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0. Introduction

Smooth groupoids are intimately linked to pseudodifferential calculi. Indeed, to every
smooth groupoid is naturally associated a pseudodifferential calculus and therefore an
analytic index. Furthermore many pseudodifferential calculi have been shown to be the
ones associated with naturally defined groupoids. The groupoid approach may then give
a natural geometric insight to these calculi and the corresponding index theorems. See
[10] for an overview on the subject.

The use of groupoids in relation with index theory may be traced back to [7] where
A. Connes introduced the longitudinal pseudodifferential calculus on a foliation (M, F').
He thus constructs an extension ¥*(M, F') of the foliation C*-algebra C*(M, F') which
gives rise to an exact sequence

0— C*(M,F) = ¥*(M,F) - C(S*F) -0

It appeared quite naturally that Connes’ construction only used the (longitudinal)
smooth structure of the holonomy groupoid and could therefore be extended to any
smooth (longitudinally) groupoid (cf. [22,23,16]).

Some previously defined pseudodifferential calculi were recognized as being the ones
associated with natural groupoids as for instance the groupoid defined by B. Monthubert
in [20,21] (see also [23]) was shown to be suitable for R.B. Melrose’s b-calculus [19].
Moreover, it appeared in a work of J.-M. Lescure [18| that this calculus is the natural
calculus associated with conical pseudo-manifolds.

In [9], A. Connes showed that the analytic index on a compact manifold can in fact
be described in a way not involving (pseudo)differential operators at all, just by using
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a construction of a deformation groupoid, called the “tangent groupoid”. This idea was
used in [14], and extended in [22] to the general case of a smooth groupoid, where
the authors associated with every smooth groupoid G an adiabatic groupoid, which is
obtained applying the “deformation to the normal cone” construction to the inclusion
GO — @ of the unit space of G into G. The groupoid constructed in this way is the
union Goq = G x R*UAG x {0} endowed with a natural smooth structure, where G is
the total space of the algebroid of G i.e. of the normal bundle to the inclusion G(®) — G.
They then showed that the connecting map of the corresponding exact sequence

0— Co(R%) ® C*(G) — C*(Gf,) =% C*(AG) =~ Cp(A*G) — 0 (1)

is the analytic index, where G, = G x R} UAG x {0} is the restriction of G,q over
GO x R,.

In the present paper, extending ideas of Aastrup, Melo, Monthubert and Schrohe [1],
we go one step further in this direction, showing that the (order 0) pseudodifferential
operators on a smooth groupoid can also be described as convolution operators by smooth
functions on a suitable groupoid. The groupoid that we use is the crossed product of the
adiabatic groupoid by the natural action of the group R* . We call it the gauge adiabatic
groupoid.

More precisely, let J(G) be the preimage of the ideal Co(2A*G\ G(?)) of functions that
vanish on the 0-section G(?) of the bundle 2A*G. The exact sequence (1) gives then an
exact sequence

0— Co(R}) ® C*(G) = J(G) = Co(A*G\G?) =0 (2)

Since J(G) is invariant and exact sequence (2) is equivariant with respect to the action
of R% , we find an exact sequence

0— (Co(RL) ® C*(G)) x RY — J(G) x R: =% Co(A*G\GV) xR -0 (3)
Note that R acts on 2*G \ G(*) by multiplication and its orbit space (A*G \ G(V))/R*
is the set S*AG of half lines in 2A*G. Since this action is free and proper, the crossed
product Co(A*G \ G(V) x R is canonically isomorphic to C(S*AG) ® K. In the same

way, we have a natural isomorphism C*(G) ® K ~ (Co(R%) ® C*(G)) x R
The main result of this paper is that the exact sequence

0—C* (@)K = J(G) xR - C(S*AG) @ K — 0 (4)
is related to the exact sequence of order 0 pseudodifferential operators

0— C*(G) = T*(G) =% C(5*AG) — 0
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via a Morita equivalence. Recall (cf. [7,22,23]) that ¥*(G) is the closure of the algebra
of order zero pseudodifferential operators on G in the multiplier algebra of C*(G) and
oo is the principal symbol map.

Our groupoid is the generalization of the one constructed in [1] for the case of the
ordinary pseudodifferential calculus on a compact manifold M. It was shown there that
the algebra associated to this groupoid is isomorphic to the algebra of Green operators
(of order 0 and class 0) in the Boutet de Monvel calculus (¢f. [12,27]) which in turn is
known to be Morita equivalent to ¥*(M). The proof in [1] is somewhat indirect, using
Voiculescu’s theorem to prove that two exact sequences coincide.

Our proof here is much more direct and therefore extends immediately to the general
groupoid case: we explicitly construct a bimodule £ which is a Morita equivalence be-
tween the algebras ¥*(G) and J(G) xR% . As an important intermediate step, we express
a pseudodifferential operator on GG as an integral associated to a smoothing operator on
the adiabatic groupoid G,4 of G (Theorem 3.7). We should point out that J.-M. Les-
cure had previously observed that pseudodifferential operators on R™ arise as integrals
of some functions on the tangent groupoid of R"™ (private communication).

Next, we show that the C*-algebra J(G) x R* is stable and therefore isomorphic to
U*(G) ® K, and the Hilbert module £ is isomorphic to Kasparov’s absorbing module
Hw-(c)- To that end, we use the fact, established by S. Vassout in [28], that positive
order pseudodifferential operators define regular unbounded multipliers (in the sense of
[4,29]1). Actually, using pseudodifferential calculus of complex order and complex powers
also from [28], we construct an isomorphism of J(G) onto a crossed product ¥*(G) x R
which intertwines the action « of R% on J(G) with the dual action on the crossed product
U (G) x R.

In a forthcoming paper [11], we will actually show that the algebra J(G) x R% gener-
alizes to the case of Lie groupoids the algebra of Green operators. In particular, we will
show that in the case of the usual pseudodifferential calculus on a compact manifold, it
is not only abstractly isomorphic to the algebra of Green operators as established in [1],
but in fact the two algebras are equal.

The paper is organized as follows:

o In the first section, we recall the construction of the deformation to the normal cone
and the space of Schwartz functions on it. We also characterize the space of those
functions whose Fourier transform vanishes at infinite order at 0.

e In the second section we recall some definitions concerning Lie groupoids, and in
particular the construction of the associated “adiabatic” groupoid and its crossed
product by the canonical action of R .

e Finally, in the last two sections, we construct the bimodule which is used for the
Morita equivalence: in the third section we construct the smooth module £, whose

L 1t follows that, if P is the closure of an elliptic operator of positive order on a Lie groupoid G, then
1+ P*P)~' € C*(9).
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C*-completion the Hilbert C*-module £ is shown to indeed define the desired Morita
equivalence in Section 4. At the end of Section 4, we establish stability of the module
€ and actually identify the ideal J(G) with a crossed product ¥*(G) x R.

Remark on the general setting. We will use the denomination “Lie groupoid” or “smooth
groupoid” for the same object: a groupoid whose set of objects and morphisms are both
smooth manifolds, source and range (target) maps are smooth submersions and the maps
composition and inverse are smooth.

For the simplicity of our exposition, we will assume that the groupoids involved are
smooth and Hausdorff. We will further in some places reduce to the case where the unit
space is compact. Of course one easily extends our constructions and results to more
general settings: longitudinally smooth groupoids on manifolds with corners, continuous
family groupoids (cf. [24]), non-Hausdorff case (cf. [8]), and even groupoids associated
with singular foliations (c¢f. [2]) .... To proceed, one only has to consider the appropriate
spaces of functions on the groupoids — that appear in the above cited papers.

Furthermore, in what follows, C*(G) may be either the reduced or full C*-algebra of
the groupoid G. The choice is left to the reader!

1. Schwartz spaces on deformations to normal cones

The adiabatic groupoid which is the main ingredient in our construction is a special
case of a geometric object called deformation to the normal cone. This is a classical notion
in algebraic geometry. It was first used in the context of Lie groupoids by A. Connes (see
9]) and since then by several authors.

1.1. Deformation to a normal cone

In this section, we recall this construction and define some function spaces on it:
the associated space of functions of Schwartz decay alla P. Carrillo Rouse [5] and some
subspaces which will be needed in the sequel of the paper.

Let My be a smooth compact submanifold of a smooth manifold M with normal
bundle V. As a set, the deformation to the normal cone is D(My, M) = M xR*UN x{0}.
In order to recall its smooth structure, we fix an exponential map 6 : V' — V. Thus 6 is
a diffeomorphism from a neighborhood V’ of the zero section My in N to a neighborhood
V of My in M, for every x € My, we have §(x) = x and the differential df, is the identity
in the normal direction.

We may cover D(My, M) with two open sets M x R* and W = N x {0} UV x R*:
we endow D(My, M) with the smooth structure for which the map © : (z, X,t) —
(0(x,tX),t) (for t # 0) and O : (z,X,0) — (z,X,0) is a diffeomorphism from W' =
{(z, X, t) e N xR; (x,tX) € V'} to W.

The group R* acts smoothly on D(Mo, M): for t € R put ay(z,\) = (2,tA) for
z € M and X € R* and oy (z,U,0) = (x,t71U,0) for z € My and U € N,.
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1.2. Schwartz decay on R} x V

If V is a smooth nonnecessarily compact manifold, define S(R* ; C°(V')) to be the
space of smooth functions ¢ — f; from R% to C2°(V) such that all the f; have support
on a given compact subset of V' and ¢t — f; has rapid decay with respect to all natural
norms of C° (V). More precisely (f;) is such that the function g : V' x R — C defined
by g(z,t) = f_+ (z) for 0 < ¢ <1 and g(z,¢) = 0 otherwise is smooth with compact
support.

We will also consider S(R*; C2°(V)) = S(R;C*(V)) @ S(R*; C2°(V')) which is the
space of smooth functions ¢ — f; from R* to C2°(V') such that all the f; have support
on a given compact subset of V' and t — f; has rapid decay with respect to all norms
at 0 and £oo.

1.3. Schwartz functions on a vector bundle

There is a description of the space of Schwartz functions on the total space of a vector
bundle in [5]. Here are two equivalent ways to defining this algebra in a way that it is
obvious it is independent of choices of charts. Denote by Sg the set of half lines of the
bundle R x E over M and, choosing a metric ¢ on F, embed E into Sg using the map
which to (z,§) (z € M, £ € E, assigns the half line through (z,1 — ¢(§),2£)). Then E
sits in Sg as the complement of points at infinity i.e. the set M, of half lines through
(x,—1,0) where x runs through M.

Definition 1.1. Let E be a smooth real vector bundle over a smooth compact manifold M.

a) Consider F as an open subspace of the bundle of spheres Sp where M, is the set of
points at infinity. The algebra S(F) is the space of smooth functions on Sg vanishing
at any point of M., as well as all its derivatives.

b) Fort € R%, let B; denote the map (z,§) + (z,t) from E to E. Then define Sg(E) to
be the space of functions of the form z — f0+oo ft(Be(2)) dt where f € S(R; C°(E)).

The fact that Sg(F) = S(F) is quite obvious. Indeed if f € S(R% ; C°(F)), then one
defines g € C2°(Sp xR) by g(z,¢) = f + (B« (2))if0 <t <land z € E and g(z,t) =0
elsewhere. Then one may integrate it and obtain that z +— f0+oo ft(B(2)) dt is smooth
on Sk and vanishes as well as all its derivatives on M.

Conversely, we have to show that the map g : S(RL;C*(E)) — S(F) is onto,

where @g(f) 1 z — O+°O ft(Bi(2)) dt. Choose a metric on E; if ¢ € S(E), we may put
f(z,t) = wg(ﬁtﬂ(z)) where h € CZ°(R) vanishes near 0 and f0+oo h(s?)% = 1.
Then 93(£)(2) = J " h(# (1 +[|2]*)g(2) ¢ = 9(2).

Remark 1.2. The Fourier transform f — f is an isomorphism of Sg(E) with Sg. (E*).
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We will use the following rather easy result (where we consider E' x R as a bundle of
dimension dim E + 1 over M).

Proposition 1.3. Let f = (f;)icr € S(ExR). Thus, fort € R, f; € S(E) and f; € S(E*).

a) For all g € C®(E) the function F : M x R — C defined by F(x,0) = fo(z,0)g(x,0)
and F(x,t) =t7P fEx g(x,U) fro0(x,U)dU fort # 0 is smooth on M x R.
b) The following are equivalent:
(i) For all g € S(E) the function t — [, g(x,U)f(x,t7U,t)dxdU vanishes as
well as all its derivatives at 0.
(ii) For all g € S(FE) the (smooth) function (x,t) — sz g(z,U) f(z, t71U,t) dU
vanishes as well as all its derivatives on M x {0} C M x R.
(iii) The function (z,&,t) — fi(x, ) vanishes as well as all its derivatives on M x{0}
sitting in E* X R as zero section.

A

Proof. Parseval’'s formula yields t77 [, g(z,U)f(x,t7'U,t)dU = c [,. §(x,—&)f: ¥
(z,t€) d§ (where c is a suitable constant and p is the dimension of F).

a) The function (x,&,t) — §(z, =€) fi(x, t€) lies in S(E* x R), thus (a) follows.

b) (ii) = (i) is obvious. Conversely if (i) is satisfied, writing fEx g(z, U) f(x,t71U,t) dU =
t*hy(x) 4+ o(t¥), and applying (i) to g1(x,U) = g(z,U)hs(z), we find hy = 0; thus
by induction, we get (ii).

We may write the Taylor expansion f;(z, t&) = Zf:o tha;(z, &) +t" 1 R(z, £, t) where
a; are polynomials in £ (of degree < j). It follows that sz g(z,U) f(z,t71U, ) dU =
o(th*P) if and only if a;(z,£) = 0, whence (ii) < (iii). O

Remark 1.4. It is natural in this proposition to consider f;(z,U) as smooth families
(indexed by M) of smooth measures on E, (sections of the bundle of densities 21(E))
rather than functions and therefore introduce a factor ¢ 7 in the integrals (i) and (ii). This
factor of course has no consequence since rapid decay is not affected by this factor . ...

1.4. Trivial deformation to the normal cone

We consider here the deformation to the normal cone D(M, E) (in the sense of Sec-
tion 1.1) of the manifold M is sitting as zero section in the total space E of a vector bundle
over M. Then D(M, E) = E x R. Here, R* acts on E xR by ay(z,U, \) = (z,t 71U, tA).

For f € S(R%; C2(E x R)), put @o(f)(2) =[5 fi(a(2)) dt. The image So(E x R)
of ¢, is the set of g € S(E x R) such that the function (z,U,t) — ||tU]|| is bounded on
the support of g.

Indeed, if f € S(RY;C°(E x R)), one checks immediately the support require-
ment and it is quite easy to check locally that ¢,(f) € S(E x R). Conversely, let
g € S(E x R) with the support requirements; take y € C2°(R) equal to 1 near 0
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and h € C*(R) a function which vanishes near 0 and satisfies f0+oo h(s*)% = 1 as
previously. We may set fi(x, U, A\, t) = Mg(az,tu (1 —X(?—ej)) and fo(z, U, \ t) =
PIEEE ) g, 00, 3)x(35)-

Note that for any a > 0, the function ¢ %g(:z:,tU,%) obviously belongs to
SR ; CF(Esq X Ry,)) where B>, = {U € E; ||U|| =2 a} and Ry, = R\ ]—a,al.

For small enough |\| either h(\? + t2) = 0 or X(;\—j) = 1 thus f; vanishes. For big
enough |\| or ¢, h(A? + t2) = 0. Moreover f; has rapid decay when t — 0. Finally, f;
belongs to S(R7; C°(E x R)). Similarly f, vanishes for ¢ near 0 or for small enough
|U|l and ¢ — oo. Anyway fo has rapid decay when ¢ — oo and thus fo belongs to
S(R%; C(E x R)). One can easily check that vo(f1) + ¢a(f2) =g.

1.5. Schwartz functions on a deformation to the normal cone

In the same way as for bundles, we define S, (D(My, M)) to be the set of integrals
Oalf):z— f0+oo Ji(a¢(2)) dt where t — f; is in S(R7; C°(D(Mo, M))).

Now, let 6 : V' — V be an “exponential map” which is a diffeomorphism of a (rela-
tively compact) neighborhood V' of the 0 section My in A onto a tubular neighborhood
V of My in M. We obtain a diffeomorphism © : W' — W where W' = {(z,U,t) €
N XR; (2, tU) € V'} and W =V x R* UN x {0}.

Since D(My, M) = M x R* U W, it follows that C°(D(Mgy, M)) = C(M x R*) 4+
C2° (W), and since both M x R* and W are invariant by «;, it follows that S, (D (Mg, M))
is the sum of S(R*; C°(M)) obtained as o (S(RL; C (M x R*))) and {f € C(W);
foBO € S,(N xR)} (where fo@ is extended by 0 outside W').

We denote by Jo(Mo, M) the subspace S(R*; C°(M)) of So (D (Mo, M)).

For f € S, (D(My, M)) and t € R, we denote by f; : z — f(z,t) (with z € M if t #0
and z € N if t = 0).

Note that if f € So(D(My,M)) and ¢ € C°°(M) vanishes in the neighborhood of
My, then the map (z,t) — ¥(2)f(z,t) for t # 0 extends to a smooth map on M x R
vanishing at infinite order on M x {0}.

As a direct consequence of Proposition 1.3 we have:

Proposition 1.5. Let 0 : V' — V be an exponential diffeomorphism as above and x €
C>(V) equal to 1 near My C M. Let f € So(D(My, M))

a) For all g € C(N) the function F : My xR — C defined by F(z,0) = fo(x,0)g(z,0)
and F(xz,t) =t7P sz g(x,U) fr 0 0(x,U)dU fort # 0 is smooth on My x R.
b) The following are equivalent:
(i) For all g € C(M) the function t — [,, g(x)f(x,t) dx vanishes as well as all
its derivatives at 0.
(ii) For all g € C°(N) the function (x,t) — fo g(z,U) fro6(z,U) dU vanishes as
well as all its derivatives on My x {0} C My x R.
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(iii) The function (x,&,t) — ()E)\o 0(x, &) vanishes as well as all its derivatives on
My x {0} sitting in N* x R as zero section.

In particular, it follows that conditions (ii) and (iii) do not depend on the choice of 6.
We denote by J(Mo, M) C So(D(Moy, M)) the set of functions satisfying the above
equivalent conditions.

Proof. For every f € S, (D(My, M)), the function (1— x) f; has rapid decay when ¢ — 0.
Replacing f by xf, we may assume that f € S,(D(My, W)). The result follows from

Proposition 1.3 since So (D (Mo, W)) -, Sa(D(My, W')) is an isomorphism. O
1.6. A family of semi-norms

We define a family Ny ¢ j, of semi-norms on smooth functions on R™ x R? x R, for
ke N" ¢ eNP 5 Nand m e Z. Put

m/2 8|k|+|£|+3f
Niejm(f) = sup |7 + ¢ g J
i) (56,5775)6R"XR1’><R(H | ) Oxkogtots

(z,€,1)

We now use the notation introduced in previous subsection. Assume first that M is
compact. Fix a finite open cover (O;);cr of My by subsets diffeomorphic to R™ over which
the normal bundle is trivialized. Using a partition of the identity adapted to (O;);cr,
on C®°(N* x R) and thus, via the Fourier
transform and the map © : W’ — W defined above, a family N ,é
the space C2°(W) defined by

. . . Z
we obtain a family of semi-norms Ny,

0im of semi-norms on

~ —_—

Nli,é,j,m(f) = Nli,é,j,m(f © @)

(where f o © is extended by 0 outside W”).
Finally, if My is not compact, we define similarly a family of semi-norms using a
locally finite cover (O;);cr.

The action of R}

The action of RY on D(My, M) leads to an action by automorphisms u — ay
on Su(D(My, M)) and its subspaces J(Moy, M) (see Proposition 1.5) and Jo(My, M)
(= S(R*;C°(M))). Note that Ozuﬁ)\o O(z,€,t) = upf/o\@(:c,uﬁ,ut) and therefore, the

semi-norms N} are multiplied by a suitable power of u by this action.

k7é7j’m

2. The groupoids

Convolution algebras and pseudodifferential calculus on smooth groupoids was first
used by A. Connes in [7] in the case of the holonomy groupoid of a foliation (see also
8,9]). Note that Connes uses the reduced C*-algebras — full C*-algebras were introduced
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in the general context of locally compact groupoids by J. Renault [26]. Generalization
to Lie groupoids, which was already implicit in Connes’ work was given in [22,23] (see
also [10,28] for an overview on the subject).

2.1. Main notation

We will use the denomination “Lie groupoid” or “smooth groupoid” for the same
object: a groupoid whose set of objects and morphisms are both smooth manifolds,
source and range (target) maps are smooth submersions and the maps composition and
inverse are smooth.

Let us recall some standard constructions and notation on groupoids.

Densities. If M is a smooth manifold, E is a real vector bundle of dimension p on M and
q € R, we denote by 29(F) = |APE*|? the ¢g-density bundle on E: for x € M, 29F is the
set of maps ¢ : APE, \ {0} — R such that ¢»(AX) = |[A|7¢(X). A g-density is a section of
Q9(FE) and the product of a g-density with a ¢’-density leads to a (¢ + ¢')-density. There
is a natural isomorphism 29(E @ E') — 29(F) ® Q1(E’).

The positivity of a density makes sense, and thus the bundle of densities is an oriented
real line bundle which is therefore trivial(izable). It is however sometimes important to
keep track of the natural normalizations they give rise to.

We put 29(M) = 29(TM).

The main use of 1-densities is that their integral over M makes sense. The natural ac-
tion of diffeomorphism takes into account the Radon—Nykodym derivative and therefore,
there is a unique linear form [, : C°(M; 2'(M)) — R which agrees in local coordinates
with the Lebesgue integral. In this way one associates to a submersion p : M — M; and
a vector bundle F on M; a natural map p; : C°(M;p*E @ 21 (kerdp)) — C°(My; E)
obtained by integrating one densities along the fibers of p.

Source, range, algebroid. When G = G(©) is a Lie groupoid with source s and range r, we
denote G, := s~ !(z) and G® := r~!(z) for any = € G(?). The set of composable elements
is G& = {(v,7); s(y) = r(7)}; the product (y,7’) — ~v' is a smooth submersion
p:G3 =g,

The s-vertical tangent bundle is the tangent space to the s-fibers, that is TsG =
kerds = Uxeg@ TG,. The r-vertical tangent bundle T,.G := ker dr is defined similarly.
Recall that the restriction of TG to the set GO of units identifies with the total space
G of the Lie algebroid of G, which can also be thought of as the normal bundle to the
inclusion G(© — G. As usual, we will denote by T *G and 2A*G the corresponding dual
bundles.

The *-algebra of a groupoid. Let G be a Lie groupoid. As explained in [8], the natural
x-algebra is obtained using half densities, namely C2°(G; £2'/2(ker ds @ ker dr)) endowed
with the following operations:
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Involution. The map k : v — ~v~! exchanges r and s and therefore it acts naturally

on 2'/2(ker ds @ ker dr); also, the bundle £2'/2(ker ds @ ker dr) has a real structure,
i.e. there is a natural complex conjugation w +— @ of this bundle. The adjoint of
f € C®(G; 2'/2(ker ds @ ker dr)) is defined by f*(7) = k. (f(71)).

Product. If f,g € C(G; 2'/?(ker ds @ kerdr)), then the restriction of f ® g to G2 is
a section of the bundle 2Y2(p*T,.G ® kerdp @ kerdp ® p*T:G) = p* /2 (ker dr @
ker ds) ® 2! kerdp, and by integration along the fibers of p we obtain f x g €
C2(G; 2'/?(ker ds @ ker dr)).

From now on, we just write C°(G; £21/2) instead of C2°(G; £2*/2 (ker ds @ ker dr)). The
C*-algebra of the groupoid G is a completion of the *-algebra C°(G; 21/2).

The reduced C*-algebra (cf. [7,26]) is obtained as the completion of C°(G; 2'/2) by the
family of representations (\;),cgw, where A, is the representation by left convolu-
tion on L?(G,) (which is the completion of C2°(G,; 2'/2G,)).

The full C*-algebra is obtained as the completion of C°(G; £21/2) by the family of all
continuous representations (cf. [26,15]).

Pseudodifferential operators on Lie groupoids. (See [7,22.23].) Let G be a Lie groupoid
and let 6 : V' — V be an “exponential map” which is a diffeomorphism of a (relatively
compact) neighborhood V' of the 0 section G(?) in AG (considered as the normal bundle
to the inclusion G(© c G) onto a tubular neighborhood V' of G in G. We assume that
r(@(x,U)) =z for € GO and U € 2A,G.

Lem € Z. A classical pseudo-differential operator of order m is a multiplier P = Py+K
of the *-algebra C°(G; 2'/?) where K € C°(G; 2'/?) and left multiplication by Py is
given by an expression

Po f(7) = / ( / e“@‘l(w'@so(r(v),s)xm)f(v;lwdw)ds
§€Ql:{,(7)g y1E€GT(M

where y € C2°(V) is a bump function satisfying x = 1 on G(%) and ¢ ~ Z::of) A 18 &
polyhomogeneous symbol (a;(z, ) is homogeneous of order j in §).
We may then write Py(y1) = fgem* gei<971(71)|5>g0(7“(’yl),5))((71)d£ meaning e.g.
r(v1)

that, as a multiplier, Py is the limit when R — oo of P! € C°(G; 2'/?) where
p—1
Pit(y) = / O o(r (), €)x () dé.
éem:(v)g§ ||£||<R

Recall that if the order m of P is strictly negative, then P extends to an element
of C*(G) and if m = 0, then P extends to a multiplier of C*(G). The map P — ag
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is well defined and extends to an onto morphism oy : ¥*(G) — C(S*21G) with kernel
C*(G) where ¥*(G) is the closure of the algebra of pseudodifferential operators of order
< 0 in the multiplier algebra of C*(G) and C(S*G) is the commutative C*-algebra of
continuous functions on the space S*2AG of half lines in 2*G. In other words, we have an
exact sequence of C'*-algebras

0— C*(G) = ¥*(G) =% C(S*AG) — 0.
2.2. The adiabatic groupoid

We briefly recall the construction of the adiabatic groupoid mainly due to Connes (see
9]) and extended in [22,23]. Let us start with a smooth groupoid G' = G(®) with source
map s and range map r and denote by G its Lie algebroid: it is the normal bundle of
the inclusion G(?) — G as unit space.

Its adiabatic groupoid is the deformation to the normal cone G g = D(G(®),G) as in
Section 1.1.

As aset, Gog = G xR*UAG x {0}, and its set of objects Ggil) is GO x R. Its groupoid
structure is defined by the fact that inclusions ¢ — (g, \) are groupoid morphisms from
G to G4q for A # 0, and from AG to G4 for A = 0.

We fix an everywhere positive smooth density w on G. We then get a smooth density
Wad 00 G gq: for t # 0, weq,r = |t|"Pw. We will now on fix the density w (and therefore wqq)
and consider all elements of the groupoid algebra C°(G,q) as functions.

2.5. The action of R’ and the gauge adiabatic groupoid

The action of the group R’ on the deformation to a normal cone that we already
used, is compatible with the groupoid structure of G,q = D(G®), G):

Gaa ¥ Ri — Gag
(v,t;\) = (7, Mt)  when t #0
(,U,0,\) = (z,\"U,0)
The gauge adiabatic groupoid is the (smooth) groupoid obtained as a crossed product

of this action (see e.g. [17]). Namely Gy := Gog x RY = GO x R, with structural
morphisms

source and target:  sgq (7,5 A) = (5(7),t) and  rge(y, 6 A) = (r(v),tA) for t #0
Sga(x, U, 0; X) = 1ge(x,U,0; \) = (2,0)

product: (v NEGA) - (V5 N) = (7, 6 AN) for t #£0
(z,U,0;A) - (z,U",0; X) = (2, NU + U",0; \X).
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Remarks 2.1.

a) At the level of Lie algebroids, these constructions are very simple and natural. Let
us denote (AG,H, [, Jac) the Lie algebroid of G, with its corresponding anchor and
bracket.

The Lie algebroid of G g is (AG X R, #44, [ , Jad) Where f44 : AG xR — TG x TR is
defined by #,4(z, U, t) = (#(x,tU), (¢,0)) for (z,U,t) in AG x R, and [, |44 is the Lie
bracket which satisfies [X, Y]qq(x,t) = t[X, Y]ug(z) where X, Y are smooth (local)
sections of AG.

The Lie algebroid of Gy, is (AG X TR, f4a, [ , |ga) Where f44(z, U, t, N) = (8(z,tU),
(t,tA)) and [, |44 is the Lie bracket induced by

[(X,7), (Y, o—)]ga(ac,t) = (t[X, Y]ac(z) + ()Y (z) — o(t) X (), t[7, 0] (¢))

where X, Y are smooth (local) sections of 2AG and 7, o are smooth local vector fields
on R.

b) This construction immediately extends to the case where G is only assumed to be
longitudinally smooth (i.e. a continuous family groupoid in the sense of A. Paterson
24]).

c¢) Also, if (M, F) is a singular foliation in the sense of [2| generated by vector fields
(Xi)1<i<n, the adiabatic foliation was constructed in [3]. We may construct the gauge
adiabatic foliation on M xR to be the foliation generated by the vector fields t(X;®1)
and t(1 ® 0/0t) (where t is the R coordinate in M x R).

3. Schwartz algebra and module
3.1. The Schwartz algebra of Carrillo Rouse and the ideal J(Q)

Let G be a Lie groupoid and G,qg = D(G®, Q) the corresponding adiabatic groupoid.
We will use freely the notation introduced in the first section for general deformations to
normal cones. In particular, we fix an exponential map yielding a tubular neighborhood
construction # : V' 5 V and the corresponding diffeomorphism @ : W’ — W where
W' ={(z,£,t) e AG x R; (x,t&) e V' and W =A x {0} UV X R* C Gq.

We will use the Schwartz space described above for a general deformation to the
normal cone; this leads to a slight modification of the Schwartz algebra of P. Carrillo
Rouse (cf. [5]).

We first fix notation for spaces of functions (half density sections) on G,4 which will
be crucial in our study.

Definitions and Notation 3.1.

a) The ideal Jo(G) of functions with rapid decay at 0.
We will denote by Jo(G) the space Jo(G?,G) = S(R*;C°(G)) defined above
(Sections 1.2 and 1.5). Recall that it consists of smooth half densities f with com-
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pact support on the groupoid G x R such that, for every £ € N, the function
(7,t) =t~k f(~,t) extends smoothly on G x R.

b) The (modified) Schwartz algebra S.(G.q) of Carrillo Rouse.
We will denote by S.(Gaq) the algebra S,(D(G®,G)) defined above (Section 1.5).
Therefore, its elements are sums f + g where f € Jy(G) and, using the notation of
Section 1.5, g € C°(W; £2'/?) is such that ]V,i’e’j’m(g) < +oo for all i, k, £, j, m with
m = 0.
Note that there is a canonical groupoid morphism G,4 — G (the image of 2AG x {0}
is G c @) and, by definition, the image under this morphism of the support of
f € S8:(Gaq) is compact in G. On the other hand, unlike the original definition in [5],
we had to drop here the conical support requirement.

c) The ideal J(G).
We will denote by J(G) the space J(G(®),G) as defined in Proposition 1.5. Its
elements are sums f + g where f € Jo(G) and g € C®(W;2'/2) is such that
NZ

k,z’j,m(g) < o0 for all i, k, £, j,m with any m € Z.

We now check that S.(G,q) is indeed an algebra and J(G) an ideal. We begin with

a remark:

Remark 3.2. An element f € S.(G,q) is a family (f;)ier, where f; € C°(G) for t # 0
and fy € S(AG). Note that, since G x R* is dense in G4, f is determined by (f¢)so0-
Roughly speaking, the definition implies that the support of f; concentrates around G(%)
when t goes to 0.

Proposition 3.3. The space S.(Goq) is a x-algebra: for f, g € Sc(Gq), the families (f;)icr
and (ft * g¢)ter belong to Sc(Gaq). Moreover Jo(G) is a x-ideal of Sc(G aq)-

Proof. The function (v1,7v2) — f(71)g(72) defined on ijd) = D(G?,G?) is an element
of So(D(G(®,G?))). Since the composition G — G is a submersion, equivariant with
respect to « (since a is an action of R* by groupoid automorphisms), we find that inte-
gration along the fibers yields a continuous map S,(D(G®,G?))) = S,(D(G®,G)).

By continuity of the product of C°(G), we find that if f € Jy(G) or g € Jo(G), then
f*g€ J(G).

The assertions about the x-operations are obvious. O

Lemma 3.4. Let f € S.(Goa)-

a) For every g € C°(G) the function F : G x R — C defined by F(v,t) = f¢ * g(v) for
t #0 and F(v,0) = fo(r(v),0)g(y) is smooth.

b) We have f € J(G) if and only if, for any g € C°(G), the family (fi * g)ter+ is an
element of Jo(G).
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Proof. Let 6 : V! — V be an “exponential map” which is a diffeomorphism of a (relatively
compact) neighborhood V' of the 0 section G(?) in 2AG onto a tubular neighborhood V
of G in G. We assume that r(0(z,U)) = z for z € G and U € A, G.

Let x € C%®(G) with support in V, such that x(y) = 1 for v near G®). Then
(L =x)fe)ter € Jo(G), whence ((1 —X)ft * g)ter € Jo(G) for all g € C°(G).

Furthermore,

(Xft*9)(7) = / fro 07 (r(7),U)h(~,U)dU,
Ar (@

where h(y,U) = x(0(r(7),U))g(0(r(v),U)"14)d(r(7y),U) — here § is a suitable Radon—
Nykodym derivative.
The lemma follows now from Proposition 1.5. O

Proposition 3.5. The space J(G) is a *-ideal of the algebra S.(Gyq)-

Proof. Follows immediately from Lemma 3.4.b). 0O
3.2. The smooth module £

The following rather technical lemma uses the action o of R%} and the semi-norms
defined in Section 1.6 and used in Definitions 3.1.

Lemma 3.6. Let f,g € J(G). We assume that their support is small enough (in G)
so that, for every t,u € R*, the function f; *x g, has support in V. The function u —
(fe*giu)ter is a smooth map from R% to J(G) with rapid decay as v — 0 and as u — 0.
More precisely, for everyt € I, ke N*, £ € NP, 5 € N, m € Z and q € Z, the function
u uq]v,i’&j’m(f * vy (g)) is bounded on R

Proof. The adiabatic groupoid G4 of G is a Lie groupoid; we may therefore construct
its adiabatic groupoid (Gaq)aq. Since g = (g¢) is an element of J(G), the function
(t,u) — x(t)x(u)gey is an element of J(G4q) where xy € C°(R) is equal to 1 near 0. By
Lemma 3.4 applied to the groupoid G g, it follows that (x(¢)x(u)ft * gru)uers leads to
an element of Jy(Gy4) and thus has rapid decay when v — 0, uniformly in ¢. In other
words, the functions u — u_q]v,i,&j’m(f % i, (g)) are bounded for every i € I, k € N™,
{eNP jeN, meNandqgeN.

In the same way, u — a,(f) * ¢ has rapid decay when u — 0, whence, using the
compatibility of the semi-norms with the action of R, u +— f * 1(g) has rapid decay
when u — 0. From this, we deduce that the functions u — uq]v,iﬁ’j,m(f * ay,(g)) are
bounded for every i € I, k € N*, / € NP, j € N, m € N and ¢ € N, whence q € Z.

In other words, u — f * o, (g) has rapid decay from R* to S.(Gqaq). To see that it
also has rapid decay as a function from R to J(G), it is enough to check that, for
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h € C*(G), the map u — f * oy(g) * h has rapid decay from R* to Jo(G). But by
Lemma 3.4.b), (t,u) — f; * s, * h is an element of S(R?; C°(G)) and vanishes as well
as all its derivatives when t =0 or u =0. O

Theorem 3.7. For f € J(G) and m € N, the operator f0+°° tmfe L s an order —m
pseudodifferential operator of the groupoid G i.e. an element of P—_,,(G); its principal
symbol o is given by o(x,&) = f0+oo tmf(:v,tf‘,O)%. More precisely, there is a (classical)
pseudodifferential operator P with principal symbol o such that for every g € C°(G),
we have P x g = f0+°° t™ fy *g% and g * P = f0+oo t" g x ft%.

Proof. Of course, if f € Jy(G) then f0+oo tmfy 4 € C°(G). In particular, this gives the
meaning of f0+ tm fyx g% and f0+°° tmg « frY (thanks to Lemma 3.4).

We thus need only to treat the case of f € C°(W;2'/?) satisfying the above con-
dition. We may trivialize the half densities using a positive half density w on G; we
then may write f; = t Phy;w where p is the dimension of the fibers of G and h is the
restriction to G x R” of a smooth function with compact support in G 4. Such a function
can be written as h(7,t) = x(7)x’ (t)p(t 1071 (~),t), where x and x’ are bump-functions
x € C2°(G) with support contained in V which is equal to 1 in a neighborhood of G(%),
X' € C*(Ry) equal to 1 in a neighborhood of 0 and ¢ € C(2AG x R,) such that ¢
vanishes as well as all its derivatives at points of the form (z,0,0) with z € G,

Writing ¢(x, X, t) = (2m)7P [ X9 %(z, ¢, t) dE, we find

fol) = @ty ()X (B / WD (2 €, 1) de
= (21) P x ()X () / 0TI oz, 6, ) di.

Therefore, we have an equality (as multipliers of C2°(G; £21/2)),

—+o00

[ s = @mxe [0 ae, ¢ de

0

where

+oo
dt

aw &) = [ N (O 10T

0

Taking derivatives of a in x gives the same type of expression; taking derivatives in &
increases m.

An expression c(x,£) = f0+oo(t|]£||)mx'(t)b(x,tf,t)% with b having rapid decay at
infinity and points (z,0,0) is bounded. In other words, a is a symbol of order —m and

type (1,0)
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Now, given an expansion @(z,(,u) ~ > p o bi (2, ()u”, (for u small) we find an ex-

pansion (for ¢ large), a(z, &) ~ > pe o aktm(x, £) Where appm(z, &) = [ by (w, t&)thmat
is homogeneous of degree —k —m in £&. O

Of course, the same computation works for m € Z and even m € C (c¢f. [28] for
pseudodifferential operators on groupoids with complex order).

Note that Theorem 3.7 shows that every element P € Py(G) can be written as an
integral Py = 0+OO ft% with f € J(G) (using the standard Borel’s theorem-like tech-
niques to construct f such that P — Py € C°(G); of course if P € C°(G), then P = Py
where f; = x(t)P with an obvious choice of x € S(R%)).

Lemma 3.8. Let f = (ft)ier € J(G) and P € Po(G). There is a (unique) element
h = (ht)ter of TJ(G) such that hy = fi % P for t € R*. Moreover hy = fooo(P).

Proof. Uniqueness follows from density of G x R* in G 4.

The family (f;* P) is smooth in G x R* and the image in G of its support is compact.

Of course, if f € Jo(G) then (fixP) € Jo(G), we may thus assume that f has support
in a neighborhood of G(°) in G as small as we wish.

In the same way, since P is quasi-local, we may assume, thanks to Lemma 3.4, that
the support of P is also contained in a suitable neighborhood of G(®) in G.

Now, using Theorem 3.7, we may write P = [ g, with g € J(G).

By locality, we may assume that, for all £,u € R*, the support of f; * g, is contained
in V.

We find hy = fi x P = fo s gy L8 = f fi * gtu . The conclusion follows
immediately from Lemma 3.6.

We found h = f0+oo fray(yg )d“ Evaluating at ¢t = 0, we find hg = fo fo* o (go) o2 du

and thus hg = % fo o (o) 4 fOUO(P) (by Theorem 3.7). O

Lemma 3.8 asserts that J(G) is endowed with a (right) Py (G)-module structure; we
will denote this smooth module by £°°.

4. The Hilbert module £

From now on, we will be interested in the restriction do of Gaq to GO x R, . Let
evy @ C*(Gaa) — C*(G},) be the morphism induced by the restriction map. Since
GO x R, is a closed saturated subspace of G4 and do is invariant under the action
of R, all the previous results obviously remain true when one replaces S.(Gaq), J(G)
and Jp(G) by their image under ev,. For the simplicity of notations we keep the same
notation for J(G) and Jo(G): they are the image under ev of the previously defined
J(G) and Jo(G). As noted in the introduction, C*(G) is the full groupoid C*-algebra,
but all the results here extend immediately to the reduced C*-algebra case.
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4.1. Completion of £

Let *(@) denote the C*-algebra of pseudodifferential operators, i.e. the norm closure
of Py(G) in the multiplier algebra of C*(G). Let also g : ¥*(G) — C(S*AG) be the
principal symbol map. We have the exact sequence of C*-algebras

0= C*(G) = T (G) 2% C(S*AG) — 0 (5)

For P € ¥*(G), the function o((P) is thought of as a homogeneous function defined
outside the zero section in AG.

The elements of C*(G})) are families (f;)ier, with f; € C*(G) for t # 0 and fo €
C*(AG) ~ Co(A*Q).

Put Jo(G) = {f € C*(GT)); fo =0} ~ Co(R%;G). We have an exact sequence

0— Jo(G) = C*(G})) =% Co(A*G) — 0.
Finally, put J(G) € C*(G7,)) = {f € C*(GF,); Yo € GO, fo(z,0) = 0}.

Lemma 4.1. An element f € C*(G:d) is determined by the family (ft)iers @ the ideal
Jo(G) is essential in C*(G)).

Proof. Let x € GV, Put G:dyw = {(7,t) € GI}; s() = 2z} = G, x R, UA,G. The

map (v,t) — ¢ being a submersion, we obtain a continuous family (H ;):>o of Hilbert

spaces with H, o = L?*(2,G) and H,, = L*(G,) for t > 0 as a completion of smooth

o, . +
half densities with compact support on G} o

Let f € C2(GT,;021/2) and g € CX(GT

ad,x’

It follows that ¢ — || f; * g:|| is continuous; by density, this remains true for f € C*(G/))

21/2); we have fx g € C®(GT, ;2Y?),

ad,x’

and any continuous section g = (g;) of (H,.¢). But || fo| = sup{||fo * goll, x € G©; g €
(Hz.t); supy ||lg¢|l < 1}. It follows that || fol| < supyo || fell. O

In the following, we consider C*(G¥)) in the multiplier algebra M(Jo(G)) of Jo(G).

Since Jo(G) = Cyh(R%) ® C*(G), the algebras C*(G), and ¥*(G) sit also in M(Jo(G)).
From Lemmas 3.4 and 3.8, we immediately get.

Proposition 4.2.

a) For f € C*(G) and g € J(G) we have f x g € Jo(G).
b) For P € ¥§(G) and f € J(G) we have fx P € J(G) and (f x P)y = J?OUO(P).

Lemma 4.3. For f € J(G), the integral f0+oo ft% of Theorem 3.7 converges strictly (i.e.
in the topology of multipliers of C*(Q)).
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Proof. Let g € C2°(G). It follows from Lemma 3.4 that f ¢ x g9 converges in norm.
Taking adjoints, it follows that fo g frdd . converges also in norm.

From Theorem 3.7, it follows that f0+oo fi* g% = Pxg where P is a pseudodifferential
operator of order 0 and therefore extends to a multiplier of C*(G).

Now, if f is a positive element in 7 (G), it follows that <g|(fJroo ft LY x g) < (g|Pxg),
therefore the family ( /. oo g dt L) s>0 is bounded. It follows that (| oo f+2) x g converges
to Pxg and g (f fr) converges to g P for all g € C*(G) (when s — 0). Therefore
In oo f+& converges strictly.

By the polarization identity, we find that f oo gf * ht converges in the multiplier
algebra of C*(G) for g,h € J(G).

Now, one can find g,h € J(G) such that fo = g} * ho (take for instance go(z,&) =
| fo(, €)|2 + exp(—||€]|2 = [|€]|72)Y* and ho(x,€) = fo(z, E)do(x, €)™ 1). Tt follows, that
there exists f! € J(G) with f; = tf} + g; * he. Now, since f! € C*(G})), it follows that
|l fEII is bounded. Therefore, (using rapid decay at oco) the integral f0+oo fldt is norm
convergent in C*(G). O

Lemma 4.4. There ezists f € J(G) such that f0+oo i ft% is an invertible element of
UH(G) and (1— [[7 f7 = fi L) € C2(G).

Proof. Fix a smooth function ¢ : R, — R, with support in ]1,2[ such that
f0+oo P2 (t)4 = 1. Let g € J(G) be such that go(z, &) = ¢(||¢]|) and g; = 0 for ¢ > 1. The
positive pseudodifferential operator P = f0+ g; * g & : ¢ has principal symbol equal to 1
by Theorem 3.7. By [28], there exists @ € Py(G) such that 1 — Q*PQ € C°(G). Using
the exact sequence (5), it follows that there exists b € C*(G) such that b*b+ Q*PQ > 1
By density of C°(G) in C*(G), there exists h € C2°(G) such that h* x h + Q*PQ
is invertible. Taking f; = g+ * Q for t < 1 and f; = ¥(t)h for t > 1, we find
[P frx it =Q*PQ+h* xh. O

We may now construct the main object of this section. Recall that given a
C*-algebra A, a Hilbert-A-module E is said to be full if the linear span of ({|n) when
&,n run through E (which is a two sided ideal in A) is dense in A.

Theorem 4.5. There is a Hilbert U*(G)-module £ containing J(G) as a dense subset,
with the following operations:

o For f,ge J(G) C &, we have (flg) = fo fix g,
o For f € J(G) C £ and P € Py(G) C !P*(G), we have fx P € J(G) C € and

(f*xP)y= fex P fort#0.

The module € is a full U*(G) module.
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Proof. Clearly, for fixed f, the map g — (f|g) = 0+°O ft**gt% is linear and Py (G)-linear;

also (g|f) = (flg)*. Furthermore (f|f) is the strict limit of elements of C*(G);; therefore
(f1f) € U"(G)4-

For f € J(G), we then may put ||flle = ||<f|f>|]10/*2(G). By the Cauchy—Schwarz
inequality for C*-modules, this defines a norm on £°°. Now, using again the Cauchy—
Schwarz inequality, for f,g € J(G) we have [(f|g)llc=@) < |fllellglle and, for
P € P(G), since {f * P|f + P) = P*(fIf)P < | (f|f)llc-(@)P* * P, we find ||f = Plls <
| flle||P|l@=(c)- It follows that the scalar product and the right action of Py(G) extend
and endow & with the desired Hilbert ¥*(G)-module structure.

It follows from Lemma 4.4 that £ is full — and in fact, that there exists ( € £ (¢ =

F(fIF)~1/2) such that (¢|¢) =1. O

4.2. Computation of (&)

We now construct the desired natural isomorphism J(G) x R% — K(E).

Note first, that if f € S.(G/)) and g € J(G), f xg € J(G); furthermore, this
left action is Po(G)-linear and (f = g|f = g) = [ g7 = f7 * fr x % < || f||*(glg) (where
| ]l = sup|| f|| is the norm of f in C*(G,) — this holds as well for the reduced and the
full C*-norm on G and G,4). Extending by continuity, we obtain a natural morphism
mo 1 C*(G)) — L(E).

The action of R on G}, gives rise to a unitary action on € given by (Us(f)): = fst
for f € J(G) and s,t € RY.

The couple (mo, U) is an equivariant representation of (C*(G7,),R% ), and therefore
gives rise to a representation of C*(G/,) x R ~ C*(Gy,), i.e. a morphism

m: C*(Gh) xRy — L(E).
Put & = £EC*(G). 1t is a closed submodule of £.
Recall that if J is a closed two sided ideal in a C*-algebra A and F is a

Hilbert-A-module, then EJ = {z € E; (z|x) € J} is a closed submodule. The quotient
E/EJ is the Hilbert A/J-module E ®4 A/J. We clearly’ have a short exact sequence

0—K(EJ)— K(E)— K(E/EJ) — 0.

Note that if J is an essential ideal of A, it follows that EJ+ = {0}. Indeed, for z € E
nonzero, there exists b € J such that (z|z)b # 0, whence (z|zb) = (z|z)b # 0.

Theorem 4.6. The morphism 7 : J(G) xR — L(E) is an isomorphism from J(G) x R
onto K(E).

2 Considering for instance the case E = H 4.
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Proof. Consider the exact sequences:

0 — Jo(G)xRL — JG)xRL — (J(G)/Jo(G)) xR: — 0
T Tl Tl
0 — K(&) — K(E) — K(E/&) — 0

We will show that:

a) m induces an isomorphism from Jo(G) x R onto K(&p);

b) 7(J(G) x R%L) D K(E);

c) the map 7 induced by 7 gives rise to an isomorphism from (J(G)/Jo(G)) x R onto
K(E/&).

The theorem then follows by diagram chasing.
We proceed with the proof of these facts:

a) According to Lemma 3.4, the module & is the closure of Jy(G). It is therefore
canonically isomorphic to Co(R% ) ® C*(G) and, since R acts by translation in
Co(R?) the statement follows.

b) Let f,g € J(G); by Lemma 3.6, the map s — f * as(g*) has rapid decay and thus
defines an element [ f * as(9*)Asds/s in J(G) x R%. A direct computation then
shows that ¥f, = m([ fas(g*)Asds/s) where ¢ 4 is the usual “rank one” operator
h+— f{glh) on &. The result follows from density of J(G) in £.

c) The quotient ¥,(G)/C*(G) is isomorphic via the principal symbol map o to
C(S*AG). Theorem 3.7 and Lemma 3.8 give the computations of o((f|g)) and
(JGF)O for f,g € J(G) and P € Py(G). It follows that £/& ~ € ®, C(S*AG)
is the Hilbert C(S*AG) module C(S*AG) @ L?(R%) obtained as completion of
CR(A*G \ G©) with respect to the C(S*AG) valued scalar product given by
(Fl9)(2.€) =[5 F@19)g(x, t€)% and right action (fh)(z,&) = f(z.&)h(z, 5)
(for f,g € CXRA*G\ G®) and h € C®(S*AG)). Moreover, left action of
J(G)/Jo(G) ~ Co(A*G \ G9) is given by pointwise multiplication and the action
of R% is by scaling. The result follows. 0O

It is worth noting that thanks to Lemma 4.1 and the amenability of R, the ideal
Jo(G) x R of C*(G4q) = C*(GT,) x RY is essential. In particular this remark gives an
alternative proof of the injectivity of = : J(G) x R} — L(F).

4.3. Pseudodifferential operators as convolution kernels
Using Theorem 4.6 together with Lemma 4.4, we can see ¥*(() as sitting as a corner

in C*(Gyq): Let ¢ € & satisfying ((|¢() = 1 (as in Theorem 4.5). Then ¥¢ ¢ € K(E) C
C*(Gy,) is a projection and ¥*(G) ~ ¥¢ cC*(Gga)V¢ ¢
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Actually, taking f € £°° such that (f|f) is invertible and 1 — (f|f) € C*(G)
(Lemma 4.4), we can really see the elements of Py(G) as convolution operators on G gq:
the map Jp(y) s = (f|T(f)) is an isomorphism from a corner of the convolution algebra
of smooth functions with Schwartz decay on G4, onto a subalgebra of Py(G), containing
(F1/)Po(G)(fIf). Note that for every P € Py(G), P — (fIf) « P+ (fIf) € C*(G).
Finally P = @ + R where @ is (the image of) a smooth function on G, and
R € C*(G).

4.4. Stability of €

We now prove that the module £ is stable, i.e. isomorphic to Kasparov’s universal
module Hy-(q)-
We begin by recalling a few facts:

Facts 4.7.

a) Recall first a few easy facts about Hilbert modules:

1. A Hilbe rt module E is countably generated if and only if I(E) is o-unital (i.e.
has a countable approximate unit).

2. For a countably generated Hilbert module F over a C*-algebra B, the following
are equivalent:

(i) the Hilbert B-module F is stable i.e. isomorphic to ¢?(N) ® E;
(ii) the C*-algebra IC(E) is stable i.e. isomorphic to K ® IC(FE);
(iii) there is a morphism v : L — L(F) such that ¢(K)E = E, or equivalently
P(IK)K(E) = K(E).

Note that by Cohen’s theorem ([6,13] — see e.g. [25] for the case of C*-algebras)
there is no linear span or closure.
Indeed, implications (i) = (ii) = (iii) are straightforward. If (iii) is satisfied,
then F = @, v (exr)E and the various 1) (exy ) E are isomorphic via ¥ (e;) where
ejr are matrix units for &, and (i) follows (using a bijection N — N x N).

3. For a countably generated Hilbert module E over a o-unital C*-algebra B, the
following are equivalent:

(i) FE is stable and full;
(i) EF~Hp.

Indeed (ii) = (i) is obvious.
Conversely, let E* be the Hilbert K(E)-module K(F, B); if E is stable, then
K(E) is isomorphic as a K(E)-module to £ ® K(E) = Hi(r) and therefore
E'®K(F) ~ K(E) for every countably generated Hilbert JC(F)-module E’; if £
is full, then B ~ E* ®x g E; finally, if (ii) is satisfied, then

Hp~Hp D FE ~ ((HB XB E*) @]C(E)) ®IC(E) FE ~ /C(E) ®IC(E) FE~F.
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b) Let G be a longitudinally smooth groupoid with compact space of objects G 0,
Every element of the algebroid of G, i.e. a section of G, defines a differential operator
affiliated to G, i.e. a multiplier of G (once chosen a trivialization of the longitudinal
half densities on G).

Recall (cf. [28]) that the closure of an elliptic pseudodifferential operator D on G
is a regular unbounded multiplier of C*(G) and (1 + D*D)~! is a strictly positive
element of C*(G); moreover, if D is formally self-adjoint, then D is self-adjoint.

In particular, if (X1, ..., X,,) are elements spanning the algebroid of G as a C*(G())
module, then the closure of ) . XX, is such a self-adjoint elliptic operator whose
spectrum is in R4 — i.e. it is positive.

Furthermore, let f be a smooth everywhere (strictly) positive function on G(©.
Write f = k + g where k € R% and g is a nonnegative function. Then the op-
erator g + >, X' X; is positive, whence f + > . XX, is invertible and its inverse
(>, X7 X+ f)~! is a strictly positive element in C*(G).

c) Recall (¢f. [4,29]) that a regular self-adjoint positive multiplier D of a C*-algebra A4
with resolvent in A defines a morphism 7p : f — f(D) from Cy(R%) to A. Note
that, for t € R*, we have m;p = mp o Ay where )\; is the automorphism of Cy(R? )
induced by the regular representation. Since t — # is a strictly positive element

of Cy(R?), it follows that 7mp(Co(R?))A is the closure of D(D? + 1)~ A.

Proposition 4.8. Let G be a Lie groupoid with compact GO and Guq its adia-
batic groupoid; let (Y1,...,Y,) span AG as a module over C®(G®)). Let D; =
(3, Y Y, + 1)Y/2. There is a unique morphism v : Co(R%) — C*(GT)) such that

(i) evi 0o = mp, where evy : C*(Guq) — C*(G) is evaluation at 1.
(ii) ayop =1poN, forallucR.

Moreover,

a) evo o (f) = foq'? € Co(A*G) where ¢ = S.Y? the Y;’s being considered as
functions on A*G (linear on each fiber).

b) $(Co(RY)) C J(G) and p(Co(R%))J(G) = J(G).

Proof. If ¢ satisfies (i) and (ii), then (¢(f)): = f(tD1) for t # 0. This shows immediately
uniqueness of 1.

Choose up > 1 and let G be the restriction of G,q4 to [0, ug]. Let (X1,...,X,,) be the
canonical extension of (Y7,...,Y},) to AG. In particular for u # 0 we have (X;), = uY;.
Put D = (3, X;X; + h?)Y/2 where h is the function (z,u) + u defined on G(©) =
G x [0,ug]. Note also Dy = (3, ¥;*V; + 1)/ its evaluation at 1. For u € ]0, uo], since
D, =uD;, we have ev,, omp = Tp, 0 Ay.

Since the spectrum of D is contained in [1, 4-o0], it follows that for f € Cy(R?% ) and
u € R, ||[mp, o Au(f)]| < sup{|f(v)]; v > u}. In particular lim, 4o 7p, © Au(f) = 0.
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It follows that there is an element ¢y € C*(G})) such that, for u # 0 we have (), =
Tp, © A, and ¥ restricted to [0, up] is equal to f(D).

We thus get a homomorphism ¢ : f = 9y from Co(R%) to C*(Gaa).

It satisfies (i), and since a, o ¥(f) and ¥ o A\,(f) coincide on R%, they are equal.
Property (ii) follows.

Now, D2 = g so we get property (a).

By uniqueness, the morphism v does not depend on the choice of ug.

It follows from property (a) that, for all f € Cy(R7), since f(0) = 0, evg o 9(f)
vanishes on M C A*G, whence ¥(f) € J(G).

Put J' = $(Co(R1))J(G).

As the restriction of h to the [e,ug] is invertible for every ug and e, the restriction
of D(1+ D?)™! to [e,up] is a strictly positive element; it follows that J’ contains the
functions R} — C*(G) with compact support. It therefore contains the ideal Cy(R% ) ®
C*(G) of C*(GL)).

As the quotient C*(GT))/Co(R%) @ C*(G) ~ Co(AG™) is abelian, it follows that the
right ideal J’ is two sided. Finally evo(J") = Co(AG* \ M) from property (a) since ?:L/:
is a strictly positive element of Cy(JAG* \ M). O

Corollary 4.9. The C*-algebra J(G) x R% ~ (&) is stable and therefore the Hilbert
U*(G)-module is stable, i.e. isomorphic to (> @ ¥*(G).

Proof. Indeed, by condition (ii) in Proposition 4.8, ¥ induces a morphism ¥ from K =
Co(R%) @\ R%E to J(G) x4 R% and by (b), D(K)(J(G) x4 R%) =J(G) xo RE. O

Remark 4.10. One can in fact show that J(G) is isomorphic to a crossed product ¥*(G) x
R in such a way that the R* action on J(G) is intertwined with the dual action B. It
follows that J(G) x R} ~ ¥*(G) ® K — we use the duality of R with R* given by
(t,u) — u'.

The action f is given by 3;(P) = D PD;". The operator D' is pseudodifferential
of complex order it (cf. [28]), therefore 5;(P) is pseudodifferential of order 0; it follows
also from [28] that it has the same principal symbol as P.

We may embed ¥*(G) in the multiplier algebra of J(G) setting P.(fu)uer: =
(P fu)uers and (fu)uers -P = (fu* P)uers thanks to Proposition 4.2.b); furthermore,
we have a one parameter group (D™);cg in the multipliers of J(G). As D, and D; are
scalar multiples of each other, we find in this way a covariant representation of the pair
(U*(G),R). Associated to this covariant representation of (¥*(G),R) is a morphism from
U*(G) xR into the multiplier algebra of J(G), but since the image of C*(R) C ¥*(G) xgR
is contained in J(G), we get a homomorphism ¢ : ¥*(G) xg R — J(G).

Note that the image of ¥*(G) is translation invariant, i.e. invariant by the extension
Qy of a, to the multiplier algebra, and that &, (D) = u* D*. This shows that ¢ is an
equivariant morphism from (¥*(G) x4 R, 3) to (J(G), a).



90 C. Debord, G. Skandalis / Advances in Mathematics 257 (2014) 66-91

Now f; restricts to an action of R on C*((G), and according to Proposition 4.2.a) it
follows that ¢(C*(G) x5 R) is contained in the ideal Co(R%) ® C*(G) of J(G). As Dj!
is a multiplier of C*(G), this crossed product is trivial. More precisely: if ¢ — w, is a
continuous homomorphism from a group I to the multiplier algebra of a C*-algebra A,
the (full or reduced) crossed product A X4, I' is isomorphic to the (max or min)
tensor product A ® C*(I") where A and I" map to the multiplier algebra respectively by
a—a®1land t — w, ® A It follows that p(C*(G) x R) = Cp(R%) ® C*(G). Now,
at the quotient level, the action S becomes trivial on symbols: we thus obtain equality
(0 (G) %5 R) = J(G).
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