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The purpose of these notes is to give a simplified overview of the theory of types and
covers, due to Bushnell and Kutzko, and explain what is the counterpart, in the study
of parabolically induced complex representations of reductive p-adic groups, of Tadić’s
philosophy in terms of covers. As an illustration, we describe a setting in which we can
‘propagate’ covers in symplectic groups and detail an example in Sp(12, F ).

1 Tadić’s philosophy and covers

Let F be a local non archimedean field, with ring of integers oF , maximal ideal pF , residue
field kF of cardinality qF , and residual characteristic p = char kF . We will occasionnally
use a uniformizing element ̟F of pF and a character ψ : F → C× trivial on pF and non
trivial on oF . Analogous notations will be used for field extensions of F .

Let G = G(F ) be the group of F -rational points of a connected reductive algebraic
group G defined over F . Let R(G) be the category of smooth complex representations
of G. (Recall that a vector in a representation of G is smooth if its fixator is an open
subgroup of G; a representation is smooth if all vectors in its space are smooth.)

There are two basic tools in the study of those representations: the functor of parabolic
induction and Jacquet’s restriction functor. Let P be a parabolic subgroup of G, let N
be its unipotent radical and let M be a Levi factor of P . We need the modular character

∆P : P −→ R×+ defined by: ∆P (a) =
vol(aKa−1)

vol(K)
, a ∈ P , where vol denotes the volume

of an open compact subgroup of P with respect to some right Haar measure on P .

The (normalized) parabolic induction functor IndG
P : R(M) −→ R(G) is de-

fined as follows. Let (σ, V ) ∈ R(M). Then IndG
P (σ) is the representation of G by right

translations in the space of functions

IndG
P (V ) = {f : G→ V / for m ∈M,n ∈ N, g ∈ G : f(mng) = ∆P (m)1/2σ(m)f(g), and

f is a smooth vector for the action of G}.

The Jacquet restriction functor rN : R(G) −→ R(M) is defined as follows. Let
(π, V ) ∈ R(G) and let V (N) = Span

C
{π(n)v − v / v ∈ V, n ∈ N}. Then rN(π) is the

natural quotient action of M in the space rN (V ) = VN = V/V (N). The normalized

restriction functor rG
P , defined as the twist of rN by the character ∆

−1/2
P , is left-adjoint to

IndG
P .
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We are using normalized induction here because it is common use; however, from the
point of view of types, unnormalized and normalized induction or restriction make no
difference: they differ by an unramified character.

The supercuspidal representations of G are those smooth representations (π, V ) of
G which satisfy, for any proper parabolic subgroup P = MN of G: rN (π) = 0 (or
equivalently, for complex representations, Hom G(π, IndG

P (σ)) = 0 for any σ ∈ R(M)).
Let σ be an irreducible supercuspidal representation of M . The inertial class [M,σ]G

is the equivalence class of the pair (M,σ) under the equivalence relation defined by con-
jugacy in G and twisting of σ by unramified characters of M – that is, one-dimensional
representations of M that are trivial on every compact subgroup. We denote byR[M,σ](G)
the subcategory of smooth representations π of G with the following property: any irre-
ducible subquotient of π is a subquotient of IndG

P (σ⊗χ) for some unramified character χ
of M . Bernstein’s decomposition ofR(G) is the decomposition of R(G) as the direct sum,
over inertial classes in G, of the subcategories R[M,σ](G). We will come back to this later:
it is indeed the goal of the theory of types to describe each piece in this decomposition
with a type.

The study ofR(G) has for long followed two distinct paths: the study of supercuspidal
representations of G, and the study of the parabolically induced representations IndG

P (σ)
as above. As for the second problem, worked upon by many, Tadić’s approach has been
to study such induced representations using all possible functors rN ′ : R(G) −→ R(M ′),
where M ′N ′ is a parabolic subgroup of G with unipotent radical N ′. The philosophy of
this approach is that having more parabolic subgroups gives more possibilities to compare
informations coming from the Jacquet modules of various parabolic subgroups ([9], Intro-
duction). The method is indeed very efficient and has produced a lot of results, by Tadić
and others.

We will here explain a completely different approach that belongs to a line of thought
initialized more than thirty years ago: via compact open subgroups. Let us start with
supercuspidal representations; it has been an open question, for at least that amount of
time, whether supercuspidal representations were (compactly) induced, that is:

1.1. Given an irreducible supercuspidal representation π of G, does there exist an open
subgroup K of G, compact modulo the center of G, and an irreducible smooth representa-
tion κ of K, such that π ≃ c-IndG

K κ ?

Here, if V is the space of κ, c-IndG
K κ is the representation of G by right translations

in the space

c-IndG
K(V ) = {f : G→ V / for k ∈ K, g ∈ G : f(kg) = κ(k)f(g), and

f is compactly supported mod the center of G}.

It is a basic fact that if the representation c-IndG
K κ is irreducible, then it is supercuspidal

(supercuspidal representations are also characterized by the fact that their coefficients are
compactly supported mod the center). Furthermore its irreducibility is equivalent to the
fact that the intertwining of κ, that is, the set of g ∈ G such that Hom K∩Kg(κ, κg) 6= {0},
is equal to K.
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There have been too many works on question 1.1 to even try to cite them all: thirty
years of efforts led eventually to a positive answer for G = GL(N) ([5], 1993) and many
other reductive groups have followed. We only wish here to give an idea of types, start-
ing with types for supercuspidal representations of GL(N,F ), and of covers, following
Bushnell and Kutzko’s formalism ([6]).

1.1 Types for supercuspidal representations of GLN(F )

We first define the notion of maximal simple type (J(β,A0), λ(β,A0)) in G = GLN(F ),
following [5]. We will skip the technical definitions, to be found in loc. cit., but will give
an easy example instead.

We start with a principal oF -order A0 in MN(F ) (e.g. MN(oF )) and an element β in
MN(F ) generating a field extension E = F [β] of F . We let Ê be the commutant algebra
of E in MN (F ). We assume that:

• E× normalises A0;

• n0 = −valE(β) satisfies n0 > 0;

• B0 = A0 ∩ Ê is a maximal oE-order in Ê;

• [E : F ] is minimal among the degrees of field extensions possibly generated by
elements of β + A0.

Then we call [A0, n0, 0, β] a maximal simple stratum in MN (F ). The simplest object
attached to this stratum is a function ψβ on G defined by ψβ(g) = ψ ◦ tr (β(g − 1)) ,
g ∈ G. This function restricts to a character on suitable subgroups.

With these data oF -lattices in MN (F ) are built:

H1(β,A0) ⊂ J1(β,A0) ⊂ J0(β,A0),

and compact open subgroups of GLN (F ) :

H1(β,A0) ⊂ J1(β,A0) ⊂ J(β,A0),

with H1 = 1 + H1, J1 = 1 + J1, J = J0×.
A simple type will be constructed by stages up this tower of subgroups. First, the

crucial notion of simple character: it is a difficult generalization of an easy construction
given in the example below. A simple character is a rather special character of H1(β,A0)
(one-dimensional representation), among its properties are the following:

• the restriction of a simple character to a suitable subgroup of H1 coincides with ψβ ;

• the intertwining of a simple character is JÊ×J .

Let θ0 be a simple character. Next, Heisenberg construction provides η0, unique irreducible
representation of J1(β,A0) containing θ0; as such, η0 has the same intertwining as θ0.

The third step is the β-extension step: extending the representation η0 to J(β,A0)
without shrinking its intertwining. It is possible, if difficult. We thus pick κ0, a β-extension
of η0 to J(β,A0); the intertwining of κ0 is the full intertwining of θ0.
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Let f = N/[E : F ]. The last ingredient in our simple type is σ0, a cuspidal represen-
tation of GL(f, kE). We inflate it to J(β,A0) through:

J(β,A0)/J
1(β,A0) ≃ GL(f, kE).

Our maximal simple type is now defined by λ(β,A0) = κ0 ⊗ σ0.
For a complete account of maximal simple types, we also must allow the so-called

‘level 0 case’: where A0 is a maximal order and we take β = 0, E = F , λ(β,A0) = σ0.

Theorem 1.2 (Bushnell-Kutzko [5]). For any extension λ⋆ of λ(β,A0) to J⋆ = E×J(β,A0),

the induced representation c-Ind
GLN (F )
J⋆ λ⋆ is irreducible and supercuspidal.

Every supercuspidal representation of GLN(F ) has this form for a suitable choice of
β and A0.

1.2 An example in GL(4, F )

Assume the residual characteristic p is not 2. Let ν ∈ o×F be an element that is not a
square and let E0 be the unramified quadratic extension of F , viewed as E0 = F [( 0 ν

1 0 )] in
M2(F ). Let a ≥ 1 be an integer and let u ∈ o×E0

satisfy u2 /∈ o×F (1 + pE0
).

Define β =
(

0 u̟−a

F

u̟1−a

F
0

)
in M2(E0) ⊂M4(F ). Then E = F [β] is a ramified quadratic

extension of E0, viewed inside M4(F ), in which β has odd valuation −n0 = 1− 2a.

Now A0 =




oF oF oF oF

oF oF oF oF

pF pF oF oF

pF pF oF oF


 is a principal oF -order with radical P0 =




pF pF oF oF

pF pF oF oF

pF pF pF pF

pF pF pF pF


,

normalized by E×, and [A0, n0, 0, β] is a maximal simple stratum in M4(F ).
This is deliberately an elementary situation, in which definitions in [5] immediately

give:

H1(β,A0) = J1(β,A0) = (1 + pE) (1 + P
n0+1

2

0 ) ; J(β,A0) = o×E (1 + P
n0+1

2

0 ).

Simple characters are obtained as follows. The function ψβ is a character on 1+P
n0+1

2

0 . Let

θ0 be some character of (1+pE) agreeing with ψβ on the intersection (1+pE)∩(1+P
n0+1

2

0 ).
Then θ0ψβ is a simple character of H1(β,A0), still denoted by θ0.

Our maximal simple type is here λ(β,A0) = θ⋆ψβ for some character θ⋆ of o×E extending
θ0.

1.3 Types for non-supercuspidal representations

We come back to the general setting of the beginning of this paragraph and give the
definition of a type for a subcategory R[M,σ](G), or equivalently for an inertial class
[M,σ]G:

Definition 1.3 ([6]). A pair (J, λ), J an open compact subgroup of G, λ a smooth irre-
ducible representation of J , is a type for [M,σ]G if, for any smooth irreducible represen-
tation π of G, the following conditions are equivalent:
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• π|J contains λ;

• π is a subquotient of IndG
Pσ ⊗ χ for some unramified character χ of M .

(In the situation of Theorem 1.2, the pair (J(β,A0), λ(β,A0)) is a type for the inertial

class of c-Ind
GLN (F )
J⋆ λ⋆ in GLN (F ).)

To explain the interest of this definition, we immediately need to define the Hecke

algebra of a pair (J, λ) as above; it is the intertwining algebra of the representation
c-IndG

J λ, which can also be described as the following convolution algebra, where Wλ

denotes the space of λ (and a Haar measure is fixed on G):

H(G, λ) = {f : G −→ EndC(Wλ) / f compactly supported

and f(ugv) = λ(u)f(g)λ(v) for u, v ∈ J, g ∈ G}.

Note that the support of an element of H(G, λ) is a finite union of J-double cosets.
Now the whole point of the definition is to replace the study of induced representations

of the form IndG
Pσ ⊗ χ as above, by the study of corresponding right modules over

the algebra H(G, λ), via the following functor, which is an equivalence of categories

whenever (J, λ) is a type for [M,σ]G (see [6]):

R[M,σ](G)
Mλ

∼
−→ Mod-H(G, λ)

π 7−→ Hom J(λ, π)

The right action of f ∈ H(G, λ) on φ ∈ Hom J(λ, π) is given by

φ.f(w) =

∫

G

π(g−1)φ(f(g)w) dg (w ∈Wλ).

1.4 Covers

Types are not known yet to exist in all cases; for supercuspidal representations, existence
is very closely related to question 1.1. Anyhow, the best way to construct types in the
non-supercuspidal case, say [M,σ]G with M a proper Levi subgroup, is to try to start
with a type (JM , λM) for σ in M and to build a G-cover or induced type of (JM , λM) in
G: the shape of type best adapted to parabolic induction.

Let as above P = MN be a parabolic subgroup of G of Levi M and unipotent radical
N and let P− = MN− be the parabolic subgroup opposite to P relative to M .

Definition 1.4 ([6]). A pair (J, λ), J an open compact subgroup of G, λ a smooth irre-
ducible representation of J , is a G-cover of an analogous pair (JM , λM) in M if

• J = (J ∩N−) (J ∩M) (J ∩N) and J ∩M = JM ,

• λ is trivial on J ∩N− and J ∩N and λ|J∩M = λM ;

• for any smooth irreducible representation (π, V ) of G, the Jacquet functor rN is
injective on the isotypic component of π|J of type λ:

V λ
rN

∼
−→ V λM

N .
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The two first conditions, dealing with the Iwahori decomposition of the group and the
representation, are relatively easy to fulfill; pairs (J, λ) satisfying those two conditions are
said to be decomposed above (JM , λM) with respect to P – note that the representation
λ is then entirely determined by λM . Given the first two, the third condition is a very
strong one and it has indeed very strong consequences:

Theorem 1.5 (Bushnell-Kutzko [6]). A G-cover of a type is a type. With the notation
above, if (J, λ) is a G-cover of (JM , λM) and (JM , λM) is a type for [L, σ]M in M , then
(J, λ) is a type for [L, σ]G in G.

Yet there is more to covers than this theorem. Indeed, if we start as before with
a decomposed pair (J, λ) above (JM , λM), we can define an injective homomorphism of
vector spaces T : H(M,λM) →֒ H(G, λ), by :

f ∈ H(M,λM) and Supp f = JMmJM ⇒ Supp T (f) = JmJ and T (f)(m) = f(m).

Further, there is a subalgebra H(M,λM)+ of H(M,λM) on which T restricts to an homo-
morphism of algebras

T+ : H(M,λM)+ →֒ H(G, λ). (1.6)

It is the subalgebra of functions supported on (P, J)-positive elements of M , namely those
m ∈M satisfying m(J ∩N)m−1 ⊂ J ∩N and m(J ∩N−)m−1 ⊃ J ∩N−.

We twist our morphism by the character ∆
1/2
P , which is trivial on compact subgroups

of M , letting T+
P (f) = T+(∆

1/2
P f), f ∈ H(M,λM)+. The remarkable feature of covers is

the following:

Theorem 1.7 (Bushnell-Kutzko [6]). Let (J, λ) be a decomposed pair above (JM , λM)
with respect to P . Then (J, λ) is a G-cover of (JM , λM) if and only if the morphism T+

P

extends to a homomorphism of algebras

tP : H(M,λM) →֒ H(G, λ).

This extension is unique, injective, and gives rise to the commutative diagram :

R[L,σ](G)
Mλ∼ Mod-H(G, λ)

R[L,σ](M)

MλM∼

IndG

P−

Mod-H(M,λM)

(tP )∗
(1.8)

Here (tP )∗(Y ) = HomH(M,λM )(H(G, λ), Y ), the structure of right H(M,λM)-module
on H(G, λ) being given by tP .

In this context, a counterpart to Tadić’s philosophy is given by the crucial homomor-
phism of algebras tP , plus the transitivity of covers ([6] again):

1.9. Let P ′ = M ′N ′ be another parabolic subgroup of G of Levi M ′ and unipotent radical
N ′. Assume P ⊂ P ′ and M ⊂ M ′. Then (J, λ) is a G-cover of (J ∩M,λ|J∩M) if and
only if (J, λ) is a G-cover of (J ∩ M ′, λ|J∩M ′) and (J ∩ M ′, λ|J∩M ′) is a M ′-cover of
(J ∩M,λ|J∩M).
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Indeed, the point of types is to replace the study of parabolic induction by the study
of modules over the relevant Hecke algebras. The point of covers is to do so using the
commutative diagram 1.8. You do need information on the Hecke algebra H(G, λ) and
a crucial tool is the homomorphism of algebras defined in Theorem 1.7. Now, thanks to
transitivity, each intermediate Levi subgroup will give rise to such an algebra homomor-
phism so the more intermediate parabolic subgroups we have, the more information we get
on the Hecke algebra. We describe in the next paragraph an instance of this technique;
more details on the use of these homomorphisms will be found in section 2.5.

2 Propagation of types in symplectic groups

¿From now on we assume the residual characteristic p is different from 2. We look at the
following situation: we fix integers N ≥ 1 and k ≥ 0 and let an integer t ≥ 1 vary. We
put

Gt = Sp (2tN + 2k, F )

and consider:

• the standard Levi subgroup Mt = GLN (F )× · · · ×GLN (F )× Sp2k(F ) of Gt

• the standard parabolic subgroup Pt of block-upper-triangular matrices with Levi
component Mt and unipotent radical Ut.

We pick an irreducible supercuspidal representation π of GLN (F ) and an irreducible
supercuspidal representation ρ of Sp2k(F ) and form, for complex numbers a1, . . . , at, the
representation of Gt:

I(π, t, ρ) = IndGt

Pt
π|det |a1 ⊗ · · · ⊗ π|det |at ⊗ ρ.

Tadić has proved in [12] that the knowledge of reducibility points (that is, the values
of a1, . . . , at such that the representation is reducible) and composition series of I(π, 1, ρ)
implies the knowledge of reducibility points and composition series of I(π, t, ρ) for t ≥ 1.
This is of course in accordance with the philosophy stated in the previous paragraph:
the case of maximal parabolic subgroup is the most difficult, if t is greater than 1 there
are more parabolics to work with and one can obtain results through the use of Jacquet
functors.

What could be the counterpart of this result in terms of types and covers ? To
express it, we need first to pick (Γ, γ), a [GLN(F ), π]- type in GLN(F ), and (∆, δ), an
[Sp2k(F ), ρ]- type in Sp2k(F ). Knowledge of reducibilities for I(π, 1, ρ) can be replaced by
the knowledge of a G1-cover (Ω1, ω1) of (Γ×∆, γ⊗δ) and of its Hecke algebra H(G1, ω1),
through the equivalence of categories:

R[M1, π⊗ρ](G1)

Mω1

∼
−→ Mod-H(G1, ω1).

In this setting, a result similar to Tadić’s would be the following:
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There exists a Gt-cover (Ωt, ωt) of (Γ×t × ∆, γ⊗t ⊗ δ) with Hecke algebra H(Gt, ωt)
admitting a presentation by generators and relations entirely determined by t and
H(G1, ω1).

Indeed, the reducibilities for I(π, t, ρ) would then be known through the equivalence
of categories:

R[Mt, π⊗t⊗ρ](Gt)
Mωt

∼
−→ Mod-H(Gt, ωt).

This is the question we will examine in this section, in the case where the representation
π is self-dual, that is, equivalent to the contragredient representation π̌ defined as the
dual action of GLN (F ) in the space of smooth vectors in the dual of the space of π.
This is the most interesting case: if no representation π|det|a is self-dual, then it follows
from the work of Tadić that reducibilities for I(π, t, ρ) all come from reducibilities for the
parabolically induced representation of π|det|a1 · · · ⊗ π|det|at in GLtN (F ), which are well
known.

2.1 The principle of propagation

We now need to get more technical and fix some more notations. We let wi be the anti-

diagonal matrix wi =

(
1

.
.

1

)
and define Sp (2i, F ) as the symplectic group of F 2i with

respect to the symplectic form of matrix

(
0 wi

−wi 0

)
. For any matrix x we write τx for

the transpose of x with respect to the anti-diagonal; in particular the identification of
GLN(F )× Sp2k(F ) with M1 reads:

(x, g) 7−→



x 0 0
0 g 0
0 0 τx−1


 .

We start with a G1-cover (Ω1, ω1) of (Γ×∆, γ⊗ δ) and think of it in terms of blocks:
from the definition, the pair (Ω1, ω1) is in particular decomposed above (Γ ×∆, γ ⊗ δ)
so is the product of its intersections with U−

1 , M1 and U1. We visualize as follows:

Ω1 =




Γ B12 B13

B21 ∆ B23

B31 B32
τΓ


 ,

this schematization meaning of course that the off-diagonal blocks Bij are suitable lattices
in the relevant matrix space and that Ω1 is the intersection with Sp (2N + 2k, F ) of the
set of matrices whose block entries belong to the corresponding subgroup or lattice.

We want to produce a Gt-cover (Ωt, ωt) of (Γ×t×∆, γ⊗t⊗δ); with the same convention
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of visualization, this would look like

Ωt =




Γ C12 · · · C1,t+1 · · · C1,2t+1

C21 Γ C2,t+1
...

...
. . .

...
Ct+1,1 Ct+1,2 · · · ∆ · · · · · · Ct+1,2t+1

...
. . .

... C2t,t+1
τΓ C2t,2t+1

C2t+1,1 · · · C2t+1,t+1 · · · τΓ




=




Γt D12 D13

D21 ∆ D23

D31 D32
τΓt



 .

The first shape shows what we mean by propagation: we would expect a relationship
between the blocks Ci,t+1 or Ct+1,i and the blocks Bj2 or B2j in Ω1, at best equality

for instance, and a relationship between the off-Sp (2k, F )-part

(
Γ B13

B31
τΓ

)
and what is

obtained from Ωt by removing the t + 1-th row and column, namely

(
Γt D13

D31
τΓt

)
in the

second shape.

It seems hopeless to try such a ‘propagation’ without any specific knowledge of the
cover (Ω1, ω1). Besides, the best hint we have is the following consequence of the tran-
sitivity of covers: the block Γt should hold a GLtN (F )-cover of (Γ×t, γ⊗t). We will thus
rely strongly on Bushnell-Kutzko types in GLiN (F ).

2.2 A family of GL2tN(F )-covers of (Γ× · · · × Γ, γ ⊗ · · · ⊗ γ)

We now pick (Γ, γ), our [GLN (F ), π]-type in GLN (F ), as a Bushnell-Kutzko maximal
simple type (Γ, γ) = (J(β,A0), λ(β,A0)). We use the notations of section 1.1 and will
shorten H1 = H1(β,A0), J0 = J0(β,A0)... Recall E = F [β].

In the book [5], Bushnell and Kutzko do produce a GL2tN (F )-cover of (Γ×2t, γ⊗2t).
Starting with this cover, and with some additional work, one obtains a family (Γ(2t, r), γ(2t, r))
of GL2tN (F )-covers of (Γ×2t, γ⊗2t), indexed by an integer r, t ≤ r ≤ 2t; the cover given in
[5] corresponds to r = t while the cover given by r = 2t is the best suited to propagation.
In block-matrix form, we have:
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←− r −→

Γ(2t, r) =




Γ J0 . . . J0 ̟−1
E H1 . . . ̟−1

E H1

H1 Γ
. . .

. . .
. . .

...

...
. . .

. . .
. . . ̟−1

E H1

H1 J0

̟EJ0 . . .
. . .

. . .
...

...
. . .

. . . Γ J0

̟EJ0 . . . ̟EJ0 H1 . . . H1 Γ




←− 2t− r −→

and the representation γ(2t, r) is trivial on upper or lower triangular block matrices and
equal to γ⊗· · ·⊗γ on block diagonal matrices. (Actually we have such a family of covers
(Γ(i, r), γ(i, r)), [ i+1

2
] ≤ r ≤ i, for any integer i ≥ 1.)

It is convenient to think of this subgroup as a 2 × 2 block-matrix subgroup and to
introduce a notation for the lattices in MtN (F ) corresponding to the upper and lower
unipotent parts; we write:

Γ(2t, r) =

(
Γ (t, t) Γ+(t, r)
Γ−(t, r) Γ (t, t)

)
, t ≤ r ≤ 2t.

Note that Γ(t, t) is the most obvious ‘propagated type’ from Γ(2, 2) =

(
Γ J0

H1 Γ

)
and

that J0 and H1 are both rings. Subdiagonals in Γ+(t, r) have either all entries in J0 or all
entries in ̟−1

E H1 and accordingly for Γ−(t, r), with ̟EJ0 and H1.

We are almost ready to produce propagated types. The last ingredient we need is
the specific properties that the type of a self-dual supercuspidal representation can be
assumed to satisfy, useful to obtain decomposed pairs in symplectic groups from the ones
we have in linear groups.

2.3 Type of a self-dual supercuspidal representation

Heuristically, we want to produce decomposed pairs – hopefully covers – in Sp(2tN, F )
with the subgroups Γ(2t, r) in GL2tN (F ). Intersecting with Sp(2tN, F ) will give interest-
ing subgroups only if Γ(2t, r) is stable under the involution defining the symplectic group.
Up to some conjugacy, we can achieve this condition when π is self-dual, provided that
we find a type for π that is itself self-dual in some sense. This is the motivation of the
following theorem:
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Theorem 2.1 (Blondel [2]). Let π be a self-dual irreducible supercuspidal representation
of GLN (F ). One can choose a maximal simple type (Γ, γ) = (J(β,A0), λ(β,A0)) for π
satisfying the following properties:

1. A0 is a τ -stable principal oF -order in MN (F ).

2. If β 6= 0, E = F [β] is a quadratic extension of F [β2]. We let x 7→ x̄ denote the non
trivial element of Gal(F [β]/F [β2]).

3. There is an element σ in U(A0) such that σ−1xσ = τ x̄ for all x ∈ E.

4. H1 = H1(β,A0) and J0 = J0(β,A0) are stable under x 7→ σ τxσ−1.

5. The pairs (H1, θ0), (J1, η0) and (Γ, γ) are stable under x 7→ σ τx−1σ−1 (the group
is stable and the representation transformed into an equivalent representation).

Example. In our previous example in GL4(F ) (1.2), the extension E is τ -stable and

conditions (i) to (iv) hold with σ =

(
−I2 0
0 I2

)
. The fifth condition holds if and only if

we choose a character θ⋆ such that θ⋆(xx̄) = 1 for all x ∈ o×E .

2.4 The propagation theorem

We fix a maximal simple type (Γ, γ) for our self-dual representation π having the properties
in Theorem 2.1 and use the corresponding notations. It follows that the conjugate of
Γ(2t, r) by Σ = diag(IN , · · · , IN , σ, · · · , σ) (t blocks IN , t blocks σ), namely

Γ(2t, r)Σ =

(
Γ (t, t) Γ+(t, r)σ

σ−1Γ−(t, r) τΓ (t, t)

)
, t ≤ r ≤ 2t,

is stable by the involution defining the symplectic group. We also fix a type (∆, δ) for the

supercuspidal representation ρ of Sp(2k, F ) such that ρ = c-Ind
Sp(2k,F )
∆ δ; the existence of

such a type follows from recent work of Stevens ([11]).

We first state the hypotheses needed on the G1-cover of (Γ × ∆, γ ⊗ δ). The main
point is that we actually need two such covers, related to the twin groups Γ(2, 1) and
Γ(2, 2) in GL2N (F ), or rather a little less: two decomposed pairs that are ‘almost’ covers.
(As a consequence of the theorem they will turn out to be covers.)

The first hypothesis thus concerns the existence of two decomposed pairs of a special
shape: there must exist oF -lattices ∆+ ⊂MN,2k(F ) and ∆− ⊂M2k,N(F ) such that

Ω(1, 1) =




Γ ∆+ ̟−1
E H1σ

∆− ∆ α τ∆+

σ−1J0̟E
τ∆−α−1 τΓ


 (intersected with G1)

and Ω(1, 2) =




Γ ∆+ J0σ
∆− ∆ α τ∆+

σ−1H1 τ∆−α−1 τΓ


 (intersected with G1), (α =

(
−Ik 0
0 Ik

)
),
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are subgroups of G1 holding representations ω(1, 1) and ω(1, 2) such that (Ω(1, 1), ω(1, 1))
and (Ω(1, 2), ω(1, 2)) are decomposed pairs above (Γ×∆, γ ⊗ δ).

To explain the second hypothesis, we have to come back to the definition of covers:
the third condition in definition 1.4 is equivalent to the inversibility, in the Hecke algebra,
of an element supported on a special double coset; the exact statement is rather technical,
hence omitted. Suffice to say that in practice, showing that a given decomposed pair is a
cover is very much related to finding invertible generators for the Hecke algebra, that make
it a convolution algebra on an affine (or extended affine) Weyl group (possibly twisted).

Now the elements s and q defined below are the generators of the affine Weyl group
of type C̃2 adapted to the situation in the maximal case. The assumptions below imply
that the elements es and eq are invertible (bq and bs are non zero); if they did belong
to the same Hecke algebra, both their invertibilities would imply that the corresponding
decomposed pair is a cover. Heuristically, 2.2 and 2.3 say that the two pairs are ‘halfway’
to being covers, and ‘complementarily’ so.

We thus let s =




0 0 σ
0 I2k 0
− τσ−1 0 0



, q =




0 0 − τσ τ̟−1

E

0 I2k 0
σ−1̟E 0 0



 , and assume we have

elements

• eq ∈ H(G1, ω(1, 1)), supported on Ω(1, 1) q Ω(1, 1), such that:

e2q = aq eq + bq I (aq ∈ C, bq ∈ C×); (2.2)

• es ∈ H(G1, ω(1, 2)), supported on Ω(1, 2) s Ω(1, 2), such that:

e2s = as es + bs I (as ∈ C, bs ∈ C×). (2.3)

With those assumptions, propagation holds. We can ‘propagate’ the subgroups Ω(1, 1)
and Ω(1, 2) into the following family in Gt:

Ω(t, r) =




Γ(t, t) Mt,1(∆
+) Γ+(t, r)σ

M1,t(∆
−) ∆ M1,t(α

τ∆+)

σ−1Γ−(t, r) Mt,1(
τ∆−α−1) τΓ(t, t)



∩Gt (t ≥ 1 and t ≤ r ≤ 2t).

Theorem 2.4 (Blondel [3]). For t ≥ 1 and t ≤ r ≤ 2t, Ω(t, r) is a subgroup of Gt and
holds a (unique) representation ω(t, r) such that (Ω(t, r), ω(t, r)) is a Gt-cover of (Γ×t ×
∆, γ⊗t ⊗ δ).
The Hecke algebra H(Gt, ω(t, r)) is a convolution algebra on an affine Weyl group of
type C̃t, with parameters:

s0
© ⇐⇒

s1
© ←→ . . .←→

st−1

© ⇐⇒
st

©

(as0
, bs0) = (as, bs),

(asi
, bsi

) = (qf
E − 1, qf

E) for 1 ≤ i ≤ t− 1,

(ast
, bst

) = (aq, bq).
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(In the next subsection we give precise information on the generators of this Hecke
algebra.)

Given the assumptions, this theorem fulfills the requirements in the beginning of sec-
tion 2: the groups Ω(t, r) are entirely built from the groups Ω(1, 1) and Ω(1, 2), using
propagation and the structure of GL2tN (F )-covers; the Hecke algebra H(Gt, ω(t, r)) is
completely determined by the t = 1 case. Note that the parameters (qf

E − 1, qf
E) only

depend on the (inertial class of the) representation π: they are parameters of the Hecke
algebra H(GLtN (F ), γ(t, t)) (see [5]).

At this point of course, we are left with two difficulties: first, producing covers with
the required properties for t = 1, second, compute the corresponding parameters. So far,
the cases in which this theorem applies – that is, the assumptions are fulfilled – are: the
level zero case, due to Morris [8]; the k = 0 case [2]; the case of Sp(4, F ) (2N + 2k = 4)
[1]; and a special case with k = N [3] of which we detail an example for N = 4 below.

2.5 Some elements in the proof

Past the preliminary checking (technical and boring) that (Ω(t, r), ω(t, r)), t ≤ r ≤ 2t, are
indeed decomposed pairs, the proof that they are covers proceeds along two main lines.

One is the use of a family of decomposed pairs and not just one. Technically, the
proof works alternatively with Ω(t, t) and Ω(t, 2t): we work at each step with the most
convenient of the two. A crucial intermediate result ([3], Proposition 5) states that the
Hecke algebras H(Gt, ω(t, r)) are all isomorphic in a very precise way. To simplify matters
we now shorten: (Ω, ω) = (Ω(t, r), ω(t, r)), H = H(Gt, ω(t, r)).

The other is the most related to Tadić’s philosophy: it is the one we will roughly
explain here. Indeed, transitivity of covers (1.9) and a similar property of transitivity for
decomposed pairs allows to move back and forth from one Levi subgroup to the full group
and then down to another Levi subgroup.

First, to show that (Ω, ω) is a cover, we produce specific invertible elements in H as
the images, by homomorphisms of the form T+ : H(M,ωM)+ →֒ H(Gt, ω) (see 1.6) for
well chosen Levi subgroups M , of invertible elements in the subalgebra H(M,ωM)+ itself.

Next, to obtain a full description of the Hecke algebra H by generators and relations,
we use the fact that our covers are covers of their intersection with any intermediate
Levi subgroup: the images of the corresponding Hecke algebras by the homomorphisms
as defined in Theorem 1.7 will span the algebra H. Precisely, we define elements s0, si

(1 ≤ i ≤ t − 1), st of Gt, together with Levi subgroups particularly relevant to those
elements.

s0 =




I(t−1)N

0 0 σ
0 I2k 0

− τσ−1 0 0
I(t−1)N



 , M0 =




...
GLN (F )

G1

GLN (F )

...


 ;

si =




I(t−i−1)N

0 IN

IN 0
I2k+2(i−1)N

0 IN

IN 0
I(t−i−1)N


 , M i =

(
GLtN (F )

Sp2k(F )
GLtN (F )

)
;

28



st =

(
0 0 − τσ τ̟−1

E

0 I2(t−1)N+2k 0

σ−1̟E 0 0

)
, M t =




⋆ 0 ⋆ 0 ⋆
0 GL(t−1)N (F ) 0 0 0
⋆ 0 ⋆ 0 ⋆
0 0 0 GL(t−1)N (F ) 0

⋆ 0 ⋆ 0 ⋆


 ≃ GL(t−1)N (F )×G1.

The generator esj
of H = H(Gt, ω(t, r)) attached to the Coxeter generator sj , 0 ≤ j ≤

t, in Theorem 2.4, is an element of H with support Ω sj Ω; indeed, easy representation-
theoretic considerations imply that the double coset Ω sj Ω supports a one-dimensional
subspace ofH. We need to produce such an element esj

that satisfies the quadratic relation
e2sj

= asj
esj

+ bsj
I. Now, with a good choice of r (r = t for st, r = 2t for si, i ≤ t−1), the

element sj is Ω-positive in M j (1.6) and there is an element ǫj in H(M j , ω|Ω∩Mj), with
support (Ω ∩M j)sj(Ω ∩M

j), that satisfies this quadratic relation. Indeed:

• If 1 ≤ j ≤ t− 1: H(M j , ω|Ω∩Mj) ≃ H(GLtN (F ),Γ(t, t))⊗H(Sp2k(F ), δ); there is an

element uj ∈ H(GLtN (F ),Γ(t, t)), with support Γ(t, t)

(
I(t−j−1)N

0 IN

IN 0
I(j−1)N

)
Γ(t, t),

such that u2
j = (qf

E − 1)uj + qf
E ([5]).

• If j = 0: H(M0, ω|Ω∩M0) ≃ H(GLN(F ),Γ)t−1 ⊗ H(G1, ω(1, 2)); we use assumption
2.3.

• If j = t: H(M t, ω|Ω∩M t) ≃ H(GL(t−1)N (F ),Γ(t− 1, t− 1))⊗H(G1, ω(1, 1)); we use
assumption 2.2.

Using the homomorphism T+ : H(M j , ω|Ω∩Mj) →֒ H of 1.6 gives the result for esj
=

T+(ǫj).
Finally, to prove that the family (esj

)0≤j≤t generates H, we use the ‘Bernstein presen-
tation’ given by Bushnell and Kutzko in [6] and [7].

3 An example in Sp(12, F )

We come back to our example in section 1.2 and notice thatE/F is a biquadratic extension
– that is, its Galois group is isomorphic to Z/2Z × Z/2Z and its norm subgroup is
NE/F (E×) = F×2

. We have a maximal simple stratum [A0, n0, 0, β] in M4(F ) and a simple

character θ0 of H1(β,A0). Skipping to the notations of §2.3, we let σ =

(
−I2 0
0 I2

)
and

make the additional assumption that θ0(xx̄) = 1 for all x ∈ 1 + pE .
The involution defining the symplectic group is actually x 7→ σ τxσ−1. Our stratum is

thus a skew stratum and our simple character θ0 is a skew simple character ([10]): the
groups H1(β,A0) = J1(β,A0) and J(β,A0) are stable under this involution, as is the
character θ0.

We let G = GL(4, F ), Ḡ = Sp(4, F ), and for any subgroup K of G we let K̄ = K ∩ Ḡ.

According to [10], Theorem 5.2, the restriction to H̄1 = J̄1 =
(
(1 + pE) ∩ Ḡ

)(
(1 + P

n0+1

2

0 ) ∩ Ḡ

)

of the skew simple character θ0 underlies supercuspidal representations of Sp(4, F ): for

any extension δ of θ0 to ∆ = J̄(β,A0), the representation ρ = c-Ind
Sp(4,F )
∆ δ is irreducible
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supercuspidal and the pair (∆, δ) satisfies the assumptions in Theorem 2.4. We have here
∆ = ō×E H̄

1 so there are two such extensions δ.

On the other hand the same skew simple character θ0 underlies self-dual supercuspidal
representations of G – but it turns out that the character we must use here is not θ0 but
its square θ2

0, attached to the skew simple stratum [A0, n0, 0, 2β] (see [2], Lemma 4.3.1).
Anyway, θ2

0 has two extensions to a self-dual character γ of Γ = J(β,A0) = o×EH
1, i.e.

satisfying γ(xx̄) = 1 for all x ∈ o×E; note that γ is either trivial or quadratic on oE×

0

. Now

(Γ, γ) is a maximal simple type contained in a self-dual supercuspidal representation π of
G and satisfying the properties in Theorem 2.1.

By arguments similar to [2] §3.3, one can show that

Ω(1, 1) =




Γ J0 ̟−1
E H1σ

H1 ∆ J0σ
σ−1J0̟E σ−1H1 τΓ


 ∩ Sp(12, F )

and Ω(1, 2) =




Γ J0 J0σ
H1 ∆ J0σ

σ−1H1 σ−1H1 τΓ


 ∩ Sp(12, F )

are subgroups holding decomposed pairs above (Γ×∆, γ⊗δ) with respect to P1 (remember
that ∆ = Γ̄) and that assumptions 2.2 and 2.3 hold. The propagation theorem 2.4 thus
applies, giving covers in Sp (4(2t+ 1), F ) attached to the inertial class [GL(4, F )×t ×
Sp(4, F ), π⊗t ⊗ ρ]Sp(4(2t+1), F ) and the structure of their Hecke algebra, provided we know
the parameters of the t = 1 case.

In the present situation, we can compute the parameters (as, bs) and (aq, bq), following
the recipe in [1], §1.d; in particular we use the Haar measure on Sp(12, F ) giving Ω(1, 1)
and Ω(1, 2) volume 1 and normalise es and eq by es(s) = 1, eq(q) = 1. Let L be the
quadratic character of o×E0

and let G be the Gauss sum

G(x) =
∑

z∈ o
×

E0
/1+pE0

L(z) ψ ◦ trE0/F (zx), x ∈ o×E0
.

The residual field of E0 has cardinality q2
F so −1 is a square in k×E0

and G(x)2 = q2
F ; we

write G(x) = ǫ(x)qF with ǫ(x) = ±1. We find:

bs = q2
F , as = δ(−1)(q2

F − 1), bq = q8
F , aq =

{
0 if γ is trivial on oE×

0

,

(−1)
q+1

2 ǫ(u) q3
F (q2

F − 1) otherwise.
(3.1)

The interest of this example lies in the fact that, according to the class of u mod (o×E0
)2,

the representation π is either generic or non generic ([4]). When it is not, reducibilities
for I(π, t, ρ) are not attained by the usual methods; the construction of a cover above
plus the computation of the Hecke algebra do, however, give those reducibilities. One
can notice that, in the case studied above, reducibilities will be the same whether the
representation is generic or not.
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