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Let q ∈ C∗ which is not a root of unity and let Uq(g) be a quantum affine algebra
(not necessarily simply-laced or untwisted). Let F be the tensor category of finite-
dimensional representations of Uq(g).
In my talk at the Oberwolfach Workshop, I presented the main result of [7], ex-
pected in various papers of the vast literature about F .

Theorem 1 [7] Let S1, · · · , SN be objects of F . The tensor product S1⊗· · ·⊗SN

is simple if and only if Si ⊗ Sj is simple for any i < j.

The ”only if” part of the statement is known : it is an immediate consequence
of the commutativity of the Grothendieck ring Rep(Uq(g)) of F proved in [5] (see
[6] for the twisted types). The ”if” part of the statement is proved in [7].

The following is an extended version of the introduction of [7].
If the reader is not familiar with the representation theory of quantum affine al-

gebras, he may wonder why such a result is non trivial. Indeed, in tensor categories
associated to ”classical” representation theory, there are ”few” non trivial tensor
products of representations which are simple. For instance, let V, V ′ be non-zero
simple finite-dimensional modules of a simple algebraic group in characteristic 0.
Then, it is well-known that V ⊗V ′ is simple if and only if V or V ′ is of dimension
1. But in positive characteristic there are examples of non trivial simple tensor
products given by the Steinberg theorem. And in F there are ”many” simple
tensor products of non trivial simple representations. For instance, it is proved in
[3] that for g = ŝl2 an arbitrary simple object V of F is real, i.e. V ⊗ V is simple.
Although it is known [10] that there are non real simple objects in F in general,
many other examples of non trivial simple tensor products can be found in [8].

The statement of Theorem 1 has been conjectured and proved by several authors
in various special cases. The result is proved for g = ŝl2 in [3], for a special class
of modules of the Yangian of gln attached to skew Young diagrams in [12], for
tensor products of fundamental representations in [1, 4], for a special class of
tensor products satisfying an irreducibility criterion in [2], for a certain “small”
subtensor category C1 of F when g is simply-laced in [8].
So, even in the case g = ŝl3, Theorem 1 had not been established. Our complete
proof is valid for arbitrary simple objects of F and for arbitrary g.

Let us give a few first comments. Theorem 1 allows to produce simple tensor
products V ⊗ V ′ where V = S1 ⊗ · · · ⊗ Sk and V ′ = Sk+1 ⊗ · · · ⊗ SN . Besides it
implies that S1 ⊗ · · · ⊗ SN is real if we assume that the Si are real in addition to
the assumptions of Theorem 1.

The main ingredients of the proof are the following : the parametrization of
simple objects of F [3], a cyclicity property of tensor product of fundamental
representations [2, 9, 14], the theory of Frenkel-Reshetikhin q-characters [5, 4], a
”filtration” of F by tensor subcategories [8], the notion of truncated q-characters
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[8], a certain property of tensor products of l-weight vectors (analogs of weight
vectors for q-characters) that we establish [7], a compatibility property of inter-
twining operators with a decomposition of q-characters that we establish [7].

Our result is stated in terms of the tensor structure of F . Thus, it is purely
representation theoretical. But we have three additional motivations, related re-
spectively to physics, topology, combinatorics, and also to other structures of F .

First, although the category F is not braided (in general V ⊗ V ′ is not iso-
morphic to V ′ ⊗ V ), Uq(g) has a universal R-matrix in a completion of the tensor
product Uq(g)⊗Uq(g). In general the universal R-matrix can not be specialized to
finite-dimensional representations, but it gives rise to V (z)⊗V ′ → V ′⊗V (z) which
depend meromorphically on a formal parameter z (here the representation V (z) is
obtained by homothety of spectral parameter). From the physical point of view,
it is an important question to localize the zeros and poles of these operators. The
reducibility of tensor products of objects in F is known to have strong relations
with this question. This is the first motivation to study irreducibility of tensor
products in terms of irreducibility of tensor products of pairs of constituents [1].

Secondly, if V ⊗ V ′ is simple the universal R-matrix can be specialized and we
get a well-defined intertwining operator V ⊗ V ′ → V ′ ⊗ V . In general the action
of the R-matrix is not trivial. As the R-matrix satisfies the Yang-Baxter equa-
tion, when V is real we can define an action of the braid group BN on V ⊗N (as
for representations of quantum groups of finite type). It is known [13] that such
situations are important to construct topological invariants.

Finally, in a tensor category, there are natural important questions such as the
parametrization of simple objects or the decomposition of tensor products of simple
objects in the Grothendieck ring. But another problem of the same importance
is the factorization of simple objects V in prime objects, i.e. the decomposition
V = V1⊗· · ·⊗VN where the Vi can not be written as a tensor product of non trivial
simple objects. This problem for F is one of the main motivation in [8]. When we
have established that the tensor products of some pairs of prime representations
are simple, Theorem 1 gives the factorization of arbitrary tensor products of these
representations.

This factorization problem is related to the program of realization of cluster
algebras in Rep(Uq(g)) initiated in [8] when g is simply-laced. A cluster algebra
has a distinguished set of generators called cluster variables. A notion of com-
patibility of cluster variables comes with the definition of cluster algebras (cluster
variables are compatible if they occur in the same seed). A product of compatible
cluster variables is called a cluster monomial. Let us recall the notion of monoidal
categorification due to Leclerc [8]. A tensor category C is said to be a monoidal cat-
egorification of a cluster algebra A, if there is a ring isomorphism φ : K0(C) → A,
where K0(C) is the Grothendieck ring of C, such that φ induces bijections
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{Classes of real simple objects of C} ↔ {Cluster monomials of A},
{Classes of prime real simple objects of C} ↔ {Cluster variables of A}.

If one can establish a monoidal categorification, we get results about A (positiv-
ity, linear independence of cluster monomials) and C (Clebsh-Gordan coefficients,
factorization in prime modules). A cluster algebra A of finite type (ADE) has a
monoidal categorification C1 which is a tensor subcategory of F for Uq(ĝ) where
g has the type of A. This was proved in [8] for types A, D4 and in [11] for the
other types. In the proof of [8], the statement of Theorem 1 for C1 is a crucial step
(the proof of Theorem 1 in this case is drastically simplified; several new technical
ingredients are used in the general case). It reduces the proof of the irreducibility
of tensor products of representations corresponding to compatible cluster variables
to the proof of the irreducibility of the tensor products of pairs of simple represen-
tations corresponding to compatible cluster variables. We plan to use Theorem 1
in the future to establish monoidal categorifications associated to non necessarily
simply-laced quantum affine algebras, involving categories different than the small
subcategories C1 considered in [8, 11].
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