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Abstract. This is a brief report on a part of Chapter 2 of K. Lefèvre’s thesis
[5]. We sketch a framework for Koszul duality [1] where the Koszul dual

algebra is replaced by a coalgebra. This allows us to free ourselves from many

assumptions (e.g. finiteness assumptions) and leads to clean statements about
equivalences between the derived category and a suitably defined coderived

category. These results are related to work by G. Fløystad [2]. Our approach

is based on classical developments in topology [6] [4] and inspired by [3].
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1. Koszul duality (after [1])

Let k be a field and
A = k ⊕A1 ⊕A2 ⊕ · · ·

a graded k-algebra with finite-dimensional components Ai, i ∈ N. Let Grmod A
denote the category of graded (right) A-modules (with the morphisms of degree 0).
For a module M ∈ Grmod A and n ∈ Z, the shifted module M〈n〉 is defined by

M〈n〉p = Mn+p , p ∈ Z.

Assume that A is a Koszul algebra, i.e. that there is a projective resolution

(1.0.1) . . . → P−i → . . . → P 0 → 0

of the trivial module k in Grmod A such that P−i is generated in degree i. We
imagine such a resolution as a bigraded object, where the differential degree is
drawn horizontally and the Adams degree (=internal degree) vertically. Put

E(A) =
∞⊕

i=0

ExtiGrmod A(k, k〈i〉)

and call this algebra the Koszul dual algebra.

Theorem. [1]
a) The graded algebra E(A) is Koszul and there is a canonical isomorphism

A ∼→ E(E(A)) (cf. section 2.8, Proposition 2.9.1 and Corollary 2.3.3 of
[1]).
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b) There is a canonical equivalence of triangulated categories

D↓gr(A) ∼→ D↑gr(E(A)).

It sends the simple k to the projective E(A) and the graded k-dual of the
free module A to the simple k (cf. Theorem 2.12.1 and Theorem 1.2.6 of
[1]).

Here D↓gr(A) denotes the full subcategory of the unbounded derived category
D(GrmodA) of the abelian category Grmod A whose objects are the complexes K
such that for some N � 0, we have

Kp
q 6= 0 ⇒ (p ≥ −N or p + q ≤ N).

Analogously, D↑gr(E(A)) denotes the full subcategory of D(Grmod E(A)) whose ob-
jects are the complexes K such that for some N � 0, we have

Kp
q 6= 0 ⇒ (p ≤ N or p + q ≥ −N).

As an example, let V be a finite-dimensional vector space and A = SV the
symmetric algebra on V . Then for the resolution 1.0.1, we can take the Koszul
resolution

(1.0.2) . . . → ΛpV ⊗ SV 〈−p〉 → . . . → Λ0V ⊗ SV → 0

with the differential given by

d(v1 . . . vp ⊗ u) =
p∑

i=1

(−1)p−iv1 . . . v̂i . . . vp ⊗ viu.

Then E(A) identifies with the exterior algebra Λ(DV ) on the k-dual space DV of
V . According to the theorem, we have an equivalence

F : D↓gr(SV ) ∼→ D↑gr(ΛDV ).

Can the equivalence F be extended to an equivalence F̃ between the whole derived
categories ?

D↓gr(SV )

��

F // D↑gr(ΛDV )

��
D(GrmodSV )

eF // D(Grmod ΛDV )

Suppose that such an equivalence F̃ exists. It is not hard to see that it has to take
the free module SV to the doubly shifted trivial module k〈n〉[−n], where the braces
[ ] indicate a shift of the differential degree. This is impossible since SV is compact
in D(Grmod SV ), i.e. the functor

HomD(Grmod A)(SV, ?) : D(Grmod SV ) → Mod k

commutes with infinite direct sums, but the object k is non compact inD(Grmod ΛDV ).
In what follows, our aim is to present a setting where we free ourselves from the

following restrictions

• A is (Adams-)graded with finite-dimensional components,
• A is a Koszul algebra,
• there is an equivalence only between certain subcategories of the derived

categories.
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2. Data

2.1. An algebra. Let A be a differential graded (=dg) algebra, i.e. A is an asso-
ciative unital Z-graded algebra

A =
⊕
p∈Z

Ap

endowed with a differential d of degree +1 such that the Leibniz rule holds: We
have

d(ab) = d(a)b + (−1)pad(b)

for all a ∈ Ap and all b ∈ A. Note that A is differentially graded but not Adams
graded. We assume that A is endowed with an augmentation, i.e. a morphism of
dg algebras ε : A → k. Therefore A decomposes as

A = k ⊕A ,

where A is the kernel of ε. Note that we do not require the components of A to be
finite-dimensional.

2.2. A coalgebra. Let C be a dg coalgebra, i.e. C is a Z-graded coalgebra endowed
with a differential d of degree +1 such that

∆ ◦ d = (d⊗ 1 + 1⊗ d) ◦∆.

We assume that C is endowed with a co-augmentation, i.e. a morphism of dg
coalgebras ε : k → C. Then C decomposes as

C = k ⊕ C ,

where C is the cokernel of ε. Moreover, we assume that C is cocomplete, which
means that

C =
⋃
n≥2

ker(C → C
⊗n

) ,

i.e. each element of C is annihilated by a high enough iterate of the map induced
by the comultiplication of C. Note that this implies that the k-dual algebra DC is
a complete local algebra.

2.3. A twisting cochain. Let τ : C → A be a twisting cochain, i.e. τ is a k-linear
homogeneous map of degree +1 such that εA ◦ τ ◦ εC = 0 and

d ◦ τ + τ ◦ d + µ ◦ (τ ⊗ τ) ◦∆ = 0 ,

where µ is the multiplication of A. In other words, the map τ satisfies ε(τ) = 0 and
d(τ) + τ ∗ τ = 0 in the dg convolution algebra Homk(C,A) of homogeneous maps
from C to A.

2.4. Example. Let V be an (arbitrary) vector space and A = SV the symmetric
algebra on V considered as a dg algebra concentrated in differential degree 0. The
exterior algebra ΛV , graded such that V is in degree −1, admits a unique structure
of super Hopf algebra such that ∆(v) = v ⊗ 1 + 1⊗ v for all v ∈ V . Let C be the
graded coalgebra ΛV endowed with the differential d = 0. Thus, the underlying
complex of C is

. . . → ΛpV → . . . → Λ1V → Λ0V → 0 → . . . ,

where the elements of V are of degree −1. We define the twisting cochain τ : C → A
to have only one non-vanishing component and this component identifies V ⊂ ΛV
with V ⊂ SV . Is is trivial to check the conditions of the preceding paragraphs.
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3. Adjoint functors

We will construct a pair of adjoint functors between the category of dg modules
over A and the category of certain dg comodules over C. Recall that a dg A-module
is a Z-graded A-module M endowed with a differential of degree +1 such that

d(ma) = d(m)a + (−1)pmd(a)

for all m ∈ Mp and all a ∈ A. The notion of dg C-comodule is defined dually. A
dg C-comodule N is cocomplete if it is the union of the kernels of the iterates

N → N ⊗ C
⊗n

of the map induced by the comultiplication.
For a dg A-module M , we define the twisted tensor product M ⊗τ C to be the

dg C-comodule whose underlying graded comodule is the graded tensor product
M ⊗k C and whose differential is

d = dM ⊗ 1 + 1⊗ dC + (µ⊗ 1)(1⊗ τ ⊗ 1)(1⊗∆) ,

where µ is the multiplication of M . Similarly, for a dg C-comodule N , one defines
the dg A-module N ⊗τ A.

In the above example 2.4, the twisted tensor product C ⊗τ A is nothing but the
Koszul complex 1.0.2.

Lemma. We have adjoint functors

{dg A-modules}

?⊗τ C = R
��

{cocomplete dg C-comodules}

L =?⊗τ A

OO

4. (Co-)derived categories

Let DA be the derived category of A, i.e. the localization of the category of dg
A-modules at the class of all quasi-isomorphisms.

To define the coderived category of C, we will need to replace the quasi-isomor-
phisms by a different class of morphisms. To define these, we need the cobar con-
struction ΩC: this is the graded tensor algebra on the shift C[−1] endowed with
the unique differential such that for each homogeneous element c ∈ C[−1], we have

d(c) = −dC(c) +
∑

(−1)|c(1)|c(1) ⊗ c(2) ,

where we have used Sweedler’s notation and |c(1)| denotes the degree of c(1). The
cobar construction is endowed with the canonical twisting cochain τ0 : C → ΩC
given by the evident map. We define a morphism f : M → N of dg C-comodules
to be a weak equivalence if its image under the functor ? ⊗τ0 ΩC defined in the
preceding section is a quasi-isomorphism. In other words, the morphism

f ⊗τ0 ΩC : M ⊗τ0 ΩC → N ⊗τ0 ΩC

should be a quasi-isomorphism. We define the coderived category DC of C to be
the localization of the category of cocomplete dg C-comodules at the class of all
weak equivalences.

Proposition. We have a pair of induced adjoint functors

DA

?⊗τ C = R
��

DC

L =?⊗τ A

OO
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Theorem. [5, Ch. 2] The following are equivalent
(i) The functors L and R are equivalences.
(ii) The canonical morphism

A⊗τ C ⊗τ A → A

is a quasi-isomorphism.
(iii) The map τ induces a quasi-isomorphism ΩC → A.

Moreover, in this case, A is determined by C up to quasi-isomorphism; C is deter-
mined by A up to weak equivalence1; we have

H∗C = TorA∗ (k, k) and H∗A = Ext∗C(k, k).

We define (A,C, τ) to be a Koszul-Moore triple if the conditions (i)-(iii) hold.
The theorem shows that for each given dg coalgebra C, there is at least one Koszul-
Moore triple (ΩC,C, τ0). Dually, one can show that the bar construction [4] yields
a Koszul-Moore triple for each given algebra A.

Let us consider the example 2.4, where A = SV , C = ΛV and τ is the natural
morphism. Then (A,C, τ) is indeed a Koszul-Moore triple by condition (ii): here,
the canonical morphism is the bimodule Koszul resolution of A = SV . Thus we do
have

D(A) ∼→ D(C).
Suppose that dim V < ∞. Then dim C < ∞ and each C-comodule is cocomplete.
Moreover, we have an isomorphism of categories

{dg C-comodules} ∼→ {left DC-modules}
given by sending a dg C-comodule N to the dg left DC-module with the same
underlying space and whose multiplication is given by the natural composition

DC ⊗N → DC ⊗N ⊗ C → DC ⊗ C ⊗N → N.

So we obtain an equivalence

D(SV ) ∼→ {left dg Λ(DV )-modules}[W−1]

where W denotes the class of morphisms which corresponds to the weak equiv-
alences. This equivalence sends a dg SV -module M to the left Λ(DV )-module
N ⊗ ΛV endowed with the Koszul differential.

To see that the weak equivalences form a strictly smaller class than the quasi-
isomorphisms, let us further specialize to the case where V is of dimension 1, i.e.
V = kx and SV = k[x]. We obtain an equivalence

D(k[x]) ∼→ {dg left k[ξ]-modules}[W−1]

where ξ is of degree 1 and dξ = 0. The equivalence sends the module

kλ = k[x]/(x− λ) , λ ∈ k ,

to the dg module
. . . → 0 → k

d→ k → 0 → . . .

concentrated in degrees −1 and 0, where d is the multiplication by λ and ξ acts
by the graded endomorphism of degree 1 which is given by the identity of k. Note
that for each λ 6= 0, the image of kλ is quasi-isomorphic to 0, which corresponds to
the fact that

Tork[x]
∗ (k, kλ) = 0.

However, the image of kλ is never weakly equivalent to 0, since kλ 6= 0.

1A morphism of dg augmented coalgebras f : C → C′ is a weak equivalence if Ωf is a quasi-
isomorphism
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