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The following notes are aimed at presenting basic notions of the representation theory of
reductive p-adic groups in an elementary manner, suitable for beginners. To keep them
short we have made drastic choices, oriented by two guidelines. The first is to keep the
representation theory quite general as long as possible, in that representations are taken in
vector spaces over a (commutative) field R about which assumptions are made only when
necessary; admittedly, from chapter 2 on, the characteristic of R is not equal to p. The
second is to fix a reachable yet major goal: prove that smooth irreducible representations of
a reductive p-adic group over a field of characteristic not p are admissible, a cornerstone in
the theory.

The main references are the book by C.J. Bushnell and G. Henniart [6] which, although
explicitly dealing with GL(2), actually explains the main ideas in the subject of complex
representation theory of reductive p-adic groups; the book by D. Renard [11] which gives the
full arguments in that subject; and the book by M.-F. Vignéras [16] for questions depend-
ing on the base field of the representations. The never-published-but-ever-cited notes by
W. Casselman are such a common background of everyone in the subject that they cannot
be left aside [8]. Other references are occasional. Unpublished lecture notes made available
to us by B. Lemaire and by S. Stevens have also been very useful, as well as the remarks of
the anonymous referee which encouraged us to clarify some proofs.

1 Smooth representations of locally profinite groups

1.1 Locally profinite groups

A topological group G is profinite if it is compact and totally disconnected (that is, there is
no connected subset of G with more than one element). If G is profinite the quotient maps
combine into a topological isomorphism

G ∼= lim←− G/U
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where U runs through all open, normal subgroups of G, hence G is the projective limit
of a system of finite groups. Conversely such a projective limit is a compact and totally
disconnected group, hence profinite [9]. Of course finite groups themselves, with the discrete
topology, are profinite. If the quotients G/U above are all p-groups, then G is a pro-p-group.

Example: the additive group of the ring of p-adic integers is the pro-p-group Zp = lim←− Z / pnZ
(n ≥ 1).

Definition 1.1. A topological group G is locally profinite if it satisfies one of the equivalent
following conditions [9]:

(i) every neighbourhood of the identity in G contains a compact open subgroup;

(ii) G is locally compact and totally disconnected.

Compact locally profinite groups G are profinite.

Example: the additive group of the field Qp of p-adic numbers is a locally profinite group,
with a fundamental system of neighbourhoods of 0 given by pnZp, n ∈ Z. The same indeed
holds for the additive group of a local non-archimedean field F . We denote by oF the ring
of integers of F , by pF the maximal ideal of oF , by kF the residual field, obtained as the
finite quotient oF/pF , of characteristic p (the residual characteristic of F ) and cardinality q.
Then oF ∼= lim←− oF / p

n
F (n ≥ 1) is a pro-p-group and the fractional ideals pnF , n ∈ Z, make

up a family of compact open subgroups such that F = ∪n∈ZpnF .

Let a ∈ F , a 6= 0. The valuation of a, denoted by valF (a), is the maximum integer n such
that a ∈ pnF ; one puts valF (0) = ∞. The topology of F is actually that of a metric space,
defined by the absolute value of F : |a|F = q−valF (a) for a ∈ F×, |0|F = 0.

The multiplicative group F× is locally profinite as well, with a fundamental system of neigh-
bourhoods of 1 given by the compact open subgroups 1 +pnF , n ≥ 1, contained in the unique
maximal compact subgroup o×F . Observe that 1 + pF is a pro-p-group but o×F is not.

Finite-dimensional vector spaces over F can be identified with a product of copies of F , by
choosing a basis, and endowed with the product topology: they are thus locally profinite
groups as well – one must of course check that the topology does not depend on the choice
of basis. This applies to the algebra Mn(F ) of n by n matrices over F , of which the group
GLn(F ) is an open subset. We give it the induced topology. One can check that product
and inverse mappings are continuous, making GLn(F ) a topological group. The subgroups
K = GLn(oF ) and Kt = 1 + ptFMn(oF ), t ≥ 1, are compact open and give a fundamental
system of neighbourhoods of 1 in GLn(F ): this is a locally profinite group. Here again K is
profinite and K1 is a pro-p-group.

We will now work in this totally disconnected world. It is important to keep in mind some
fundamental properties of the locally compact totally disconnected topology: in a locally
profinite group G, closed subgroups are locally profinite, as well as quotient groups by closed
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normal subgroups, and any compact subgroup is contained in an open compact subgroup.
Points are closed. The centraliser of any element x ∈ G is closed (as the kernel of the
continuous map g 7→ gxg−1x−1). The centre of G is closed, as the intersection of those
centralisers.

We will see that calculations oftentimes reduce to finite computations. This is the case for
instance whenever we work with the quotient of a compact group by an open subgroup: such
a quotient is discrete as the quotient by an open subgroup, it is compact as the quotient of
a compact subgroup, whence it is finite.

1.2 Basic representation theory

From now on R will be a (commutative) field, with characteristic l, possibly positive. When-
ever necessary we will assume that R is algebraically closed, or add an assumption on the
characteristic.

[In [16] representations over a commutative ring R with a unit are considered.]

A representation (π, V ) of a group G (in the vector space V , over the field R) is a homomor-
phism π from G into the group of linear automorphisms of an R-vector space V :

π : G −→ AutR(V ).

A morphism between two representations (π, V ) and (π′, V ′) of G is a linear homomorphism
φ from V to V ′ such that, for any g ∈ G, φ ◦π(g) = π′(g) ◦φ. The set of those morphisms is
denoted by HomG(π, π′). The two representations are isomorphic if this set contains a linear
isomorphism. A subrepresentation of (π, V ) is a pair (π|W ,W ) for a G-stable subspace W of
V (G-stable: stable under the automorphisms in π(G)). If (π|W ,W ) is a subrepresentation
of (π, V ), then the operators π(g), g ∈ G, define automorphisms of the quotient vector space
V/W , hence a quotient representation (π̄, V/W ) of (π, V ). If (π|W ,W ) and (π|W ′ ,W

′) are sub-
representations of (π, V ) with W contained in W ′, the quotient representation (π̄|W ′ ,W

′/W )
is called a subquotient (representation) of (π, V ).

A representation (π, V ) of G is indecomposable if V cannot be decomposed as a direct sum of
proper G-stable subspaces. It is irreducible if it is non-zero and no proper non-zero subspace
of V is stable under the automorphisms in π(G).

A composition series for a representation (π, V ) of G is a finite strictly increasing sequence
{0} = V0 ⊂ V1 ⊂ · · ·Vn−1 ⊂ Vn = V of G-stable subspaces of V such that the quotients
Vi/Vi−1 are irreducible for 1 ≤ i ≤ n; its length is the integer n. The Jordan-Hölder
Theorem says that if (π, V ) admits two composition series then they have the same length
n and the corresponding unordered n-tuples of irreducible subquotients are the same up
to isomorphisms. A representation of G is said to have finite length (n) if it admits a
composition series (of length n).
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A representation of G is finitely generated or of finite type if there are vectors vi, 1 ≤ i ≤ n,
in V such that V is spanned over R by the π(g)vi for g ∈ G and 1 ≤ i ≤ n.

Proposition 1.2. Let (π, V ) be a non-zero representation of G.

(i) (π, V ) has an irreducible subquotient.

(ii) If (π, V ) is finitely generated, it has an irreducible quotient.

(iii) If (π, V ) has finite length, it has an irreducible subrepresentation.

Proof. Certainly (iii) is obvious from the definition and (i) follows from (ii) applied to the
finitely generated subrepresentation spanned by π(G)v for some non-zero v ∈ V . Now (ii) is
a classical result based on Zorn’s Lemma :

Consider a non-empty ordered set in which every non-empty totally ordered subset has an
upper bound. Then the set has a maximal element.

If V is not irreducible, we apply Zorn’s Lemma to the set of proper G-subspaces of V , ordered
by inclusion. Let {Wi/ i ∈ I} be a totally ordered subset and consider W = ∪i∈IWi. This is
a G-subspace, we need to show that it is again proper. Otherwise W = V so the generators
v1, · · · , vn, say, of V all belong to W , hence for 1 ≤ k ≤ n there is ik ∈ I such that vk
belongs to Wik . One of the subspaces Wik , 1 ≤ k ≤ n, contains the others so eventually
contains V , a contradiction.

Hence V contains a maximal proper G-subspace W and the quotient V/W is irreducible. �

Finally we have the following:

Proposition 1.3. Let (π, V ) be a representation of G. The following conditions are equiv-
alent:

(i) (π, V ) is the direct sum of a family of irreducible G-subspaces;

(ii) (π, V ) is the sum of its irreducible G-subspaces;

(iii) any G-subspace has a G-complement in V .

The representation (π, V ) is completely reducible if it satisfies those conditions.

Proof. To show that (ii) implies (i), one fixes a family {Ui, i ∈ I} of irreducible G-subspaces
of V such that V is the sum of the Ui, i ∈ I, and one applies Zorn’s Lemma to the set of
subsets J of I such that the sum ⊕j∈JUj is direct.

Now, assume (i) holds and write V = ⊕i∈IUi for a family {Ui, i ∈ I} of irreducible G-
subspaces of V . Let W be a G-subspace of V . Let K be a maximal element (Zorn’s Lemma
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again) of the set X of subsets J of I such that W ∩
∑

j∈J Uj = {0}. Then the sum of W and∑
j∈K Uj is direct and its intersection with any Ui, i ∈ I, is either Ui or {0}. It must be Ui,

otherwise the set K ∪{i} would belong to X. Hence ⊕k∈KUk is a G-complement of W in V .

Finally, assume (iii) holds and let W be a complement in V to the sum V0 of all irreducible
G-subspaces of V . Assume W is non-zero. It has a non-zero irreducible subquotient, say
W1/W0 with W0 ⊂ W1 ⊆ W . By (iii) again we have V = V0 ⊕W0 ⊕ U for some G-subspace
U of V , hence a G-projection from V onto U under which the image of W1 is irreducible, a
contradiction since U cannot contain an irreducible G-subspace. �

1.3 Smooth representations

We now come back to a locally profinite group G and add conditions on the representations
according to this extra structure we have on G.

Here, a fruitful notion is that of a smooth representation, which takes into account the
topology of G: we want the map (g, v) 7→ π(g)v from G× V to V to be continuous when V
is regarded as a discrete space. In other words:

Definition 1.4. The representation (π, V ) of G is smooth if for any v ∈ V , the stabilizer
Gv = {g ∈ G/π(g)(v) = v} of v in G is an open subgroup of G.

Smoothness is certainly preserved by surjective morphisms and by the operations in the
previous section: taking subrepresentations, subquotients, direct sums. We write R(G) for
the category of smooth representations of G; it is an abelian category (see [11, §A.6] or [10,
§IV.8]). Let us now look at some fundamental examples.

We first look at an irreducible smooth representation (π, V ) of a profinite group H. Pick a
non-zero vector v in V . Then Hv is an open subgroup of H, the coset space H/Hv is finite
and V is spanned by {π(g)v/ g ∈ H/Hv} hence finite dimensional. Actually the represen-
tation factors through the finite quotient group of G by the intersection K = ∩g∈H/HvgHvg

−1

of the stabilizers of those vectors. In this setting, let us recall the classical argument showing
that

(cr) if G is finite and the characteristic of R is 0 or prime to the order of G, then any
finite dimensional representation (π, V ) of G is completely reducible.

Indeed let (π,W ) be a subrepresentation of (π, V ) and let T be a projector from V onto W .
Then

TG =
1

|G|
∑
g∈G

π(g)Tπ(g)−1

is a G-invariant projector in V , its kernel is a G-invariant complement to W in V .
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We now turn to right translations acting on spaces of functions on G with various properties.
The right translate of some function f on G by g ∈ G is the function x 7→ f(xg), x ∈ G.
(One can also consider the action by left translations: g.f(x) = f(g−1x).) This is the basic
method of constructing representations, however, the right translate of a smooth function
need not be smooth. One has to appeal to the general process of “taking the smooth part”.
In any representation (π, V ) of G, the subspace of smooth vectors, namely the vectors having
an open stabilizer, provides a smooth representation of G denoted by (π∞, V ∞). We have

V ∞ =
⋃
K

V K

where K ranges over the family of open compact subgroups of G and V K is the subspace of
K-invariant vectors, i.e.

V K = {v ∈ V / ∀g ∈ K π(g)v = v}.

Let S be an R-vector space. A function f : G→ S is locally constant if

∀x ∈ G ∃Hx open subgroup of G ∀g ∈ Hx f(xg) = f(x).

(Note that, since xg = (xgx−1)x, one also has f(gx) = f(x) for all g ∈ xHxx
−1. In other

words the notions of left locally constant and right locally constant coincide.)

The space C(G,S) of locally constant functions from G to S provides a representation of G
by right translations. Its smooth part is the space C∞(G,S) of smooth functions, that is,
functions f : G→ S such that

∃H open subgroup of G ∀x ∈ G ∀g ∈ H f(xg) = f(x).

Recall that the support Supp(f) of a function f on a topological group G with values in some
vector space is the closure of the set {x ∈ G/ f(x) 6= 0}. For a locally constant function
f on a locally profinite group G, this set is closed. Locally constant functions with compact
support from G to S are actually smooth functions. Indeed, let f ∈ C(G,S) have compact
support; the open subgroups Hx defined above provide an open cover (xHx)x∈ Supp f of the
compact subset Supp f , from which a finite subcover can be found, whence the smoothness.

We write C∞c (G,S) for the space of locally constant functions with compact support from G
to S. It provides smooth representations of G by right translations and by left translations.
If K fixes f ∈ C∞c (G,S) on the right and K ′ fixes f on the left, then K ∩K ′ will fix f on
both sides. Hence

C∞c (G,S) = ∪KCc(G//K, S)

where K ranges over the family of compact open, or small enough compact open, subgroups
of G, and Cc(G//K, S) is the space of bi-K-invariant compactly supported functions from
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G to S. The space Cc(G//K,R) in particular has a natural basis given by the characteristic
functions IKgK of the double cosets KgK in K\G/K.

Finally let (π, V ) be a smooth representation of G. The dual space V ∗ = HomR(V,R) of V
is equipped with the dual action of G given by

< π∗(g)v∗, v >=< v∗, π(g−1)v > for v ∈ V, v∗ ∈ V ∗, g ∈ G.

This representation of G in V ∗ is not smooth in general. The contragredient representation
of (π, V ) is the smooth representation (π̃, Ṽ ) provided by the smooth part of (π∗, V ∗), i.e.

(π̃, Ṽ ) = ((π∗)∞, (V ∗)∞).

1.4 Induced representations

We come back to the generic example of smooth representation: the action of G by right
tranlations in some space of smooth functions, and give a construction that is largely used
in the theory.

Let H be a closed subgroup of G and let (σ,W ) be a smooth representation of H. Consider
the space IndGHW of functions f : G→ W which satisfy:

(i) for all h ∈ H and g ∈ G, f(hg) = σ(h)f(g);

(ii) there exists an open subgroup Kf of G such that for k ∈ Kf and g ∈ G: f(gk) = f(g).

This space is indeed stable under right translations by elements of G and the second condition
is the required smoothness, hence a smooth representation (IndGHσ, IndGHW ) of G called the
representation (smoothly) induced by σ. The subspace c-IndGHW of functions with compact
support modulo H (that is, the support is contained in some HΩ where Ω is a compact
set in G) is G-stable and provides a subrepresentation (c-IndGHσ, c-IndGHW ) of G called the
representation compactly induced by σ. The two representations coincide of course when the
quotient space G/H is compact.

The following properties of smooth induction and compact induction are easily checked:

• There is a canonical H-homomorphism: IndGHW −→ W given by f 7→ f(1).

• If H is open in G, there is a canonical H-homomorphism: W −→ c-IndGHW given by
w 7→ fw, where fw(h) = σ(h)(w) for h ∈ H and fw is null outside H. The image of
this homorphism generates c-IndGHW as a G-representation.

In particular, if H is open then c-IndGH respects finite type.

• Functoriality. Smooth and compact induction provide functors: R(H) → R(G). [To the

morphism ϕ : W1 →W2 corresponds Indϕ given, for f : G→W1, by Indϕ(f) = ϕ ◦ f.]



8 C. Blondel, Beijing, June 2011

• Transitivity. Both smooth induction and compact induction are transitive, that is, if
H ⊂ H1 ⊂ G are closed subgroups, then IndGH = IndGH1

IndH1
H and similarly for c-Ind.

• Frobenius reciprocity. IndGH is right adjoint to ResGH , the restriction functor from G to H:
for (π, V ) ∈ R(G), (σ,W ) ∈ R(H), there is a canonical isomorphism

HomG(π, IndGHσ)
∼−→ HomH(ResGHπ, σ)

ϕ 7−→ [v 7→ ϕ(v)(1)]

[The inverse map sends ψ ∈ HomH(ResGHπ, σ) to v 7→ (x 7→ ψ(π(x)v)). ]

• Frobenius reciprocity – open subgroup case. If H is open in G, c-IndGH is left adjoint to
ResGH : for (π, V ) ∈ R(G), (σ,W ) ∈ R(H), there is a canonical isomorphism

HomG(c-IndGHσ, π)
∼−→ HomH(σ,ResGHπ)

ϕ 7−→ [w 7→ ϕ(fw)]

[The inverse map sends ψ ∈ HomH(σ,ResGHπ) to f 7→
∑

H\G π(g−1)ψ(f(g)). ]

• The functors IndGH and c-IndGH are left exact.

We end this section with a technical statement. Let K be a compact open subgroup of G
and let f be a K-invariant vector in the compactly induced representation c-IndGHσ. Then
the support of f is a finite union of double cosets HgK and the value f(g) ∈ W is fixed
by the compact open subgroup H ∩ gKg−1 of H. Conversely an element w of WH∩gKg−1

determines a unique function in c-IndGHσ with support HgK and value w at g. Thus [6,
§3.5], [11, III.2.2]:

Proposition 1.5. Let K be a compact open subgroup of G and let Λ be a set of coset
representatives for the double cosets H\G/K. Then the map

(
c-IndGHσ

)K −→
⊕
g∈Λ

WH∩gKg−1

f 7−→ (f(g))g∈Λ

is an isomorphism.

For the proof we send the reader to the relevant books. A more general statement, Mackey’s
decomposition, is given in [16, §I.5].
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2 Admissible representations of locally profinite groups

2.1 Admissible representations.

Definition 2.6. A smooth representation (π, V ) of G is called admissible if V K is finite
dimensional for any compact open subgroup K of G.

We remark that this is equivalent to asking that V K be finite dimensional for all small enough
compact open subgroups K of G. Indeed, if K ⊂ K ′ then V K′ ⊂ V K . For an admissible
representation the space V is a union ∪KV K of finite dimensional subspaces.

To obtain consistent results associated with this notion, we know have to make an assumption
on the field R. From now on, we assume:

(?) There exists a compact open subgroup K in G such that the index of any
open subgroup of K is invertible in R.

For a reductive p-adic group, this is equivalent to: p invertible in R.

Of course if such a K exists, all compact open subgroups contained in K satisfy the same
requirement, which holds then for any small enough compact open subgroup of G. Saying
that the field R satisfies (?) with respect to G amounts to saying that:

the set K?(G) of compact open subgroups K of G such that the index of any open subgroup
of K is invertible in R is a fundamental system of neighbourhoods of 1 in G.

Proposition 2.7. Assume that R satisfies (?) and let K ∈ K?(G).

(i) The restriction to K of any smooth representation (π, V ) of G is completely reducible
(i.e. π is K-semi-simple). In particular the subspace V K has a K-complement in V ,
given by

V (K) =< π(k)v − v/k ∈ K, v ∈ V > .

(ii) We have (Ṽ )K ' (V K)∗ as R-vector spaces.

(iii) The functor V 7→ V K, from R(G) into the category of R-vector spaces, is exact.

(iv) The functor R(G)→ R(G) assigning to (π, V ) the contragredient representation (π̃, Ṽ )
is contravariant and exact.

Proof. (i) For any v ∈ V , the representation ξ of K in the subspace spanned by the vectors
π(k)v, k ∈ K, factors through a finite quotient of K and the assumption ensures that it
is completely reducible (see (cr) in §1.3). Summing over v ∈ V we get the first assertion
through Proposition 1.3. Any K-homomorphism from V to V K is nul on V (K) hence V (K)
is contained in any K-complement of V K , kernel of a K-projection onto V K . On the other
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hand any K-complement of V K in V is a sum of non-trivial irreducible representations of
K. Let U be one of them; by irreducibility U(K) = U is contained in V (K).

(ii) From the definition of the contragredient representation we have for v ∈ V , v∗ ∈ Ṽ ,
g ∈ K: < π̃(g)v∗, v >=< v∗, π(g−1)v >. We see that v∗ ∈ Ṽ is K-invariant if and only if it
annihilates the space V (K). By restriction v∗ thus defines an element of the dual space of
V K , hence an injective morphism (Ṽ )K ↪→ (V K)∗. Conversely, if φ ∈ (V K)∗ then, extending
it trivially on V (K) gives an injection (V K)∗ → Ṽ K .

(iii) Left as an exercise using the complete reducibility of the restrictions of smooth repre-
sentations to K (see [6, §2.3]).

(iv) Suppose V1
ϕ→ V2

ψ→ V3 is exact. The morphism ψ∗ : V ∗3 −→ V ∗2 defined by 〈ψ∗(v∗3), v2〉 =
〈v∗3, ψ(v2)〉 maps smooth vectors to smooth vectors, as well as φ∗ : V ∗2 −→ V ∗1 . We get a

sequence Ṽ3
ψ∗→ Ṽ2

ϕ∗→ Ṽ1 with ϕ∗ ◦ ψ∗ = 0. Then V K
1 → V K

2 → V K
3 is exact so (V K

3 )∗ →
(V K

2 )∗ → (V K
1 )∗ is exact, i.e. Ṽ K

3 → Ṽ K
2 → Ṽ K

1 is exact. This holds for any K ∈ K?(G)

hence for any small enough K. Any v ∈ Ṽ2 is fixed by such a K hence if ϕ∗(v) = 0 we have

v = ψ∗(w) for some w ∈ Ṽ K
3 so Ṽ3 → Ṽ2 → Ṽ1 is exact. �

Note that (iii) implies that any subquotient of an admissible representation is admissible.
We are now ready to demonstrate the importance of the notion of admissibility.

Corollary 2.8. Assume R satisfies (?). The following conditions on a smooth representation
(π, V ) of G are equivalent:

• the representation (π, V ) is admissible;

• the contragredient representation (π̃, Ṽ ) is admissible;

• the natural G-embedding from (π, V ) to (˜̃π, ˜̃V ) given by

v 7→ δ(v) : Ṽ → R, v∗ 7→ 〈v∗, v〉.

is an isomorphism.

Let (π, V ) be admissible. Then (π, V ) is irreducible if and only if (π̃, Ṽ ) is irreducible.

Proof. The equivalence π admissible ⇐⇒ π̃ admissible follows from (ii) above. The map

δ induces a map δK : V K → ˜̃
V
K

for each K ∈ K?(G), and δ is surjective if and only if δK

is surjective for each such K. From (ii) above
˜̃
V
K

= (V K)∗∗ is isomorphic to V K if and only
if V K is finite dimensional.

Now let (π, V ) be admissible and let U be a proper G-stable subspace of V . Then from the

exactness of π 7→ π̃ the space U⊥ = {ṽ ∈ Ṽ : 〈ṽ, U〉 = 0} is a proper subspace of Ṽ . The

converse is true since π ' ˜̃π. �
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Induced representations provide us with some examples. Indeed the technical Proposition
1.5 has the following consequences:

Proposition 2.9. If G/H is compact, the functor IndGH = c-IndGH preserves admissibility.

Proof. Indeed, for any open compact subgroup K the number of double cosets H\G/K is
finite and if σ is admissible each space WH∩gKg−1

is finite dimensional. �

Proposition 2.10. If R satisfies (?), the functor c-IndGH is exact.

Proof. We already have left-exactness, we only need to show that if 0→ U
ϕ→ V

ψ→ W → 0
is an exact sequence of smooth representations of H then c-Indψ : c-IndGHV → c-IndGHW is
surjective. So we take some K ∈ K?(G) and some f ∈ (c-IndGHW )K . We may assume that
the support of f is only one double class HgK, so f is determined by f(g) ∈ WH∩gKg−1

.
We need to find f ′ : G→ V such that, for all x ∈ G, ψ(f ′(x)) = f(x). From Proposition 2.7
(iii) we know that there is some v ∈ V H∩gKg−1

such that ψ(v) = f(g). Hence v determines
a unique f ′ ∈ V K with support HgK, which answers the question. �

2.2 Haar measure

We will see again that (?) is the exact assumption that will allow us to define very useful
additional tools. The first is a Haar measure on G, the second is the structure of an algebra
on the space C∞c (G,R) defined in §1.3.

Definition 2.11. A measure on G with values in R is a linear form on C∞c (G,R). A (left)
Haar measure on G is a non-zero measure µ which is invariant under left translation by G.

Suppose µ is a left Haar measure on G. For X an open compact subset of G, we let IX be
the characteristic function of X and we put µ(X) = µ(IX). We have µ(gX) = µ(X) for all
g ∈ G, by left-invariance. Now take f in Cc(G//K,R) (§1.3). The support of f is a finite
union of K-cosets and f =

∑
gK∈Supp(f)/K f(g)IgK whence

µ(f) =
∑

gK∈Supp(f)/K

f(g)µ(K). (2.12)

Since µ is non-zero and the characteristic functions IgK , for g ∈ G and K a compact open
subgroup of G, span C∞c (G,R), there is such a K with µ(K) = µ(gK) 6= 0. Then, for any
K ′ compact open subgroup of G, we have

µ(K ′) = [K ′ : K ′ ∩K]µ(K ′ ∩K) and µ(K) = [K : K ′ ∩K]µ(K ′ ∩K)
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with finite indices [K ′ : K ′ ∩K] and [K : K ′ ∩K]. We note in passing that the quotient

(K ′ : K) = [K ′ : K ′ ∩K]/[K : K ′ ∩K]

is called the generalised index of K in K ′.

This discussion and formula 2.12 easily imply the following proposition [16, §I.2.4].

Proposition 2.13. There exists a (left) Haar measure on G with values in R if and only if
R satisfies (?). If so, compact open subgroups with non-zero volume are exactly the elements
of K?(G) and a Haar measure µ on G is uniquely determined by the non-zero volume µ(K0)
of some K0 ∈ K?(G).

For a function f ∈ C∞c (G,R), we will often use the notation

µ(f) =

∫
G

f(g)dµ(g).

The group G is said to be unimodular if the modulus character δG from G to Q× defined
by δG(g) = (gKg−1 : K) for some (for any – exercise !) compact open subgroup K of G is
trivial. One can show (exercise or [16, §I.2.7]) that f 7→ µ(fδG) is a right Haar measure on
G. Hence, if G is unimodular, any left Haar measure on G is also a right Haar measure.

Example. Let G = {
(
a x
0 1

)
/a ∈ F×, x ∈ F}, a subgroup of GL(2, F ). Check that

δG(

(
a 0
0 1

)
) = |a|F .

As a first application we give the following proposition and refer to [6] or [16] for a proof.
Note that our convention for the modulus character is the one in [16]; in [6] the inverse
character is used.

Proposition 2.14. [6, §3.5] [16, §5.11] Assume that R satisfies (?). Let H be a closed
subgroup of G, let σ be a smooth representation of H and let σ̃ be the contragredient repre-
sentation. Then the contragredient representation of c-IndGHσ is isomorphic to IndGHδ

−1
G δH σ̃.

2.3 Hecke algebra of a locally profinite group

We continue to assume that R satisfies (?). We fix a left Haar measure µ on G and use it to
define a product ∗ , called convolution, on C∞c (G,R). For f1, f2 ∈ C∞c (G,R) and x ∈ G we
put

f1 ∗ f2(x) =

∫
G

f1(g) f2(g−1x)dµ(g).
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This product gives C∞c (G,R) the structure of an R-algebra, called the Hecke algebra of G
over R and denoted HR(G). (Check associativity as an exercise.) This algebra has no unit
element unless G is discrete, but it has a lot of idempotent elements (that is, e ∗ e = e).
Indeed for each K ∈ K?(G) the function

eK = µ(K)−1IK

satisfies eK ∗ eK = eK (another exercise).

This algebra is a powerful tool in the study of smooth representations of G, which pass
through to HR(G)-modules. Indeed, let (π, V ) be a smooth representation of G and let
f ∈ C∞c (G,R). For each v ∈ V we can find an open compact subgroup K of G such that f
is K-invariant on the right and v is K-invariant, hence the finite linear combination∑

gK∈Supp(f)/K

f(g)π(g)v

is meaningful. It does depend on K though (for a K ′ ⊂ K the index [K : K ′] turns up) but
for K ∈ K?(G) this dependence is just a volume. Thanks to the Haar measure we have a
well-defined linear operator on V given by

π(f) =

∫
G

f(g)π(g)dµ(g).

For K open compact subgroup and v ∈ V K we have

π(IgK)v =

∫
K

π(gk)vdk = µ(K)π(g)v, for all g ∈ G. (2.15)

In particular, if K ∈ K?(G) then the idempotent element eK acts through π(eK), which
is zero on V (K) and the identity on V K , hence a projection onto V K . This projection is
extremely useful as we will see.

We also leave as an exercise the fact that the action is an algebra action, i.e. for f and f ′ in
HR(G), we have π(f ∗ f ′) = π(f)π(f ′). (Hint: either use Fubini’s Theorem, which says that
we can reverse the order of a double integral, or apply to a v ∈ V and reduce to the case of
characteristic functions of K-cosets with K fixing v.)

Hence, for (π, V ) a smooth representation of G, we have given V the structure of a left
HR(G)-module. Since V = ∪KV K where K ranges over K?(G), and π(eK)V K = V K , this
module satisfies π(HR(G))V = V , namely it is non-degenerate (or smooth, or unital). This
defines a functor M from R(G) to the category HR(G)-Mod of non-degenerate left HR(G)-
modules, which takes (π, V ) to V and ϕ ∈ HomG(V1, V2) to ϕ ∈ HomHR(G)(V1, V2) (note that
ϕ really is a morphism of HR(G)-modules by (2.15) and linearity). The functor is clearly
injective, surjectivity is Proposition 2 in [6, §4.2]. Summing up:
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Proposition 2.16. The functor M : R(G)→ HR(G)-Mod is an equivalence of categories.

Let K ∈ K?(G) as before and define HR(G,K) as the sub-algebra of HR(G) consisting of
bi-K-invariant functions. It is easy to check that HR(G,K) = eK ∗ HR(G) ∗ eK , and since
eK is a projection onto V K for any smooth representation (π, V ) of G, the space V K inherits
the structure of an HR(G,K)-module. At some point we will need the following fact from
[6, Proposition 4.3 (1)]:

Lemma 2.17. Let K ∈ K?(G). If (π, V ) is a smooth irreducible representation of G, then
V K is either zero or an irreducible HR(G,K)-module.

Proof. Assume that V K is non-zero and let M be a non-zero HR(G,K)-submodule of V K .
By irreducibility we have V = π (HR(G))M hence

V K = π(eK)V = π(eK)π (HR(G))M = π (HR(G,K))M = M.

�

2.4 Coinvariants

We have mentioned earlier the notion of invariants: let (π, V ) be a smooth representation of
G and H a closed subgroup, then V H is the biggest subspace of V on which H acts trivially.
One can also consider the coinvariants, that is, the biggest quotient of V on which H acts
trivially, namely the quotient:

VH = V/V (H), V (H) = 〈π(h)v − v / h ∈ H, v ∈ V 〉.

We obtain a functor V 7→ VH from R(G) into the category of R-vector spaces, which is

easily seen to be right exact. [Indeed, let 0 → U
ϕ→ V

ψ→ W → 0 be an exact sequence of

smooth representations of H. The definition gives φ(U(H)) ⊂ V (H) and ψ(V (H)) ⊂W (H) hence

a sequence UH
ϕH→ VH

ψH→ WH → 0. This sequence is exact because the kernel of the composed map

V
ψ→W →WH is equal to kerψ + V (H). ]

Note that if H belongs to K?(G), then the quotient map identifies V H and VH by Proposition
2.7 (i). Also note that G plays no part in the definition, which makes sense for any smooth
representation of the locally profinite group H. However, it is specially interesting when
applied to the restriction to H of a representation of a bigger group G, since the coinvariants
VH then provide a representation of the G-normalizer of H.

Proposition 2.18. Suppose H is a union
⋃
t∈NKt of compact open subgroups belonging to

K?(H) and such that Kt ⊂ Kt+1 for all t ∈ N. Then for any smooth representation (π, V )
of H we have V (H) =

⋃
t∈N V (Kt) and the functor V → VH is exact.
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Proof. Let v ∈ V (H), v =
∑r

i=1 (π(hi)vi − vi). There exists t ∈ N such that hi ∈ Kt for all
i = 1, . . . , r, so v ∈ V (Kt). The converse is clear.

We already have right-exactness, so we only need to show that if 0→ U
ϕ→ V

ψ→ W → 0 is
exact then ϕH : UH → VH is injective, i.e. the inverse image of Imϕ ∩ V (H) is contained in
U(H). Now from Proposition 2.7 (i) again, we have: V (Kt) = ker πV (eKt) so

Imϕ ∩ V (H) =
⋃
t∈N

Imϕ ∩ kerπV (eKt) =
⋃
t∈N

ϕ (kerπU(eKt)) = ϕ (U(H)) .

(Indeed, for u ∈ U we have πV (eKt)ϕ(u) = ϕ(πU(eKt)u), and ϕ is injective.) �

For F a non-archimedean local field, the additive group of F = ∪i∈ZpiF satisfies the hypothesis
of Proposition 2.18 if p is invertible in R. The same holds for the group N of upper triangular
unipotent matrices in GL(n, F ) since we have

N =


1 F F · · · F

0 1 F
. . .

...
...

. . . . . . . . . F
...

. . . . . . 1 F
0 · · · · · · 0 1

 =
⋃
i∈Z


1 piF p2i

F · · · p
(n−1)i
F

0 1 piF
. . .

...
...

. . . . . . . . . p2i
F

...
. . . . . . 1 piF

0 · · · · · · 0 1

 .

3 Schur’s Lemma and Z-compact representations

3.1 Characters

A character of a locally profinite group G is a smooth representation of G on a one-
dimensional vector space. So by definition, a character is just a homomorphism

χ : G −→ R×

with open kernel. We denote by Ĝ the group of characters of G into R×.

We mentioned in §2.2 the modulus character δG from G to Q×, defined by means of the
generalised index as δG(g) = (gKg−1 : K) for some (for any) compact open subgroup K of
G. The vocabulary is consistent for it is indeed a character: it is trivial on all compact
subgroups. In particular, a profinite group is unimodular.

[The vocabulary is dangerous. Within the representation theory of finite groups, character means

the trace of a finite dimensional representation. There is a risk of confusion here. Furthermore,

even in the context of smooth representations of p-adic groups, some definitions may differ slightly:

character may mean complex character of modulus 1 while characters in the above sense are called

quasi-characters.]
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Whatever the group topology on R×, characters are continuous. Now, if R = C, characters
are exactly the continuous homomorphisms from G into C×; furthermore, if G is the union of
its compact open subgroups, their image is contained in the unit circle of complex numbers
of modulus 1. Indeed a small enough compact neighbourhood of 1 in C× contains no non-
trivial subgroup and any compact subgroup of C× is contained in the unit circle [6, 1.6].
This applies in particular to F , union of its compact subgroups pnF , n ∈ Z.

[Recall the Pontryagin duality for locally compact abelian groups: in that setting characters are

continuous morphisms from G into complex numbers of modulus 1, the group of characters is called

the dual group of G and the bidual group of G is canonically isomorphic to G. If G is compact, its

dual group is discrete and vice versa.]

Let us say a word on characters of a finite abelian group G. First remark |Ĝ| ≤ |G|. Indeed
G is a product of cyclic groups and if Cn is a cyclic group of order n, the choice of a generator
identifies Ĉn with the group of roots of unity of order dividing n in the field R.

Now let H be a subgroup of G. Then if R is algebraically closed, every R-character of H
extends to a character of G. The proof goes by induction on the index [G : H]. If the index
is 1 there is nothing to prove. Otherwise, let x ∈ G, x /∈ H and let n be the least integer
such that xn belongs to H. For ψ a character of H, one can choose an n-th root ξ of ψ(xn)
in R× and extend ψ to a character ψ̄ of the subgroup generated by H and x by letting
ψ̄(hxt) = ψ(h)ξt for h ∈ H and t ∈ Z.

Characters of F (additive group) play an important part in the (complex or l-modular)
representation theory of reductive groups defined over F , they deserve a word here.

We start with a character χ : kF → R× of the residual field. Since kF has characteristic
p, the image of χ is contained in the p-th roots of unity in R. Moreover kF is a separable
extension of the prime field Fp with a trace map tr : kF → Fp, so if R has a non-trivial p-th
root of 1, say ω, the assignment 1 7→ ω defines a non-trivial character χ0 of Fp and χ0 ◦ tr is
a non-trivial character of kF .

So assume R has a non-trivial p-th root of 1 and let χ be a non-trivial character of kF . For
any a ∈ kF , the map aχ : x 7→ χ(ax) is a character of kF , non-trivial if and only if a 6= 0,
hence an injective morphism a 7→ aχ from kF to its group of characters k̂F , which must be
onto since |k̂F | ≤ |kF |. Hence if R has a non-trivial p-th root of 1, any choice of a non-trivial
character of kF provides a group isomorphism k̂F ' kF .

Now, let ψ : F → R× be a non-trivial character of F (if any). From the topology of F , there
is a least integer d, called the level of ψ, such that pdF ⊂ kerψ. For any a ∈ F , the map
aψ : x 7→ ψ(ax) is a character of F , of level d − valF (a) if a 6= 0, hence again an injective
morphism a 7→ aψ from F to its group of characters. This morphism is also onto. For let
θ be another non-trivial character. Using the action of a suitable element of F× we may as
well assume that it has level d. We compare ψ and θ on pd−1

F /pdF , isomorphic to the additive
group of the residual field kF . From the above, R necessarily has a non-trivial p-th root of
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1 and there is a unit u1 ∈ o×F such that θ and u1ψ agree on pd−1
F . Pursuing this process

provides a Cauchy sequence un in o×F that converges to u ∈ o×F such that θ = uψ [6, 1.7]. We
conclude:

Lemma 3.19. If F has a non-trivial character ψ, then R has a non-trivial p-th root of 1
and a 7→ aψ, a ∈ F , is a group isomorphism from F to F̂ .

All non-trivial characters of F have the same image, contained in the group of roots of
unity of order a power of p in R×. In particular F has no non-trivial character if R has
characteristic p. Actually, the only irreducible smooth representation of a pro-p-group over
a field of characteristic p is the trivial representation, due to the following generalization to
pro-p-groups of Proposition 26 in [13, §8.3]:

Lemma 3.20. [1, Lemma 3] Let (π, V ) be a non-zero smooth representation of a pro-p-
group G over a field R of characteristic p. Then there is a non-zero vector v ∈ V that is
fixed under G.

On the other hand if the characteristic of R is not p and R has primitive pn-th roots of
unity for any integer n, then F has non-trivial additive characters. We refer to the paper
by A. Robert [12] for complements; that paper is actually quite a precursor in the subject
of l-modular representations and is a worthwhile read.

Let G = GL(n, F ). The kernel of a character ζ of G must contain the commutator subgroup
of G, equal to SL(n, F ) (for any field except F2). Hence ζ factors as χ ◦ det for some
homomorphism χ : F× → R×. The determinant map is continuous and open, so χ is a
character of F× [6, 9.2] that may be studied using the filtration 1 + ptF , t ≥ 1, of o×F . If we
choose a uniformising element $F of F , we have F× = $Z

Fo
×
F , hence a character is given

by the image of $F and the restriction to the maximal compact subgroup o×F . The easiest
example of a character of F× is x 7→ |x|F . It takes its values in the subgroup |kF |Z of Q×+,
contained in pZ, so it can be defined over any field R of characteristic not p.

3.2 Schur’s Lemma and central character

Lemma 3.21. Schur’s Lemma - General Version. Let (π, V ) and (π′, V ′) be two smooth
irreducible representations of the locally profinite group G.

(i) HomG(π, π′) is non-zero if and only if (π, V ) and (π′, V ′) are isomorphic.

EndG(π) is a division algebra over R.

(ii) If R is algebraically closed and there exists K open compact subgroup of G such that
0 < dimRV

K < |R|, then EndG(π) = R.
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Proof. (i) is hardly more than a remark, though a crucial one. Indeed, the kernel and the
image of a G-morphism from V to V ′ are subrepresentations of V and V ′ respectively.

To go further we now assume that R is algebraically closed. Let v ∈ V K be non-zero. The
map φ 7→ φ(v) is an injective linear map from EndG(π) to V K so

dimREndG(π) ≤ dimRV
K .

Assume for a contradiction that EndG(π) contains an element φ not in R. Since R is
algebraically closed, the mapping R(X) → EndG(π) which associates to a rational fraction
Q(X) the element Q(φ) is an injection of fields, hence the dimension of EndG(π) over R is
at least that of the field of rational fractions R(X). But in R(X) the set {(X − c)−1/c ∈ R}
is linearly independent over R, hence

dimREndG(π) ≥ |R|,

a contradiction since dimRV
K < |R|. �

When the assumptions are fulfilled the lemma says that any G-endomorphism of π is scalar.
It thus plays a part in representation theory which is crucial enough to put forward its most
usual versions.

Lemma 3.22. Schur’s Lemma - Assume R is algebraically closed. Let (π, V ) be an
irreducible smooth representation of G. If either one of the following conditions holds :

(i) (π, V ) is admissible;

(ii) R is uncountable and for any compact open subgroup K of G, the set G/K is countable;

then EndG(π) = R.

Proof. (i) is just a rephrasing of the previous statement since |R| cannot be finite. For (ii)
we only need to remark that V has countable dimension since, for a choice of a non-zero
v ∈ V and a compact open subgroup K fixing v, V is spanned by {π(g)v / g ∈ G/K}. �

The algebraic closure of a countable field is countable, hence (ii) does not apply to Q̄ nor to
F̄l. It does apply of course to C.

The choice of K in (ii) is irrelevant since, for any other compact open subgroup K ′ of K, the
intersection K ∩K ′ has finite index in K and K ′. Assumption (ii) is satisfied in GL(n, F )
and more generally in any reductive p-adic group, as follows from the Cartan decomposition
[16, II.1.3].

Write Z = Z(G) for the centre of G and let (π, V ) be a smooth representation of G such that
EndG(π) = R (which does not imply that π is irreducible, unless it is completely reducible,
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see the example in [6, §9.10]). Then, for all z ∈ Z, π(z) belongs to EndG(π) so it can be
written as π(z) = ωπ(z)IV and ωπ : Z → R× is a character, called the central character of
π. (Observe that if K is a compact open subgroup of G such that V K is non-zero, then ωπ
must be trivial on Z ∩K.) Of course, a representation (π, V ) ∈ R(G) may have a central
character even if EndG(π) 6= R.

In particular, if G is abelian and assumption (ii) in the previous lemma holds, irreducible
smooth representations of G are just characters. One can reach the same conclusion if G
is the product of a profinite group by a free abelian group of finite rank, as in [16, I.7.12]
(where the proof is different):

Lemma 3.23. Assume R is algebraically closed. Let G be abelian.

(i) A finite dimensional smooth representation of G is irreducible if and only if it is one-
dimensional.

(ii) If G is the product of an abelian profinite group by a free Z-module of finite rank, then
any irreducible smooth representation of G is a character.

Proof. (i) The image of any element ofG has an eigenvalue and the corresponding eigenspace
is stable under the action of G.

(ii) Write G = Zn × G0 with G0 profinite and n ≥ 0. Let (π, V ) be an irreducible smooth
representation of G. For v ∈ V , v 6= 0, the span of π(G0)v is finite-dimensional (smoothness)
hence contains a character ω of G0 by (i) and Proposition 1.2 (iii). The subspace

V (ω,G0) = {v ∈ V / ∀g ∈ G0 π(g)v = ω(g)v}

is non-zero and stable under π(G), hence it is equal to V . In other words G0 acts by a
character on V , so we are reduced to the case G = Zn with n ≥ 1.

The R-linear span E of the operators π(g) ∈ EndR(V ) for g ∈ G, is a field containing R.
Indeed, it is commutative and contained in EndG(π) which, by Schur’s Lemma, is a division
algebra over R. The field E is finitely generated as an R-algebra: if {g1, · · · , gn} is a basis
of G over Z, then E is generated by {π(gi)/ i = 1, · · · , n} ∪ {π(gi)

−1/ i = 1, · · · , n}. We
now cite the Algebraic Nullstellensatz from [5, Proposition 2.3]:

Let K be a field, and let E be an extension field which is finitely generated as a K-algebra.
Then E/K is a finite algebraic extension.

Since R is algebraically closed we get E = R, q.e.d. �

3.3 Z-compact representations

Let (π, V ) be a smooth representation of G, let (π̃, Ṽ ) be the contragredient representation,

let v ∈ V and ṽ ∈ Ṽ . The matrix coefficient associated to v, ṽ is the function ϕv,ṽ : G→ R
given by

ϕv,ṽ(g) = 〈ṽ, π(g)v〉.
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We let C(π) be the subspace (of the space of smooth functions from G to R) spanned by the
matrix coefficients of π. We recall that Z is the centre of G.

Definition 3.24. A smooth representation (π, V ) of G is Z-compact if all the matrix coef-
ficients of π are compactly supported modulo Z.

Recall that a function is compactly supported mod Z if its support is contained in some subset
ZE where E is compact. Note also that if (π, V ) and (π̃, Ṽ ) are both irreducible (see §2.1)
then (π, V ) is Z-compact if and only if it has one non-zero matrix coefficient compactly
supported mod Z.

When R satisfies (?) one can give an equivalent definition using the Hecke algebra.

Proposition 3.25. Assume R satisfies (?). Let (π, V ) be a smooth representation of G
having a central character.

(i) The following are equivalent:

(a) (π, V ) is Z-compact;

(b) for any K ∈ K?(G) and any v ∈ V , the function g 7→ π(eK)π(g)v on G is
compactly supported mod Z.

(ii) If (π, V ) is Z-compact and finitely generated, then it is admissible.

Proof. [2, 2.40] (i) First assume (π, V ) is Z-compact and pick v ∈ V and K ∈ K?(G). We
claim that the subspace E spanned by the vg = π(eK)π(g)v, g ∈ G, is finite dimensional. For
otherwise, one could find a sequence gi, i ∈ N, such that the vgi are linearly independent.
Completing the set {vgi ; i ∈ N} with a set Λ into a basis of V K , we could define a linear
functional λ on V by 〈λ,w〉 = 〈λ, π(eK)w〉 for all w ∈ V , 〈λ, vgi〉 = 1 for all i ∈ N, and

〈λ,Λ〉 = 0. Then λ would belong to (Ṽ )K (Proposition 2.7) but the coefficient 〈λ, π(g)v〉 =
〈λ, π(eK)π(g)v〉 would not be compactly supported mod Z since the support would contain
the infinite number of disjoint classes giZK

′, for some open compact subgroup K ′ fixing v.

Hence one can find a basis {b1, · · · , bt} of the dual space of E made of elements of (Ṽ )K

(see Proposition 2.7). A vector vg ∈ E is null if and only if 〈bi, vg〉 = 0 for i = 1, · · · , t,
so the support of g 7→ vg is the union of the supports of the coefficients g 7→ 〈bi, π(g)v〉 for
1 ≤ i ≤ t, compact mod Z.

For the converse, take any v ∈ V , any ṽ ∈ Ṽ . Then ṽ is K-fixed for a small enough compact
open subgroup K ∈ K?(G) hence, for any g ∈ G, we have 〈ṽ, π(g)v〉 = 〈π̃(eK)ṽ, π(g)v〉 =
〈ṽ, π(eK)π(g)v〉, compactly supported mod Z.

(ii) is a consequence of the claim at the beginning of the proof. �

Many variants can be given, see [16]. In particular, using Schur’s Lemma 3.22 we also have:
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Corollary 3.26. Assume that

• R is algebraically closed, uncountable and satisfies (?);

• for any compact open subgroup K of G, the set G/K is countable.

Then any irreducible and Z-compact representation is admissible.

The most useful variant for us will be the following proposition, particularly suitable to the
context of reductive p-adic groups as we will see later (Proposition 4.37). To fix ideas, one can
check directly that in G = GL(2, F ), the subgroup G0 defined as the kernel of g 7→ |det (g)|F
satisfies the hypothesis below.

Proposition 3.27. Assume that R satisfies (?) and that G contains an open normal subgroup
G0 with compact centre such that G0Z has finite index in G. Let (π, V ) be a smooth repre-
sentation of G.

(i) The following are equivalent:

(a) (π, V ) is Z-compact;

(b) for any K ∈ K?(G) and any v ∈ V , the function g 7→ π(eK)π(g)v on G is
compactly supported mod Z;

(c) π|G0 is compact, that is, its matrix coefficients are compactly supported.

(ii) Assume furthermore that any irreducible smooth representation of Z over R is a char-
acter. If (π, V ) is Z-compact and irreducible, then it is admissible and has a central
character.

Proof. For (i) we follow [2, 3.21]. The proof of (b) implies (a) in 3.25 remains valid and
indeed (a) implies (c): G0 is open in G hence the matrix coefficients of π|G0 are restrictions
of those of π. We must prove that (c) implies (b) so we assume that π|G0 is compact and
pick v, K as in (b). We may assume that K is contained in G0. The proof of (a) implies
(b) above holds for compact representations so the support SG0(v,K) of g 7→ π(eK)π(g)v,
g ∈ G0, is compact in G0. Let {g1, · · · , gk} be a set of coset representatives for G/G0Z. The
support SG(v,K) of that same function on G is contained in the finite union, for 1 ≤ i ≤ k,
of the sets ZgiSG0(π(gi)v,K), compact mod Z.

For (ii) we use Waldspurger’s argument as in [15, Lemme 20]. The restriction of π to ZG0 is
finitely generated, we let X be a finite set of generators. Let K ∈ K?(G0) as before; we also
assume that V K is non-zero. The subspace W of V K generated by the π(eK)π(g)v, g ∈ G0,
v ∈ X, is finite-dimensional by (b) and smoothness, and since X generates V over ZG0, we
have V K = π(eK)V = π(Z)W .
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Hence V K is a finitely generated representation of Z and as such admits an irreducible
quotient Y (Proposition 1.2) which is a character χ by assumption. The subspace of χ-
invariants of V K : V K(χ) = {π(z)v − χ(z)v/v ∈ V K , z ∈ Z} is a HR(G,K)-submodule
of V K . Its image in Y is 0 so it is not equal to V K and by irreducibility (Lemma 2.17)
V K(χ) = {0}. So Z acts on V K by the character χ and V K , finitely generated over Z, is
finite dimensional. The space V (χ) is non-zero and G-stable hence equal to V . �

The main tool for constructing Z-compact representations is compact induction from open,
compact mod centre, subgroups of G, for which the following result is crucial.

Proposition 3.28. Suppose that R satisfies (?). Let H be an open, compact modulo Z
subgroup of G and let σ be a smooth representation of H. Assume that π = c-IndGHσ is
irreducible and admissible. Then π is Z-compact.

Proof. From §2.1 the contragredient representation π̃ is also irreducible (actually this is why
we have assumed admissibility; irreducibility of π̃ may be assumed instead, but in practice, it
is the admissibility that will be checked most of the time) hence it is enough to find one non-
zero matrix coefficient compactly supported mod Z. If σ is zero there is nothing to prove,
otherwise we can find v, a non-zero vector in the space W of σ, and ṽ, a non-zero element
in the space of σ̃ such that < ṽ, v >6= 0. The function fv on G defined by fv(x) = σ(x)v if
x ∈ H, fv(x) = 0 otherwise, belongs to the space of π. The function fṽ defined analogously
can be regarded as a vector in π̃ since the composed map

c-IndGHW → W → R : f 7→ f(1) 7→< fṽ(1), f(1) >

is a smooth linear form on c-IndGHW . It is non-zero since < fṽ(1), fv(1) >=< ṽ, v > is
non-zero. The corresponding matrix coefficient is:

ϕfv ,fṽ(g) =< fṽ, π(g)fv >=< fṽ(1), π(g)fv(1) >=< ṽ, fv(g) > .

Its support is certainly contained in the support of fv hence in H, compact mod Z. �

We remark that the above proof could be completed to show that, under the hypotheses of
Proposition 3.28, the contragredient representation of π is actually equivalent to c-IndGH σ̃.
For a general duality theorem, we refer to [6, §3.5].

This is about as far as we will go for a locally profinite group at large. Further study of
those induced representations can be found in [6] (especially §3.5 and §11.4, paying special
attention to Remark 1 there) and [16, §I.5].



Basic representation theory of reductive p-adic groups 23

3.4 An example

Let M = {
(
a x
0 1

)
/ a ∈ F×, x ∈ F}, a subgroup of GL(2, F ) that we have already encoun-

tered. Then M is the semi-direct product of N by S with

N = {
(

1 x
0 1

)
/ x ∈ F}, S = {

(
a 0
0 1

)
/ a ∈ F×}.

Let ϑ be a non-trivial character of N . Form the smooth representations c-IndMN ϑ and IndMN ϑ.
Since any other non-trivial character ofN is an S-conjugate of ϑ (Lemma 3.19), those induced
representations do not depend, up to isomorphism, on the choice of ϑ.

Proposition 3.29. [6, §8.2] Assume that R is algebraically closed and that the residual
characteristic p of F is invertible in R. The representation c-IndMN ϑ is irreducible and is a
proper subrepresentation of IndMN ϑ.

Proof. From §3.1 we know that, under the given assumption over R, the group N ' F
has non-trivial characters. The assumption over R is also used in the proof of irreducibility,
for which we refer to [6, §8.2]. This proof relies on the notion of ϑ-coinvariants, similar to
the notion of coinvariants in §2.4: for a smooth representation (π, V ) of N , the space of
ϑ-coinvariants Vϑ is the biggest quotient of V on which N acts by ϑ. It is the quotient of V
by the subspace spanned by the π(n)v − ϑ(n)v, v ∈ V , n ∈ N .

We now prove the second part of the statement to give an idea of the shape of the repre-

sentation. We identify S with F× through the map

(
a 0
0 1

)
7→ a, a ∈ F×. A function f in

V = IndMN ϑ is determined by its restriction to S ' F×, which is a smooth function φf on
F×, hence an injective linear map f 7→ φf from V to C∞(F×). We need to characterize its
image.

Let φ ∈ C∞(F×). We look for a function f ∈ V extending φ. Such a function must satisfy

f(an) = ϑ(ana−1)φ(a) (†)

for any a ∈ S and n ∈ N . Furthermore f must be smooth: there must exist a compact open
subgroup Nf of N such that f(gu) = f(g) for any u ∈ Nf and any g ∈ M . In particular
u 7→ ϑ(aua−1) must be trivial on Nf for any a ∈ S such that φ(a) is non-zero. Observe from(

t 0
0 1

)(
1 x
0 1

)(
t−1 0
0 1

)
=

(
1 tx
0 1

)
(t ∈ F×, x ∈ F )

that aNfa
−1 gets bigger as |a|F gets bigger. Since the character ϑ is non-trivial, φ(a) must

be zero for |a|F big enough. Conversely it is straightforward to see that the formula (†) does
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define a function in V whenever φ is a smooth function on F× that vanishes outside the
intersection of F× with a compact set of F .

By definition, the image of the subspace Vc = c-IndMN ϑ under this map is the subset C∞c (F×)
of smooth functions with compact support on F×, that is, those smooth functions which
vanish outside a compact set of F×, that is, φ(a) = 0 both for |a|F big enough and small
enough: it is a proper subrepresentation. �

In view of Corollary 2.8, since the contragredient representation of c-IndMN ϑ is the non-
irreducible representation IndMN ϑ

′ for a non-trivial character ϑ′ of N (Proposition 2.14), we
conclude:

Corollary 3.30. Under the same assumption over R, let ϑ be a non-trivial character of N .
The smooth irreducible representation c-IndMN ϑ of M is not admissible.

Indeed M is not the group of F -points of a connected reductive algebraic group defined over
F . In the next section we will see how the structure of such groups forces admissibility upon
any smooth irreducible (complex) representation.

4 Cuspidal representations of reductive p-adic groups

We let now G be the group of F -points of a connected reductive algebraic group G defined
over F : in short and somewhat abusively, a “reductive p-adic group”. To simplify matters
one can think of G = GL(n, F ). We recall that in such a group, for any compact open
subgroup K of G, the set G/K is countable. Furthermore the crucial assumption (?) on R
just means that the characteristic of R is not p, the residual characteristic of F ..

A central part in this section will be played by parabolic subgroups ofG, their unipotent radical
and their Levi factors, which are Levi subgroups of G. For GL(n, F ), up to conjugacy, a
parabolic subgroup is a subgroup of upper block-triangular matrices, its unipotent radical
is made of those matrices whose diagonal blocks are identity matrices, and an obvious Levi
factor is the subgroup of block-diagonal matrices, a product of smaller GL(ni, F ).

We will now explain how this structure allows an inductive approach to the smooth represen-
tation theory of G, inducing up from smaller connected reductive algebraic groups that are
Levi subgroups of G. Eventually this aproach will culminate in the proof that every smooth
irreducible representation of G is admissible, when the characteristic of R is not p. This is a
deep property that does not hold true if the hypothesis that G be reductive is removed, as
we have seen in Corollary 3.30.
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4.1 Parabolic induction and restriction

Let P be a parabolic subgroup of G with unipotent radical N and let L be a Levi factor
of P , so P = LN and we have a canonical isomorphism L ' P/N given by composing the
injection L ↪→ P with the quotient map P → P/N . Then P is a closed subgroup of G with
a compact quotient G/P and we can induce representations from P to G – in this case there
is no difference between smooth induction and compact induction. Actually we are going to
induce very special representations of P , indeed those representations that are trivial on N
hence uniquely determined by their restriction to L. The inflation of a representation ρ of
L to P is the unique representation of P which restricts to ρ on L and trivial on N ; we will
usually denote it by ρ as well. The parabolic induction functor is the following composition:

iGL,P : R(L)
inflation−−−−−→ R(P )

IndG

P−−−−−−−−→ R(G).

Inflation is an exact functor; using the properties of smooth and compact induction given
in §1.4 we get directly that the parabolic induction functor is left exact; if the residual
characteristic p of F is invertible in R it is exact (Proposition 2.10).

If K is a compact open subgroup of G, then K ∩ P is a compact open subgroup of P and
K ∩L is a compact open subgroup of L. Admissibility is thus preserved by inflation from L
to P and by IndGP (Corollary 2.9), so parabolic induction preserves admissibility.

As we have seen in §1.4, smooth induction from P to G has a left adjoint, the restriction
from G to P . To obtain the left adjoint functor to parabolic induction we have to compose
restriction with the N -coinvariants functor, which is left adjoint to inflation. Indeed, since
N is normal in P , for any smooth representation (π, V ) of P the space V (N) is stable under
P and the quotient VN provides a smooth representation of P trivial on N , hence a smooth
representation of L. The parabolic restriction functor, or Jacquet [restriction] functor, is the
composite functor:

rGL,P : R(G)
ResGP−−−−−→ R(P )

N-coinvariants−−−−−−−−→ R(L).

It is indeed left adjoint to iGL,P : for (π, V ) ∈ R(G), (σ,W ) ∈ R(L), we have

HomL(rGL,Pπ, σ) = HomG(π, iGL,Pσ).

Lemma 4.31. Let P = LN be a parabolic subgroup of G. Then:

(i) rGL,P is right exact. If p is invertible in R then rGL,P is exact.

(ii) rGL,P preserves finite type.
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Proof. (i) This is a consequence of §2.4, indeed N is a union of pro-p-subgroups.

(ii) Suppose (π, V ) ∈ R(G) is of finite type: V is spanned by π(G)({v1, · · · , vt}) for some
finite set of vectors {v1, · · · , vt}. This set is contained in V K for some open compact sub-
group K of G. Let Γ be a set of coset representatives of the finite set P\G/K, then
π(Γ)({v1, · · · , vt}) is a set of generators for ResGPV and its image in VN is a finite set of
generators of the L-representation rGL,Pπ. �

4.2 Parabolic pairs

A parabolic pair in G is a pair (P,L) made of a parabolic subgroup of G and a Levi factor
L of P . There is a partial order on the set of parabolic pairs: (P,L) � (P ′, L′) if P ⊆ P ′

and L ⊆ L′. We thus fix in G a minimal parabolic pair (P0, L0) for this order and we call
standard parabolic pair any parabolic pair (P,L) such that (P0, L0) � (P,L) and standard
parabolic subgroup any parabolic subgroup P such that P0 ⊆ P .

In GL(n, F ) we choose for P0 the subgroup of upper triangular matrices and for L0 the
subgroup of diagonal matrices. Standard parabolic subgroups are just the subgroups of
upper-block-triangular matrices.

The setup we need is the following [4]:

Proposition 4.32. (i) The set of standard parabolic pairs in G is finite. Each conjugacy
class of parabolic pairs of G contains exactly one standard parabolic pair.

(ii) A parabolic subgroup P containing P0 has a unique Levi factor LP containing L0. Stan-
dard parabolic subgroups are in a one-to-one correspondence with standard parabolic
pairs.

(iii) Let (P,LP ) be a standard parabolic pair. The set of pairs (Q ∩ LP , LQ) attached to
standard parabolic pairs (Q,LQ) � (P,LP ) is the set of standard parabolic pairs in LP
relative to the minimal pair (P0 ∩ LP , L0).

With this in hand we can state correctly the transitivity of both functors of parabolic induc-
tion and restriction. The proof is straightforward and left as an exercise (for instance, one
can check it directly for parabolic induction and then deduce it for parabolic restriction by
adjunction).

Lemma 4.33. Let (P,L) � (P ′, L′) be standard parabolic pairs of G. Then

iGL,P = iGL′,P ′ ◦ iL
′

L,L′∩P and rGL,P = rL
′

L,L′∩P ◦ rGL′,P ′ .
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4.3 Cuspidal representations

The group G itself is a parabolic subgroup of G, with Levi factor G and unipotent radical
{1}. A parabolic subgroup of G is proper if it is not equal to G.

Definition 4.34. A smooth representation (π, V ) of G is cuspidal if it satisfies the equivalent
following conditions:

• for any proper parabolic subgroup P = LN of G we have rGL,Pπ = {0};

• for any proper parabolic subgroup P = LN of G and any smooth representation σ of L
we have HomG(π, iGL,Pσ) = {0}.

The equivalence of those two conditions is a direct consequence of the adjunction property
HomL(rGL,Pπ, σ) = HomG(π, iGL,Pσ). We observe that for any closed subgroup H of G, for any
g ∈ G and for any (π, V ) ∈ R(G) we have V (gHg−1) = π(g)V (H). It follows that VN = {0}
if and only if VgNg−1 = {0}, so one can replace in the definition proper parabolic subgroup by
proper standard parabolic subgroup.

Remark. A smooth irreducible representation (π, V ) of G is supercuspidal if it is not a
subquotient of a proper parabolically induced representation. A supercuspidal representation
is certainly irreducible cuspidal. The converse holds for R = C – in which case the two words
tend to be used indifferently – but does not hold in general, indeed the comparison between
the two notions is a difficult problem for which we refer to [16, §II.2, II.3].

We are at last in a position to state and prove the first of the two theorems that are the
cornerstones of the theory, first step towards a classification of smooth irreducible represen-
tations of G.

Theorem 4.35. Let (π, V ) be a smooth irreducible representation of G. Then there exist a
parabolic subgroup P = LN of G and an irreducible cuspidal representation σ ∈ R(L) such
that HomG(π, iGL,Pσ) 6= {0}, i.e. π is a subrepresentation of iGL,Pσ.

Proof. [16, II.2.4] The set of standard parabolic pairs is finite so there exists a standard
parabolic pair (P,L) such that rGL,Pπ 6= 0 and rGL′,P ′π = 0 for all standard parabolic pairs

(P ′, L′) � (P,L), (P ′, L′) 6= (P,L). Since π is irreducible, the representation rGL,Pπ is of
finite type, hence it has an irreducible quotient σ (Proposition 1.2). By transitivity of rGL,P ,
the representation rGL,Pπ must be cuspidal, as well as σ because rGL,P is right exact. Now

HomG(π, iGL,Pσ) = HomL(rGL,Pπ, σ) 6= {0}.

We actually proved that there is a standard parabolic subgroup satisfying the requested
condition. �



28 C. Blondel, Beijing, June 2011

One can prove further that the equivalence class of the pair (L, σ) given by the theorem, for
the equivalence relation combining G-conjugacy of such pairs and equivalence of represen-
tations, is uniquely determined by the isomorphism class of (π, V ). It is called the cuspidal
support of (π, V ) [16, II.2.4, II.2.20].

A full classification of smooth irreducible representations of G thus requires a classification of
the irreducible cuspidal representations of the Levi subgroups of G. This has been achieved
so far for complex representations of linear and classical (for p 6= 2) p-adic groups : cuspidal
irreducible representations are induced from open, compact mod centre, subgroups (see
Proposition 3.28 and Theorem 4.38). We refer to Colin Bushnell’s notes in the present
volume.

4.4 Iwahori decomposition

We fix as before a minimal parabolic pair (P0, L0), we let N0 be the unipotent radical of
P0 and we fix a maximal split torus A0 in G contained in L0. The corresponding set Σ+ of
positive roots is defined – in short, they are the eigencharacters of the adjoint action of A0

on the Lie algebra of N0. We then define

A−0 = {a ∈ A0/∀α ∈ Σ+ |α(a)| ≤ 1}.

For G = GL(n, F ) both A0 and L0 are the subgroup of diagonal matrices and we have

A−0 = {


a1 0 · · · 0

. . .
. . .

0 · · · 0 an

 ∈ A0; |ai/ai+1|F ≤ 1 for i = 1, · · · , n− 1}

(indeed it is enough to check the inequality |α(a)| ≤ 1 for simple roots).

For a parabolic pair (P,L), we write N for the unipotent radical of P and N− for the opposite
of N relative to L, that is: the unipotent radical of the unique parabolic subgroup with Levi
factor L and intersection with P exactly L. In GL(n, F ) and for P standard, N− is just the
transpose of N .

Proposition 4.36. [8, Proposition 1.4.4][11, V.5.2] Let (P0, L0) be the minimal parabolic
pair in G fixed above.

(i) There exists a maximal compact subgroup K0 of G satisfying

(a) G = K0P0 = P0K0,

(b) (Cartan decomposition) There is a finite subset Ω of L0 such that G = K0A
−
0 ΩK0.
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(ii) There exists a fundamental system (Km)m∈N of neighbourhoods of the identity in G,
made of normal compact open subgroups of K0, satisfying Km+1 ⊂ Km for m ∈ N and,
for any standard parabolic pair (P,L) and any m ≥ 1:

(a) Iwahori decomposition with respect to (P,L): the product map

(Km ∩N−)× (Km ∩ L)× (Km ∩N) −→ Km

is an isomorphism.

(b) For any a ∈ A−0 which is central in L we have

a(Km ∩N)a−1 ⊂ Km ∩N and a−1(Km ∩N−)a ⊂ Km ∩N−.
Furthermore, for any i ≥ 1 there exists a ∈ A−0 , central in L, such that

a(Km ∩N)a−1 ⊂ Ki ∩N.

(c) Km ∩ L has an Iwahori decomposition with respect to (L ∩ P0, L0).

For G = GL(n, F ) we can use the standard filtration of the standard maximal compact
subgroup K0 = GL(n, oF ):

Km = I +$m
FMn(oF ) = {g ∈ K/g ≡ I mod pmF }.

The Iwahori decompositions are a consequence of their obvious additive analogues: Mn(pmF )
is certainly the sum of its intersections with the Lie algebras of N−, L and N . We observe
that A0 ∩ K0 = A0,0 is the subgroup of diagonal matrices with entries in o×F . A system of
representatives for A−0 /A0,0 is given by the semigroup

D =

d =

$
s1
F 0

. . .

0 $sn
F

 : s1 ≥ s2 ≥ · · · ≥ sn


and the Cartan decomposition for GL(n, F ) actually reads G = K0DK0.

To give an idea of the way conjugation by d ∈ D shrinks N0, a simple computation in
GL(3, F ) should suffice. A transposition shows how conjugation by d−1 shrinks N−0 .$s1

F 0 0
0 $s2

F 0
0 0 $s3

F

1 x12 x13

0 1 x23

0 0 1

$−s1F 0 0
0 $−s2F 0
0 0 $−s3F

 =

1 $s1−s2
F x12 $s1−s3

F x13

0 1 $s2−s3
F x23

0 0 1

 .

If we start with a compact open subgroup N0
0 of N0, the resulting subgroup dN0

0d
−1 can be

made arbitrarily small by making the differences s1 − s2, s2 − s3 big enough.

If (P,L) is attached to the partition n = n1 + · · · + nt the elements of D central in L are
those that satisfy s1 = · · · = sn1 , . . . , sn1+···+nt−1+1 = · · · = snt . We let D−L be the set of
elements in D central in L and such that sni

> sni+1 for 1 ≤ i ≤ t− 1. The second property
in (b) above can also be stated as: for any d ∈ D−L there is an integer k such that, for any
s ≥ k, ds(Km ∩N)d−s ⊂ Ki ∩N.
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4.5 Smooth irreducible representations are admissible

The last but not least result uses the whole specificity of the structure of reductive p-adic
groups: it manages to link two properties of some smooth representations that appear differ-
ent, the compactness mod centre of the coefficients and the nullity of the space of coinvariants
under the unipotent radical of any proper parabolic subgroup. The proof shows how this link
works; in particular Proposition 4.36 is an indispensable tool. We don’t need to limit our-
selves to representations having a central character thanks to yet another structure property,
allowing us to rely on Proposition 3.27 instead of Proposition 3.25:

Proposition 4.37. [11, §V.2][14, §0.4]

(i) The centre Z of G is the product of a profinite group by a free Z-module of finite rank.

(ii) Let G0 be the intersection of the kernels of the characters g 7→ |χ(g)|F , for all rational
characters χ of G. Then G0 is open and normal in G, has a compact centre, and G0Z
has finite index in G. Every compact subgroup of G is contained in G0.

For G = GL(n, F ), the subgroup G0 is just the kernel of g 7→ |det (g)|F . The center is
isomorphic to F× ' o×F × Z.

Theorem 4.38. Assume p is invertible in R. Then a smooth representation of G is cuspidal
if and only if it is Z-compact.

Proof. [16, II.2.7] We use the notation of the previous paragraph : a minimal parabolic pair
(P0, L0), a maximal split torus A0 in G contained in L0 and a sequence (Km)m≥0 of compact
open subgroups given by Proposition 4.36. Since p is invertible in R, those subgroups belong
to K?(G) (§2.1) for m large and we may as well assume that they belong to K?(G) for
m ≥ 1. We then have at our disposal the corresponding sequence of idempotent elements
eKm , m ≥ 1, in HR(G).

Let (π, V ) be a smooth representation of G. Recall that the operator π(eKm), m ≥ 1,
is a projection onto V Km (§2.3). We will translate the properties of cuspidality and Z-
compactness in terms of those projections.

Lemma 4.39. (π, V ) is Z-compact if and only if, for any m ≥ 1, for any v ∈ V , the map
a 7→ π(eKm)π(a)v, from A−0 to V Km, is compactly supported mod the centre.

Proof. The analogous statement with G instead of A−0 holds (Proposition 3.27), the “only
if” part is thus clear. For the converse we use Cartan decomposition (Proposition 4.36) to
describe the support on G of the map g 7→ π(eKm)π(g)v. Indeed let i ≥ m such that v is
Ki-fixed and let X = {π(x)v / x ∈ ΩK0}. This is a finite set and by assumption, for any
w in X the support of a 7→ π(eKm)π(a)w is compact mod Z, say HwZ with Hw compact in
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A−0 . Let g in G and write g = kax, k ∈ K0, a ∈ A−0 , x ∈ ΩK0. Then, writing w = π(x)v, we
have π(eKm)π(g)v = π(eKm)π(k)π(a)w = π(k)π(eKm)π(a)w since Km is normal in K0. For
this to be non-zero, a must belong to HwZ hence the support of the function is contained in
the finite union over x ∈ ΩK0/Ki of K0HwZxKi, and the Z-compactness follows. �

Note that the assumption v ∈ V can be replaced by v ∈ V Km since π(eKm) = π(eKm)π(eKi
)

for i ≥ m.

Lemma 4.40. Let (P = LN,L) be a standard parabolic pair in G. Let Hi, i ≥ 1, be an
increasing sequence of compact open subgroups of N with N = ∪i≥1Hi. For v ∈ V , the
following conditions are equivalent:

(i) v ∈ V (N);

(ii) for i large enough: π(eHi
)v = 0;

(iii) for any m ≥ 1, there is an integer k such that, for all d ∈ A−0 satisfying dHkd
−1 ⊂

Km ∩N , we have: π(eKm)π(d)v = 0.

(iv) for any m ≥ 1, there is an integer k such that, for all d ∈ A−0 central in L and satisfying
dHkd

−1 ⊂ Km ∩N , we have: π(eKm)π(d)v = 0.

Proof. (i) ⇔ (ii) is just Proposition 2.18 applied to N and the restriction of π to N , a
smooth representation of N . We have: π(eHi

)v =
∫
Hi
π(k)v dµHi

(k), where µHi
is simply

the unique Haar measure on Hi giving Hi volume 1 (Proposition 2.13).

Now we prove (ii) ⇒ (iii). Let m ≥ 1. Assume π(eHk
)v = 0. If d ∈ A−0 satisfies dHkd

−1 ⊂
Km ∩N , then

π(eKm)π(d)v = π(eKm)π(edHkd−1)π(d)v = π(eKm)π(d)π(eHk
)v = 0, q.e.d.

Certainly (iii) implies (iv). For (iv) ⇒ (ii) we start with v ∈ V and m ≥ 1 such that
v ∈ V Km . We leave it as an exercise for the reader ([6, §3.2 and 7.6], [2, Proposition 1.26,
Lemma 3.11]) to check that the Iwahori decomposition in Proposition 4.36 translates into

π(eKm) = π(eKm∩N)π(eKm∩L)π(eKm∩N−),

where again the right-hand side refers to Haar measures on N , L and N− giving volume
1 to Km ∩ N , Km ∩ L and Km ∩ N− respectively. Let d ∈ A−0 be central in L. We have
d−1(Km ∩ L)d ⊂ Km ∩ L and, by Proposition 4.36, d−1(Km ∩N−)d ⊂ Km ∩N−, so

π(eKm)π(d)v = π(eKm∩N)π(d)π(d−1)π(eKm∩L)π(eKm∩N−)π(d)v

= π(eKm∩N)π(d)π(eKm∩L)π(ed−1(Km∩N−)d)v

= π(eKm∩N)π(d)v

= π(d)π(ed−1(Km∩N)d)v,
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hence π(eKm)π(d)v = 0 if and only if π(ed−1(Km∩N)d)v = 0. So picking d ∈ A−0 , central in L
and satisfying dHkd

−1 ⊂ Km ∩N for a k given by (iii), we have π(ed−1(Km∩N)d)v = 0, hence
π(eHi

)v = 0 for any Hi containing d−1(Km ∩N)d, q.e.d. �

Confronting those two lemmas will give the theorem. Assume first that (π, V ) is not Z-
compact: there are m ≥ 1 and v ∈ V Km such that the map a 7→ π(eKm)π(a)v on A−0 is not
compactly supported mod the centre. Let Y be its support.

Assume first that G = GL(n, F ). Then there exist indices i < j such that |aj/ai| is un-
bounded above for a = diag(a1, . . . , an) ∈ Y . In fact, since |as| is increasing with s, there
exists i ≤ r < j such that |ar+1/ar| is unbounded above. Let Pr be the (maximal) stan-
dard parabolic subgroup associated to the partition (r, n − r) and let Nr be its unipotent
radical. Let (Hk)k≥1 be an increasing filtration of Nr as in Lemma 4.40. Then, for any
k ≥ 1, the family {aHka

−1; a ∈ Y } of compact open subgroups of Nr contains arbitrarily
small subgroups. In particular, for any k there is a ∈ Y such that aHka

−1 ⊂ Km ∩Nr and
π(eKm)π(a)v 6= 0. Hence v does not belong to V (Nr), so (π, V ) is not cuspidal.

For a general G, there are roots α ∈ Σ+ such that the values |α(a)−1| are not bounded
above on Y ; among them must be a simple root α0, defining a proper standard parabolic
pair (Pα0 = Lα0Nα0 , Lα0) in G. The proof carries on replacing Nr with Nα0 .

Conversely, let (π, V ) be Z-compact, let v ∈ V be non-zero and let m ≥ 1 be such that
v ∈ V Km . The support Y of the map a 7→ π(eKm)π(a)v on A−0 is compact mod centre hence
the values |α(a)−1| for α ∈ Σ+ (for GL(n, F ): the quotients |aj/ai|, 1 ≤ i < j ≤ n) are
bounded above on Y . In particular, for any proper standard parabolic pair (P = LN,L) in
G, the subgroups a−1(Km ∩ N)a, for a in Y and central in L, are all strictly contained in
some subgroup Hk in a given filtration of N as in Lemma 4.40, that is: Km ∩N ( aHka

−1

for all a ∈ Y , central in L. This means that (iii) in Lemma 4.40 holds, so v belongs to V (N).
Finally v belongs to V (N) for any proper standard parabolic subgroup so π is cuspidal. �

We now draw the consequences for admissibility.

Corollary 4.41. Assume R is algebraically closed of characteristic different from p, the
residual characteristic of F . Then any smooth irreducible representation of G over R is
admissible.

Proof. Proposition 3.27, with Lemma 3.23 and Lemma 4.37, ensures that irreducible Z-
compact representations are admissible; so are irreducible cuspidal representations by the
theorem. By Theorem 4.35, any smooth irreducible representation of G is a subrepresen-
tation of some proper parabolically induced representation iGL,Pσ where σ is an irreducible
cuspidal representation of the reductive p-adic group L, whence admissible. Parabolic in-
duction preserves admissibility, q.e.d. �
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This corollary is the goal we had fixed for these notes. Yet it turns out that the only
assumption over R really needed is that the characteristic is not p. A proof, due to M.-F.
Vignéras, can be found in [3, Proposition 2]. For convenience we reproduce it here.

Theorem 4.42. Assume that the characteristic of R is not p. Then any smooth irreducible
representation of G over R is admissible.

Proof. Let (π, V ) be a smooth irreducible representation of G over R and let R̄ be an
algebraic closure of R. The representation (πR̄, VR̄ = R̄⊗R V ) of G over R̄ is generated by a
single element hence has an irreducible quotient (π′, V ′) (Proposition 1.2) which is realizable
on a finite extension E of R in R̄ [16, II.4.7], that is: V ′ ' R̄ ⊗E V ′E for a representation
(πE, VE) of G over E.

Let then f be a non-zero R̄G-homomorphism from R̄ ⊗R V to R̄ ⊗E V ′E and let v 6= 0,
v ∈ V . Since v generates R̄⊗R V as a R̄G-module, its image f(v) is non-zero and belongs to
K⊗E V ′E = V ′K for some finite extension K of E in R̄. Composing with the natural injection
from V to R̄⊗R V , one gets an injective RG-homomorphism i : V ↪→ V ′K .

We thus have, for any open compact subgroup H of G : V H ↪→ (V ′K)H . But R̄⊗K (V ′K)H is
contained in (V ′)H , finite dimensional over R̄, hence (V ′K)H is finite dimensional over K and
over R. �
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