English version

## Grothendieck-Roos-Duality and Tilting

Bernhard Keller Dieter Vossieck

**Abstract**<sup>(1)</sup> - We investigate the relations between the hearts of two t-structures on one triangulated category. Under suitable compatibility conditions, we obtain a common generalization of the duality theory developed by Grothendieck and Roos [10] for regular commutative rings and the tilting theory [3] [6] [4] used in the investigation of finite-dimensional algebras [5].

## Dualité de Grothendieck-Roos et basculement

**Résumé**<sup>(1)</sup> - Nous étudions les relations entre les coeurs de deux t-structures d'une même catégorie triangulée. Des conditions de compatibilité appropriées nous permettent de généraliser à la fois la théorie de dualité développée par Grothendieck et Roos [10] et la théorie du basculement [3] [6] [4] utilisée dans l'étude des algèbres de dimension finie [5].

1. Let  $\mathcal{T}$  be a triangulated category [2] [7] with suspension functor S and let  $(\mathcal{V}^{<1}, \mathcal{V}^{\geq 0})$  be a t-structure on  $\mathcal{T}$  in the sense of Beilinson-Bernstein-Deligne [2] [8]. The inclusion of  $\mathcal{V}^{\geq n} := S^{-n} \mathcal{V}^{\geq 0}$  (resp. of  $\mathcal{V}^{< n} := S^{-n+1} \mathcal{V}^{<1}$ ) into  $\mathcal{T}$  admits a left adjoint  $\tau^{\geq n} : \mathcal{T} \to \mathcal{V}^{\geq n}$  (resp. a right adjoint  $\tau^{< n} : \mathcal{T} \to \mathcal{V}^{< n}$ ) and gives rise to triangles of the form

$$\tau^{< n} X \to X \to \tau^{\ge n} X \to S \tau^{< n} X, \quad X \in \mathcal{T}.$$

We propose ourselves to compare  $(\mathcal{V}^{<1}, \mathcal{V}^{\geq 0})$  to a second t-structure  $(\mathcal{U}_{\geq 0}, \mathcal{U}_{<1})$  on  $\mathcal{T}$ . We denote by  $\tau_{\geq n} : \mathcal{T} \to \mathcal{U}_{\geq n}$  and  $\tau_{<n} : \mathcal{T} \to \mathcal{U}_{<n}$  the left and right adjoints of the inclusions  $\mathcal{U}_{\geq n} := S^n \mathcal{U}_{\geq 0}$  et  $\mathcal{U}_{<n} := S^{n-1} \mathcal{U}_{<1}$  into  $\mathcal{T}$ . These give rise to triangles

$$\tau_{\geq n} X \to X \to \tau_{< n} X \to S \tau_{\geq n} X, \quad X \in \mathcal{T}.$$

The hearts [2] of the two t-structures are the abelian categories  $\mathcal{A} = \mathcal{U}_{\geq 0} \cap \mathcal{U}_{<1}$  and  $\mathcal{B} = \mathcal{V}^{\geq 0} \cap \mathcal{V}^{<1}$ . They are related to  $\mathcal{T}$  by the functors "homology"

$$H_n = \tau_{<1} \tau_{\ge 0} S^{-n} : \mathcal{T} \to \mathcal{A}$$

and "cohomology"

$$H^n = \tau^{<1} \tau^{\ge 0} S^n : \mathcal{T} \to \mathcal{B}$$

which transform triangles  $X \to Y \to Z \to SX$  of  $\mathcal{T}$  into long exact sequences [2]

$$\dots \to H_{n+1}Z \to H_nX \to H_nY \to H_nZ \to H_{n-1}X \to \dots$$

and

$$\ldots \to H^{n-1}Z \to H^nX \to H^nY \to H^nZ \to H^{n+1}X \to \ldots$$

2. In order to investigate the relations between the hearts  $\mathcal{A}$  et  $\mathcal{B}$ , we set

$$\mathcal{A}^{\geq n} := \mathcal{A} \cap \mathcal{V}^{\geq n} \text{ and } \mathcal{B}_{>n} := \mathcal{B} \cap \mathcal{U}_{>n}$$

thus obtaining filtrations of  $\mathcal{A}$  and  $\mathcal{B}$  by subcategories which are full and stable under extensions

$$\ldots \subset \mathcal{A}^{\geq n+1} \subset \mathcal{A}^{\geq n} \subset \ldots \subset \mathcal{A} \text{ and } \mathcal{B} \supset \ldots \supset \mathcal{B}_{>n} \supset \mathcal{B}_{>n+1} \supset \ldots$$

We say that the aisle [8]  $\mathcal{U}_{\geq 0}$  is *compatible* with the co-aisle  $\mathcal{V}^{\geq 0}$  if  $\tau^{< n} \mathcal{U}_{\geq 0} \subset \mathcal{U}_{\geq 0}$  for all  $n \in \mathbb{Z}$ . This implies  $\tau^{\geq n} \mathcal{U}_{\geq 0} \subset \mathcal{U}_{\geq 0}$ ,  $H^n \mathcal{U}_{\geq 0} \subset \mathcal{B}_{\geq n}$  and  $H_m H^n | \mathcal{A} = 0$  for all m, n such that m < n.

PROPOSITION - If  $\mathcal{U}_{\geq 0}$  is compatible with  $\mathcal{V}^{\geq 0}$ , the filtration  $(\mathcal{B}_{\geq n})$  of  $\mathcal{B}$  has the following property (\*) : For each morphism  $g : N \to N'$  of  $\mathcal{B}$  such that  $N \in \mathcal{B}_{\geq n}$  and  $N' \in \mathcal{B}_{\geq n+1}$ , we have  $\operatorname{Ker} g \in \mathcal{B}_{\geq n}$  and  $\operatorname{Coker} g \in \mathcal{B}_{\geq n+1}$ .

Indeed, consider the following octahedron where K = Ker g, I = Im g, C = Coker g [2].



The triangle  $N \to N' \to Y \to SN$  shows that  $Y \in \mathcal{U}_{\geq n+1}$ . The triangle  $SK \to Y \to C \to S^2 K$  yields the exact sequences  $0 = H^{-2}C \to K \to H^{-1}Y \to H^{-1}C = 0$  and  $0 = H^1K \to H^0Y \to C \to H^2K = 0$ . The compatibility condition implies that  $K \xrightarrow{\sim} H^{-1}Y \in \mathcal{B}_{\geq n}$  and that  $C \xrightarrow{\sim} H^0Y \in \mathcal{B}_{\geq n+1}$ .

Dually, we shall say that the co-aisle  $\mathcal{V}^{\geq 0}$  is *compatible* with the aisle  $\mathcal{U}_{\geq 0}$  if  $\tau_{< n} \mathcal{V}^{\geq 0} \subset \mathcal{V}^{\geq 0}$  for all  $n \in \mathbb{Z}$ . This new definition entails the dual of the foregoing proposition.

3. We say that  $\mathcal{B}$  generates  $\mathcal{T}$ , if  $\mathcal{T}$  coïncides with the smallest triangulated subcategory of  $\mathcal{T}$  which is strictly full and contains  $\mathcal{B}$ . Then each object  $X \in \mathcal{T}$  is obtained by successive extensions from a finite number of shifted homology groups  $S^{-n}H^n X$ . In particular, the t-structure  $(\mathcal{V}^{<1}, \mathcal{V}^{\geq 0})$  is non-degenerated [2]. Moreover, in this case  $\mathcal{U}_{\geq 0}$  is compatible with  $\mathcal{V}^{\geq 0}$  iff  $\mathcal{U}_{\geq 0} = \{X \in \mathcal{T} : H^n X \in \mathcal{B}_{\geq n} \text{ for all } n \in \mathbb{Z}\}.$ 

PROPOSITION - Suppose that  $\mathcal{T}$  is generated by  $\mathcal{A}$ , as well as by  $\mathcal{B}$ . In order for  $\mathcal{U}_{\geq 0}$  to be compatible with  $\mathcal{V}^{\geq 0}$ , it is then necessary and sufficient that  $H_m H^n | \mathcal{A} = 0$  if m < n, and that the filtration  $(\mathcal{B}_{\geq n})$  satisfies the condition (\*) above.

Indeed, it remains to be shown that these conditions are sufficient. Since  $(\mathcal{U}_{\geq 0}, \mathcal{U}_{<1})$  is not degenerated the first condition means that  $H^n \mathcal{A} \subset \mathcal{B}_{\geq n}$ ,  $\forall n$ . We conclude that  $H^n X \in \mathcal{B}_{\geq n}$  for each  $X \in \mathcal{U}_{\geq 0}$ : if  $X \neq 0$ , we proceed by recursion on the greatest r such that  $H_r X \neq 0$  ( $\mathcal{A}$  generates  $\mathcal{T}$  !). The triangle  $S^r H_r X \to X \to \tau_{< r} X \to S^{r+1} H_r X$  induces an exact

sequence

$$H^{n-1}\tau_{< r}X \xrightarrow{f} H^{n+r}H_rX \to H^nX \to H^n\tau_{< r}X \xrightarrow{g} H^{n+r+1}H_rX$$

where  $H^{n+r}H_r X \in \mathcal{B}_{\geq n+r}$  by what we already showed and  $H^{n-1}\tau_{< r} X \in \mathcal{B}_{\geq n-1}$  by the recursion hypothesis. The condition (\*) implies Coker  $f \in \mathcal{B}_{\geq n}$ . Similarly, Ker  $g \in \mathcal{B}_{\geq n}$ , hence  $H^n X \in \mathcal{B}_{\geq n}$ , since  $\mathcal{B}_{\geq n}$  is stable under extensions.

Since  $\mathcal{T}$  is also generated by  $\mathcal{B}$ , we finally obtain  $\tau^{< n} \mathcal{U}_{\geq 0} \subset \mathcal{U}_{\geq 0}$  for each n.

4. *Example.* (cf. [10]) Let  $\Lambda$  be a *regular* ring, i.e.  $\Lambda$  is commutative, noetherian and of finite global dimension. We recall that [9]:

a) For each finitely generated  $\Lambda$ -module M, the "codimension"

$$c(M) = \inf \{ \dim \Lambda_{\wp} : \wp \in \operatorname{Spec}(\Lambda), M_{\wp} \neq 0 \}$$

coïncides with the "grade"

$$g(M) = \inf \{i : \operatorname{Ext}_{\Lambda}^{i}(M, N) \neq 0\}.$$

b)  $c(\operatorname{Ext}_{\Lambda}^{n}(M,N)) \geq n$  for all finitely generated  $\Lambda$ -modules M, N and each n.

The derived functor  $D = R \operatorname{Hom}_{\Lambda}(?, \Lambda)$  induces a duality on the "bounded" derived category  $\mathcal{T} := \mathcal{D}^{b}(\operatorname{mod} \Lambda)$  associated with the category mod  $\Lambda$  of finitely generated  $\Lambda$ -modules. We consider the natural co-aisle  $\mathcal{V}^{\geq 0} = \{X \in \mathcal{T} : H^{n} X = 0, \forall n < 0\}$  defined by means of the usual cohomology functor, and the aisle  $\mathcal{U}_{\geq 0} = \{Y \in \mathcal{T} : \exists X \in \mathcal{V}^{\geq 0}, Y \xrightarrow{\sim} DX\}$ . We "identify" mod  $\Lambda$  with  $\mathcal{B} = \mathcal{V}^{\geq 0} \cap \mathcal{V}^{<1}$ ,  $(\operatorname{mod} \Lambda)^{\operatorname{op}}$ with  $\mathcal{A} = \mathcal{U}_{\geq 0} \cap \mathcal{U}_{<1}$ , and the functors  $H_{n} : \mathcal{B} \to \mathcal{A}$  and  $H^{n} : \mathcal{A} \to \mathcal{B}$ with  $\operatorname{Ext}^{n}_{\Lambda}(?, \Lambda)$ .

In this case,  $\mathcal{B}_{\geq n}$  is the Serre subcategory of  $\mathcal{B}$  which is formed by the  $\Lambda$ -modules of codimension  $\geq n$  and therefore satisfies (\*). It is immediate from b) that  $H_m H^n | \mathcal{A} = 0$  for m < n, hence that  $\mathcal{U}_{\geq 0}$  is compatible with  $\mathcal{V}^{\geq 0}$ , and  $\mathcal{V}^{\geq 0}$  with  $\mathcal{U}_{>0}$ .

5. Example. (cf. [3][6][4][5]) Let k be a commutative field,  $\Lambda$  a finitedimensional k-algebra,  $\mathcal{B}_{\geq n} = \mathcal{B} = \mod \Lambda$  for n < 0,  $\mathcal{B}_{\geq n} = 0$  for n > 0and  $\mathcal{B}_{\geq 0}$  a torsion subcategory (i. e. full and closed under extensions and quotients) of  $\mathcal{B}$ . Then  $\mathcal{U}_{\geq 0} = \{X \in \mathcal{D}^b(\mathcal{B}) : H^n X \in \mathcal{B}_{\geq n}, \forall n \in \mathbb{Z}\}$ is an aisle in  $\mathcal{D}^b(\mathcal{B})$ , which is compatible with the natural co-aisle  $\mathcal{V}^{\geq 0}$ (§4). Also  $\mathcal{U}_{<1}$  is compatible with  $\mathcal{V}^{<1}$ ,  $\mathcal{V}^{\geq 0}$  with  $\mathcal{U}_{\geq 0}$  and  $\mathcal{V}^{<1}$  with  $\mathcal{U}_{<1}$ .

Suppose that moreover  $\mathcal{B}_{\geq 0}$  is generated by a tilting module  $T_{\Lambda}$  over  $\Lambda$ . If  $\Gamma = \operatorname{End}(T_{\Lambda})$ , the derived functors  $R \operatorname{Hom}_{\Lambda}(T,?)$  and  $L(? \otimes_{\Gamma} T) : \mathcal{D}^{b}(\operatorname{mod} \Gamma) \to \mathcal{D}^{b}(\operatorname{mod} \Lambda)$  are quasi-inverse [1] [5] *S*-equivalences [7]. They allow us to identify  $\mathcal{U}_{\geq 0}$  with the natural aisle of  $\mathcal{D}^{b}(\operatorname{mod} \Gamma)$ ,  $\mathcal{A}$ with  $\operatorname{mod} \Gamma$ ,  $H_{n} | \mathcal{A}$  with  $\operatorname{Tor}_{n}^{\Gamma}(?,T)$  and  $H^{n} | \mathcal{B}$  with  $\operatorname{Ext}_{\Lambda}^{n}(T,?)$ .

6. Example. (cf. [2] [8]) Let k be a commutative field, Q a finite quiver without oriented cycle, I an admissible ideal in the path category kQ,  $\Lambda$ the quotient kQ/I and mod  $\Lambda$  the category of  $\Lambda$ -"modules"  $M : \Lambda^{\text{OP}} \to$ mod k. We consider the natural co-aisle  $\mathcal{V}^{\geq 0}$  of  $\mathcal{T} = \mathcal{D}^b (\text{mod } \Lambda)$ .

In order to construct an (artificial) aisle in  $\mathcal{T}$ , we start from a function  $p : \{ \text{ points of } \Lambda \} \to \mathbb{Z}$  such that  $p(x) \ge p(y)$  if  $\text{Hom}(x, y) \ne 0$ . We denote by  $\Lambda_{\ge n}$  (resp.  $\Lambda_{< n}$ , resp.  $\Lambda_n$ ) the full subcategory of  $\Lambda$  formed by the  $x \in \Lambda$  such that  $p(x) \ge n$  (resp. p(x) < n, resp. p(x) = n) and we set

$$\mathcal{U}' = \{ X \in \mathcal{T} : \operatorname{supp} H^n X \subset \Lambda_{\geq n}, \ \forall n \}$$
$$\mathcal{U}'' = \{ X \in \mathcal{T} : \operatorname{supp} H^n X \subset \Lambda_{< n}, \ \forall n \}$$

It is clear that  $\mathcal{U}'$  is stable under S and  $\mathcal{U}''$  under  $S^{-1}$ . Moreover, Hom (X, Y) = 0 if  $X \in \mathcal{U}'$  and  $Y \in \mathcal{U}''$ : indeed,  $X \in \mathcal{U}'$  is equivalent to the existence of a quasi-isomorphism  $P \to X$ , where the  $P^n$  are projective and such that  $\operatorname{supp} P^n \subset \Lambda_{\geq n}$ ,  $\forall n$ . And  $Y \in \mathcal{U}''$  means that there is a quasi-isomorphism  $Y \to J$ , where the  $J^n$  are injective and such that  $\operatorname{supp} J^n \subset \Lambda_{\leq n}$ ,  $\forall n$ .

For each  $X \in \mathcal{T}$  we denote by X' the subcomplex such that  $X'^n = (X^n | \Lambda_{\geq n+1})_0 + (Z^n X | \Lambda_{\geq n})_0$ , where the index 0 stands for the extension by zero. We obtain a triangle  $X' \to X \to X'' = X/X' \to SX'$  of  $\mathcal{T}$  where  $X' \in \mathcal{U}'$  and  $X'' \in \mathcal{U}''$ , as can be seen from the restrictions  $X' | \Lambda_n$  et  $X'' | \Lambda_n$ . We finally establish that:

- $\mathcal{U}_{\geq 0} = \mathcal{U}'$  is an aisle in  $\mathcal{T}$ , and we recover the situation described in §1 with  $\mathcal{U}_{\leq 0} = \mathcal{U}''$ .
- $\tau_{\geq 0}$  and  $\tau_{<0}$  can be chosen such that  $\tau_{\geq 0}X = X'$  et  $\tau_{<0}X = X''$  with the above notations.
- The functor  $X \mapsto (H^n X)_{n \in \mathbb{Z}}$  induces an equivalence between the heart

$$\mathcal{A} = \{ X \in \mathcal{T} : \operatorname{supp} H^n X \subset \Lambda_n, \ \forall n \}$$

and the direct sum of the categories  $\operatorname{mod} \Lambda_n$ ; in particular,  $\mathcal{A}$  generates  $\mathcal{T}$ .

• If  $X \in \mathcal{T}$ , the complex  $H_0 X$  of mod  $\Lambda$  has homology groups  $H^n H_0 X \xrightarrow{\sim} (H^n X | \Lambda_n)_0$ .

By construction,  $\mathcal{U}_{\geq 0}$  is compatible with  $\mathcal{V}^{\geq 0}$  and  $\mathcal{U}_{<1}$  and  $\mathcal{V}^{<1}$ . The description of  $\tau_{\geq 0}$  and  $\tau_{<1}$  shows that  $\mathcal{V}^{\geq 0}$  is also compatible with  $\mathcal{U}_{\geq 0}$  and  $\mathcal{V}^{<1}$  with  $\mathcal{U}_{<1}$ . In particular, for each  $N \in \text{mod } \Lambda$ , we have  $H^n H_n N \xrightarrow{\sim} (N | \Lambda_n)_0$  for each n and  $H^m H_n N = 0$  if  $m \neq n$ .

7. We return to the situation of §1. In the following paragraphs, we always suppose that  $\mathcal{U}_{\geq 0}$  is compatible with  $\mathcal{V}^{\geq 0}$  and  $\mathcal{V}^{\geq 0}$  with  $\mathcal{U}_{\geq 0}$ .

Each  $N \in \mathcal{B}$  gives rise to a triangle  $\tau_{\geq n}N \to N \to \tau_{< n}N \to S\tau_{\geq n}N$ of  $\mathcal{T}$ . Since  $\tau_{\geq n}N \in \mathcal{V}^{\geq 0}$  and  $\tau_{< n}N \in \mathcal{V}^{\geq 0}$ , the associated cohomology sequence reduces to

$$0 \to H^0 \tau_{\geq n} N \to N \to H^0 \tau_{< n} N \to H^1 \tau_{\geq n} N \to 0$$

and to the isomorphisms  $H^i \tau_{< n} N \xrightarrow{\sim} H^{i+1} \tau_{\geq n} N$  (i > 0). Since  $\tau_{\geq n} N \in \mathcal{U}_{\geq n}$ , it follows that  $H^0 \tau_{\geq n} N \in \mathcal{B}_{\geq n}$  and  $H^1 \tau_{\geq n} N \in \mathcal{B}_{\geq n+1}$ .

## 8. PROPOSITION -

- a) The subcategory  $\mathcal{B}_{>n}$  of  $\mathcal{B}$  contains with N all the quotients of N.
- b) For each  $N \in \mathcal{B}$ ,  $N_{\geq n} := H^0 \tau_{\geq n} N$  is the largest subobject of N belonging to  $\mathcal{B}_{>n}$ .

Indeed, each morphism  $N' \to N$  of  $\mathcal{B}$  such that  $N' \in \mathcal{B}_{\geq n}$  factors through  $N_{\geq n} \to N$ , which proves b) and a).

9. We say that a morphism  $t : N \to N'$  of  $\mathcal{B}$  is a *n*-quasi-isomorphism if Ker  $t \in \mathcal{B}_{\geq n}$  and Coker  $t \in \mathcal{B}_{\geq n+1}$ . An objet  $B \in \mathcal{B}$  is called *n*closed if for each *n*-quasi-isomorphism  $t : N \to N'$  the map Hom (t, B) : Hom  $(N', B) \to$  Hom (N, B) is bijective.

PROPOSITION - The inclusion of the full subcategory of  $\mathcal{B}$  formed by the n-closed objects has the functor  $N \mapsto H^0 \tau_{< n} N$  (= n-closure of N) as a left adjoint.

Indeed, the canonical morphism  $N \to H^0 \tau_{< n} N$  is an n-quasi-isomorphism (§7). Thus it suffices to show that  $H^0 \tau_{< n} N$  is *n*-closed. Now let  $t: Q \to Q'$  be an *n*-quasi-isomorphism. Since  $\tau_{< n} N \in \mathcal{V}^{\geq 0}$ ,  $H^0 \tau_{< n} N$  coïncides with  $\tau^{<1} \tau_{< n} N$ , and Hom  $(t, H^0 \tau_{< n} N)$  identifies with Hom  $(t, \tau_{< n} N)$ . The lower triangle of the diagram



where K = Ker t, C = Coker t and  $Y \in \mathcal{U}_{\geq n+1}$  (cf. §2), yields an exact sequence

$$\begin{split} 0 &= \operatorname{Hom}\left(Y, \tau_{< n} N\right) \to \operatorname{Hom}\left(Q', \tau_{< n} N\right) \to \\ \operatorname{Hom}\left(Q, \tau_{< n} N\right) \to \operatorname{Hom}\left(S^{-1}Y, \tau_{< n} N\right) = 0 \ , \end{split}$$

which proves our assertion.

Dually, one defines "*n*-coquasi-isomorphisms" and *n*-co-closed objects in  $\mathcal{A}$ .

10. Consider the following strictly full subcategories of  $\mathcal{A}$  and  $\mathcal{B}$ :

 $\underline{\mathcal{A}}^n = \{ M \in \mathcal{A}^{\geq n} : M \text{ is } (n+1) \text{-co-closed } \}$ 

$$\overline{\mathcal{B}}_n = \{ N \in \mathcal{B}_{\geq n} : N \text{ is } (n+1) \text{-closed } \}$$

**PROPOSITION** - The functors  $H_n$  et  $H^n$  induce a pair of adjoint functors

$$H_n: \mathcal{B}_{\geq n} \to \mathcal{A}^{\geq n}, \quad H^n: \mathcal{A}^{\geq n} \to \mathcal{B}_{\geq n}$$

and of quasi-inverse equivalences

$$H_n: \overline{\mathcal{B}}_n \xrightarrow{\sim} \underline{\mathcal{A}}^n , \quad H^n: \underline{\mathcal{A}}^n \xrightarrow{\sim} \overline{\mathcal{B}}_n.$$

Indeed, we know that  $H_n \mathcal{B}_{\geq n} \subset \mathcal{A}^{\geq n}$  et  $H^n \mathcal{A}^{\geq n} \subset \mathcal{B}_{\geq n}$ . For each  $N \in \mathcal{B}_{\geq n}$ , we have  $H_n N = \tau_{<1} S^{-n} N$ ; also,  $H^n M = \tau^{<1} S^n M$  for each  $M \in \mathcal{A}^{\geq n}$ . Thus we obtain a functorial isomorphism

$$\begin{split} \operatorname{Hom}\left(H_n\,N,M\right) &\xrightarrow{\sim} \operatorname{Hom}\left(S^{-n}N,M\right) \xrightarrow{\sim} \operatorname{Hom}\left(N,S^nM\right) \\ &\xrightarrow{\sim} \operatorname{Hom}\left(N,H^n\,M\right), \end{split}$$

which the first assertion.

If  $n \in \mathcal{B}_{\geq n}$ , we also have  $S^n H_n N = \tau_{< n+1} N$ , and the adjunction morphism  $N \to H^n H_n N$  coïncides with the canonical morphism  $N \to H^0 \tau_{< n+1} N$  to the (n+1)-closure of N. It follows that  $N \to H^n H_n N$  is invertible iff N if (n+1)-closed. By duality, one sees that  $H_n H^n M \to M$ is invertible iff M is (n+1)-co-closed.

<sup>(1)</sup> Wir danken P. Gabriel für Vorlesungen zu diesem Thema.

## References

- A. A. Beilinson, Coherent sheaves on P<sup>n</sup> and problems of linear algebra, Funct. Anal. and Appl., vol. 12, 1979, p. 214-216.
- [2] A. A. Beilinson, J. Bernstein, P. Deligne, *Faisceaux pervers*, Astérisque 100, 1982.

- S. Brenner, M. C. R. Butler, Generalization of the Bernstein-Gelfand-Ponomarev reflection functors, Representation theory II, Proc. Ottawa 1979, Lecture Notes in Math., 832, Springer, 1980, p. 399-443.
- [4] K. Bongartz, *Tilted algebras*, Representations of Algebras, Proceedings Puebla 1980, Lecture Notes in Math., 903, Springer, 1982, p. 26-38.
- [5] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62, 1987, p. 339-389.
- [6] D. Happel, C. M. Ringel, *Tilted algebras*, Trans. Amer. Math. Soc. 274, 1982, p. 399-443.
- [7] B. Keller, D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris 305, série I, 1987, p. 225-228.
- [8] B. Keller, D. Vossieck, Aisles in derived categories, Bulletin de la Soc. Math. de Belgique, to appear
- [9] H. Matsumura, *Commutative ring theory*, Cambridge University Press, 1986.
- [10] J.-E. Roos, Bidualité et structure des foncteurs dérivées de lim dans la catégorie des modules sur un anneau régulier, C. R. Acad. Sci. Paris, 280, série I, 1962, p. 1556-1558.

Bernhard Keller : Mathematik, G 28.2, E.T.H.-Zentrum, 8092 Zürich, Switzerland; Dieter Vossieck : Mathematisches Institut, Universität Zürich, Rämistrasse 74, 8001 Zürich, Switzerland.