
NOTES ON MINIMAL MODELS

B. KELLER

Abstract. We discuss minimal models for (unbounded, augmented, differ-

ential graded) algebras, coalgebras and their strong homotopy versions. We
prove the existence and uniqueness of minimal cofibrant models for a class of

bigraded algebras. As a corollary, we obtain a characterization of this mini-

mal model in module-theoretic terms. A similar characterization was proved
independently by J. Chuang and A. King in [1].

1. Minimal models of A∞-algebras and of dg coalgebras

Let k be a field. An (augmented) A∞-algebra A over k is minimal if mA
1 = 0. If

A′ is an arbitrary A∞-algebra, a minimal model of A′ is an A∞-quasi-isomorphism

A′ → A ,

where A is minimal. It is known (cf. e.g. [2]) that each A∞-algebra admits a
minimal model unique up to (non unique) A∞-isomorphism.

Let C be a fibrant dg coalgebra (=differential graded augmented coalgebra whose
reduction C is cocomplete, and which is fibrant in the Quillen model category of
such coalgebras, cf. [2]). The complex of primitive elements of C is

C[1] = ker(C → C ⊗ C).

The dg coalgebra C is minimal if the differential induced in C[1] vanishes. Let C ′

be an arbitrary dg coalgebra. A minimal fibrant model of C ′ is a weak equivalence

C → C ′

where C is a minimal fibrant dg coalgebra.
In order to establish existence and uniqueness of minimal fibrant models of dg

coalgebras, we link them to minimal models of A∞-algebras via the bar and cobar
constructions: Let C be a fibrant dg coalgebra. Then C is isomorphic to B∞A
for an A∞-algebra A unique up to canonical isomorphism. Moreover, we have an
isomorphism of complexes between the primitives C[1] and a shift of (A,mA

1 ). Thus
C is minimal fibrant iff A is minimal. Now let C ′ be an arbitrary dg coalgebra.
Consider the category C of minimal A∞-algebra models

ΩC ′ → A

and the category D of minimal fibrant coalgebra models

C ′ → C.

We obtain a functor from C to D by sending ΩC ′ → A to the composition

C ′ → BΩC ′ = B∞ΩC ′ → B∞A.

This functor is essentially surjective. Indeed, if C ′ → C is a minimal fibrant
model, then C is isomorphic to B∞A for some minimal A∞-algebra A and the
weak equivalence C ′ → B∞A lifts to a weak equivalence BΩC ′ → B∞A, i.e. to an
A∞-quasi-isomorphism ΩC ′ → A. It follows that each dg coalgebra C ′ admits a
minimal fibrant model unique up to (non unique) isomorphism of dg coalgebras.
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2. A∞-coalgebras and cofibrant dg algebras

Let A be a cofibrant dg algebra (=augmented differential graded algebra which
is cofibrant in the Quillen model category of such algebras, cf. [2]). It is mimimal

if the differential induced in the complex of irreducibles A/A
2

vanishes. Let A′ be
an arbitrary dg algebra. A minimal cofibrant model for A′ is a quasi-isomorphism

A→ A′

where A is minimal cofibrant.
Let C be an (augmented) A∞-coalgebra. It is minimal if mC

1 = 0. Let C ′

be an arbitrary A∞-coalgebra. A minimal model for C ′ is a weak equivalence of
A∞-coalgebras

C → C ′

where C is minimal. Note that in this case the complex (C,mC
1 ) is isomorphic to

the graded vector space H∗C ′ endowed with the zero differential.
An arbitrary A∞-coalgebra need not have a minimal model: Indeed, we know

that there are acyclic dg coalgebras which are not weakly equivalent to k (the
bar construction of the augmentation of any non trivial unital algebra yields an
example). In the following section, we will show that the bar constructions of
certain bigraded algebras do admit minimal models.

Suppose that we have two minimal models C1 → C and C2 → C. Then there
is a weak equivalence C1 → C2 which makes the obvious triangle commute in the
homotopy category of A∞-coalgebras (which is equivalent to that of cofibrant dg
algebras via the functor Ω∞). Thus a minimal model is unique up to weak equiv-
alence. Note that the 1-component f1 of such an equivalence f is necessarily an
isomorphism (since it is a quasi-isomorphism between complexes with zero differen-
tial). Nevertheless, in general, we cannot conclude that f itself is an isomorphism.
However, the k-dual f∗ of f is a quasi-isomorphism between minimal A∞-algebras
and thus f∗ is an isomorphism. We will see below that for the bar construction
of certain bigraded algebras, the minimal model exists and is unique up to A∞-
isomorphism.

Let us compare minimal models for dg algebras and A∞-coalgebras following the
lines of the preceding section: Let A′ be a dg algebra. Let D be the category of
minimal cofibrant models

A→ A′

and C the category of minimal A∞-coalgebra models

C → BA′.

We obtain a functor from C to D by sending C → BA′ to the composition

Ω∞C → Ω∞BA
′ = ΩBA′ → A′.

As in the preceding section, we see that this functor is essentially surjective. This
will allow us to prove existence and uniqueness of minimal cofibrant models for
certain bigraded algebras, cf. below.

3. Minimal cofibrant models for bigraded algebras

Lemma. Let C1 and C2 be A∞-coalgebras admitting additional gradings such that
their reductions are graded in strictly positive degrees. Assume that f : C1 →
C2 is an A∞-morphism respecting the additional grading and such that f1 is a
quasi-isomorphism (respectively, an isomorphism). Then f is a weak equivalence
(respectively, an isomorphism).
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Proof. Let A1 = Ω∞C1 and for each p ≥ 0, let FpA1 be the ideal spanned by

all (S−1C1)⊗n, n ≥ p. Fix p ≥ 1. Then FpA1 is graded in degrees ≥ p. So the
projection

A1 → A1/FpA1

induces an isomorphism in degrees < p. Moreover, by assumption, the morphism

A1/FpA1 → A2/FpA2

induces isomorphisms in homology (respectively, isomorphisms). Thus the mor-
phism A1 → A2 induced by f induces isomorphisms in homology (resp., isomor-
phisms) in each (second) degree < p. Since p is arbitrary, it follows that f induces
a quasi-isomorphism (resp., an isomorphism) A1 → A2 and thus f is a weak equiv-
alence (resp., an isomorphism).

√

We consider an augmented algebra A concentrated in (cohomological) degree 0
and endowed with an additional grading such that A = A/k is concentrated in
degrees > 0. Then the bar construction BA = T cSA has an additional grading and
its reduction is graded in strictly positive degrees.

Proposition. The A∞-coalgebra BA admits a minimal model unique up to A∞-
isomorphism.

Proof. Uniqueness follows from the above lemma. For the existence, we use a
variant of the perturbation lemma. Choose a split short exact sequence of complexes

C
i′ //

BA
r′

oo
p′ //

U
s′
oo

which is compatible with the additional grading and such that C has vanishing
differential and U is contractile. Choose a contracting homotopy h′′ of U and let
h′ = s′h′′p′. Then we obtain a contraction

TS−1C
i //

TS−1BA
r

oo

where i and r are the algebra morphisms induced by i′ and r′ and both free algebras
are endowed with the differentials coming from their generating complexes. So the
cokernel of i is contractile and we obtain a contraction by extending h′ to an 1-ir-
derivation h. Now we perturb the differential d on

TS−1BA

by the contribution ∂ coming from the comultiplication on BA. We claim that the
operator

h∂ : TS−1BA→ TS−1BA

is locally nilpotent. For this, we note that TS−1BA is a sum of tensor powers A
⊗i

,
where we forget all parentheses and only consider the second grading. The operator

∂ takes A
⊗i

to a sum of copies of A
⊗i

for the same power i. Indeed this operator
merely inserts parentheses (in many ways) or yields zero when no more parentheses
can be inserted. The operator h is a sum of operators

1⊗k ⊗ h′ ⊗ (ir)⊗l.

Therefore it takes A
⊗i

to a sum of copies of A
⊗(i+1)

(h′ increases the number of
tensor factors by 1 and 1⊗k and (ir)⊗l leave it unchanged). So the operator h∂

takes A
⊗i

to a sum of copies of A
⊗(i+1)

. Therefore the operator (h∂)N takes A
⊗i

to a sum of copies of A
⊗(i+N)

. This is concentrated in degrees ≥ i + N . So h∂
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is locally nilpotent. This is all that is needed to make the perturbation lemma
work.

√

4. A characterization of the minimal model

Let A be a positively graded augmented connected associative algebra. Let C
be a minimal A∞-coalgebra endowed with an additional grading. According to the
above proposition, the bar construction BA admits a minimal model, so H∗(BA)
admits a A∞-coalgebra structure unique up to (non canonical) isomorphism, by
the above lemma.

Proposition. The following are equivalent

(i) There is an isomorphism of A∞-coalgebras C ∼→ H∗(BA) compatible with
the additional grading.

(ii) There is a generalized twisting cochain τ : C → A compatible with the
additional grading such that C ⊗τ A → k is the minimal resolution of the
A-module k.

Proof. Let us show that (i) implies (ii). By the preceding section, the dg coalgebra
BA admits a minimal A∞-model. So there is an A∞-coalgebra morphism

f : H∗(BA)→ BA

which is a weak equivalence and whose first component is an injection inducing
the identity in homology. If we compose it with the canonical twisting cochain
τ0 : BA→ A, we obtain a generalized twisting cochain

τ : H∗(BA)→ A.

We have a canonical morphism of complexes

H∗(BA)⊗τ A→ BA⊗τ0 A
and it fits into an exact sequence

0→ H∗(BA)⊗τ A→ BA⊗τ0 A→ V ⊗A→ 0

where V is the cokernel of f1 : H∗(BA) → BA but the differential on the right
most term is not, in general, that induced from V . However, V ⊗A is a complex of
free A-modules, right bounded and its image under ?⊗A k is contractile. It follows
that V ⊗A is contractile. So H∗(BA)⊗τ A is indeed the minimal resolution of k.

Let us show that (ii) implies (i). The composition of the generalized twisting
cochain τ : C → A with the canonical A∞-morphism BΩ∞C → C yields a classical
twisting cochain BΩ∞C → A and thus a dg coalgebra morphism BΩ∞C → BA
and an A∞-coalgebra morphism f : C → BA. This yields a morphism of complexes

C ⊗τ A→ BA⊗τ0 A
compatible with the maps to k. Here both complexes are resolutions, so by applying
⊗Ak we find that f induces an isomorphism C → H∗(BA). By the preceding
section, f is a weak equivalence and C is the minimal model of BA (unique up to
isomorphism by the preceding section).

√
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