Grothendieck-Roos-Duality and Tilting

Bernhard Keller Dieter Vossieck

Abstract

We investigate the relations between the hearts of two t-structures on one triangulated category. Under suitable compatibility conditions, we obtain a common generalization of the duality theory developed by Grothendieck and Roos [10] for regular commutative rings and the tilting theory [3] [6] [4] used in the investigation of finite-dimensional algebras [5].

Dualité de Grothendieck-Roos et basculement

Résumé ${ }^{(1)}$ - Nous étudions les relations entre les coeurs de deux t-structures d'une même catégorie triangulée. Des conditions de compatibilité appropriées nous permettent de généraliser à la fois la théorie de dualité développée par Grothendieck et Roos [10] et la théorie du basculement [3] [6] [4] utilisée dans l'étude des algèbres de dimension finie [5].

1. Let \mathcal{T} be a triangulated category [2] [7] with suspension functor S and let $\left(\mathcal{V}^{<1}, \mathcal{V} \geq 0\right)$ be a t -structure on \mathcal{T} in the sense of Beilinson-BernsteinDeligne [2] [8]. The inclusion of $\mathcal{V}^{\geq n}:=S^{-n} \mathcal{V}^{\geq 0}$ (resp. of $\mathcal{V}^{<n}:=$ $S^{-n+1} \mathcal{V}^{<1}$) into \mathcal{T} admits a left adjoint $\tau^{\geq n}: \mathcal{T} \rightarrow \mathcal{V}^{\geq n}$ (resp. a right adjoint $\tau^{<n}: \mathcal{T} \rightarrow \mathcal{V}^{<n}$) and gives rise to triangles of the form

$$
\tau^{<n} X \rightarrow X \rightarrow \tau^{\geq n} X \rightarrow S \tau^{<n} X, \quad X \in \mathcal{T}
$$

We propose ourselves to compare $\left(\mathcal{V}^{<1}, \mathcal{V} \geq 0\right)$ to a second t-structure $\left(\mathcal{U}_{\geq 0}, \mathcal{U}_{<1}\right)$ on \mathcal{T}. We denote by $\tau_{\geq n}: \mathcal{T} \rightarrow \mathcal{U}_{\geq n}$ and $\tau_{<n}: \mathcal{T} \rightarrow \mathcal{U}_{<n}$ the left and right adjoints of the inclusions $\mathcal{U}_{\geq n}:=S^{n} \mathcal{U}_{\geq 0}$ et $\mathcal{U}_{<n}:=S^{n-1} \mathcal{U}_{<1}$ into \mathcal{T}. These give rise to triangles

$$
\tau_{\geq n} X \rightarrow X \rightarrow \tau_{<n} X \rightarrow S \tau_{\geq n} X, \quad X \in \mathcal{T}
$$

The hearts [2] of the two t -structures are the abelian categories $\mathcal{A}=$ $\mathcal{U}_{\geq 0} \cap \mathcal{U}_{<1}$ and $\mathcal{B}=\mathcal{V}^{\geq 0} \cap \mathcal{V}^{<1}$. They are related to \mathcal{T} by the functors "homology"

$$
H_{n}=\tau_{<1} \tau_{\geq 0} S^{-n}: \mathcal{T} \rightarrow \mathcal{A}
$$

and "cohomology"

$$
H^{n}=\tau^{<1} \tau^{\geq 0} S^{n}: \mathcal{T} \rightarrow \mathcal{B}
$$

which transform triangles $X \rightarrow Y \rightarrow Z \rightarrow S X$ of \mathcal{T} into long exact sequences [2]

$$
\ldots \rightarrow H_{n+1} Z \rightarrow H_{n} X \rightarrow H_{n} Y \rightarrow H_{n} Z \rightarrow H_{n-1} X \rightarrow \ldots
$$

and

$$
\ldots \rightarrow H^{n-1} Z \rightarrow H^{n} X \rightarrow H^{n} Y \rightarrow H^{n} Z \rightarrow H^{n+1} X \rightarrow \ldots
$$

2. In order to investigate the relations between the hearts \mathcal{A} et \mathcal{B}, we set

$$
\mathcal{A}^{\geq n}:=\mathcal{A} \cap \mathcal{V}^{\geq n} \text { and } \mathcal{B}_{\geq n}:=\mathcal{B} \cap \mathcal{U}_{\geq n}
$$

thus obtaining filtrations of \mathcal{A} and \mathcal{B} by subcategories which are full and stable under extensions

$$
\ldots \subset \mathcal{A}^{\geq n+1} \subset \mathcal{A}^{\geq n} \subset \ldots \subset \mathcal{A} \text { and } \mathcal{B} \supset \ldots \supset \mathcal{B}_{\geq n} \supset \mathcal{B}_{\geq n+1} \supset \ldots
$$

We say that the aisle [8] $\mathcal{U}_{\geq 0}$ is compatible with the co-aisle $\mathcal{V} \geq 0$ if $\tau^{<n} \mathcal{U}_{\geq 0} \subset \mathcal{U}_{\geq 0}$ for all $n \in \mathbf{Z}$. This implies $\tau^{\geq n} \mathcal{U}_{\geq 0} \subset \mathcal{U}_{\geq 0}, H^{n} \mathcal{U}_{\geq 0} \subset \mathcal{B}_{\geq n}$ and $H_{m} H^{n} \mid \mathcal{A}=0$ for all m, n such that $m<n$.

Proposition - If $\mathcal{U}_{\geq 0}$ is compatible with $\mathcal{V} \geq 0$, the filtration $\left(\mathcal{B}_{\geq n}\right)$ of \mathcal{B} has the following property $\left(^{*}\right)$: For each morphism $g: N \rightarrow N^{\prime}$ of \mathcal{B} such that $N \in \mathcal{B}_{\geq n}$ and $N^{\prime} \in \mathcal{B}_{\geq n+1}$, we have $\operatorname{Ker} g \in \mathcal{B}_{\geq n}$ and Coker $g \in \mathcal{B}_{\geq n+1}$.

Indeed, consider the following octahedron where $K=\operatorname{Ker} g, I=\operatorname{Im} g$, $C=\operatorname{Coker} g[2]$.

The triangle $N \rightarrow N^{\prime} \rightarrow Y \rightarrow S N$ shows that $Y \in \mathcal{U}_{\geq n+1}$. The triangle $S K \rightarrow Y \rightarrow C \rightarrow S^{2} K$ yields the exact sequences $0=H^{-2} C \rightarrow K \rightarrow$ $H^{-1} Y \rightarrow H^{-1} C=0$ and $0=H^{1} K \rightarrow H^{0} Y \rightarrow C \rightarrow H^{2} K=0$. The compatibility condition implies that $K \xrightarrow{\sim} H^{-1} Y \in \mathcal{B}_{\geq n}$ and that $C \xrightarrow{\sim}$ $H^{0} Y \in \mathcal{B}_{\geq n+1}$.

Dually, we shall say that the co-aisle $\mathcal{V}^{\geq 0}$ is compatible with the aisle $\mathcal{U}_{\geq 0}$ if $\tau_{<n} \mathcal{V} \geq 0 \subset \mathcal{V}^{\geq 0}$ for all $n \in \mathbf{Z}$. This new definition entails the dual of the foregoing proposition.
3. We say that \mathcal{B} generates \mathcal{T}, if \mathcal{T} coïncides with the smallest triangulated subcategory of \mathcal{T} which is strictly full and contains \mathcal{B}. Then each object $X \in \mathcal{T}$ is obtained by successive extensions from a finite number of shifted homology groups $S^{-n} H^{n} X$. In particular, the t-structure $\left(\mathcal{V}^{<1}, \mathcal{V}^{\geq 0}\right)$ is non-degenerated [2]. Moreover, in this case $\mathcal{U}_{\geq 0}$ is compatible with $\mathcal{V}{ }^{\geq 0}$ iff $\mathcal{U}_{\geq 0}=\left\{X \in \mathcal{T}: H^{n} X \in \mathcal{B}_{\geq n}\right.$ for all $\left.n \in \mathbf{Z}\right\}$.

Proposition - Suppose that \mathcal{T} is generated by \mathcal{A}, as well as by \mathcal{B}. In order for $\mathcal{U}_{\geq 0}$ to be compatible with $\mathcal{V} \geq 0$, it is then necessary and sufficient that $H_{m} H^{n} \mid \mathcal{A}=0$ if $m<n$, and that the filtration $\left(\mathcal{B}_{\geq n}\right)$ satisfies the condition $\left({ }^{*}\right)$ above.

Indeed, it remains to be shown that these conditions are sufficient. Since $\left(\mathcal{U}_{\geq 0}, \mathcal{U}_{<1}\right)$ is not degenerated the first condition means that $H^{n} \mathcal{A} \subset$ $\mathcal{B}_{\geq n}, \forall n$. We conclude that $H^{n} X \in \mathcal{B}_{\geq n}$ for each $X \in \mathcal{U}_{\geq 0}$: if $X \neq 0$, we proceed by recursion on the greatest r such that $H_{r} X \neq 0(\mathcal{A}$ generates \mathcal{T} !). The triangle $S^{r} H_{r} X \rightarrow X \rightarrow \tau_{<r} X \rightarrow S^{r+1} H_{r} X$ induces an exact
sequence

$$
H^{n-1} \tau_{<r} X \xrightarrow{f} H^{n+r} H_{r} X \rightarrow H^{n} X \rightarrow H^{n} \tau_{<r} X \xrightarrow{g} H^{n+r+1} H_{r} X
$$

where $H^{n+r} H_{r} X \in \mathcal{B}_{\geq n+r}$ by what we already showed and $H^{n-1} \tau_{<r} X \in$ $\mathcal{B}_{\geq n-1}$ by the recursion hypthesis. The condition $\left(^{*}\right)$ implies Coker $f \in$ $\mathcal{B}_{\geq n}$. Similarly, Ker $g \in \mathcal{B}_{\geq n}$, hence $H^{n} X \in \mathcal{B}_{\geq n}$, since $\mathcal{B}_{\geq n}$ is stable under extensions.

Since \mathcal{T} is also generated by \mathcal{B}, we finally obtain $\tau^{<n} \mathcal{U}_{\geq 0} \subset \mathcal{U}_{\geq 0}$ for each n .
4. Example. (cf. [10]) Let Λ be a regular ring, i.e. Λ is commutative, noetherian and of finite global dimension. We recall that [9]:
a) For each finitely generated Λ-module M, the "codimension"

$$
c(M)=\inf \left\{\operatorname{dim} \Lambda_{\wp}: \wp \in \operatorname{Spec}(\Lambda), M_{\wp} \neq 0\right\}
$$

coïncides with the "grade"

$$
g(M)=\inf \left\{i: \operatorname{Ext}_{\Lambda}^{i}(M, N) \neq 0\right\}
$$

b) $c\left(\operatorname{Ext}_{\Lambda}^{n}(M, N)\right) \geq n$ for all finitely generated Λ-modules M, N and each n.

The derived functor $D=R \operatorname{Hom}_{\Lambda}(?, \Lambda)$ induces a duality on the "bounded" derived category $\mathcal{T}:=\mathcal{D}^{b}(\bmod \Lambda)$ associated with the category $\bmod \Lambda$ of finitely generated Λ-modules. We consider the natural co-aisle $\mathcal{V}^{\geq 0}=\left\{X \in \mathcal{T}: H^{n} X=0, \forall n<0\right\}$ defined by means of the usual cohomology functor, and the aisle $\mathcal{U}_{\geq 0}=\{Y \in \mathcal{T}: \exists X \in$ $\mathcal{V} \geq 0, Y \xrightarrow{\sim} D X\}$. We "identify" $\bmod \Lambda$ with $\mathcal{B}=\mathcal{V} \geq 0 \cap \mathcal{V}^{<1},(\bmod \Lambda)^{\text {op }}$ with $\mathcal{A}=\mathcal{U}_{\geq 0} \cap \mathcal{U}_{<1}$, and the functors $H_{n}: \mathcal{B} \rightarrow \mathcal{A}$ and $H^{n}: \mathcal{A} \rightarrow \mathcal{B}$ with $\operatorname{Ext}_{\Lambda}^{n}(?, \Lambda)$.

In this case, $\mathcal{B}_{\geq n}$ is the Serre subcategory of \mathcal{B} which is formed by the Λ-modules of codimension $\geq n$ and therefore satisfies $\left(^{*}\right)$. It is immediate from b) that $H_{m} H^{n} \mid \mathcal{A}=0$ for $m<n$, hence that $\mathcal{U}_{\geq 0}$ is compatible with $\mathcal{V} \geq 0$, and $\mathcal{V}{ }^{\geq 0}$ with $\mathcal{U}_{\geq 0}$.
5. Example. (cf. [3][6][4][5]) Let k be a commutative field, Λ a finitedimensional k-algebra, $\mathcal{B}_{\geq n}=\mathcal{B}=\bmod \Lambda$ for $n<0, \mathcal{B}_{\geq n}=0$ for $n>0$ and $\mathcal{B}_{\geq 0}$ a torsion subcategory (i. e. full and closed under extensions and quotients) of \mathcal{B}. Then $\mathcal{U}_{\geq 0}=\left\{X \in \mathcal{D}^{b}(\mathcal{B}): H^{n} X \in \mathcal{B}_{\geq n}, \forall n \in \mathbf{Z}\right\}$ is an aisle in $\mathcal{D}^{b}(\mathcal{B})$, which is compatible with the natural co-aisle $\mathcal{V} \geq 0$ (§4). Also $\mathcal{U}_{<1}$ is compatible with $\mathcal{V}^{<1}, \mathcal{V}^{\geq 0}$ with $\mathcal{U}_{\geq 0}$ and $\mathcal{V}^{<1}$ with $\mathcal{U}_{<1}$.

Suppose that moreover $\mathcal{B}_{\geq 0}$ is generated by a tilting module T_{Λ} over Λ. If $\Gamma=\operatorname{End}\left(T_{\Lambda}\right)$, the derived functors $R \operatorname{Hom}_{\Lambda}(T, ?)$ and $L\left(? \otimes_{\Gamma}\right.$ $T): \mathcal{D}^{b}(\bmod \Gamma) \rightarrow \mathcal{D}^{b}(\bmod \Lambda)$ are quasi-inverse [1] [5] S-equivalences [7]. They allow us to identify $\mathcal{U}_{\geq 0}$ with the natural aisle of $\mathcal{D}^{b}(\bmod \Gamma), \mathcal{A}$ with $\bmod \Gamma, H_{n} \mid \mathcal{A}$ with $\operatorname{Tor}_{n}^{\Gamma}(?, T)$ and $H^{n} \mid \mathcal{B}$ with $\operatorname{Ext}_{\Lambda}^{n}(T, ?)$.
6. Example. (cf. [2] [8]) Let k be a commutative field, Q a finite quiver without oriented cycle, I an admissible ideal in the path category $k Q, \Lambda$ the quotient $k Q / I$ and $\bmod \Lambda$ the category of Λ-"modules" $M: \Lambda^{\mathrm{op}} \rightarrow$ $\bmod k$. We consider the natural co-aisle $\mathcal{V} \geq 0$ of $\mathcal{T}=\mathcal{D}^{b}(\bmod \Lambda)$.

In order to construct an (artificial) aisle in \mathcal{T}, we start from a function $p:\{$ points of $\Lambda\} \rightarrow \mathbf{Z}$ such that $p(x) \geq p(y)$ if $\operatorname{Hom}(x, y) \neq 0$. We denote by $\Lambda_{\geq n}$ (resp. $\Lambda_{<n}$, resp. Λ_{n}) the full subcategory of Λ formed by the $x \in \Lambda$ such that $p(x) \geq n$ (resp. $p(x)<n$, resp. $p(x)=n$) and we set

$$
\begin{aligned}
\mathcal{U}^{\prime} & =\left\{X \in \mathcal{T}: \operatorname{supp} H^{n} X \subset \Lambda_{\geq n}, \forall n\right\} \\
\mathcal{U}^{\prime \prime} & =\left\{X \in \mathcal{T}: \operatorname{supp} H^{n} X \subset \Lambda_{<n}, \forall n\right\}
\end{aligned}
$$

It is clear that \mathcal{U}^{\prime} is stable under S and $\mathcal{U}^{\prime \prime}$ under S^{-1}. Moreover, $\operatorname{Hom}(X, Y)=0$ if $X \in \mathcal{U}^{\prime}$ and $Y \in \mathcal{U}^{\prime \prime}$: indeed, $X \in \mathcal{U}^{\prime}$ is equivalent to the existence of a quasi-isomorphism $P \rightarrow X$, where the P^{n} are projective and such that $\operatorname{supp} P^{n} \subset \Lambda_{\geq n}, \forall n$. And $Y \in \mathcal{U}^{\prime \prime}$ means that there is a quasi-isomorphism $Y \rightarrow J$, where the J^{n} are injective and such that supp $J^{n} \subset \Lambda_{<n}, \forall n$.

For each $X \in \mathcal{T}$ we denote by X^{\prime} the subcomplex such that $X^{\prime n}=$ $\left(X^{n} \mid \Lambda_{\geq n+1}\right)_{0}+\left(Z^{n} X \mid \Lambda_{\geq n}\right)_{0}$, where the index 0 stands for the extension by zero. We obtain a triangle $X^{\prime} \rightarrow X \rightarrow X^{\prime \prime}=X / X^{\prime} \rightarrow S X^{\prime}$ of \mathcal{T} where $X^{\prime} \in \mathcal{U}^{\prime}$ and $X^{\prime \prime} \in \mathcal{U}^{\prime \prime}$, as can be seen from the restrictions $X^{\prime} \mid \Lambda_{n}$ et $X^{\prime \prime} \mid \Lambda_{n}$. We finally establish that:

- $\mathcal{U}_{\geq 0}=\mathcal{U}^{\prime}$ is an aisle in \mathcal{T}, and we recover the situation described in $\S 1$ with $\mathcal{U}_{<0}=\mathcal{U}^{\prime \prime}$.
- $\tau_{\geq 0}$ and $\tau_{<0}$ can be chosen such that $\tau_{\geq 0} X=X^{\prime}$ et $\tau_{<0} X=X^{\prime \prime}$ with the above notations.
- The functor $X \mapsto\left(H^{n} X\right)_{n \in \mathrm{Z}}$ induces an equivalence between the heart

$$
\mathcal{A}=\left\{X \in \mathcal{T}: \operatorname{supp} H^{n} X \subset \Lambda_{n}, \forall n\right\}
$$

and the direct sum of the categories $\bmod \Lambda_{n} ;$ in particular, \mathcal{A} generates \mathcal{T}.

- If $X \in \mathcal{T}$, the complex $H_{0} X$ of $\bmod \Lambda$ has homology groups $H^{n} H_{0} X \xrightarrow{\sim}\left(H^{n} X \mid \Lambda_{n}\right)_{0}$.

By construction, $\mathcal{U}_{\geq 0}$ is compatible with $\mathcal{V} \geq 0$ and $\mathcal{U}_{<1}$ and $\mathcal{V}^{<1}$. The description of $\tau_{\geq 0}$ and $\tau_{<1}$ shows that $\mathcal{V} \geq 0$ is also compatible with $\mathcal{U}_{\geq 0}$ and $\mathcal{V}^{<1}$ with $\mathcal{U}_{<1}$. In particular, for each $N \in \bmod \Lambda$, we have $H^{n} H_{n} N \xrightarrow{\sim}$ $\left(N \mid \Lambda_{n}\right)_{0}$ for each n and $H^{m} H_{n} N=0$ if $m \neq n$.
7. We return to the situation of $\S 1$. In the following paragraphs, we always suppose that $\mathcal{U}_{\geq 0}$ is compatible with $\mathcal{V} \geq 0$ and $\mathcal{V} \geq 0$ with $\mathcal{U}_{\geq 0}$.

Each $N \in \mathcal{B}$ gives rise to a triangle $\tau_{\geq n} N \rightarrow N \rightarrow \tau_{<n} N \rightarrow S \tau_{\geq n} N$ of \mathcal{T}. Since $\tau_{\geq n} N \in \mathcal{V} \geq 0$ and $\tau_{<n} N \in \mathcal{V} \geq 0$, the associated cohomology sequence reduces to

$$
0 \rightarrow H^{0} \tau_{\geq n} N \rightarrow N \rightarrow H^{0} \tau_{<n} N \rightarrow H^{1} \tau_{\geq n} N \rightarrow 0
$$

and to the isomorphisms $H^{i} \tau_{<n} N \xrightarrow{\sim} H^{i+1} \tau_{\geq n} N(i>0)$. Since $\tau_{\geq n} N \in$ $\mathcal{U}_{\geq n}$, it follows that $H^{0} \tau_{\geq n} N \in \mathcal{B}_{\geq n}$ and $H^{1} \tau_{\geq n} N \in \mathcal{B}_{\geq n+1}$.

8. Proposition -

a) The subcategory $\mathcal{B}_{\geq n}$ of \mathcal{B} contains with N all the quotients of N.
b) For each $N \in \mathcal{B}, N_{\geq n}:=H^{0} \tau_{\geq n} N$ is the largest subobject of N belonging to $\mathcal{B}_{\geq n}$.

Indeed, each morphism $N^{\prime} \rightarrow N$ of \mathcal{B} such that $N^{\prime} \in \mathcal{B}_{\geq n}$ factors through $N_{\geq n} \rightarrow N$, which proves b) and a).
9. We say that a morphism $t: N \rightarrow N^{\prime}$ of \mathcal{B} is a n-quasi-isomorphism if Ker $t \in \mathcal{B}_{\geq n}$ and Coker $t \in \mathcal{B}_{\geq n+1}$. An objet $B \in \mathcal{B}$ is called n closed if for each n-quasi-isomorphism $t: N \rightarrow N^{\prime}$ the map $\operatorname{Hom}(t, B)$: $\operatorname{Hom}\left(N^{\prime}, B\right) \rightarrow \operatorname{Hom}(N, B)$ is bijective.

Proposition - The inclusion of the full subcategory of \mathcal{B} formed by the n-closed objects has the functor $N \mapsto H^{0} \tau_{<n} N(=n$-closure of $N)$ as a left adjoint.

Indeed, the canonical morphism $N \rightarrow H^{0} \tau_{<n} N$ is an n-quasi-isomorphism (§7). Thus it suffices to show that $H^{0} \tau_{<n} N$ is n-closed. Now let $t: Q \rightarrow$ Q^{\prime} be an n-quasi-isomorphism. Since $\tau_{<n} N \in \mathcal{V}^{\geq 0}, H^{0} \tau_{<n} N$ coïncides with $\tau^{<1} \tau_{<n} N$, and $\operatorname{Hom}\left(t, H^{0} \tau_{<n} N\right)$ identifies with $\operatorname{Hom}\left(t, \tau_{<n} N\right)$. The lower triangle of the diagram

where $K=\operatorname{Ker} t, C=\operatorname{Coker} t$ and $Y \in \mathcal{U}_{\geq_{n+1}}$ (cf. $\S 2$), yields an exact sequence

$$
\begin{gathered}
0=\operatorname{Hom}\left(Y, \tau_{<n} N\right) \rightarrow \operatorname{Hom}\left(Q^{\prime}, \tau_{<n} N\right) \rightarrow \\
\operatorname{Hom}\left(Q, \tau_{<n} N\right) \rightarrow \operatorname{Hom}\left(S^{-1} Y, \tau_{<n} N\right)=0,
\end{gathered}
$$

which proves our assertion.
Dually, one defines " n-coquasi-isomorphisms" and n-co-closed objects in \mathcal{A}.
10. Consider the following strictly full subcategories of \mathcal{A} and \mathcal{B} :

$$
\mathcal{A}^{n}=\left\{M \in \mathcal{A}^{\geq n}: M \text { is }(n+1) \text {-co-closed }\right\}
$$

$$
\overline{\mathcal{B}}_{n}=\left\{N \in \mathcal{B}_{\geq n}: N \text { is }(n+1) \text {-closed }\right\}
$$

Proposition - The functors H_{n} et H^{n} induce a pair of adjoint functors

$$
H_{n}: \mathcal{B}_{\geq n} \rightarrow \mathcal{A}^{\geq n}, \quad H^{n}: \mathcal{A}^{\geq n} \rightarrow \mathcal{B}_{\geq n}
$$

and of quasi-inverse equivalences

$$
H_{n}: \overline{\mathcal{B}}_{n} \xrightarrow{\sim} \underline{\mathcal{A}}^{n}, \quad H^{n}: \underline{\mathcal{A}}^{n} \xrightarrow{\sim} \overline{\mathcal{B}}_{n} .
$$

Indeed, we know that $H_{n} \mathcal{B}_{\geq n} \subset \mathcal{A}^{\geq n}$ et $H^{n} \mathcal{A}^{\geq n} \subset \mathcal{B}_{\geq n}$. For each $N \in \mathcal{B}_{\geq n}$, we have $H_{n} N=\tau_{<1} S^{-n} N$; also, $H^{n} M=\tau^{<1} S^{n} M$ for each $M \in \mathcal{A}^{\geq n}$. Thus we obtain a functorial isomorphism

$$
\begin{aligned}
\operatorname{Hom}\left(H_{n} N, M\right) & \xrightarrow{\sim} \operatorname{Hom}\left(S^{-n} N, M\right) \xrightarrow{\sim} \operatorname{Hom}\left(N, S^{n} M\right) \\
& \xrightarrow[\rightarrow]{ } \operatorname{Hom}\left(N, H^{n} M\right),
\end{aligned}
$$

which the first assertion.
If $n \in \mathcal{B}_{\geq n}$, we also have $S^{n} H_{n} N=\tau_{<n+1} N$, and the adjunction morphism $N \rightarrow H^{n} H_{n} N$ coïncides with the canonical morphism $N \rightarrow$ $H^{0} \tau_{<n+1} N$ to the $(n+1)$-closure of N. It follows that $N \rightarrow H^{n} H_{n} N$ is invertible iff N if $(n+1)$-closed. By duality, one sees that $H_{n} H^{n} M \rightarrow M$ is invertible iff M is $(n+1)$-co-closed.
${ }^{1}$) Wir danken P. Gabriel für Vorlesungen zu diesem Thema.

References

[1] A. A. Beilinson, Coherent sheaves on P^{n} and problems of linear algebra, Funct. Anal. and Appl., vol. 12, 1979, p. 214-216.
[2] A. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100, 1982.
[3] S. Brenner, M. C. R. Butler, Generalization of the Bernstein-Gelfand-Ponomarev reflection functors, Representation theory II, Proc. Ottawa 1979, Lecture Notes in Math., 832, Springer, 1980, p. 399-443.
[4] K. Bongartz, Tilted algebras, Representations of Algebras, Proceedings Puebla 1980, Lecture Notes in Math., 903, Springer, 1982, p. 26-38.
[5] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62, 1987, p. 339-389.
[6] D. Happel, C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274, 1982, p. 399-443.
[7] B. Keller, D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris 305, série I, 1987, p. 225-228.
[8] B. Keller, D. Vossieck, Aisles in derived categories, Bulletin de la Soc. Math. de Belgique, to appear
[9] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
[10] J.-E. Roos, Bidualité et structure des foncteurs dérivées de $\lim _{\leftarrow}$ dans la catégorie des modules sur un anneau régulier, C. R. Acad. Sci. Paris, 280, série I, 1962, p. 1556-1558.

Bernhard Keller : Mathematik, G 28.2, E.T.H.-Zentrum, 8092 Zürich, Switzerland; Dieter Vossieck : Mathematisches Institut, Universität Zürich, Rämistrasse 74, 8001 Zürich, Switzerland.

