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Abstract

In this note, we introduce monoidal subcategories of the tensor category of finite-dimen-
sional representations of a simply-laced quantum affine algebra, parametrized by arbitrary
Dynkin quivers. For linearly oriented quivers of types A and D, we show that these categories
provide monoidal categorifications of cluster algebras of the same type. The proof is purely
representation-theoretical, in the spirit of [HL1].
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1 Introduction

The theory of cluster algebras has received a lot of attention in the recent years because of its
numerous connections with many fields, in particular Lie theory and quiver representations.

One important problem is to categorify cluster algebras. In recent years, many examples of
additive categorifications of cluster algebras have been constructed. The concept of a monoidal
categorification of a cluster algebra, which is quite different, was introduced in [HL1, Definition
2.1]. If a cluster algebra has a monoidal categorification, we get informations on its structure
(positivity, linear independence of cluster monomials). Conversely, if a monoidal category is a
monoidal categorification of a cluster algebra of finite type, we can calculate the factorization of
any simple object as a tensor product of finitely many prime objects, as well as the composition
factors of a tensor product of simple objects.

In [HL1] we have introduced a certain monoidal subcategory C1 of the category C of finite-
dimensional representations of a simply-laced quantum affine algebra, and we have conjectured
that C1 is a monoidal categorification of a cluster algebra of the same type. This conjecture was
proved in [HL1] for types A and D4, and in [N] for all A,D,E types. The proof in [HL1] relies on
representation theory, and on the well-developed combinatorics of cluster algebras of finite type.
Nakajima’s proof is different and uses additional geometric tools: a tensor category of perverse
sheaves on quiver varieties, and the Caldero-Chapoton formula for cluster variables.
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The categories C1 of [HL1] are associated with bipartite Dynkin quivers. In this note, we
introduce monoidal subcategories Cξ of C associated with arbitrary Dynkin quivers. For types
A and D, we show that the categories Cξ corresponding to linearly oriented quivers provide new
monoidal categorifications of cluster algebras of the same type. The proof is similar to [HL1].
However, the main calculations are much simpler because, for these choices of ξ , the irreducibility
criterion for products of prime representations is more accessible than for the categories C1. This
is why we can also treat in this note the cases Dn (n≥ 5).

In his PhD thesis, Fan Qin [Q] has recently generalized the geometric approach of Nakajima
(partly in collaboration with Kimura), and obtained monoidal categorifications of cluster algebras
associated with an arbitrary acyclic quiver (not necessarily bipartite) using perverse sheaves on
quiver varieties.

Acknowledgments : The first author would like to thank A. Zelevinsky for explaining the
results in [YZ, Y]. The authors are grateful to the referee for useful comments.

2 Cluster algebras and their monoidal categorifications

We refer to [FZ2, K] for excellent surveys on cluster algebras.

2.1 Let 0 6 n < r be some fixed integers. If B̃ = (bi j) is an r× (r− n)-matrix with integer
entries, then the principal part B of B̃ is the square matrix obtained from B̃ by deleting the last n
rows. Given some k ∈ [1,r−n] define a new r× (r−n)-matrix µk(B̃) = (b′i j) by

b′i j =

{−bi j if i = k or j = k,

bi j +
|bik|bk j +bik|bk j|

2
otherwise,

(1)

where i ∈ [1,r] and j ∈ [1,r− n]. One calls µk(B̃) the mutation of the matrix B̃ in direction k. If
B̃ is an integer matrix whose principal part is skew-symmetric, then it is easy to check that µk(B̃)
is also an integer matrix with skew-symmetric principal part. We will assume from now on that B̃
has skew-symmetric principal part. In this case, one can equivalently encode B̃ by a quiver Γ with
vertex set {1, . . . ,r} and with bi j arrows from j to i if bi j > 0 and−bi j arrows from i to j if bi j < 0.

Now Fomin and Zelevinsky define a cluster algebra A (B̃) as follows. Let F = Q(x1, . . . ,xr)
be the field of rational functions in r commuting indeterminates x = (x1, . . . ,xr). One calls (x, B̃)
the initial seed of A (B̃). For 1 6 k 6 r−n define

x∗k =
∏bik>0 xbik

i +∏bik<0 x−bik
i

xk
. (2)

The pair (µk(x),µk(B̃)), where µk(x) is obtained from x by replacing xk by x∗k , is the mutation of
the seed (x, B̃) in direction k. One can iterate this procedure and obtain new seeds by mutating
(µk(x),µk(B̃)) in any direction l ∈ [1,r−n]. Let S denote the set of all seeds obtained from (x, B̃)
by any finite sequence of mutations. Each seed of S consists of an r-tuple of elements of F
called a cluster, and of a matrix. The elements of a cluster are its cluster variables. One does not
mutate the last n elements of a cluster; they are called frozen variables and belong to every cluster.
We then define the cluster algebra A (B̃) as the subring of F generated by all the cluster variables
of the seeds of S . A cluster monomial is a monomial in the cluster variables of a single cluster.
Two cluster variables are said to be compatible if they occur in the same cluster.

2



The first important result of the theory is that every cluster variable z of A (B̃) is a Laurent
polynomial in x with coefficients in Z. It is conjectured that the coefficients are positive.

The second main result is the classification of cluster algebras of finite type, i.e. with finitely
many different cluster variables. Fomin and Zelevinsky proved that this happens if and only if
there exists a seed (z,C̃) such that the quiver attached to the principal part of C̃ is a Dynkin quiver
(that is, an arbitrary orientation of a Dynkin diagram of type A,D,E).

In [FZ3], Fomin and Zelevinsky have shown that the cluster variables of a cluster algebra A
have a nice expression in terms of certain polynomials called the F-polynomials. In type A and D,
explicit formulas for F-polynomials are known.

2.2 The concept of a monoidal categorification of a cluster algebra was introduced in [HL1,
Definition 2.1]. We say that a simple object S of a monoidal category is real if S⊗S is simple.

Definition 2.1. Let A be a cluster algebra and let M be an abelian monoidal category. We
say that M is a monoidal categorification of A if there is an isomorphism between A and the
Grothendieck ring of M such that the cluster monomials of A are the classes of all the real simple
objects of M .

A non trivial simple object S of M is prime if there exists no non trivial factorization S ∼=
S1⊗ S2. By [GLS2, Section 8.2], the cluster variables of A are the classes of all the real prime
simple objects of M . So Definition 2.1 coincides with the definition in [HL1].

As an application, we get information on the cluster algebra, as shown by the following result.

Proposition 2.2. [HL1] If a cluster algebra A has a monoidal categorification, then

(i) every cluster variable of A has a Laurent expansion with positive coefficients with respect
to any cluster;

(ii) the cluster monomials of A are linearly independent.

Assertion (ii) can also be proved by using additive categorification, see the recent [CKLP].
Conversely, if M is a monoidal categorification of a finite type cluster algebra, we can calcu-

late the factorization of any simple object of M as a tensor product of finitely many prime objects,
as well as the composition factors of a tensor product of simple objects of M . Moreover, every
simple object in M is real.

3 Categories of finite-dimensional representations of Uq(Lg)

For recent surveys on the representation theory of quantum loop algebras, we invite the reader to
consult [CH] or [L].

3.1 Let g be a simple Lie algebra of type A,D,E. We denote by I the set of vertices of its Dynkin
diagram, and we put n = |I|. The Cartan matrix of g is the I× I matrix C = (Ci j)i, j∈I . We denote
by αi (i ∈ I) and ϖi (i ∈ I) the simple roots and fundamental weights of g, respectively.

Let ξ : I→ Z be a height function, that is |ξ j−ξi|= 1 if Ci j =−1. It induces an orientation Q
of the Dynkin diagram of g such that we have an arrow i→ j if Ci j =−1 and ξ j = ξi−1. Define

Î := {(i, p) ∈ I×Z | p−ξi ∈ 2Z}.
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3.2 Let Lg be the loop algebra attached to g, and let Uq(Lg) be the associated quantum envelop-
ing algebra. We assume that the deformation parameter q ∈ C∗ is not a root of unity.

The simple finite-dimensional irreducible Uq(Lg)-modules (of type 1) are usually labeled by
Drinfeld polynomials. Here we shall use an alternative labeling by dominant monomials (see
[FR]). Moreover, as in [HL1], we shall restrict our attention to a certain tensor subcategory CZ
of the category of finite-dimensional Uq(Lg)-modules. The simple modules in CZ are labeled by

the dominant monomials in Y = Z
[
Y±1

i,p | (i, p) ∈ Î
]
, that is monomials m = ∏(i,p)∈Î Y ui,p(m)

i,p such

that ui,p(m) > 0 for every (i, p) ∈ Î .
We shall denote by L(m) the simple module labeled by the dominant monomial m.
By [FR], every object M in CZ has a q-character χq(M) ∈ Y . These q-characters generate a

commutative ring K isomorphic to the Grothendieck ring of CZ.
By [FR, FM], we have χq(L(m)) ∈ mZ[A−1

i,p+1](i,p)∈Î where for (i, p) ∈ Î we denote

Ai,p+1 = Yi,pYi,p+2 ∏
j∈I,Ci j=−1

Y−1
j,p+1 ∈ Y .

In particular, an element in K is characterized by the multiplicity of its dominant monomials.
When m is the only dominant monomial occurring in χ ∈ Y , χ is said to be minuscule. We say
that M is minuscule if χq(M) is minuscule. This implies that M is simple.

3.3 Define
Î ξ := {(i,ξi) | i ∈ I}∪{(i,ξi +2) | i ∈ I} ⊂ Î ,

and let Yξ be the subring of Y generated by the variables Yi,p ((i, p) ∈ Î ξ ).

Definition 3.1. Cξ is the full subcategory of CZ whose objects have all their composition factors
of the form L(m) where m is a dominant monomial in Yξ .

When Q is a sink-source orientation, we recover the subcategories C1 introduced in [HL1].
Since Î ξ is a “convex slice” of Î , we get as in [HL2, Lemma 5.8] :

Lemma 3.2. Cξ is closed under tensor products, hence is a monoidal subcategory of CZ.

We denote by Kξ the subring of K spanned by the q-characters χq(L(m)) of the simple
objects L(m) in Cξ . Then Kξ is isomorphic to the Grothendieck ring Rξ of Cξ . Note that this
ring is a polynomial ring over Z with generators the classes of the 2n fundamental modules

L(Yi,ξi), L(Yi,ξi+2), (1 6 i 6 n).

The q-character of a simple object L(m) of Cξ contains in general many monomials m′ which
do not belong to Yξ . By discarding these monomials we obtain a truncated q-character [HL1].
We shall denote by χ̃q(L(m)) the truncated q-character of L(m). One checks that for a simple
object L(m) of Cξ , all the dominant monomials occurring in χq(L(m)) belong to the truncated
q-character χ̃q(L(m)) (the proof is similar to that of [HL1] for the category C1, as for the proof of
Lemma 3.2 above). Therefore the truncation map χq(L(m)) 7→ χ̃q(L(m)) extends to an injective
algebra homomorphism from Kξ to Yξ .

It is sometimes convenient to renormalize the (truncated) q-character of L(m) by dividing it
by m, so that its leading term becomes 1. The element of Y thus obtained is called a renormalized
(truncated) q-character.

Define a partial ordering� on Y by χ � χ ′ if χ ′−χ is an N-linear combination of monomials.
In particular, we have χ̃q(M)� χq(M) for M in Cξ .
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3.4 Let J ⊂ I and gJ ⊂ g be the corresponding Lie subalgebra. Let Î J = Î ∩ (J×Z). For m a
monomial, let mJ = ∏(i,p)∈Î J

Y ui,p(m)
i,p . If mJ is dominant, one says that m is J-dominant. In this

case, let LJ(m) be the sum (with multiplicities) of the monomials m′ occurring in mm−1
J χq(L(mJ))

such that m(m′)−1 is a product of A−1
i,p+1, (i, p)∈ Î J . The image of LJ(m) in Z[Yi,p](i,p)∈Î J

, obtained

by sending the Yi,p to 1 if (i, p) /∈ Î J , is the q-character of the simple Uq(LgJ) labeled by mJ [H2,
Lemma 5.9]. In particular we have the following:

Lemma 3.3. Let m and m′ be two dominant monomials such that L(m)⊗L(m′) is simple. Then
LJ(m)LJ(m′) = LJ(mm′).

For m a dominant monomial one has a decomposition [H1, Proposition 3.1]

L(m) = ∑
m′

λJ(m′)LJ(m′) (3)

where the sum runs over J-dominant monomials m′. The λJ(m′)∈N are unique. This corresponds
to the decomposition of L(m) in the Grothendieck ring of Uq(LgJ)-modules. This decomposition
gives an inductive process to construct monomials occurring in χq(L(m)). Let us start with m0 = m.
Then the monomials m1 of LJ(m0) occur in χq(L(m)). If m1 is J1-dominant (J1 ⊂ I) and if LJ1(m1)
occurs in the decomposition (3), then the monomials m2 of LJ1(m1) occur in χq(L(m)), and we
continue. See [H2, Remark 3.16] for details.

3.5 In this note, we follow the proof of [HL1] to establish that for certain choices of ξ the
category Cξ is a monoidal categorification of a cluster algebra A . Let us recall the main steps (see
[HL1] for details) :

(1) We define a family P of prime simple modules in Cξ and we label the cluster variables of
an acyclic initial seed Σ of A with a subset of P .

(2) We prove that the renormalized truncated q-characters of the representations of P coincide
with the F-polynomials with respect to Σ of all the cluster variables of A .

(3) We prove an irreducibility criterion for tensor products of two representations in P .
(4) By using the following general result, we factorize every simple module in Cξ as a tensor

product of representations in P .

Theorem 3.4. [H4] Let S1, . . . ,SN be simple objects in C . Then S1⊗S2⊗·· ·⊗SN is simple if and
only Si⊗S j is simple for any 1≤ i < j ≤ N.

In the next sections, we follow these steps for a good choice of ξ in types A and D. We conjec-
ture that for arbitrary choices of ξ and for every type A,D,E, Cξ is the monoidal catagorification
of a cluster algebra of the same type. For type A, this can be proved in the same way as explained
in Remark 4.3 (b). For other types, this can be probably established by using the methods in [N].

4 Type A

4.1 Let A be a cluster algebra of type An in the Fomin-Zelevinsky classification. As is well-
known, the combinatorics of A is conveniently recorded in a regular polygon P with n+3 vertices
labeled from 0 to n + 2, see [FZ1, §12.2]. Here, each cluster variable xab (0 6 a < b 6 n + 2) is
labeled by the segment joining vertex a to vertex b. The cluster variables xab for which the segment
[a,b] is a side of the polygon are frozen. Moreover we specialize

x01 = xn+1,n+2 = x0,n+2 = 1.
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The exchange relations (Ptolemy relations) are of the form

xacxbd = xabxcd + xadxbc, (a < b < c < d). (4)

The clusters of A correspond to the triangulations of P. The variables x0i (2 6 i 6 n+1) together
with the n frozen variables xi, i+1 (1 6 i 6 n) form a cluster, whose associated quiver is

x02 → x03 → x04 → ··· → x0,n+1
↓ ↖ ↓ ↖ ↓ ↖ ↖ ↓

x12 x23 x34 · · · xn,n+1

Note that the principal part of this quiver (i.e. the subquiver with vertices the non-frozen variables)
is a quiver of type An with linear orientation. We denote by Σ this particular seed of A .

4.2 Let g be of type An. We will write Y0,p =Yn+1,p = 1 for p∈Z. We choose the height function

ξ (i) := i, (i ∈ I),

corresponding to a quiver Q of type An with linear orientation. We define the following family of
irreducible representations in Cξ :

P := {L(i, j) := L(Yi,iYj, j+2) | 0≤ i≤ j ≤ n+1}.

The simple modules L(i, j) are evaluation representations whose q-characters are known (see
references in [CH]). In particular they are prime. We have χ̃q(L(0, j)) = Yj, j+2 and if i 6= 0
we have

χ̃q(L(i, j)) = Yi,iYj, j+2(1+A−1
i,i+1 +(Ai,i+1Ai+1,i+2)−1 + · · ·+(Ai,i+1Ai+1,i+2 · · ·A j−1, j)−1).

Dividing both sides by Yi,iYj, j+2 and setting ti := A−1
i,i+1, we see that this formula for the renor-

malized truncated q-characters coincides with the formula for F-polynomials computed in [YZ,
Example 1.14]. It is easy to deduce from this that we have the following relations in Rξ (also
obtained in [MY]) :

[L(i,k)][L( j, l)] = [L(i, l)][L( j,k)]+ [L(i, j−1)][L(k +1, l)] if 0≤ i < j ≤ k < l ≤ n+1. (5)

Therefore, comparing with (4), we see that the assignment

xab 7→ [L(a,b−1)], (0 6 a < b 6 n+2)

extends to an isomorphism from the cluster algebra A to the Grothendieck ring Rξ . This isomor-
phism maps the seed Σ to

L(0,1) → L(0,2) → ··· → L(0,n)
↓ ↖ ↓ ↖ ↖ ↓

L(1,1) L(2,2) · · · L(n,n)

where the L(i, i) (1≤ i≤ n) correspond to frozen variables.
We say that (i,k) and ( j, l) are crossing if and only if i < j ≤ k < l or j < i ≤ l < k. Other-

wise, we say that (i,k) and ( j, l) are noncrossing. The next proposition is similar to the classical
irreducibility criterion for prime representations of Uq(Lsl2), except that here, spectral parameters
are replaced by nodes of the Dynkin diagram.
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Proposition 4.1. The module L(i, j)⊗L(k, l) is simple if and only if (i, j) and (k, l) are noncross-
ing.

Proof — The “only if” part follows from (5). We prove the “if” part. Let M = Yi,iYj, j+2Yk,kYl,l+2.
We have χ̃q(L(M)) � χ = χ̃q(L(i, j)⊗L(k, l)). We prove the other inequality. By symmetry, we
are reduced to the following two cases:

(a) if j < k or (k = 0 and i, j≤ l) or (1≤ k≤ i, j = l), then χ contains a unique dominant monomial,
namely M, so L(i, j)⊗L(k, l) is simple.

(b) if 1≤ k ≤ i≤ j < l, then χ contains exactly two dominant monomials, namely M and

M′ = M(Ak,k+1Ak+1,k+2 · · ·A j, j+1)−1.

So it suffices to prove that M′ occurs in χ̃(L(M)). First, by §3.4, the monomial

M′′ = M(Ak,k+1Ak+1,k+2 · · ·Ai−1,i)−1

occurs in χ̃(L(M)). Hence LJ(M′′) occurs in the decomposition (3) for J = {i, . . . ,n}. But
L(Yi,−iYj,− j−2)⊗ L(Yi,−i) is minuscule and simple. Hence, by [H3, Corollary 4.11], the tensor
product L(Yi,iYj, j+2)⊗L(Yi,i) is simple, isomorphic to L(Y 2

i,iYj, j+2). So Y 2
i,iYj, j+2(Ai,i+1 · · ·A j, j+1)−1

occurs in χ̃(L(Y 2
i,iYj, j+2)) and M′ occurs in LJ(M′′). 2

Therefore, as explained in §3.5, we get the following:

Theorem 4.2. Cξ is a monoidal categorification of the cluster algebra A of type An.

Remark 4.3. (a) It follows from Theorem 4.2 that when ξi = i, every simple module in Cξ can
be factorized as a tensor product of evaluation representations.

(b) For an arbitrary ξ , a theorem similar to Theorem 4.2 can be proved in an analog but
slightly more complicated way. A subset J = [i, j] ⊂ I (1 ≤ i ≤ j ≤ n) has a natural orientation
induced by ξ . Let J+ (resp. J−) be the set of sources (resp. sinks) of J. The prime objects in Cξ

are the simple modules

L(J) := L

(
∏

k∈J−

Yk,ξk ∏
k∈J+

Yk,ξk+2

)
, L(i) := L(Yi,ξi) , L′(i) := L(Yi,ξi+2).

Note that L(J) is not an evaluation representation if J has several sources or several sinks.

(c) Different choices of ξ yield different subcategories Cξ . These subcategories seem to
be quite similar, but they are not equivalent in general. For example, in type A3, consider the
categories Cξ with ξi = i and Cφ with φ1 = 1, φ2 = 2, φ3 = 1. Both categories are monoidal
categorifications of a cluster algebra of type A3 with 3 coefficients. The category Cφ was studied
in [HL1]. In particular, we the have following relation in the Grothendieck ring of Cφ :

[L(Y1,1Y2,4Y3,1)][L(Y2,2)] = [L(Y1,1)][L(Y3,1)][L(Y2,2Y2,4)]+ [L(Y1,1Y1,3)][L(Y3,1Y3,3)].

But by (5), in the Grothendieck ring of Cξ , a simple constituent of the tensor product of two simple
prime representations can be factorized as a tensor product of at most 2 non trivial representations.
Hence, Cξ and Cφ are not equivalent.
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5 Type D

5.1 Let A be a cluster algebra of type Dn in the Fomin-Zelevinsky classification. The clusters
of A are now encoded by the centrally symmetric triangulations of a regular polygon P with 2n
vertices, labeled by a = 0, 1, . . . ,2n− 1 [FZ1, §12.4] (note that a more modern way to record
the combinatorics of a cluster algebra of type Dn would be by means of a once-punctured n-gone
and tagged arcs [FST]). A segment [a,b] joining two vertices is called a diagonal if it meets the
interior of P, and a side otherwise. Let Θ be the 180◦ rotation of P, and for a vertex a, write
a = Θ(a). Each non frozen cluster variable is labeled by a Θ-orbit on the set of diagonals of P.
More precisely, to each non trivial Θ-orbit ([a,b], [a,b]) (with b 6= a) we attach a single cluster
variable

xab = xab.

But we associate with every Θ-fixed diagonal [a,a] (or diameter) two different cluster variables

xaa 6= xãa.

We may think of [a,a] and [̃a,a] as two different Θ-orbits, supported on the same segment but with
two different colors. Given two Θ-orbits, one of which at least being non trivial, we say that they
are noncrossing if they do not meet in the interior of P. We also declare that two Θ-fixed diagonals
are noncrossing if and only if they have the same support or the same color. A centrally symmetric
triangulation of P is then a maximal subset of pairwise noncrossing Θ-orbits of diagonals. Such
a triangulation always consists of n different Θ-orbits. For instance, for n = 4, the following are
two distinct triangulations{

([1,3], [1,3]), ([2,3], [2,3]), [3,3], ˜[3,3]
}

,
{
([1,3], [1,3]), ([2,3], [2,3]), [3,3], [2,2]

}
.

To the Θ-orbits of the sides [a,b] of P we can also attach some frozen variables xab = xab. We
specialize

x01 = xn−1,0 = 1.

Our initial seed for the cluster algebra A will correspond to the triangulation

{
Θ([a,n−1]) | 1 6 a 6 n−2

}
∪
{

[n−1,n−1], ˜[n−1,n−1]
}

.

More precisely, it is described by the following quiver

x ˜n−1,n−1
← fn−1

↑ ↘
x1,n−1 → x2,n−1 → ··· → xn−3,n−1 → xn−2,n−1 ← xn−2,n−1
↑ ↙ ↑ ↙ ↙ ↑ ↙ ↓ ↗

x12 x23 · · · xn−3,n−2 xn−1,n−1 ← fn

where fn and fn−1 are two additional frozen variables, which can not be encoded by sides of P.
The principal part of the quiver (obtained by removing the frozen vertices xi, i+1 (1 6 i 6 n− 2),
fn−1, fn, and the arrows incident to them) is a Dynkin quiver Q of type Dn, hence A is indeed a
cluster algebra of type Dn in the Fomin-Zelevinsky classification.

One can easily check that, because of this particular choice of frozen variables, A belongs to
the class of cluster algebras studied in [GLS1]. More precisely, let us label the vertices of Q by
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{1, . . . ,n} so that xi,n−1 lies at vertex i for i 6 n−1, and x ˜n−1,n−1
lies at vertex n. Then A is the

same as the algebra attached in [GLS1] to Q and the Weyl group element

w = c2 = (snsn−1sn−2 · · ·s1)2.

It follows from [GLS1, Theorem 16.1 (i)] that A is a polynomial ring in 2n generators. These
generators are the initial cluster variables

zi := xi,n−1 (1 6 i 6 n−1), zn := x ˜n−1,n−1
,

together with the new cluster variables z†
i (1 6 i 6 n) produced by the sequence of mutations

µn ◦µn−1 ◦µn−2 ◦ · · · ◦µ2 ◦µ1. (6)

Recall from [FZ1] that, our initial cluster being fixed, the cluster variables of A also have a
natural labelling by almost positive roots. The correspondence is as follows. First, the Θ-orbits of
the initial triangulation are labeled by negative simple roots:

Θ([i,n−1]) 7→ −αi, (1 6 i 6 n−2), [n−1,n−1] 7→ −αn−1, [ ˜n−1,n−1] 7→ −αn.

Any other Θ-orbit x is mapped to the positive root ∑i ciαi, where the diagonals representing x cross
the diagonals representing −αi at ci pairs of centrally symmetric points (counting an intersection
of two diameters of different colors and support as one such pair).

In [YZ, Y], a different labelling for the cluster variables is used. First the choice of an acyclic
initial seed is encoded by the choice of a Coxeter element c. For our choice of initial seed, this
Coxeter element is

c = snsn−1sn−2 · · ·s1.

Next the cluster variables are labeled by weights of the form

cm
ϖi, (i ∈ I, 0 6 m 6 h(i,c)),

where h(i,c) is the smallest integer such that ch(i,c)ϖi = w0ϖi. The correspondence between the
two labellings is as follows. To the fundamental weight ϖi corresponds −αi, and to the weight
cmϖi (m > 1) corresponds the positive root β = cm−1ϖi− cmϖi.

Example 5.1. We illustrate all these definitions in the case n = 4. Here P is a regular octogon,
with vertices labeled by 0,1,2,3,0,1,2,3. Our choice of initial triangulation is{

([1,3], [1,3]), ([2,3], [2,3]), [3,3], ˜[3,3]
}

,

which corresponds to the Coxeter element c = s4s3s2s1. The sixteen Θ-orbits of diagonals (repre-
sented by one of their elements), and the corresponding indexings by almost positive roots, and by
weights, are given in the table below:

[1,3] −α1 ϖ1

[2,3] −α2 ϖ2˜[3,3] −α3 ϖ3

[3,3] −α4 ϖ4

[0,2] α1 c3ϖ1

[1,3] α2 c2ϖ1

[2,2] α3 cϖ3˜[2,2] α4 cϖ4

[0,3] α1 +α2 c3ϖ2

[1,1] α2 +α3 c2ϖ4˜[1,1] α2 +α4 c2ϖ3

[0,0] α1 +α2 +α3 c3ϖ3˜[0,0] α1 +α2 +α4 c3ϖ4

[2,1] α2 +α3 +α4 cϖ2

[2,0] α1 +α2 +α3 +α4 cϖ1

[1,0] α1 +2α2 +α3 +α4 c2ϖ2
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5.2 Let g be of type Dn. We will write Y0,p = Yn+1,p = 1 for p ∈ Z. We choose the height
function ξi = n−1− i if i < n and ξn = 0. This induces a partial order � on {1, . . . ,n} defined by

i≺ j ⇐⇒ ξi < ξ j.

Note that n− 1 and n are not comparable for �. Moreover, for convenience, we extend this to
{0, . . . ,n+1} by declaring that 0 is a maximal element and n+1 a minimal element for �.

We define the following family P of representations in Cξ :

L(i, j) = L(Yi,ξiYj,ξ j+2), (n+1� i� j � 0),

L(i, j)† = L(Yn,0Yn−1,0Yi,ξi+2Yj,ξ j+2), (n−2� j ≺ i� 0).

Since A and Rξ are both polynomial rings over Z with 2n generators, the assignment

zi 7→ [L(n+1, i)] = [L(Yi,ξi+2)], z†
i 7→ [L(i,0)] = [L(Yi,ξi)], (1 6 i 6 n),

extends to a ring isomorphism ι :A ∼→ Rξ . Thus Rξ is endowed with the structure of a cluster
algebra. Moreover, using the T -system equations for calculating the products

[L(Yi,ξi)][L(Yi,ξi+2)] = ziz
†
i ,

and comparing them with the exchange relations involved in the sequence of mutations (6), we can
easily check that the frozen variables of A are mapped by ι to the classes [L(i, i)] = [L(Yi,ξiYi,ξi+2)].
More precisely,

ι( fn−1) = [L(n−1,n−1)], ι( fn) = [L(n,n)], ι(xi,i+1) = [L(i, i)], (1 6 i 6 n−2).

Therefore ι maps the initial seed of A to

L(n+1, n−1) ← L(n−1, n−1)
↑ ↘

L(n+1,1) → L(n+1,2) → ··· → L(n+1, n−2) ← L(n−2, n−2)
↑ ↙ ↑ ↙ ↙ ↓ ↗

L(1,1) L(2,2) · · · L(n+1, n) ← L(n, n)

5.3 Let us compute the truncated q-characters of the representations in P . As in §4.2, the
modules L(i, j) are prime minimal affinizations. We have

χ̃q(L(n+1, j)) = Yj,ξ j+2,

χ̃q(L(i, j)) = Yi,ξiYj,ξ j+2(1+A−1
i,ξi+1 + · · ·+(Ai,ξi+1 · · ·A j−1,ξ j)

−1), (n−1� i),

χ̃q(L(n, j)) = Yn,0Yj,ξ j+2(1+A−1
n,1χ j), (0≤ j ≤ n−2),

where χ j := 1+A−1
n−2,2 + · · ·+(An−2,2 · · ·A j+1,ξ j)

−1. In general the L(i, j)† are not minimal affini-
zations. However, we have:

Lemma 5.2. For n−2� j ≺ i� 0, the representation L(i, j)† is prime and

χ̃q(L(i, j)†)) = Yn,0Yn−1,0Yi,ξi+2Yj,ξ j+2(1+(A−1
n−1,1 +A−1

n,1)χ j +A−1
n−1,1A−1

n,1χiχ j).
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Proof — As χ̃q(L(i, j)†) � χ̃q(L(n, j)⊗L(n− 1, i)) and χ̃q(L(i, j)†) � χ̃q(L(n, i)⊗L(n− 1, j))
there are A,B� χ j and C � χiχ j such that

χ̃q(L(i, j)†) = Yn,0Yn−1,0Yi,ξi+2Yj,ξ j+2(1+A−1
n−1,1A+A−1

n,1B+A−1
n,1A−1

n−1,1C).

From Proposition 4.1 with J = {1, · · · ,n−1}, we have

Yn,0LJ(Yn−1,0Yj,n− j+1)LJ(Yi,n−i+1) = LJ(Yn,0Yn−1,0Yi,n−i+1Yj,n− j+1).

Hence, by §3.4, we have A = χ j. The proof that B = χ j is analog. Similarly, from Proposition 4.1
with J = {1, · · · ,n−2}, we have

LJ(Yn−2,1Yi,n−i+1)LJ(Yn−2,1Yj,n− j+1) = LJ(Y 2
n−2,1Yi,n−i+1Yj,n− j+1).

So
C = (Y 2

n−2,1Yi,n−i+1Yj,n− j+1)−1
χ̃q(L(Y 2

n−2,1Yi,n−i+1Yj,n− j+1)) = χiχ j.

This explicit formula shows that χ̃q(L(i, j)†) can not be factorized and so L(i, j)† is prime. 2

Let P ′ := P \ {L(i, i) | 1 6 i 6 n}. We introduce the following bijection between the non
frozen cluster variables of A and the representations in P ′.

xi j 7→ L( j−1, i), (0≤ i≤ j−2≤ n−3),
xi j 7→ L( j, i)†, (0≤ j < i≤ n−2),
xi i 7→ L(n−1, i), (0≤ i≤ n−2),
x

ĩ i
7→ L(n, i), (0≤ i≤ n−2),

xi,n−1 7→ L(n+1, i), (1≤ i≤ n−2),
x ˜n−1,n−1

7→ L(n+1,n−1),

xn−1,n−1 7→ L(n+1,n).

One can check that under this correspondence, the renormalized truncated q-characters for the
representations in P ′ coincide with the F-polynomials of the cluster variables of A calculated in
[YZ, Y]. One then deduces that this bijection is the restriction of the ring automorphism ι to the
set of non frozen cluster variables.

Example 5.3. We continue Example 5.1. The table below gives the list of cluster variables of
A together with the corresponding representations of P ′ and their truncated q-characters. Here
ti = A−1

i,ξi+1.
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x02 L(1,0) Y1,2(1+ t1)
x03 L(2,0) Y2,1(1+ t2 + t2t1)
x13 L(2,1) Y1,4Y2,1(1+ t2)
x10 L(0,1)† Y1,4Y3,0Y4,0(1+ t3 + t3t2 + t4 + t4t2 + t3t4 +2t3t4t2 + t3t4t2

2 + t3t4t2t1 + t3t4t2
2 t1)

x20 L(0,2)† Y2,3Y3,0Y4,0(1+ t3 + t4 + t3t4 + t3t4t2 + t3t4t2t1)
x2,1 L(1,2)† Y1,4Y2,3Y3,0Y4,0(1+ t3 + t4 + t3t4 + t3t4t2)
x00 L(3,0) Y3,0(1+ t3 + t3t2 + t3t2t1)
x11 L(3,1) Y1,4Y3,0(1+ t3 + t3t2)
x22 L(3,2) Y2,3Y3,0(1+ t3)
x

0̃0
L(4,0) Y4,0(1+ t4 + t4t2 + t4t2t1)

x
1̃1

L(4,1) Y1,4Y4,0(1+ t4 + t4t2)
x

2̃2
L(4,2) Y2,3Y4,0(1+ t4)

x13 L(5,1) Y1,4

x23 L(5,2) Y2,3

x
3̃3

L(5,3) Y3,2

x33 L(5,4) Y4,2

5.4 We now describe which tensor products of representations of P are simple.

Proposition 5.4. We have the following :

(a) Suppose {i,k} 6= {n− 1,n}. Then L(i, j)⊗L(k, l) is not simple if and only if i ≺ k � j ≺ l
or k ≺ i� l ≺ j.

(b) Suppose {i,k} = {n− 1,n}. Then L(i, j)⊗L(k, l) is simple if and only if j = l or i = j or
k = l.

(c) Suppose j ≺ i and l ≺ k. Then L(i, j)†⊗L(k, l)† is simple if and only if j � l ≺ k � i or
l � j ≺ i� k.

(d) Suppose i� n−2 and l ≺ k. Then L(i, j)⊗L(k, l)† is simple if and only if i = j or i≺ j �
l ≺ k or l ≺ k ≺ i≺ j or l ≺ i≺ j � k.

(e) Suppose i≺ n−2 and l≺ k. Then L(i, j)⊗L(k, l)† is simple if and only if i = j or ((i 6= n+1)
and l � j � k) or (i = n+1 and k � j).

Proof — In each case, the proof of non simplicity follows from the identification of truncated
q-characters with F-polynomials in the last section. So we treat only the proof of the simplicity.

(a) The irreducibility is proved as in type A, except for the tensor product

L(n+1,n)⊗L(n+1,n−1)

which is minuscule and so is simple.
(b) If n−2� j = l or i = j or k = l, L(n, j)⊗L(n−1, j) is minuscule and so is simple.
(c) By symmetry, we can assume j � l. Suppose that j � l ≺ k � i and let us prove that

L(i, j)†⊗L(k, l)† is simple. Let M be its highest weight monomial. It suffices to prove that any
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dominant monomial m occurring in χ̃(L(i, j)†)χ̃(L(k, l)†) occurs in χ̃q(L(M)). If A−1
n−1,1 or A−1

n,1 is
not a factor of mM−1, this is proved as for type A. If A−2

n−1,1 is a factor of mM−1, first from §3.4
MA−2

n−1,1 occurs and LJ(MA−2
n−1,1) occurs in the decomposition (3) for J = {1, · · · ,n− 2,n}. But

from type A

LJ(MA−2
n−1,1) = Y−2

n−1,2LJ(Yn,0Yn−2,1Yi,n−i+1Yj,n− j+1)LJ(Yn,0Yn−2,1Yk,n−k+1Yl,n−l+1)

and we can conclude by §3.4. This is analog if A−2
n,1 is a factor. So we can assume that A−1

n,1 and
A−1

n−1,1 are factors with power 1. Then m is one of the following monomials

MA−1
n,1A−1

n−1,1A−1
n−2,2 · · ·A

−1
j,n− j with multiplicity 5,

MA−1
n,1A−1

n−1,1A−1
n−2,2 · · ·A

−1
l,n−l with multiplicity 2,

MA−1
n,1A−1

n−1,1A−1
n−2,2 · · ·A

−1
k,n−k with multiplicity 1,

MA−1
n,1A−1

n−1,1A−2
n−2,2 · · ·A

−2
j,n− jA

−1
j+1,n− j−1 · · ·A

−1
l,n−l with multiplicity 1.

Then we conclude as above. For example for the last monomial of the list,

M′ := MA−1
n,1A−1

n−2,2 · · ·A
−1
j,n− j

occurs in L{n,n−2,···, j}(M) from type A. Hence M′A j,n− j occurs in L{n−1,n−2,···, j}(MA−1
n,1), but M′

does not. So L{n−1,n−2,···, j}(M′) occurs in the decomposition (3). Since M is a monomial in
L{n−1,n−2,···,1}(M′), we get the result.

(d) and (e) : The proof is analog.
2

Proposition 5.4 implies that the tensor products of representations of P corresponding to
compatible cluster variables are simple. Indeed, two cluster variables are compatible if and only
if the corresponding diagonals in P do not cross (with the convention that diameters of the same
color do not cross each other) [FZ1, §12.4]. This coincides with the conditions of Proposition 5.4.

Example 5.5. We continue Example 5.1. The following table lists the compatible pairs of non
frozen variables of A , and indicates in which case of Proposition 5.4 the corresponding pairs of
simple modules fall.
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(x02, x03) (a) (x02, x00) (a) (x02, x
0̃0

) (a) (x02, x22) (a)
(x02, x

2̃2
) (a) (x02, x23) (a) (x02, x33) (a) (x02, x

3̃3
) (a)

(x03, x00) (a) (x03, x
0̃0

) (a) (x03, x13) (a) (x03, x33) (a)
(x03, x

3̃3
) (a) (x00, x13) (a) (x00, x11) (a) (x00, x22) (a)

(x00, x33) (a) (x
0̃0

, x13) (a) (x
0̃0

, x
1̃1

) (a) (x
0̃0

, x
2̃2

) (a)
(x

0̃0
, x

3̃3
) (a) (x13, x11) (a) (x13, x

1̃1
) (a) (x13, x13) (a)

(x13, x33) (a) (x13, x
3̃3

) (a) (x11, x13) (a) (x11, x22) (a)
(x11, x33) (a) (x

1̃1
, x13) (a) (x

1̃1
, x

2̃2
) (a) (x

1̃1
, x

3̃3
) (a)

(x13, x22) (a) (x13, x
2̃2

) (a) (x13, x23) (a) (x13, x33) (a)
(x13, x

3̃3
) (a) (x22, x23) (a) (x

2̃2
, x23) (a) (x23, x33) (a)

(x23, x
3̃3

) (a) (x33, x
3̃3

) (a) (x00, x
0̃0

) (b) (x11, x
1̃1

) (b)
(x22, x

2̃2
) (b) (x10, x20) (c) (x20, x21) (c) (x13, x10) (d)

(x02, x20) (d) (x22, x21) (e) (x22, x20) (e) (x11, x21) (e)
(x11, x20) (e) (x11, x10) (e) (x00, x20) (e) (x00, x10) (e)
(x

2̃2
, x21) (e) (x

2̃2
, x20) (e) (x

1̃1
, x21) (e) (x

1̃1
, x20) (e)

(x
1̃1

, x10) (e) (x
0̃0

, x20) (e) (x
0̃0

, x10) (e) (x31, x21) (e)

Now, as explained in §3.5, we may conclude that:

Theorem 5.6. Cξ is a monoidal categorification of the cluster algebra A of type Dn.
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