; the DG category

concentrated in degree 0 whose objects are the ¢ € I and whose morphism spaces are the
Ar(i,j) =97V

concentrated in degree 0. For each ¢ € I let 7 be the DG Ar-module concentrated in degree 0 with
W(j) =k fori=jand %(j) = 0 for ¢ # j. Let By be the DG category whose objects are the symbols

t*, ¢ € I and whose morphism spaces are the stalk complexes
By (", j") = (A" DV)[j — ).
Let X be the A;-Br-bimodule given by
Xi(i, j)" = A"V @ Sty

endowed with the differential given by left multiplication by 2?21 v @v;, where the v;, 1 <17 < n,
form a basis of V and (v}) is the dual basis. Then (B, X7) is alift of {7:¢ € I'} C DA;. So the
Koszul dual of A is quasi-equivalent to By. Clearly, the modules ¢V, ¢ € I, are the unions of their
finite-dimensional submodules and the functor i* +— iV is an equivalence. It therefore follows from

the lemma on the ’symmetric’ case (10.5) that the Koszul dual of By is quasi-equivalent to Aj.
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10.3 The double dual. The composition of Hx with the functor Tk, : DAY — DA of
10.1 induces a functor AY — {A* : A € A} C DA*. Thus (7.3 a), we have a quasi-functor
Y : AV — A*, which is a quasi-equivalence iff the restriction of Hy : DA — DA* to the
subcategory formed by the AV[r], A € A, n € Z, is fully faithful.

Tx,
DAY — DA
Ty | Tx 7| Hx
DA** — DA*.
Tx,

We endow AV with the augmentation defined by

AV(BY) = D(Dif A) (A, B¥) = DDA(B).

LEMMA. The quasi-functor Y : AY — A** is compatible with the augmentations.

PRrROOF. Let (A** X,) be the chosen lift for the A* A € A. Recall that we assume that X,
has property (P) as a bimodule. Fix A € A. We have to show that AV = Hy A**. By definition
Hy A* = HyHx, A*V. We will show that Hy Hx, A*Y = AV by explicitly exhibiting a quasi-
isomorphism. For short we write ¥(7,7) for (Dif AY)(7,7), .... We have the following series of

morphisms of DG k-modules, functorial in BY € A"

(HYHX*A*V)(BV) o~ V(BVA,HYHX*A*V) o~ *(TX*TYBVA,A*V)

= DA Tx, Ty B"") — D *(A*" HxTx,B"").
The last arrow is induced by the morphism
Tx, Ty — HxTx,

of DG functors Dif AY — Dif A* exhibited in remark 7.3. It is a quasi-isomorphism since BY" &
H;AV (7.3 b). We continue the series of morphisms:

D*(AN HxTx,B"") = D (TxA" Tx,B"")

=~ D (TxA* BY)

since by construction Tx,, BY» = Xy (7, BY) = BY in Dif A. Now since Tx A*" is quasi-equivalent

to A, we have a quasi-isomorphism
D (Tx A**,B¥) — D (4, BY).
By definition the last term is isomorphic to AV(BY).

10.4 Properties of A*. Let M be a DG A-module and n € N. By definition we have
sdim M < n (resp. pdim M < n, resp. idim M < n) if there is a sequence

O=M_1—-My— M — My — ... - M, =M
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of morphisms of DA such that in each triangle
Moy — M; — Qi — M;—1[1], 0<i<n,

the module @; is isomorphic to a finite direct sum of modules of the form A[n] (resp. A”[n], resp.
A¥[n]), A € A, n € Z. The (possibly infinite) numbers sdim M, pdim M and idim M are referred
to as the semi-stmple, the projective, and the injective dimenston of M, respectively.
Let v : Dif A — Dif A be the functor defined by
(vM)(A) = D(Dif A) (M, AM).

For example, we have vA" = AY by the definition of AY for each A € A. We have a natural
transformation

D(Dif A) (M, N) — (Dif A) (N, v M)
which is defined as follows: Given a linear form ¢ on (Dif A) (M, N) and an f € (Dif A) (A", N) &
N(A), the associated linear form on (Dif A) (M, A") maps g to ¢(fg). Clearly this is an isomor-
phism for M = B"[n], B € A, n € Z, and therefore a quasi-isomorphism for M & H;A.
LEMMA.

a) If sdim M < oo and pdim M < oo then HxLvM = (Lv)Hx M in DA*.

b) For each A € A we have
1) pdim A* < sdim AV 2) sdim A*N < idim A
) idim A* < sdim A" 4) sdim A*V < pdim A

PROOF. a) Since sdim M < oo, we have Tx M € H;A* and M = Tx N for N = HxM. We
assume that N (and hence Tx N) has property (P). We have to show that HxvTx N = vN. We
write *(7,7) and (?7,7) instead of (Dif A*)(?,7) and (Dif A) (7,7). We have the following series of
quasi-isomorphisms functorial in A* € A*

(HXvTxN)(A*) — *(A*A s HXvTxN) — (TxA*A s I/TxN).
Since Tx N € HZA and N € HZA*, we also have the following quasi-isomorphisms:
(Tx A" ,vTxN) — D(Tx N, Tx A*") — D *(N, A*") = (vN)(4").

b) Assertions 1) and 2) are trivial since HxB = B**, B € A, and Hx AV = A, A € A. For 3)
we use that
F = HxAv = HXvAA = (LI/)HxAA
if sdim A" < oo, and B*Y = (Lv)HxB for each B € A. For 4) we use that A*Y = LvHxA =
HxLvA if pdim A4 < o0 and B* = HxLvB” for each B € A.

10.5 Three special cases. We consider three cases where AV is quasi-equivalent to A**, and

there is a fully faithful embedding relating DA and D.A*.

LEMMA. (The “finite case) Suppose that pdim A < co and sdim AN < oo for all A € A.
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a) sdim A*V < oo and idim A* < oo for all A* € A*.
b) Tx and Hx are quasi-inverse equivalences between DA* and DA.

¢) We have quasi-equivalences A = AY = A**.

ExaMPLEs. a) The category By of 10.2 ¢) for finite I.
b) Let A be a finite-dimensional k-algebra of finite global dimension all of whose simple modules
are one-dimensional. We take .4 to be the k-linear category formed by chosen representatives of

the indecomposable projective A-modules and for each 4 € A we take A to be the head of A.

PROOF. a) holds by 10.4 b).

b) Since pdim A < oo, we have A € Hf,.A for each A € A. Moreover, since sdim B* < oo, the
triangulated subcategory generated by the A contains each BN, B € A. Hence the A, A € A, form
a system of small generators for DA and the assertion follows from 6.1 a) and 6.2.

c) Since Hyx is fully faithful, .AY is quasi-equivalent to .A** (10.3). Since sdim A" < oo for all
A€ A, we have

oo > dimH" AN(B) = dimH" A (A, B)

for all A, B € A so that A — A" is a quasi-equivalence (example 7.2).
LEMMA. (The ’exterior® case) Suppose that sdim A" < oo and sdim AY < oo for all A € A.
a) pdim A* < co and idim A* < oo for each A* € A*.

b) Tx and Hx induce quasi-inverse equivalences between HZA* and the smallest full triangulated

subcategory of DA containing the A, A € A.
¢) Txr : DA — DA* is fully faithful

d) We have quasi-equivalences A = AV = A**.

REMARK. Part b) yields theorem 16 of [2].

EXAMPLES. a) Example 10.2 b).
b) The category By of example 10.2 c).
¢) If A is a finite-dimensional algebra of arbitrary global dimension with one-dimensional sim-

ples, we can proceed as in example b) of the “finite case’.

PRrROOF. a) holds by 10.4 b). By the definition of ’lift‘ (7.3) we have b).

¢) Let 7 be the full triangulated subcategory of D.A generated by the A, A € A. The restriction
of Hx to 7 is fully faithful (7.3). Since Hf,.A is contained in 7, Hx is fully faithful on H;A, and
Hx AN lies in H;A* for each A € A. In particular, Hx A" is small for each A € A. Since Tk~
agrees with Hx on H;A (6.2 a), the assertion follows from 4.2 b).
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d) Since the AY, A € A, lie in 7, AY is quasi-equivalent to .A**. Since the A" A € A, lie in
T, we have

0o > dimH"AN(B) = dimH" A (B, A)

for all A, B € A, so that A — A" is a quasi-equivalence (example 7.1).

LEMMA. (The symmetric case) Suppose that pdim A < co and idim A < co for all A € A.
a) sdim A*" < oo and sdimA*Y < oo for all A* € A*.

b) Tx and Hx induce quasi-inverse equivalences between HZA* and the smallest full triangulated

subcategory of DA containing the A, A € A.
¢) Tx : DA* — DA is fully faithful.

d) We have a quasi-equivalence AY — A™ if each BY, B € A, lies in the smallest triangulated

subcategory of DA closed under direct sums and containing the A, A € A.

ExaMPLEs. In example 10.2 a), we have pdim A < oo and idim A < oo if & is finite-dimensional.

This also holds in 10.2 ¢). For 10.2 ¢) the assumption of d) is satisfied as well.

PRrROOF. a) holds by 10.4 b). By the definition of ’lift‘ (7.3) we have b).
¢) and d): By 4.2 b), Tx is fully faithful. So Tx induces an equivalence onto its image,
which is precisely the smallest strictly full triangulated subcategory containing the A, A € A, and

closed under direct sums. A quasi-inverse is induced by Hx. Thus the restriction of Hx to the

subcategory of DA formed by the BY, B € A, is fully faithful. Now d) follows by 10.3.
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