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Let G be the group of F -points of a connected reductive algebraic group
defined over F , a local non-archimedean field. The goal of the theory of types
is the description of direct summands of the category R(G) of smooth complex
representations of G as categories of modules over Hecke algebras.

More precisely, the Bernstein decomposition of this category states that it is
the direct sum, over the set of inertial classes in G, of full subcategoriesR[M,π](G)
attached to each inertial class. Recall that an inertial class in G is the equivalence
class [M, π]G of a pair (M, π) made up of a F -Levi subgroup M of G and an
irreducible supercuspidal representation π of M ; the equivalence relation includes
G-conjugacy and twisting of π by an unramified character of M . The subcategory
R[M,π](G) consists of representations each of whose irreducible subquotients is a
subquotient of a representation parabolically induced to G from an unramified
twist of π.

Finding a type (J, λ) for this subcategory means finding a compact open sub-
group J of G and a smooth irreducible representation λ of J such that the
subcategory R[M,π](G) consists of representations generated by their isotypic
component of type λ under J . If (J, λ) is a type for [M, π]G, i.e. for R[M,π](G),
this subcategory is then equivalent to the category of non-degenerate modules
over the Hecke algebra H(G, J, λ) (for all this see [BK2]).

The problem of finding types in G naturally breaks into two pieces which are
very different in nature. One is finding types for the inertial classes of supercus-
pidal representations of G. The other is finding types for inertial classes [M, π]G
where M is a proper Levi subgroup of G. C. J. Bushnell and P. C. Kutzko in
[BK2] have developped a method to address this second problem, based on the
definition of covers.

We say that (J, λ) is a G-cover of (JM , λM ), an analogous pair in M , if there is
an F -parabolic subgroup P of G with unipotent radical U and Levi decomposition
P = MU such that :

(i) (J, λ) is a decomposed pair with respect to (M, P ), i.e.
– J = (J ∩ U−)(J ∩ M)(J ∩ U), where U− is the unipotent radical of the

parabolic subgroup P− opposite of P relative to M , and
– λ is trivial on J ∩ U− and J ∩ U ;

(ii) J ∩M = JM and λ|JM ' λM ;
(iii) for any smooth irreducible representation (σ, V ) of G, the restriction to V λ of

the Jacquet functor rU is injective.
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Note that the definition in [BK2] requires those properties to hold for any such
parabolic subgroup P ; nonetheless it follows from [Bu2] that one may restrict the
definition to just one parabolic subgroup.

C. J. Bushnell and P. C. Kutzko have shown that:
if (JM , λM ) is a type for [M, π]M in M and if (J, λ) is a G-cover of (JM , λM ),
then (J, λ) is a type for [M, π]G in G.

Let now Ḡ be Sp2N (F ) where F has odd residual characteristic, let P̄ be the
Siegel parabolic subgroup, and let M̄ be the Siegel Levi subgroup, which we iden-
tify with GLN (F ) (see §I.1). Let π be an irreducible supercuspidal representation
of GLN (F ) and (JM̄ , λM̄ ) be a Bushnell-Kutzko type for [GLN (F ), π]GLN (F ) in
M̄ . Observe that the non-trivial element s in NḠ(M̄)/M̄ stabilizes the inertial
class [M̄, π]Ḡ if and only if π and its contragredient representation are equiv-
alent up to twisting by an unramified character of GLN (F ) – yet, since any
unramified character of GLN (F ) is a square, π and its contragredient represen-
tation are in the same inertial class if and only if this class actually contains a
self-contragredient representation.

If this is not the case, it should follow from [BK2], Theorem 12.1, that the Hecke
algebra H(Ḡ, J, λ) of a Ḡ-cover (J, λ) of (JM̄ , λM̄ ) is commutative, isomorphic to
H(M̄, JM̄ , λM̄ ), and the corresponding subcategories are equivalent. In any case,
a recent result of A. Roche ([R], Theorem 3.1) states, in our present setting, that
parabolic induction from R[M̄,π](M̄) to R[M̄,π](Ḡ) is an equivalence of categories
if and only if s does not stabilize [M̄, π]Ḡ.

Hence, although the question of existence of Ḡ-covers is interesting in itself, the
most interesting case is the case when π is self-contragredient. Indeed, given a Ḡ-
cover (J, λ) of (JM̄ , λM̄ ), one expects the description of H(Ḡ, J, λ) to give insight
into reducibility problems for parabolically induced representations in R[M̄,π](Ḡ)
(see e.g. [BB2] for details in the case of Sp4(F ); although, for this group, the
results concerning reducibility were already known). In particular, obtaining
Ḡ-covers and their Hecke algebras for all such representations π should lead to
an exact knowledge of the real numbers α such that the parabolically induced
representation to Ḡ of the twisted representation π ⊗ |det|α is reducible (those
numbers are known to belong to {0,±1/2)} if N > 1, by the work of Shahidi
[Sh1] [Sh2]).

We construct in this paper Ḡ-covers for Bushnell-Kutzko types attached to in-
ertial classes [GLN (F ), π]GLN (F ) where π is self-contragredient, which is the first
step in the above program. We do not compute the corresponding Hecke algebras.
The principle of the construction is to start with a well chosen GL2N (F )-cover
attached to the inertial class [GLN (F ) × GLN (F ), π ⊗ π]GL2N (F ) and then re-
strict it to Sp2N (F ). In the process we need some strong properties of simple
types attached to self-contragredient supercuspidal representations. We prove
the following in part II (Corollary II.3):

Theorem 1. Let (Γ, γ) be a maximal simple type (in the sense of [BK1]) in
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GLN (F ) such that the corresponding inertial class contains a self-contragredient
representation. Then either (Γ, γ) has level zero, or the simple character θ0

attached to γ can be attached to a simple stratum [A0, n0, 0, β] in MN (F ) with
the following properties:
1 –The field F [β] is a quadratic extension of F [β2] (in particular N is even).
2 –Let ν be an element in A×0 realizing the Galois conjugation of F [β] over F [β2].

The character θ0 satisfies θ0(νxν−1) = θ0(x−1) (x in H1(β, A0)).

This property of self-contragredient supercuspidal representations was known
in the tame case: such a representation is then attached to an admissible char-
acter of a maximal field extension contained in GLN (F ) and Adler [A] proved
that this character is trivial on the group of norms relative to a quadratic subex-
tension (or N = 1 and the character is quadratic). In loc. cit. Adler also gives
a full description of level zero self-contragredient supercuspidal representations
(which exist only if N is even or N = 1).

Let g 7→ τg be the transposition relative to the anti-diagonal. Theorem 1
essentially amounts to saying that, for a suitable order A in M2N (F ) related to
the order A0 above, the stratum Λ = [A, 2n0, 0,

(
β 0

0 − τβ

)
] in M2N (F ) is simple.

Let G = GL2N (F ) and P be the maximal parabolic subgroup in G of upper
block-diagonal matrices with Levi subgroup M isomorphic to GLN (F )×GLN (F ).
The process in [BK1], §7.2, provides us (Corollary II.2) with a G-cover (JP , λP )
of (Γ × τΓ, γ ⊗ γ∗), with γ∗(x) = γ( τx−1), attached to the stratum Λ. It will
lead us (Theorem III.1) to the cover we are looking for:

Theorem 2. Let (Γ, γ) be as in Theorem 1 and (JP , λP ) be as above. The
unique representation ω of Ω = JP ∩ Ḡ such that (Ω, ω) is a decomposed pair
with respect to (M̄, P̄ ) with Ω ∩ M̄ = Γ and ω|Ω ∩ M̄ = γ is a Ḡ-cover of (Γ, γ).

In the case when (Γ, γ) has level zero, the cover given by Theorem 2 has
previously been obtained by L. Morris in [M2]. Also recall that Ju-Lee Kim [Ki]

has constructed a set of types in classical groups, under the assumption that the
characteristic of F is 0 and the residual characteristic is “big enough”. The types
in her work that correspond to our present setting need not be the same as those
above, in particular they may not be Ḡ-covers (see [BB1]).

The main goal of this paper is Theorem 2, while Theorem 1 appears as a
necessary tool. In part I, we establish notation and explain the basic mechanism
allowing one to build decomposed pairs in Sp2N (F ) from the restriction of de-
composed pairs in GL2N (F ). In part II, we detail the structure of the maximal
simple type (Γ, γ) and of suitable GL2N (F )-covers of (Γ × τΓ, γ ⊗ γ∗). This
leads us to a proof of Theorem 1, as a Corollary of Theorem II.3. In part III, we
first build a periodic infinite sequence (Ωi, ωi) of decomposed pairs in Ḡ, with
Ωi ∩ M̄ = Γ and ωi|Ωi ∩ M̄ = γ, then we show that certain sufficient criteria for
this sequence to be a sequence of Ḡ-covers are satisfied. Part IV is devoted to
the proof of an intertwining property (Proposition IV.1) that has been assumed
in part III.
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From paragraph II.2 on, we assume that the order A0 is standard. Any max-
imal simple type (Γ, γ) in GLN (F ) is conjugate to a maximal simple type sat-
isfying this property, hence theorems 1 and 2 hold without this restriction (see
the remarks after Corollary II.3 and Theorem III.1).

I would like to thank here Bertrand Lemaire for helpful conversations, David
Manderscheid and Shaun Stevens for linguistic comments, Shaun Stevens for
his careful reading of an earlier draft of the manuscript and pointing out some
mistakes, and Guy Henniart for his constant advice.

I - Framework and basic tool

I.1 - Notations

Let F be a non-archimedean local field of residual characteristic p different
from 2, let oF or o be its ring of integers, pF or p the maximal ideal of oF , $F

or $ a uniformizing element and kF = oF /pF the residue class field, of cardi-
nality qF . We will be working with the group G = GL2N (F ) and its subgroup
Ḡ = Sp2N (F ) viewed as the symplectic group of the F -vector space V = F 2N

equipped with the symplectic form < , > with matrix
(

0 −wN

wN 0

)
in the canon-

ical basis {e1, . . . , e2N}, where wN =

( 0 ... 0 1

0 ... 1 0

. . . . . .
1 0 ... 0

)
. Most matrices written below

will be 2× 2 block matrices with N ×N blocks. Hence:

Sp2N (F ) = {g ∈ GL2N (F ) ;
(

0 −wN

wN 0

)
tg−1

(
0 wN

−wN 0

)
= g}.

We will let X 7→ TX denote the corresponding involution on M2N (F ):

TX =
(

0 −wN

wN 0

)
tX

(
0 wN

−wN 0

)
; T

(
A B

C D

)
=

(
τD − τB

− τC τA

)
,

where g 7→ τg, g ∈ GLi(F ), is the transposition relative to the antidiagonal; in
other words: tτg = τtg = wi g wi.

For any subgroup H of G, we put H̄ = H ∩ Ḡ. Let P be the stabilizer of
the subspace < e1, . . . , eN > in F 2N , a parabolic subgroup of G. Let U be
its unipotent radical and let M be the Levi factor of P consisting of matrices
stabilizing < eN+1, . . . , e2N >. We let P− be the parabolic subgroup of G
opposite of P relative to M and we let U− be its unipotent radical. We have

M = { (
g1 0
0 g2

)
; g1, g2 ∈ GLN (F )}, U = {

(
I X

0 I

)
; X ∈ MN (F )},

M̄ = {
(

g 0
0 τg−1

)
; g ∈ GLN (F )}, Ū = {

(
I X

0 I

)
; X ∈ MN (F ), X = τX}.

We will accordingly identify M with GLN (F )×GLN (F ) and M̄ with GLN (F ),
the latter through the isomorphism i from GLN (F ) to M̄ defined by

i(g) =
(

g 0

0 τg−1

)
, g ∈ GLN (F ).
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If µ is a representation of a subgroup H of GLN (F ), i(µ) will be the representa-
tion of i(H) defined by i(µ)(i(g)) = µ(g) (g ∈ H).

Let H be a compact open subgroup of G and ρ a smooth irreducible repre-
sentation of H. The G-intertwining of ρ is:

IG(ρ) = IG(ρ,H) = {g ∈ G / HomH∩Hg (ρ, ρg) 6= {0}}.
For any g in G we define the intertwining space of ρ at g to be

Ig(ρ) = Ig(ρ,H) = HomH∩Hg (ρ, ρg).

I.2 - Some decomposed pairs in Sp2N (F )

Let π be a smooth irreducible self-contragredient supercuspidal representation
of GLN (F ), hence viewed as a representation of M̄ ; likewise π ⊗ π is viewed as
a representation of M . We want to find types in G and Ḡ for the inertial classes
attached to these representations, and we want those types to be a G-cover and
a Ḡ-cover respectively, of types attached to π ⊗ π in M and to i(π) in M̄ . The
situation in G has been settled by Bushnell and Kutzko in [BK1], as we will recall
in part II. Indeed we will use the types build in loc. cit. to construct the Ḡ-covers
we are looking for: the process will involve a suitable conjugation followed by a
restriction to Sp2N (F ). The basic mechanism is the following:

Proposition. Let Γ be a compact open subgroup of GLN (F ) and let γ be a
smooth finite-dimensional complex representation of Γ. Let γ∗ be the representa-
tion of τΓ defined by: γ∗(g) = γ( τg−1), g ∈ τΓ.

If (J, λ) is a decomposed pair in G relative to (M, P ) such that J∩M = Γ×τΓ
and λ|J∩M ' γ⊗ γ∗, then J̄ ∩ M̄ = i(Γ) and there exists a unique representation
λ̂ of J̄ such that (J̄ , λ̂) is a decomposed pair in Ḡ relative to (M̄, P̄ ) with

λ̂|i(Γ) = i(γ).

The representation λ̄ = λ|J̄ of J̄ is isomorphic to λ̂⊗ λ̂.

Proof. We recall the following useful fact: let x ∈ U−, m ∈ M and y ∈ U be
such that their product xmy belongs to Ḡ; then x, m and y already belong to
Ḡ. Indeed the involution defining Sp2N (F ) stabilizes U−, M and U .

Hence taking intersections with Ḡ provides a decomposed pair (J̄ , λ̄) in Ḡ
relative to (M̄, P̄ ). We have J̄ ∩ M̄ = J ∩M = Γ× τΓ = i(Γ) and

λ̄

((
g 0
0 τg−1

))
' γ(g)⊗ γ∗( τg−1) = γ(g)⊗ γ(g), g ∈ Γ.

In particular: (J̄ ∩ Ū)(J̄ ∩ Ū−) ⊂ (J̄ ∩ Ū−) T (J̄ ∩ Ū), with

T = {
(

g 0
0 τg−1

)
; g ∈ Γ, γ(g)⊗ γ(g) = I}.
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To go from there to the decomposed pair we are looking for, it is enough ([Bl1],
Lemme 1) to prove a similar inclusion with T replaced by

T ′ = {
(

g 0
0 τg−1

)
; g ∈ Γ, γ(g) = I}.

Indeed, the representation λ̂ will then be uniquely defined by the condition
λ̂|i(Γ) = i(γ), plus the fact that it is trivial on J̄ ∩ Ū and J̄ ∩ Ū−.

Now the subgroup of J̄ generated by J̄ ∩ Ū and J̄ ∩ Ū− is a pro-p-group ([Bl3])
and so is its intersection with M̄ , hence we can replace T in the above inclusion
by a suitable pro-p-subgroup of T . All we have to show is :

Lemma. Let γ be a finite-dimensional smooth complex representation of a
pro-p-group H, with p odd. If the representation γ ⊗ γ of H is trivial, so is γ.

Indeed γ factors through a finite quotient of H, so it is unitarisable. In
particular each operator γ(h), h ∈ H, is diagonalisable, and the triviality of
γ ⊗ γ implies that any product of two eigenvalues of γ(h) is equal to 1. Hence
γ(h) is a scalar operator, namely ±I. Now −I is impossible for p odd. ¤

If the pair (Γ, γ) in the proposition is a maximal simple type in GLN (F ) and
the pair (J, λ) is a G-cover of (Γ× τΓ, γ⊗γ∗), one would like to know whether or
not, under relevant conditions on (J, λ), the associated pair (J̄ , λ̂) is a Ḡ-cover
of (Γ, γ). We do address this question here in the special case of a pair (Γ, γ)
attached to the inertial class of a self-contragredient representation ; the object
of part II is to use Bushnell and Kutzko’s simple types to produce in this context
a G-cover (J, λ) with suitable properties for that purpose.

II - “Self-contragredient” GL2N (F )-covers

II.1 - Bushnell and Kutzko’s GL2N (F )-covers

All references in this paragraph are to [BK1], any undefined notion or notation
comes from [BK1].

Let π be an irreducible supercuspidal representation of GLN (F ) and (Γ, γ)
a maximal simple type in GLN (F ) attached to the inertial class of π. From
Definition (5.5.10) – where we do treat (b) as a special case of (a) – and Theorems
(6.2.1), (6.2.2), the pair (Γ, γ) = (J(β, A0), λ(β, A0)) comes equipped with the
following data:

(i) A principal oF -order A0 and a simple stratum [A0, n0, 0, β] in MN (F ); in
particular E = F [β] is a field extension of F .
We let P0 be the radical of A0 and B0 be the commutant of E in MN (F ).
Then B0 = A0 ∩B0 is a maximal oE-order with radical Q0 = P0 ∩B0.

(ii) A simple character θ0 ∈ C(A0, 0, β) and a β-extension κ0 to J(β, A0) of the
unique irreducible representation η0 of J1(β, A0) which contains θ0.

(iii) An irreducible cuspidal representation σ0 of GL(f, kE) inflated to Γ through:

J(β, A0)/J1(β, A0) ' U(B0)/U1(B0) ' GL(f, kE), f = N/[E : F ].
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We now write M2N (F ) as 2 × 2 block matrices with entries in MN (F ). This
amounts to a decomposition of the underlying vector space V = F 2N , written
as column matrices, as a direct sum V = V (1) ⊕ V (2) with V (1) (resp. V (2)) the
subspace of column matrices having their first (resp. last) N entries equal to 0.

Let (Λ0,i)i∈Z be the lattice chain in FN associated to the order A0. It deter-
mines lattice chains (Λ(j)

0,i )i∈Z in V (j), j = 1, 2, under the natural identification
of V (j) with FN . Let (Λi)i∈Z be the lattice chain in V defined by:

Λ2i = Λ(1)
0,i ⊕ Λ(2)

0,i , Λ2i+1 = Λ(1)
0,i+1 ⊕ Λ(2)

0,i (i ∈ Z).

The corresponding principal order in M2N (F ) is A =
(

A0 A0

P0 A0

)
.

We identify E with its block-diagonal image in M2N (F ), hence we also write
β for

(
β 0

0 β

)
. We write B for the commutant of E in M2N (F ) and define the

oE-order B = A ∩B, with radical Q = P ∩B (where P is the radical of A).
Since the period of (Λi)i∈Z is twice the period of (Λ0,i)i∈Z, we get (see 1.2.11,

1.4.13, 1.2.4):

Fact. [A, 2n0, 0, β] is a simple stratum in M2N (F ) and all assumptions in
(7.1.11), (7.2.1) are satisfied, with t = e(B|oE) = 2.

The following proposition can be regarded as obvious: it is a paraphrase of
[BK1], §7. We state it to fix notations and make references easy, and give a sketch
of proof as a matter of conscientiousness. The groups P , U , M are defined in
(7.1.13) or equivalently in §I.1 above.

Proposition. There exists a unique representation λ of J = J(β, A) which
is a simple type with the following property.

Let λP denote the natural representation of JP = (J ∩ P )H1(β, A) on the
space of J1(β, A) ∩ U -fixed vectors in λ. The pair (JP , λP ) is a decomposed pair
in G relative to (M, P ) with :

JP ∩M = J ∩M = Γ× Γ and (λP )|J∩M = γ ⊗ γ.

Proof. Indeed this is Theorem (7.2.17) in [BK1], except that we want an actual
equality between representations instead of an equivalence.

From (7.1.16): J ∩M = J(β, A(1)) × J(β, A(2)); but we have arranged A so
that A(1) = A(2) = A0, hence J(β, A(i)) = Γ.

If β belongs to oF we just note that J = JP and J ∩M = U(A0) ×U(A0);
we take the representation σ0 ⊗ σ0 there.

We now assume that β /∈ oF . From (7.1.19), the restriction to H1 = H1(β, A)
of any simple type λ is a multiple of a simple character θ ∈ C(A, 0, β) and the
pair (H1, θ) is a decomposed pair in G relative to (M,P ), satisfying: H1 ∩M =
H1(β, A(1)) ×H1(β, A(2)) and θ|H1∩M = θ(1) ⊗ θ(2), where θ(i) ∈ C(A(i), 0, β) is
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the image of θ under the bijection C(A(i), 0, β) ≈−→ C(A, 0, β) given by Theorem
(3.6.14). Since the family of bijections given by (3.6.14) is unique and A(1) =
A(2) = A0, we must have θ(1) = θ(2), and from (3.6.14) there is a unique θ ∈
C(A, 0, β) such that θ|H1∩M = θ0 ⊗ θ0.

With this choice of θ, the next step towards λ is the choice of a β-extension
κ. From (7.2.5), (7.2.15), (7.2.16), it has the form κ = IndJ

JP
κP where again the

pair (JP , κP ) is decomposed and (κP )|J∩M = κ(1)⊗κ(2), both being β-extensions

of η0. Since (κP )|J∩M is normalized by
(

0 IN

$E 0

)
(7.2.15) and $E intertwines

κ(i), we have κ(1) ' κ(2) ' κ0 ⊗ χ ◦ detB0 in the notation of (5.2.2). Since
κ ⊗ χ−1 ◦ detB is another β-extension we may pick κ in the first place so that
(κP )|J∩M = κ0 ⊗ κ0.

All we have to do now is to tensor κ with σ0 ⊗ σ0 as before (7.2.17). ¤
Corollary. The pair (JP , λP ) is a G-cover of the pair (Γ × Γ, γ ⊗ γ) in M .

The pair (JP , λP ) is a type in G attached to the inertial class [M,π ⊗ π]G.

The first assertion follows from (7.3.2) and the results in [BK2, §7], the second
from Theorem 8.3 in [BK2]. Note that by symmetry – see (7.1.13) – this also
holds for the pair (JP− , λP−), with JP− = (J ∩ P−) H1.

Before turning to the case of self-contragredient supercuspidals in the next
paragraphs, let us fix some more notations and write down some properties that
will be used later on ; they all derive from [BK1, §3.1].

Let U =
(

0 MN (F )
0 0

)
and U− =

(
0 0

MN (F ) 0

)
. We will identify U− with

MN (F ) through
(

0 0

X 0

)
7→ X and U with MN (F ) through

(
0 X

0 0

)
7→ X. We also

use the isomorphisms i+ and i− from MN (F ) to U = 1 + U and U− = 1 + U−
respectively, defined by

i+(X) =
(

I X

0 I

)
, i−(X) =

(
I 0

X I

)
.

Write J1 = J1(β, A), J1 = J1(β, A), J1
− = J1 ∩U−, J1

+ = J1 ∩U (both viewed as
lattices in MN (F )), and similarly for H1, H1. From [BK1, §3.1, 7.1] we have :

J1 = 1 + J1 = i−(J1
−) (J1 ∩M) i+(J1

+),

H1 = 1 + H1 = i−(H1
−) (H1 ∩M) i+(H1

+).

The lattices H1 and J1 are invariant under conjugation by K(B), hence by(
0 IN

$E 0

)
. Hence

J1
− = $EJ1

+ = J1
+$E ; H1

− = $EH1
+ = H1

+$E .

Those lattices in MN (F ) also satisfy :

$EJ1
− ⊂ H1

− ⊂ J1
− ⊂ H1

+ ⊂ J1
+ ⊂ $−1

E H1
+.
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II.2 - Intertwining properties in the self-contragredient case

Let (Γ, γ) = (J(β, A0), λ(β, A0)) be a maximal simple type in GLN (F ) as
above, attached to the inertial class of π. We want to use the decomposed pair
(JP , λP ) given by Proposition II.1 to produce a decomposed pair in Ḡ through
the process described in Proposition I.2. This is easy if Γ is equal to τΓ and
γ∗ equivalent to γ, which implies that π and its contragredient representation
belong to the same inertial class. We actually want to show that the converse is
true up to conjugacy.

Proposition. Let (Γ, γ) be a maximal simple type in GLN (F ) such that
the corresponding inertial class of irreducible supercuspidal representations of
GLN (F ) contains a self-contragredient representation π. We keep the notation
in §II.1 and assume the order A0 is standard.

(i) There exists σ in U(A0) such that Γ is stable under σ̃ : x 7→ σ τx−1σ−1, and
γ is equivalent to γ ◦ σ̃.

(ii) Such an element σ is unique up to left multiplication by Γ. It satisfies:
(a) σ τσ−1 ∈ Γ and $−1

E σ τ$E
τσ−1 ∈ Γ.

(b) The map σ̃ stabilizes H1(β, A0) and J1(β, A0) and we have: θ0 = θ0 ◦ σ̃.
(c) The lattices J1

+, J1
−, H1

+ and H1
− in MN (F ) defined in II.1 are stable under

X 7→ σ τXσ−1.

Example. Assume N = 2 and E is a quadratic extension of F generated by an
element of matrix form

(
0 a

b 0

)
. Then we may take σ =

(
1 0

0 −1

)
; here conjugation

by σ realizes the conjugation of E over F and σ plays an explicit part in the
construction of Ḡ-covers in [BB1], [BB2].

Proof. We call here standard an order whose matrix form is given by [BK1],
(2.5.1) or [Bu1], (1.9). Note that we can always conjugate (Γ, γ) into a maximal
simple type whose associated order is standard. The property we need here is
that A0, being standard and principal, is stable under the map x 7→ τx.

(i) By a theorem of Gelfand and Kazhdan ([GK], Theorem 2), the contragredi-
ent representation of π is equivalent to the representation π∗ defined by π∗(x) =
π( τx−1). Since A0 is stable under τ , the automorphism x 7→ τx−1 transforms
the pair (Γ, γ) = (J(β, A0), λ(β, A0)) into (Γ∗, γ∗) = (J(− τβ, A0), λ(− τβ, A0)),
a maximal simple type underlaid by the simple stratum [A0, n0, 0,− τβ]. Since
π∗ is equivalent to π, those two types, (Γ, γ) and (Γ∗, γ∗), intertwine in GLN (F )
and we may use [BK1], Theorem (5.7.1), to derive that they are conjugate
in GLN (F ). Since the two types are associated to the same order A0, the
proof of loc. cit. actually tells us more: indeed it says that there is an el-
ement σ in U(A0) that conjugates the simple character θ0 ∈ C(A0, 0, β) into
θ∗0 = θ0 ◦ (x 7→ τx−1) ∈ C(A0, 0,− τβ), and that, eventually, that same element
σ conjugates (Γ, γ) into (Γ∗, γ′) where γ′ is equivalent to γ∗ (if γ has level 0, it
says that γ and γ∗ are equivalent).
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(ii) Let σ1 be another such element. The automorphism σ̃1◦σ̃ normalizes (Γ, γ)
and is a conjugation by σ1

τσ−1 that must therefore belong to E×Γ∩U(A0) = Γ
([BK1], (6.2.2)). Then the first part in (a) follows whence σ1 ∈ Γ τσ = Γσ.

For the last part in (a), we use the same argument: the element σ1 = $−1
E σ

also satisfies the conditions in (i) – except that it does not belong to U(A0) –
because $E normalizes (Γ, γ), and the determinant of σ1( τσ1)−1 is 1, whence
the result.

Now, for (b) we only have to note that the element σ produced in the proof
of (i) satisfies the required properties.

The first step in the proof of (c) is the description of J1(β, A) and H1(β, A) in
terms of the lattices in GLN (F ) attached to [A0, n0, 0, β], as in [BK1], (7.1.12).
Since the given lattices in M2N (F ) are the direct sums of their intersections with
the HomF (V (i), V (j)) we use the corresponding block-matrix notation.

Lemma. For any non-negative integer k, we have:

Hk(β, A) =
(

H[ k+1
2 ](β, A0) J[ k

2 ](β, A0)
$EJ[ k

2 ](β, A0) H[ k+1
2 ](β, A0)

)
and

Jk(β, A) =
(

J[ k+1
2 ](β, A0) $−1

E H[ k
2 ]+1(β, A0)

H[ k
2 ]+1(β, A0) J[ k+1

2 ](β, A0)

)
.

Proof. The diagonal blocks are already described in [BK1] Proposition (7.1.12),
(iii). Since the lattices Hk(β, A), Jk(β, A) are invariant under conjugation by(

0 IN

$E 0

)
∈ K(B), all we have to show is Hk(β, A)∩N = J[ k

2 ](β, A0) and Jk(β, A)∩
N− = H[ k

2 ]+1(β, A0). The proof of this goes exactly as in loc. cit.: the equality
is first checked for β a minimal element, then obtained by induction along β. ¤

Since J1
+ = $−1

E J1
− and H1

− = $EH1
+ it is easy, using property (a), to check

that J1
+ and H1

− are stable under the map Σ : X 7→ σ τXσ−1 if J1
− and H1

+ are.
From the lemma we have J1

− = H1(β, A0) and H1
+ = J(β, A0).

We know from (b) that Σ stabilizes H1(β, A0) = 1+H1(β, A0) hence H1(β, A0).
We have J(β, A0) = B0 + J1(β, A0) ([BK1] (3.1.8)) and J1(β, A0) is stable

under Σ by (b), so we have to show that Σ(B0) is contained in J(β, A0). We
know that Σ(Q0) = Σ(B0 ∩P0) is contained in J1(β, A0). Since J(β, A0) = Γ is
invariant under σ̃ we also know that Σ(B×

0 ) is contained in J(β, A0). Our claim
then follows from the fact that B0 is the oE-linear span of B×

0 : B0 = oE [B×
0 ],

as asserted in [Bu1] on page 190 (recall p > 3). ¤

Let S =
(

I 0

0 σ

)
; it belongs to U(A). Define JS = S−1JS and λS(x) =

λ(SxS−1), x ∈ JS , where (J, λ) is the simple type given by Proposition II.1.
Recall that the restriction of λ to H1 = H1(β, A) is a multiple of a simple
character θ ∈ C(A, 0, β) such that (H1, θ) is a decomposed pair in G relative to
(M,P ) with H1 ∩M = H1(β, A0)×H1(β, A0) and θ|H1∩M = θ0 ⊗ θ0.
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Corollary. The representation λS of JS = J(S−1βS, A) is a simple type with
the following properties:

(i) The pair (JS
P , λS

P ) is a decomposed pair in G relative to (M,P ) with :

JS
P ∩M = JS ∩M = Γ× τΓ and (λS

P )|JS∩M ' γ ⊗ γ∗.

The same holds for the pair (JS
P− , λS

P−).
(ii) The groups JS, JS

P and JS
P− are invariant under the involution X 7→ TX−1.

(iii) The group H1(β, A)S is invariant under the involution X 7→ TX−1 and so is
the simple character θS . We have θS

|H1S∩M
= θ0 ⊗ θ∗0.

Indeed, using Iwahori decompositions of those groups, one checks easily that
the invariance of their intersections with M , U and U− derives from the proper-
ties in the proposition.

II.3 - A block-diagonal skew-simple stratum.

The simple character θS ∈ C(A, 0, S−1βS) in the above Corollary is fixed
under the involution X 7→ TX−1; it follows from [St1], Theorem 6.3, that this
character can be viewed as a simple character attached to a skew simple stratum,
namely:

There exists a simple stratum [A, 2n0, 0, δ] in EndF (V ) satisfying δ = − Tδ
such that θS belongs to C(A, 0, δ).

In our situation we want, though, to work with a field extension both stable
under the involution and contained in M . We will thus derive a number of
properties of the above stratum that will lead us to that goal: we will first study
the hermitian structure of V over the field L = F [δ] and show that we can
conjugate δ into a block diagonal element g−1δg (lemma 1); then we will use the
very strong intertwining properties of simple types (lemma 2) to show that we
can pick g in JS .

If δ is equal to 0, then L = F is already contained in M anyway. We thus
assume that δ 6= 0. The involution X 7→ TX induces on L an automorphism of
order 2; let L0 be the fixed field of this automorphism. Then L is a separable
extension of L0 (recall p 6= 2) with

TrL/L0(X) = X + TX (X ∈ L).

Let φ be any non-zero F -linear form on L0; then φ ◦ TrL/L0 is a non-zero F -
linear form on L, invariant under the involution T . We define a non-degenerate
L-anti-hermitian form bφ on V through :

∀a ∈ L, ∀x ∈ V, ∀y ∈ V, < ax, y >= φ ◦ TrL/L0(a bφ(x, y)).

The intersection of EndL(V ) with Sp(V ) is the unitary group U(V, bφ) relative
to that form.
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We first want to find a decomposition of the symplectic F -space V as a direct
sum of maximal isotropic subspaces stable under L; it amounts to showing that
the anisotropic part of the (anti-)hermitian space (V, bφ) is equal to {0}. To show
this we will use lattice duality, and it will actually be easier, as Shaun Stevens
pointed out to us, to work with an hermitian form. We then fix an element u
in L satisfying TrL/L0(u) = 0 and such that valLu = 0 if L/L0 is unramified,
valLu = 1 if L/L0 is ramified, and we define: dφ(x, y) = ubφ(x, y) (x, y ∈ V ).
This is an hermitian form.

Recall ([BK1], (3.5.1)) that the field extensions E = F [β] and L = F [δ] have
the same ramification index and residual degree over F (hence [E : F ] is even).
In particular the self-dual lattice chain (Λi)i∈Z attached to A (II.1) has period
2 over L (by definition of a stratum, those lattices are oL-lattices). For Y an
oL-lattice in V we put :

Y ] = {v ∈ V / < v, Y >⊆ oF } ; Y \ = {v ∈ V / dφ(v, Y ) ⊆ oL}.

We fix φ such that φ(oL0) = oF and φ(p−1
L0

) = p−1
F ; we then have Y \ = Y ] .

Since A0 is standard, we can number the lattice chain (Λ0,i)i∈Z in such a way

that Λ0,0 =




oF
...

oF


. We get the sequence Λ]

1 = Λ−1 ⊃ Λ0 = Λ]
0 ⊃ Λ1 = $LΛ−1,

that reads:
Λ\

1 = Λ−1 ⊃ Λ0 = Λ\
0 ⊃ Λ1 = $LΛ−1.

This is the self-dual slice of the lattice chain in the sense of Morris [M1]. Propo-
sitions 1.7, 1.10 in [M1] tell us that we can find a decomposition of the her-
mitian space (V, dφ) into a direct orthogonal sum V = VH ⊕ Va, where Va is
anisotropic and the anisotropic part of VH is null, such that, for all i ∈ Z :
Λi = Λi ∩ VH ⊕ Λi ∩ Va. We now use the following fact:

Let (W, b) be an anisotropic hermitian space over L. Assume there is an oL-
lattice Y in W satisfying:

– Y = Y \ if L/L0 is unramified;
– Y = $LY \ if L/L0 is ramified.
Then W has dimension 0 or 1 over L.

Remark : The first case is a remark in [MVW], 5.I.1). Both cases rely on
the classification of anisotropic hermitian spaces (see, e.g., [MVW], 1.I.4, or [M1],
1.8); indeed such a configuration cannot occur in two-dimensional spaces.

We can now conclude, since V has even dimension over L as over E, that the
anisotropic part of V is null. Again, from Propositions 1.7, 1.10 in [M1], we can
find a decomposition V = W1 ⊕ W2 into a direct sum of maximal bφ-isotropic
L-subspaces such that:
– for all i ∈ Z, Λi = Λi ∩W1 ⊕ Λi ∩W2;
– the induced lattice chains on W1 and W2 have period 1 over L;
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– Λ1 = Λ0 ∩W1 ⊕$LΛ0 ∩W2.
Let (f1, · · · , fN ) be an oF -basis for (Λi ∩ W1)i∈Z (see definition (1.1.7) in

[BK1]) such that Λ0 ∩W1 = oF f1 + · · ·+ oF fN ; one checks easily that the basis
(fN+1, · · · , f2N ) of W2 defined by < fk, f2N−k+1 >= −1 for 1 6 k 6 N and
< fj , f2N−k+1 >= 0 for 1 6 k 6 N , 1 6 j 6 N and j 6= k, is an oF -basis for
(Λi ∩W2)i∈Z.

Let g be the element of Sp(V ) that sends the canonical basis (e1, · · · , e2N )
on (f1, · · · , f2N ). We started (see II.1) with a decomposition V = V (2) ⊕ V (1)

having the same properties with respect to E as the above decomposition with
respect to L, and (e1, · · · , eN ) is an oF -basis for (Λi ∩ V (2))i∈Z. We thus have
g(Λi ∩V (2)) = Λi ∩W1 for all i ∈ Z, hence, using duals, g(Λi) = Λi, so g belongs
to A×. We sum up what we have just proved :

Lemma 1. There exists an element g in Sp2N (F ) ∩ A× such that g−1δg is
block diagonal, namely

g−1δg =
(

δ0 0
0 − τδ0

)
.

Let us come back now to the simple type (JS , λS) in Corollary II.2, related to
the simple character θS in C(A, 0, S−1βS) = C(A, 0, δ). Its conjugate (JSg, λSg)
is related to the simple character θSg in C(g−1Ag, 0, g−1δg); note that g−1Ag = A
since g belongs to A×. Since g−1δg is block diagonal, the machinery of [BK1],
§7.1 and 7.2 applies: (JSg, λSg) determines equivalent maximal simple types ρ(1)

and ρ(2), attached respectively to the strata [A0, n0, 0, δ0] and [A0, n0, 0,− τδ0];
from [BK1], Theorem 7.2.17, we have: (λSg)U = ρ(1)⊗ ρ(2) (see also terminology
7.2.18, (iii)).

We now recall [BK1], Corollary 7.3.12. Let π′ be any smooth irreducible
representation of G containing λ. Its supercuspidal support consists of unramified
twists of an irreducible supercuspidal representation π of GLN (F ) containing γ,
the maximal simple type we started with in II.2: (Γ, γ) = (J(β, A0), λ(β, A0)).

But π′ contains λ if and only if it contains λSg, hence π also contains the
maximal simple type ρ(1). Since the maximal simple types λ(β, A0) and ρ(1)

intertwine in GLN (F ) and are associated to the same order A0, they are conju-
gate in A×0 ([BK1], Theorem 5.7.1 and its proof). We sum up :

Lemma 2. Let (J(δ0, A0), ρ(1)) be the maximal simple type associated to
(JSg, λSg). There exists an element a in A×0 such that J(δ0, A0) = a−1J(β, A0)a
and ρ(1) ' [λ(β, A0)]

a.

Now the element a above is related as follows to the element g in lemma 1:

Proposition. Let c =
(

a 0

0 τa−1

)
be the element of Sp2N (F ) ∩ A× associated

to a. Then g belongs to the coset cJSg in A×.

Proof. To simplify notation here we let H = JSg = J(g−1δg, A) and µ = λSg.
We use [BK1], Theorem 7.2.17 to produce two decomposed pairs (H1, µ1) and
(H2, µ2) in H such that µ = IndH

H1
µ1 = IndH

H2
µ2.
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For the first one we let µ1 be the natural action of H1 = (H ∩P )H1(g−1δg, A)
on the space of (H ∩ U)-fixed vectors in µ; indeed H1 = (JSg)P , µ1 = (λSg)P .
We obtain a decomposed pair (H1, µ1) relative to (M,P ) with µ = IndH

H1
µ1.

For the second one, we let H2 = (JP )Sg, µ2 = (λP )Sg and obtain a decomposed
pair relative to (g−1Mg, g−1Pg) with µ = IndH

H2
µ2.

We now apply Mackey’s theorem [Ku] to the irreducible representation µ. The
intertwining of µ in H is one-dimensional, hence there exists a unique double coset
H2zH1 in H such that the restrictions of µ1 and µz

2 to their common domain
H1 ∩ z−1H2z intertwine.

Let us look at the induced representation IndA×
H µ. It is irreducible – indeed the

intertwining of µ in A× is contained in the intersection with A× of the intertwin-
ing of the simple character θSg, hence in (HD×H) ∩ A× = H(D ∩ A)×H = H,
where D is the commutant algebra of g−1δg. Applying the same theorem to
IndA×

H1
µ1 = IndA×

H2
µ2 produces a unique double coset H2z

′H1 in A× with the
previous properties. We must have H2zH1 = H2z

′H1, hence the proposition will
follow from:

Claim. g−1c intertwines µ1 and µ2.

First note that the pairs (H1, µ1) and (H2, µ2) are both invariant (up to equiv-
alence of the representations) under the involution x 7→ Tx−1: this follows from
Corollary II.2, since g belongs to Sp(V ).

We have c−1gH2g
−1c = c−1JS

P c, so the pairs (H1, µ1) and (Hg−1c
2 , µg−1c

2 ) are
both decomposed with respect to (M, P ) and the representations µ1 and µg−1c

2

intertwine if and only if their restrictions to H1 ∩M and Hg−1c
2 ∩M intertwine.

Now H1 ∩M = J(g−1δg, A) ∩M = J(δ0, A0)× τJ(δ0, A0) and the restriction
of µ1 there is ρ(1) ⊗ ρ(2), equivalent to ρ(1) ⊗ (ρ(1))∗. On the other hand:

Hg−1c
2 ∩M = c−1(JP ∩M)Sc = (a−1J(β, A0)a)× τ(a−1J(β, A0)a)

and the restriction of µg−1c
2 there is isomorphic to [λ(β, A0)]

a ⊗ ([λ(β, A0)]
a)∗.

We now conclude with lemma 2. ¤

Since c−1g belongs to JSg, then c−1 belongs to g−1JS so we can write g = hc
with h ∈ JS ; note that h belongs to Ḡ since g and c do. Since the elements
g−1δg = c−1h−1δhc and c belong to M , so does h−1δh. Furthermore, since h
belongs to JS , it stabilizes the simple character θS .

We have finally proved that, given any simple stratum [A, 2n0, 0, δ] in M2N (F )
satisfying δ = − Tδ and θS ∈ C(A, 0, δ), there exists an element h ∈ JS ∩ Ḡ such
that h−1δh belongs to M . We conclude:

Theorem. Let θS be the simple character in Corollary II.2. There exists a
simple stratum [A, 2n0, 0, α] in M2N (F ), satisfying α ∈ M and α = − Tα, such
that θS belongs to C(A, 0, α).
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Now write α =
(

α0 0

0 − τα0

)
and note that such an element generates a field

over F if and only if α0 = 0 (case ruled out from the start) or the field K = F [α0]
is a quadratic extension of K0 = F [α2

0].
Recall that the pair (H1(α, A), θS) is a decomposed pair above (H1(α0,A0)×

H1(− τα0, A0), θ0 ⊗ θ∗0) and is T -stable, i.e.:
{

H1(α0, A0)×H1(− τα0,A0) = H1(α0, A0)× τH1(α0, A0)

θS

((
g1 0
0 g2

))
= θ0(g1)θ0( τg−1

2 ).

From [BK1], Proposition 7.1.19, we conclude that the character g 7→ θ0( τg−1) on
H1(− τα0,A0) is the image of θ0 under the canonical transfer of simple characters
from [BK1], Theorem 3.6.14:

C(A0, 0, α0)
≈−→ C(A0, 0,− τα0)

It is difficult here to use the original notations to denote the canonical map;
indeed C(A0, 0,− τα0) is still a set of simple characters attached to α0, but we
change the action of K on the underlying vector space by composing it with τ
and with the Galois conjugacy over K0, denoted by x 7→ x̄. We now use the
following

Fact. Let ψ1, ψ2 be two F -embeddings of K into MN (F ) such that ψ1(K×)
and ψ2(K×) both normalise A0. There exists u in U(A0) such that, for all x in
K, we have ψ2(x) = u−1ψ1(x)u. The canonical transfer map between the set of
simple characters C(A0, m, ψ1(α0)) and C(A0,m, ψ2(α0)) (m in N) is then given
by θ 7→ θu.

(The first assertion above is Lemma 1.6 in [BH1]. The second is so tautological
that it is implicit in [BK1]. In any case properties 3.6.13 in [BK1] are easily
checked.)

We may then choose an element σ in U(A0) such that σ−1xσ = τx̄ for all
x in K. The canonical transfer map from C(A0, 0, α0) to C(A0, 0,− τα0) hence
transforms a simple character µ into the simple character x 7→ µ(σxσ−1). We
get:

Corollary. Let (Γ, γ) be a maximal simple type in GLN (F ) such that the cor-
responding inertial class of irreducible supercuspidal representations of GLN (F )
contains a self-contragredient representation π, and assume the corresponding
principal order A0 is standard. Then either (Γ, γ) has level zero, or the simple
character θ0 underlying it can be attached to a simple stratum [A0, n0, 0, α0] in
MN (F ) with the following properties.
1 –The field F [α0] is a quadratic extension of F [α2

0] – in particular N is even.
2 –Let x 7→ x̄ denote the Galois conjugation of F [α0] over F [α2

0]. There is an
element σ in U(A0) such that σ−1xσ = τx̄ for all x in F [α0]. The simple
character θ0 then satisfies:

θ0(σ τxσ−1) = θ0(x−1) (x ∈ H1(α0, A0)).
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Remark 1. The element σ above satisfies all assumptions in Proposition
II.2 (see the proof of II.2). It is unique up to left multiplication by U(B0), and
σ τσ−1 belongs to U(B0).

Remark 2. We can apply the above fact to the embedding x 7→ τx of K
into MN (F ), and get u in U(A0) such that u−1xu = τx for all x in K. The
transfer map between C(A0,m, α0) and C(A0, m, τα0) is then given by θ 7→ θu.
Since it is also given by θ 7→ θ ◦ τ , any simple character θ in C(A0,m, α0) satifies
θ(g) = θ(u τgu−1). We let ν = σu−1 and combine this with the above Corollary:
we have ν−1xν = x̄ for x ∈ K and θ0(νxν−1) = θ0(x−1) for x in H1(α0, A0).
This is the formulation given in the introduction; it is conjugacy-invariant, hence
the assumption that A0 is standard can be removed there.

Remark 3. One can actually go further along the same lines and show that
f = N/[E : F ] is either even or equal to 1; hence either [E : F ] is equal to N , or
N is a multiple of 4.

III - A sequence of Sp2N (F )-covers

III.1 - Construction of the sequence

We do not need in this paragraph the results obtained in §II.3; their use
would not help. Henceworth we keep the notations and assumptions in §II.2 – in
particular (Γ, γ) is a maximal simple type in GLN (F ), attached to the inertial
class of a self-contragredient supercuspidal representation π, and A0 is standard
– and start with a sequence (Ji, λi)06i64 of G-covers of the pair (Γ × Γ, γ ⊗ γ)
as obtained from Proposition II.1:

(J3, λ3) = (JP , λP ) ; (J2, λ2) = (JP− , λP−) ;

(J1, λ1) = (Js
2 , λs

2) ; (J0, λ0) = (Js
3 , λs

3) with s =
(

0 I
I 0

)
;

(J4, λ4) = (Jc
0 , λc

0) with c =
(

$E 0
0 $−1

E

)
.

Note that the elements s and c normalize (Γ× Γ, γ ⊗ γ). Let us write down the
Iwahori decompositions of the Ji’s to visualize them :

J0 = i−(J1
+) (J ∩M) i+(H1

−) , J1 = i−(H1
+) (J ∩M) i+(J1

−) ,

J2 = i−(J1
−) (J ∩M) i+(H1

+) , J3 = i−(H1
−) (J ∩M) i+(J1

+) ,

J4 = i−(J1
−$E) (J ∩M) i+($−1

E H1
+).

The process in Proposition I.2, applied to the conjugates JS
i of Corollary II.2,

provides us with a corresponding sequence of decomposed pairs
(
JS

i , λ̂S
i

)
in Ḡ,

that we will denote by (Ωi, ωi) to simplify notations; namely:

(Ωi, ωi)06i64 with Ωi = JS
i ∩ Ḡ, Ωi ∩ M̄ = i(Γ) and (ωi )|Ωi∩M̄ = i(γ).
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We have: JS
4 =

(
$−1

E 0

0 σ−1$Eσ

)
JS

0

(
$E 0
0 σ−1$−1

E σ

)
with

(
$−1

E 0

0 σ−1$Eσ

)
=

(
$−1

E 0

0 τ$E

)(
I 0

0 τ$−1
E σ−1$Eσ

)

and we know from Proposition II.2 that τ$−1
E σ−1$Eσ belongs to σ−1Γσ = τΓ.

Hence Ω4 is equal to z−1Ω0z where z =
(

$E 0

0 τ$−1
E

)
belongs to Ḡ. We can thus

derive from the above (Ωi, ωi)06i64 an infinite sequence of decomposed pairs in
Ḡ through :

Ωi+4j = z−jΩiz
j , i ∈ {0, 1, 2, 3}, j ∈ N.

Theorem. The pairs (Ωi, ωi), i ∈ N, are Ḡ-covers of the pair (i(Γ), i(γ)).

Remark. Let (Γ′, γ′) be another maximal simple type attached to the inertial
class of π. From [BK1], (6.2.4), we can find a ∈ GLN (F ) such that Γ′ = Γa,
γ′ = γa. The conjugates of the subgroups in Corollary II.2 by the element
A = i(a) in Sp2N (F ) satisfy analogous properties with respect to (Γ′, γ′). The
process in Proposition I.2 then gives us decomposed pairs above (i(Γ′), i(γ′))
which are Ḡ-covers of (i(Γ′), i(γ′)), as A-conjugates of the above. Hence Theorem
III.1 actually provides us with a construction of a Ḡ-cover of (i(Γ), i(γ)) whether
or not A0 is standard.

The proof of this theorem will occupy the remainder of this paper; it is organ-
ised as follows. From the properties recalled in §II.1 we know that the sequences
Ωi ∩ Ū and Ωi ∩ Ū−, i ∈ N, are respectively increasing and decreasing, with⋃

i∈NΩi = Ū . We can then use [BB1], Theorem I.3.4: to show that the sequence
of decomposed pairs (Ωi, ωi) is actually a sequence of covers, it is enough to show
that each couple of consecutive pairs ((Ωi, ωi), (Ωi+1, ωi+1)), i ∈ N, satisfies one
of three criteria. In the present paragraph we will prove a convenient periodicity
lemma, allowing us to reduce this checking of criteria to the cases i = 0 to 3. For
i = 0 or 2, criterion 1 in loc. cit. is satisfied (III.2). For i = 1 or 3, criterion 2 is
used, but the proof in III.3 takes for granted an intertwining property, property
(?). Part IV is then devoted to proving property (?), or rather Proposition IV.1
which implies the former; for this we will need Theorem II.3, i.e. the stability of
the underlying field extension under the involution T .

Since an appropriate power of $E belongs to $F Γ, the sequence (Ωi, ωi) is
periodic in the sense of [Bl2], Lemma 1, with period 4e(E/F ). Since we would
rather restrict the checking of criteria to the smallest possible number of cases,
we have to generalize this lemma to the case of our element z, which does not
lie in the center of M̄ . Note that although we state the periodicity lemma below
in our present context, it actually holds in the more general situation of [Bl2],
Lemma 1.

Lemma. Let z be an element of M̄ which normalizes Ωi ∩ M̄ = i(Γ) and
such that γ and zγ : x 7→ γ(z−1xz), are equivalent representations of Γ. Let i,
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k ∈ N such that Ωi+k = z−1Ωiz and Ωi+k+1 = z−1Ωi+1z. Let (τ,W ) be a smooth
representation of Ḡ and define, for w ∈ Wωi :

Nτ
i (w) =

∫

Ωi∩Ū−
τ(y) dy

∫

Ωi+1∩Ū

τ(n)w dn.

We have Nτ
i+k = τ(z−1)Nτ

i τ(z), hence Nτ
i+k is injective on Wωi+k if and only

if Nτ
i is injective on Wωi .

Proof. Since z belongs to M̄ we have : Ωi+k ∩ Ū− = z−1(Ωi ∩ Ū−)z and
Ωi+k+1∩Ū = z−1(Ωi+1∩Ū)z. From a change of variables (y, n) 7→ (z−1yz, z−1nz)
in the integral defining Nτ

i+k, we get Nτ
i+k = τ(z−1) Nτ

i τ(z) (indeed the moduli
of the action of z on Ū and Ū− are mutually inverse). The consequence on
injectivity relies on the equality τ(z)Wωi+k = Wωi , due to the fact that, since γ
and zγ are equivalent, the representations ωi and zωi+k of Ωi are equivalent. ¤

Since our present element z =
(

$E 0

0 τ$−1
E

)
satisfies the assumptions in the

lemma, showing injectivity of the operators Nτ
i for i ∈ N amounts to showing it

for i = 0 to 3. In other words (see [Bl2], Proposition 1), we only need to check
the criteria in [BB1], Theorem I.3.4, for i = 0 to 3.

III.2 - Injectivity of Nτ
i for i = 0 or 2

We start with the case i = 2 and will prove that criterion 1 is satisfied, namely:
for any y in Ω3 ∩ Ū , y /∈ Ω2, there is a closed subgroup X of Ω2 ∩ Ū− such

that y−1Xy is contained in Ω2 and has no non-zero fixed vectors under ω2.

We use the groups H1 = H1(β, A) and J1 = J1(β, A) from §II. From our
definitions of J2 and J3, both groups contain H1 and the restrictions of λ2 and
λ3 to H1 are a multiple of the simple character θ which satisfies ([BK1], (7.2.3)):

Fact. For x in J1 ∩ U− and y in J1 ∩ U , the commutator [x, y] = xyx−1y−1

belongs to H1 and the map:

(J1 ∩ U−/H1 ∩ U−)× (J1 ∩ U/H1 ∩ U) −→ C×

(x, y) 7−→ θ ([x, y])

is a perfect duality between those two groups.

We have by definition J2∩U− = J1∩U−, J3∩U− = H1∩U−, J3∩U = J1∩U
and J2 ∩ U = H1 ∩ U . Conjugating by S then gives us a perfect duality:

(JS
2 ∩ U−/JS

3 ∩ U−)× (JS
3 ∩ U/JS

2 ∩ U) −→ C×

(x, y) 7−→ θS ([x, y]) .
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Corollary II.2 states that the involution X 7→ TX−1 on G preserves JS
2 , JS

3 and
the above duality given by θS . From Stevens’s remark in [St1, §4], we conclude
that by restriction to Sp2N (F ) we still have a perfect duality:

(Ω2 ∩ Ū−/Ω3 ∩ Ū−)× (Ω3 ∩ Ū/Ω2 ∩ Ū) −→ C×

(x, y) 7−→ θS ([x, y]) .

Now for x in Ω2 ∩ Ū− and y in Ω3 ∩ Ū , the commutator [x, y] belongs to(
H1 ∩ Ū−)

i(g)
(
H1 ∩ Ū

)
for some g in H1(β, A0), and we have θS ([x, y]) =

θ0(g)2. On the other hand ω2([x, y]) is a multiple of θ0(g). Since H1 is a p-
group with p odd, the perfect duality above implies that, if y /∈ Ω2, the subgroup
y−1

(
Ω2 ∩ Ū−)

y acts in ω2 through a non-trivial character, q.e.d.

The case i = 0 is entirely similar : indeed J1 = sJ2s
−1 and J0 = sJ3s

−1.

III.3 - Injectivity of Nτ
i for i = 1 or 3

Those steps are more involved that the previous ones – indeed, in cases when
J1
± = H1

±, we have Ω2 = Ω3. We start with i = 1 and want to show that criterion
2 is satisfied, i.e.:

there is a compact subgroup K̄ of Ḡ, containing Ω1, such that the Hecke algebra
H(K̄, Ω1, ω1) is supported on Ω1 ∪ Ω1tΩ1 for some t in K̄ satisfying:

t−1i(Γ)t = i(Γ), t−1
(
Ω1 ∩ Ū

)
t = Ω2 ∩ Ū−, t−1

(
Ω1 ∩ Ū−)

t = Ω2 ∩ Ū .

We certainly have Ω1 = t Ω2t
−1 with

t =
(

0 σ

− τσ−1 0

)
= S−1

(
0 I

−σ τσ−1 0

)
S (t ∈ Ḡ).

Note that
(

0 I

−σ τσ−1 0

)
belongs to the coset s (Γ × Γ) from Proposition II.2(a);

hence t normalizes (Ω2 ∩ M̄, i(γ)) and intertwines ω2.
Since J1 = sJ2s

−1 and J2, s and S are contained in K = GL2N (o) (recall A0

is standard), the subgroup generated by Ω1 and Ω2 is contained in the maximal
compact subgroup K̄ = Sp2N (o). Note that working with Ω2 or Ω1 here amounts
to the same since the element t2 belongs to i(Γ). The support of H(Ḡ, Ω2, ω2) is
the Ḡ-intertwining of ω2, criterion 2 hence amounts to showing :

Proposition. We have : IḠ(ω2) ∩ K̄ ⊂ Ω2 ∪ Ω2 t Ω2.

Proof. From Proposition I.2 we know that IḠ(ω2) is contained in IḠ

(
λS

2

)
,

itself contained in IḠ

(
θS

)
, since the restriction of λS

2 to H ′ = S−1H1S is a

multiple of θS .
We must now make an essential use of Shaun Stevens’s results in [St1]. Indeed

the character θS of H ′ is fixed under the involution x 7→ Tx−1. From [St1],
Theorem 6.3, it follows that θS can be viewed as a simple character attached
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to a skew simple stratum, hence satisfies the properties shown in [St1], §3. In
particular we have by [St1], Theorem 3.7:

IḠ

(
θS

)
= IG(θS) ∩ Ḡ.

We thus have the following information on the support we are looking for :

IḠ(ω2) ∩ K̄ ⊂ IG(θS) ∩ K̄.

From [BK1], (5.1.1) and (5.5.11), the intertwining of θ is equal to JB×J =
JW̃J , where W̃ is the affine Weyl group of B× relative to the basis given in loc.
cit. Assume for a moment that [E : F ] = N . Since B× is isomorphic to GLi(E)
with i[E : F ] = 2N , we are considering in this case the affine Weyl group of
GL2(E), whose intersection with a maximal compact subgroup has at most two
elements, so IG(θ)∩K consists of the two double classes J and JsJ and we get:

(?) IḠ(ω2) ∩ K̄ ⊂ (JS ∪ JStJS) ∩ K̄.

We now drop our assumption on [E : F ] and get on with our proof assuming
that (?) holds.

Since J = i−(J1
−) (J ∩M) i+(J1

+) = (J2 ∩U−)(J2 ∩M)(J3 ∩U) = J2J3, the
group Ω = JS∩Ḡ satisfies Ω = (Ω2∩Ū−)(Ω2∩M̄)(Ω3∩Ū) = Ω2Ω3 = Ω2(Ω3∩Ū).
Furthermore we have:

Lemma. JS t JS ∩ Ḡ = Ω t Ω.

Proof. Since t(JS ∩ U−)t−1 is contained in JS ∩ U , we have

JS t JS = (JS ∩ U) t (JS ∩M)(JS ∩ U).

We apply [St2], Theorem 2.3, to the automorphism x 7→ Tx−1 of G, the pro-p-
subgroup JS ∩ U , and the subgroup H = (JS ∩M) ∪ t (JS ∩M). Condition
(2.1) in [St2] is easily checked, hence

JS t JS ∩ Ḡ = (Ω ∩ Ū) t (Ω ∩ M̄)(Ω ∩ Ū) = Ω tΩ. ¤

At this point we know: IḠ(ω2) ∩ K̄ ⊂ Ω ∪ Ω t Ω. Now note that the above
argument can be applied in exactly the same way to the representation ω3 of
Ω3; indeed JS

3 also contains H ′. We thus get IḠ(ω3) ∩ K̄ ⊂ Ω ∪ Ω tΩ, with the
pleasant feature that Ω tΩ = Ω3 tΩ3 since Ω ∩ Ū = Ω3 ∩ Ū .

We now use [BK1], (4.1.5) : for i = 2, 3, the dimension of the subspace of
the Hecke algebra H(Ḡ,Ωi, ωi) supported on Ω (resp. Ω tΩ) is equal to the
dimension of the subspace of the Hecke algebra H(Ḡ, Ω, IndΩ

Ωi
ωi) supported on

Ω (resp. Ω t Ω). But the argument in §III.2 shows that the induced representation
of ωi to Ω is irreducible, hence the first dimension – dimension of the subspaces
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supported on Ω – is equal to 1. Furthermore the two induced representations
IndΩ

Ωi
ωi, i = 2, 3, are isomorphic (use for instance Mackey restriction formula,

plus the irreducibility and the fact that the representations ω2 and ω3 coincide
on Ω2∩Ω3), so the second dimension – dimension of the subspaces supported on
Ω tΩ – is the same for i = 2 and i = 3. For i = 3 it is equal to 1, because any
intertwining between ω3 and ωt

3 must intertwine the irreducible representation
i(γ), then it is also equal to 1 for i = 2, and since t does intertwine ω2 we get
the required property. ¤

The last case left, i = 3, is dealt with exactly in the same manner, after
observing that Ω4 = q Ω3q

−1 with :

q =
(

0 − τσ τ$−1
E

σ−1$E 0

)
= S−1

(
− τσ τ$−1

E σ−1$E 0

0 I

)
wS, w =

(
0 $−1

E

$E 0

)
.

Again we have J4 = wJ3w
−1. Furthermore, let y =

(
0 I

$E 0

)
; then:

yJ1y
−1 = J4, yJ2y

−1 = J3, yJ3y
−1 = J2 and ysy−1 = w.

So we can repeat the previous argument, and we obtain a formula analogous
to (?), where we replace K by (Ky)S , ω2 by ω3, t by q. The lemma becomes
JS q JS ∩ Ḡ = Ω q Ω, with the same proof except that the roles of U and U−

are exchanged. Since Ω is contained in (Ky)S , the last part of the argument also
follows through after exchanging the roles of ω2 and ω3. The proof of Theorem
III.1 is now complete, provided we prove (?) in part IV below.

Remark. Along the lines of the above proof we might get on to show that
the Hecke algebra of the pair (Ω2, ω2) for instance, in Ḡ, is the algebra with
generators Tt and Tq (elements with support the double coset respectively of t
and q) and relations the quadratic relations satisfied by Tt and Tq (they belong to
a two-dimensional subalgebra). We cannot expect though that these quadratic
relations be the same as the relations satisfied by Ts and Tw in the Hecke algebra
of the pair (J2, λ2) in G – and it is not to be expected either ! For instance,
for N = 2, the Ḡ-covers constructed in [BB1] are, in the self-contragredient case,
instances of the above (Ω2, ω2). The corresponding Hecke algebras are described
in [BB2]; one can check there that the quadratic relations are, in a number of
cases, different from the ones in GL4(F ).

IV - Glauberman’s correspondence and intertwining

We must in this last part complete the proof of Theorem III.1, that is, establish
the property (?) in III.3, as well as the analogous property needed in the last
case (i = 3) in III.3. We will first show that these properties follow from a bound
on intertwining, namely proposition IV.1 (compare [BK1], Proposition 5.5.11).
To prove this proposition, we will detail in IV.2 properties of the representations
involved and use the argument in [BK1], Proposition 5.3.2, to reduce the proof to
a very precise intertwining assertion: Proposition IV.3. At last we will establish
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that assertion using Glauberman’s correspondence together with arguments from
[BK1], §5.1 and 5.2.

IV.1 - Intertwining and Weyl group

We must now use the full content of Theorem II.3, so we change notations
in this last part, both to simplify them and to stick to the notations in [BK1].
We call (J, λ), θ, and so on, what we previously called (JS , λS), θS and so on
(Corollary II.2), call β the element in MN (F ) previously called α0 and call β̃ the
element in M2N (F ) previously called α in Theorem II.3, i.e. β̃ =

(
β 0

0 − τβ

)
.

We know that (J, λ) = (J(β̃, A), λ(β̃, A)) is a simple type attached to the
simple stratum [A, 2n0, 0, β̃] and the simple character θ ∈ C(A, 0, β̃). Recall that
J , λ and θ are stable under the involution X 7→ TX−1. We will abbreviate
H1 = H1(β̃, A) and the same for, e.g., J1, when there is no risk of confusion.

We let E be the field F [β] in MN (F ) and B0 be its commutant; we still call
E the field embedding F [β̃] in M2N (F ) and call B its commutant. The crucial
fact is that the embedding F [β̃] of E in M2N (F ) is stable under the involution
T and B̄× is a unitary group (§II.3).

Let W be the affine Weyl group of B̄× relative to the subgroup of diagonal
matrices. We have B̄× = Ū(B)WŪ(B), since Ū(B) contains a standard Iwahori
subgroup of B̄×. As in [BK1] §5.5, we let M(B)× be the intersection with M of
B×.

Let I(λ) be the representation of J̄ defined by I(λ) = IndJ̄
J̄P

λ̂P (notation
defined in I.2). We already know (III.3) that its intertwining is contained in
JB×J = J1B×J1 (recall J = U(B)J1). Since B is now stable under T we can
use fully [St1], Theorem 3.7, to get: J1B×J1 = J̄1B̄×J̄1. We will prove in the
next paragraphs the following proposition:

Proposition. The intertwining of I(λ) is contained in J̄1NB̄×(M(B)×)J̄1,
equal to J̄NW (M(B)×)J̄ .

To derive property (?) we need only note that the normalizer of M(B)× in W
is equal to (Ū(B) ∩W ) W2 (Ū(B) ∩W ) with

W2 =
{(

$i
E 0

0 τ$−i
E

)
, i ∈ Z

}
∪

{(
0 $i

Eσ

− τ$−i
E

τσ−1 0

)
, i ∈ Z

}
,

where σ is an element in U(A0) satisfying the property in Corollary II.3 (or σ = I
in the level zero case).

The intersection of W2 with any compact subgroup has at most two elements.
It follows that the intersection with any compact subgroup of the intertwining of
I(λ) contains at most two J̄-double classes, q.e.d.

IV.2 - A one-dimensional intertwining space
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To prove the above proposition we have to collect informations on the rep-
resentation I(λ). We need more notation. We let J− = J ∩ U− = J1 ∩ U−,
J+ = J∩U = J1∩U , JM = J∩M , J1

M = J1∩M , H− = H1∩U−, H+ = H1∩U ,
H1

M = H1 ∩M , and so on. We define the auxiliary subgroups J1
P = H−J1

MJ+

and K = H−H1
MJ+. We will move around the following diagram (where arrows

mean inclusion):

J̄ =J̄−J̄M J̄+ I(κ)
induction ↗ ↖ extension

ĩ(κ0) J̄P = H̄−J̄M J̄+ J̄1 = J̄−J̄1
M J̄+ I(η)

extension ↖ ↗ induction

J̄1
P =H̄−J̄1

M J̄+ η̂P = ĩ(η0)
↑ Heisenberg

K̄ =H̄−H̄1
M J̄+ ĩ(θ0)

↑ extension

H̄1 =H̄−H̄1
M H̄+ ĩ(θ0)

Here, for any subgroup N of Ḡ admitting an Iwahori decomposition with
respect to (M,P ), we denote by ĩ(µ) the representation of N trivial on N ∩ U−

and N ∩ U and with restriction i(µ) to N ∩ M , whenever it makes sense. We
define I(κ) = IndJ̄

J̄P
ĩ(κ0) and I(η) = IndJ̄1

J̄1
P
ĩ(η0). We let ηP be the representation

η|J1
P

of J1
P in the space of J̄+-fixed vectors in η, as in [BK1] §7.2. By definition of

η̂P (proposition I.2) we have ĩ(η0) = η̂P . Furthermore, since the representation
ĩ(σ0) of J̄ is trivial on J̄1, we have:

λ̂P = ˜i(κ0 ⊗ σ0) = ĩ(κ0)⊗ ĩ(σ0)

hence I(λ) = IndJ̄
J̄P

λ̂P ' (IndJ̄
J̄P

ĩ(κ0))⊗ ĩ(σ0) = I(κ)⊗ ĩ(σ0).

We need the following properties:

Proposition.
(i) The representations I(κ) and I(η) are irreducible.
(ii) The restriction of I(κ) to J̄1 is isomorphic to I(η).
(iii) The representation I(η) is the Heisenberg representation above (H̄1, ˜i(θ0)).
(iv) The intertwining of I(η) is equal to J̄1B̄×J̄1 and for any g in J̄1B̄×J̄1 the

dimension of the intertwining space Ig(I(η), J̄1) is equal to 1.

Proof. The irreducibility of I(η) is a consequence of the fact in III.2 and (ii)
follows from Frobenius reciprocity. For (iii) the argument is in [St1, §4].

(iv) is more intricate but the proof is entirely in [BK1]. We recall the main
points. First of all we already know that the intertwining is contained in J̄1B̄×J̄1
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so we may assume that g belongs to B̄×. Since I(η) is a Heisenberg representa-
tion, the argument in [BK1], 5.1.8, 5.1.9, reduces us to proving that

[J̄1 : J̄1 ∩ (J̄1)g] = [H̄1 : H̄1 ∩ (H̄1)g]

namely lemma 5.1.10 in [BK1], but for Ḡ instead of G. Using the Cayley transform
x 7→ (1 + x/2)(1 − x/2)−1, which is defined on (J 1)− = {X ∈ J 1/ TX = −X}
and establishes bijections between (J 1)− and J̄1, (H1)− and H̄1, and so on (see
[St3]), we replace the equality to be proved by

[(J 1)− : (J 1)− ∩ ((J 1)−)g] = [(H1)− : (H1)− ∩ ((H1)−)g].

(the Cayley transform on P is easily seen to preserve subgroup indices).
Now the proof of loc. cit. applies mutatis mutandis: all exact sequences

there remain exact after replacing each lattice involved, say Z , by Z− = {X ∈
Z/ TX = −X}. Indeed, since g belongs to B× and satisfies g = Tg−1, all the
lattices involved are T -invariant; furthermore, the map aβ is easily seen to com-
mute with the involution T and from [St3], Lemma 2.1.1, we may (and must
here) choose a corestriction s that also commutes with T . ¤

We are now in a position to work out the intertwining of I(λ). Let g belong to
W and intertwine I(λ); we have to show that g normalizes M(B)×. Since I(λ)
is isomorphic to I(κ)⊗ ĩ(σ0) and the following two facts hold:
– ĩ(σ0) is trivial on J̄1;
– dim Ig(I(η), J̄1) = 1;
we can imitate the proof of [BK1], Proposition 5.3.2, to get that any non-zero
intertwining operator in Ig(I(λ), J̄) has the form S ⊗ R with S ∈ Ig(I(η), J̄1)
and R an endomorphism in the space of ĩ(σ0).

Let us use Proposition IV.3 below: for any T -stable minimal oE-order Bm

contained in B, the operator S also intertwines the restriction of I(κ) to the
subgroup Ū1(Bm)J̄1 (use one-dimensionality for I(η)). Again as in loc. cit.,
this implies that R belongs to Ig(ĩ(σ0), Ū1(Bm)J̄1).

Proposition IV.1 now follows from:

Lemma. Let g ∈ W intertwine the restriction of ĩ(σ0) to Ū1(Bm)J̄1 for any
T -stable minimal oE-order Bm contained in B. Then g normalizes the group
M(B)×.

Proof. Indeed we almost recognize [BK1], Proposition 5.5.5, that again we will
imitate. The sequence of lemmas there holds unchanged, so we assume g does
not normalize M(B)× and produce an hereditary order B′

0, with radical Q′
0,

and a parabolic subgroup Q of GLN (F ), with unipotent radical N = 1+N, such
that:

(i) B′
0 ⊂ B0; B′

0 ∩N = Q′
0 ∩N * Q0; g−1(Q′

0 ∩N) g ⊂ Q0;
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(ii) the image of 1 + Q′
0 ∩ N in U(B0)/U1(B0) is the unipotent radical of a

proper parabolic subgroup of U(B0)/U1(B0).
Indeed, in the notations of loc. cit., B′

0 is B̄, contained in some Bi, and one
can decompose V i into a direct sum V i = W 1⊕W 2 of E- vector spaces such that
L̄1 ∩W 1 = L̄0 ∩W 1 and L̄1 ∩W 2 = $EL̄0 ∩W 2; then N = HomE(W 2,W 1) ⊂
EndEV i satisfies the assumptions. Furthermore, since g belongs to B̄×, we can
as well assume here that Bi = B1.

We put B′ = B′
0⊕ τB′

0; hence (B′)× is contained in M and equal to U(B′
0)×

τU(B′
0). We put Q′ = Q′

0 ⊕ τQ′
0. Since g belongs to B̄× we still have

g−1 (1 + [Q′
0 ∩N⊕ τ(Q′

0 ∩N)]) g ⊂ 1 + Q and 1 + Q′ ⊂ U(B).

We now pick a T -stable minimal oE-order Bm contained in B′ + Q. Then
1 + Q′ ⊂ 1 + Qm = U1(Bm).

Assume then that g does intertwine the restriction of ĩ(σ0) to Ū1(Bm)J̄1; then
there is a non-zero operator R in the space of the representation such that:

∀x ∈ (Ū1(Bm)J̄1) ∩ (Ū1(Bm)J̄1)g R ◦ ĩ(σ0)(x) = ĩ(σ0)(gxg−1) ◦R.

This relation holds in particular for x = g−1i(y)g with y ∈ 1 + Q′
0 ∩N, because

x belongs to J̄1 and i(y) belongs to Ū1(Bm). We get R = σ0(y) ◦R, which, with
(ii), contradicts the cuspidality of σ0. ¤

Remark. The above lemma itself is the full proof of Proposition IV.1 in the
case of level 0 representations.

IV.3 - Glauberman’s correspondence

This last paragraph will be devoted to the proof of the proposition below.

Proposition. Let Bm be a T -stable minimal oE-order in B contained in B.
The restriction of I(κ) to Ū1(Bm)J̄1 has the same intertwining as I(η).

The property we want to prove is invariant under conjugation by B̄×; hence we
may assume (see [BK1], 1.1.9 and 7.1.15) that Bm = (B0,m⊕ τB0,m) + Q where
B0,m is a minimal oE-order in B0 contained in B0. We then have: Ū1(Bm) =
i
(
U1(B0,m)

)
Ū1(B) and

Ū1(Bm)J̄1 = i
(
U1(B0,m)

)
J̄1 = J̄−

[
i
(
U1(B0,m)

)
J̄1

M

]
J̄+.

Looking at the diagram and proposition in IV.2, we find that

I(κ)|Ū1(Bm)J̄1 ' Ind
i(U1(B0,m))J̄1

i(U1(B0,m))J̄1
P

ĩ(κ′0) where κ′0 = κ0|U1(B0,m)J1(β,A0).

It is enough to show that the representations ĩ(κ′0) and ĩ(η0) have the same inter-
twining. Indeed, by [BK1], 4.1.5, we have: IḠ

(
I(κ)|Ū1(Bm)J̄1

)
= J̄1IḠ

(
ĩ(κ′0)

)
J̄1

and IḠ (I(η)) = J̄1IḠ

(
ĩ(η0)

)
J̄1.
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Glauberman’s correspondence is the tool we need here. We recall briefly what
it is in our setting; more general and precise statements can be found in [St1],
§2, or [BH2], §A2, as well as the original references.

Let ε be the involution x 7→ Tx−1 on G, with fixed points Ḡ. For any open
compact pro-p-subgroup H of G which is ε-stable, Glauberman’s correspondence
gives us a unique bijection g: ρ 7→ g(ρ), between the set Irr (H)ε of ε-stable
equivalence classes of smooth irreducible representations of H and the set Irr (H̄)
of equivalence classes of smooth irreducible representations of H̄, characterized
by the property that g(ρ) occurs in ρ|H̄ with odd multiplicity.

Let K be a subgroup of H satisfying the same assumptions as H, let σ ∈
Irr (K)ε and ρ ∈ Irr (H)ε. Then ρ ' IndH

Kσ implies g(ρ) ' IndH̄
K̄

g(σ), and
ρ|K ' σ implies g(ρ)|K̄ ' g(σ).

A crucial property of this correspondence is the following:

Fact. [Stevens [St1], Lemma 2.4] Let ρ ∈ Irr (H)ε, g ∈ Ḡ. The dimension
of Ig(ρ,H) is odd if and only if the dimension of Ig(g(ρ), H̄) is odd.

We now proceed to find the inverse images under Glauberman’s correspon-
dence of the representations ĩ(κ′0) and ĩ(η0). We start a series of lemmas. The
first one is valid for any simple stratum in MN (F ).

Lemma 1. (i) Let [A, n, 0, β] be a simple stratum in MN (F ) and let α ∈ o×F .
Then, for any defining sequence [A, n, ri, γi] for [A, n, 0, β] (see [BK1], 2.4.2), the
sequence [A, n, ri, αγi] is a defining sequence for [A, n, 0, αβ]. In particular we
have J k(β, A) = J k(αβ, A) and Hk(β, A) = Hk(αβ, A).

(ii) The map θ 7→ θ2 is a bijection from C(A,m, 1
2β) onto C(A,m, β) (m ∈ N),

which is compatible with the canonical bijections of [BK1], §3.6. We will denote
the inverse bijection by θ 7→ θ1/2.

Proof. (i) is simple checking. Since the groups Hm+1(β, A) are p-groups with
p odd, (ii) is easily checked by induction along a defining sequence for β. ¤

Let again θ be the simple character that underlies our simple type (J, λ)
and let θ1/2 in C(A,m, 1

2 β̃) be its inverse image under the square map. To
the simple character θ1/2 we attach representations η1/2, κ1/2, and η

1/2
P , κ

1/2
P

in the usual way of [BK1], §5 and 7. For instance, κ1/2 is a representation of
J( 1

2 β̃, A) = J(β̃, A) which is a beta-extension of η1/2; note that we have to
choose one here, while η1/2 is completely determined by θ1/2.

Lemma 2. We still write θ1/2 for the extension of θ1/2 to K trivial on J+.
We have g(θ1/2) ' ˜i(θ0) (on K, K̄) and g(η1/2

P ) ' ĩ(η0) (on J1
P , J̄1

P ).

Proof. The character θ1/2 on K is trivial on J+ and H−; on H1
M it is given

by θ1/2
((

g1 0

0 g2

))
= θ

1/2
0 (g1)θ

1/2
0 ( τg−1

2 ) for g1, τg2 in H1(β, A0) ([BK1], 7.1.19,

and Corollary II.2). We thus have: θ1/2(i(g)) = θ
1/2
0 (g)θ1/2

0 (g) = θ0(g), for
g ∈ H1(β, A0), which proves the first assertion. The restriction of η

1/2
P to K is a
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multiple of θ1/2 so its restriction to K̄ is a multiple of ĩ(θ0); unicity of Heisenberg
representations says that the restriction of η

1/2
P to J̄1

P is then a multiple of ĩ(η0).
¤

Of course Glauberman’s correspondence does not apply to J(β̃, A) which is
not a p-group, nor to JP . But it does apply to the following group, intermediate
between J1

P and JP :

L =
[
U1(B0,m)× τU1(B0,m)

]
J1

P

= H−
[ (

U1(B0,m)J1(β, A0)
)× τ

(
U1(B0,m)J1(β, A0)

)]
J+.

The subgroup L is certainly stable under x 7→ Tx−1; let us check that the re-
striction to L of the representation κ

1/2
P is also stable by this involution, up to

isomorphism. From [BK1], §7.2, κ
1/2
P is trivial on L− and L+ and its restriction

to L∩M has the form κ
1/2
P

((
g1 0

0 g2

))
' κ1(g1)⊗ κ2( τg−1

2 ) where κ1 and κ2 are

both beta-extensions of the Heisenberg representation η
1/2
0 of J1(β, A0) attached

to θ
1/2
0 . Hence κ1 and κ2 differ from a character χ ◦detB0 where χ is a character

of o×E/1 + pE ([BK1], 5.2.2). This implies that κ1 and κ2 agree on U1(B0,m)J1

whence the stability of (κ1/2
P )|L under ε.

Lemma 3. We have g((κ1/2
P )|L) ' ĩ(κ′0) (on L, L̄).

Proof. Both representations have trivial restrictions to L̄− and L̄+ and irre-
ducible restrictions to L̄∩M . So what we have to show is: g((κ1/2

P )|L∩M ) ' i(κ′0).
Let κ

1/2
M = (κ1/2

P )|L∩M ; this is a representation of

L ∩M =
(
U1(B0,m)J1(β, A0)

)× τ
(
U1(B0,m)J1(β, A0)

)
.

Denote by A0,m the unique hereditary oF -order in A0 stable under conjugation
by E× such that A0,m ∩ B0 = B0,m. Let θ

1/2
0,m be the image of θ

1/2
0 under the

canonical tranfer map: C(A0, 0, 1
2β) → C(A0,m , 0, 1

2β), and let η
1/2
0,m be the unique

irreducible representation of J1(β, A0,m) containing θ
1/2
0,m. Let µ

1/2
0 be the unique

extension of η
1/2
0 to L0 = U1(B0,m)J1(β, A0) satisfying

IndU1(A0,m)
L0

µ
1/2
0 ' IndU1(A0,m)

J1(β,A0,m)η
1/2
0,m.

From [BK1], 5.2.6 and 5.1.15 (where µ
1/2
0 is denoted by η̃, or in our context η̃

1/2
0 ),

we have κ
1/2
M ' µ

1/2
0 ⊗ µ

1/2
0

∗
. The induced representations above are irreducible

and loc. cit. implies:

IndU1(A0,m)× τU1(A0,m)
L∩M κ

1/2
M ' IndU1(A0,m)

L0
µ

1/2
0 ⊗ [IndU1(A0,m)

L0
µ

1/2
0 ]∗

' IndU1(A0,m)

J1(β,A0,m)η
1/2
0,m ⊗ [IndU1(A0,m)

J1(β,A0,m)η
1/2
0,m]∗

' IndU1(A0,m)× τU1(A0,m)

J1(β,A0,m)× τJ1(β,A0,m) η
1/2
0,m ⊗ [η1/2

0,m]∗
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Since the representations involved are irreducible, one gets through Glauberman’s
correspondence an isomorphism:

Ind
i(U1(A0,m))
i(L0)

g
(
κ

1/2
M

)
' Ind

i(U1(A0,m))
i(J1(β,A0,m)) g

(
η
1/2
0,m ⊗ [η1/2

0,m]∗
)

.

We already know that g(η1/2
P ) is isomorphic to ĩ(η0) and that i(κ′0) extends

i(η0). Again from loc. cit., the representation i(κ′0) is the unique irreducible
representation of i(L0) extending i(η0) and satisfying:

Ind
i(U1(A0,m))
i(L0)

i(κ′0) ' Ind
i(U1(A0,m))
i(J1(β,A0,m)) i(η0,m).

Hence it is enough to show that g
(
η
1/2
0,m ⊗ [η1/2

0,m]∗
)
' i(η0,m). But the restriction

of η
1/2
0,m ⊗ [η1/2

0,m]∗ to i
(
H1(β, A0,m)

)
is a multiple of

i(g) 7→ θ
1/2
0,m(g)⊗ [θ1/2

0,m]∗( τg−1) =
[
θ
1/2
0,m(g)

]2

= θ0,m(g),

so its image is the Heisenberg representation above i (θ0,m) namely i(η0,m). ¤

End of proof of Proposition IV.3. The intertwining of ĩ(η0) contains the in-
tertwining of ĩ(κ′0) since the second representation restricts to the first. Let us
now take g in IḠ(ĩ(η0) and show that g belongs to IḠ(ĩ(κ′0). The above fact
about intertwining spaces and Glauberman’s correspondence, combined with the
lemmas, gives us:
– g intertwines η

1/2
P (Fact and Lemma 2). Indeed dim Ig(ĩ(η0)) is equal to 1,

from Proposition IV.2 and [BK1], 4.1.5.
– g intertwines κ

1/2
P . Indeed, from [BK1], §7.2, g intertwines η1/2 (induced from

η
1/2
P ), hence g intertwines κ1/2 (that has the same intertwining as η1/2); fur-

thermore J1
P gJ1

P is the unique J1
P -double coset in J1gJ1 that intertwines η

1/2
P

([BK1], 4.1.5 and 5.1.8). Similarly, in JgJ there is a unique JP -double coset
JP bJP that intertwines κ

1/2
P . Since J = JP J− we may assume that b belongs

to J− g J−, hence to J1gJ1. But then, since b also intertwines η
1/2
P , we must

have b ∈ J1
P gJ1

P ; so b ∈ JP gJP whence the result.
– the dimension of Ig(η

1/2
P ) is equal to 1, so is the dimension of Ig((κ

1/2
P )|L)

(again the second representation restricts to the first, by [BK1], §7.2). Hence
g intertwines the image of this representation by the Glauberman correspon-
dence, namely ĩ(κ′0) (Fact and Lemma 3). ¤
Remark. Of course proposition IV.3 says something about the restriction of

I(κ) to a suitable subgroup being a β-extension of I(η). To prove Theorem III.1,
we actually do not need to know whether or not I(κ) itself is a β-extension of
I(η). It should follow from the study of the Hecke algebra of the Ḡ-cover that
the bound on intertwining given by Proposition IV.1 is actually an equality, i.e.
the intertwining of I(λ) is equal to J̄NW (M(B)×)J̄ – see the remark at the end
of III.3.
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