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1 Introduction

Cartan geometries are a solution to the very general question: what is a geometric
structure? Riemannian geometry, conformal geometry and projective geometry are
examples of geometric situations.

The mindset is the following. A Cartan geometry should first be a manifold with
an homogenous space attached to each point. For instance in Riemannian geometry
each point has an attached Euclidean space by equipping the tangent space with the
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Riemannian metric. This data is then equipped with a Cartan connection explaining
how the homogeneous spaces are infinitesimally connected.

When one has two different Cartan geometries, one can ask if they are equivalent.
For instance, when are two Riemannian manifold isometric or at least locally isometric?
This is a deep question known under the general name of the equivalence problem. In
Riemannian geometry, the differential system g =∑

dx2
i asks wether the space is locally

euclidean. It is the case if, and only if, a curvature tensor vanishes. Cartan geometries
give a similar procedure for all the geometries: a curvature tensor vanishes if, and only
if, the space is locally homogeneous.

But when the curvature is not zero, the equivalence problem is harder to solve. What
is the meaning of two curvature on two different spaces being equal? Cartan’s method
for the equivalence problem is a general procedure to study and solve this problem in
many situations. An important example is given by the class of the symmetric spaces:
those are the Riemannian spaces that are not flat but have a parallel curvature tensor.
With Cartan’s method one can verify when two spaces with this property are locally
equivalent or not.

In this course, we will describe Cartan geometries and introduce the local equiva-
lence problem between geometric structures. The main global problem we will deal
with is the classification of smooth Anosov flows on a compact three manifold and,
more generally, of non-compact automorphisms groups acting on a compact manifold
preserving a contact distribution and two transverse lines contained in the contact
plane at each point of the manifold.
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2 Frobenius theorem, Pfaff equations and Cartan’s method

A distribution is a subbundle of the tangent bundle. We describe in this section criteria
in order to obtain submanifolds tangent to a distribution. The main result is Frobenius
theorem which is the foundation for all these integration criteria.

2.1 Frobenius theorem

A reference for this section is [Wa; Sp]. The basic theorem which is the foundation
of the theory is the existence of a local flow defined by a vector field. It is a natural
generalization of the following example.

Example 1 With mild regularity conditions (for instance C 1) a vector field on the real
line can be locally integrated. Let X = α(x) ∂

∂x such a vector field. A solution of the
Cauchy problem f ′

t = X ( ft ) with initial condition f0 = x has a maximal solution defined
on an open interval (ax ,bx) where ax or bx could be infinite. For instance, the field

X = x2 ∂

∂x

can be integrated to ft = x
1−t x . If x = 0 the solution is defined on the whole real line.

Otherwise solutions are defined on intervals defined by t x 6= 1.

Theorem 2.1 (Local flow). Let X be a C 1 vector field on a manifold M. There exists
an open set A = { (t , x) | ax < t < bx } ⊂ R× M and a function φ : A → M (we write
φ(t , x) =φt (x)), such that:

1. φ0 = id (so, in particular, ax < 0 < bx),

2. φt (x), for t ∈ (ax ,bx), is the maximal solution of the equation dφt (x)
dt = X (φt (x))

with the initial condition φ0(x) = x.

We will also use the time-dependent version of the local flow. That is, for a vector
field X t (x) which depends on time defined on an open subsetΩ⊂ R×M there exists a
local solution φt (t0, x0) to the equation

dφt (t0, x0)

dt
= X t (φt (t0, x0)) (1)

with initial condition φ0(t0, x0) = x0.
The flow box theorem gives a local normal form for a vector field (we say we linearize

the vector field in local coordinates) on a manifold:
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Theorem 2.2 (Flow box). Let X be a C 1 vector field on a manifold M. For each x ∈ M
there exists an open set U ⊂ M containing x and a chart φ : U → Rn = {(x1, · · · , xn)|xi ∈ R}
such that φ(x) = 0 and φ∗(X ) = ∂

∂x1
.

Proof. Observe first that the flow lines do not intersect. The idea then is to follow the
flow starting from a hypersurface transverse to the vector field at the point x. The time
will be the first coordinate of an adapted chart.

One can always choose a chart ψ : V → ψ(V ) on a neighborhood V of x so that
ψ(x) = 0 and ψ∗(X (x)) = ∂

∂x1
. Consider the hypersurface containing x defined by

ψ−1((0, x2, · · · , xn)) with (0, x2, · · · , xn) ∈ψ(V ). The existence of the flow implies that for
a relatively compact U ⊂V , there exists ε> 0 such that the flow is defined on (−ε,ε)×U .
Define then σ(x1, x2, · · · , xn) = φx1 (ψ−1((0, x2, · · · , xn))), the flow at time x1 starting at
the point ψ−1((0, x2, · · · , xn)). On a perhaps smaller neighborhood one can invert σ to
obtain a chart satisfying the condition of the theorem. Indeed:

σ∗
(
∂

∂x1
(x1, · · ·xn)

)
= d

dt
φx1 (ψ−1(0, x2, · · · , xn)) (2)

= X (φx1 (ψ−1(0, x2, · · · , xn))) (3)

= X ◦σ(x1, . . . , xn). (4)

Should be an exercise:
In two real dimensions, one can improve the flow box theorem to obtain that two

given vector fields can be normalized to be along coordinates of a chart:

Proposition 2.3. Let X1 and X2 be C 1 vector fields on a two dimensional manifold M
which are linearly independent at every point. For each x ∈ M there exists an open set
U ⊂ M containing x and a chart φ : U → R2 = {(x1, x2)|xi ∈ R} such that φ(x) = 0 and
φ∗(X1) ∈ 〈 ∂

∂x1
〉 and φ∗(X2) ∈ 〈 ∂

∂x2
〉.

Proof. We may suppose that there is a chart ψ : V →ψ(V ) on a neighborhood V of x
so that ψ(x) = 0 and ψ∗(X1(x)) = ∂

∂x1
and ψ∗(X2(x)) = ∂

∂x2
. The proof of the previous

theorem shows that there exists a neighborhood U of x such that each point y ∈ U
is in a unique integral line of X1 passing through a point ψ−1(0, x2(y)) and a unique
integral line of X2 passing through a point ψ−1(x1(y),0). The map φ : U → R2 defined
by y → (x1(y), x2(y)) is C 1 with dφ(x) = id. This defines a coordinate chart in perhaps a
smaller neighborhood.

Distributions on a manifold, that is, subbundles of the tangent bundle are examples
of geometric structures. In the following, for simplicity, we assume that a distribution
D ⊂ T M is of constant rank.
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Definition 2.4. Let D be a distribution on a manifold M. We say that a submanifold
φ : N → M is an integral manifold of D if dφ(Tx N ) ⊂ D(φ(x)) for all x ∈ N .

An important problem is to give conditions so that the dimension of the integral
manifold coincides with the rank of the distribution. If this is the case, any vector field
contained in the distribution will be tangent to an integral manifold and therefore the
Lie bracket of any two vector fields contained in the distribution will also be contained
in the distribution.

Definition 2.5. We say a distribution D generated by vector fields {X1, · · · , Xn} defined on
an open set U of a manifold is involutive if for all i and j , [Xi , X j ] is a vector field in the
distribution.

We can state now the main theorem of this section.

Theorem 2.6 (Frobenius). Let M be an m-dimensional manifold and D a C 1 distribution
of rank n. Then D is involutive if and only if for every x ∈ M there exists a coordinate
chart (x1, · · · , xm) such that D is generated by ∂

∂xi
, for 1 ≤ i ≤ n.

Proof. The case n = 1 is precisely the content of the flow-box theorem. The idea of the
proof for n > 1 is to linearize one of the generating vector fields around x and then chose
a hyperplane transversal to this field at x to obtain a distribution of rank n −1 on it and
then use induction.

Let us start with generating vector fields ( ∂
∂x1

, X2, · · · , Xn) where we linearized the
first field in a coordinate system (x1, y2, · · · ym) which we can suppose to be centred at
0. Here, in order to simplify notations we write ∂

∂x1
for the vector field on the manifold

defined by the corresponding vector field in the chart. The distribution D induces a
distribution D ′ of rank n −1 on the codimension one submanifold N passing through 0
defined by x1 = 0: the distribution D ′ is generated by

X ′
i = Xi −Xi (x1)

∂

∂x1
(5)

for 2 ≤ i ≤ n. Indeed, these vectors are tangent to the transverse submanifold because
X ′

i (x1) = 0. One proves that this distribution is an involutive distribution (exercise). Here,
for simplicity, we suppose that n = 2 and therefore the induced distribution is generated
by a vector field in N . Using the flow-box theorem again, there exists a neighborhood
of 0 in N with coordinates (w2, · · · , wm) such that X ′

2 = ∂
∂w2

. We claim the adapted
coordinates on a neighborhood of 0 in M are

(x1, · · · , xm) = (x1, w2 ◦π, · · · , wm ◦π) (6)
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whereπ is the projection to N along the orbits of ∂
∂x1

(in coordinates we haveπ(x1, y2, · · · ym) =
(y2, · · · ym)). First observe that, for i > 1, X ′

2(xi ) = X ′
2(wi◦π(x1, y2, · · · ym)) = X ′

2(wi (y2, · · · ym))
and therefore by definition of the coordinate chart in N , at points in N we have X ′

2(xi ) = 0
for i > 2 along N . We need to show that X ′

2(xi ) = 0, for i > 2, at all points in a whole
neighborhood of the origin. For that sake we compute

∂

∂x1
X ′

2(xi ) = X ′
2
∂xi

∂x1
+

[
∂

∂x1
, X ′

2

]
(xi ) (7)

which, because the distribution is involutive, can be written as

∂

∂x1
X ′

2(xi ) = X ′
2
∂xi

∂x1
+a1

∂

∂x1
(xi )+a2X ′

2(xi ), (8)

for two functions a1 and a2. The first two terms in the right side are clearly null. We
obtain then the differential equation

∂

∂x1
X ′

2(xi ) = a2X ′
2(xi ). (9)

For each i > 2, this is a first order ordinary differential equation with initial condi-
tion X ′

2(xi ) = 0 at a point (0, x2, · · ·xm). By unicity, X ′
2(xi ) = 0 for all (x1, x2, · · ·xm) in a

neighborhood of the origin.

Remark 2.7. We proved that a distribution is involutive if and only if for each y ∈ M there
exists an integral manifold of maximal dimension equal to the rank of the distribution
passing through y. In local coordinates defined by Frobenius theorem the integral mani-
folds are given locally by (x1, · · · , xn) → (x1, · · · , xn , x0

n+1, · · ·x0
m), where x0

i , for n < i ≤ m,
are constants. In fact, one can prove that there exists a unique maximal connected integral
manifold passing through y (see [Wa]).

2.2 Differential ideals and the equivalence problem

2.2.1 Differential ideals and Frobenius theorem

The formulation of Frobenius theorem using differential forms makes computations
simpler. For this reason we introduce introduce in this section the notion of differential
ideals which will correspond to involutive distributions. Remark, indeed, that if α is a
1-form that annihilates a distribution then, since

dα(X ,Y ) = X (α(Y ))−Y (α(X ))−α([X ,Y ]), (10)
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dα vanishes on the distribution if, and only if, [X ,Y ] also belongs to the distribution.
Let M be an n-dimensional manifold and Ω∗(M) be the set of smooth sections of

the space ΛT∗M , the graded algebra of the exterior powers of the cotangent bundle.
The spaceΩ∗(M) is the space of all the differential forms of M .

Definition 2.8. An algebraic ideal I ⊂Ω∗(M) is an ideal for the exterior algebra.

Definition 2.9. A differential ideal (we will denote it by EDI) I ⊂Ω∗(M) is an homoge-
neous ideal for the exterior algebra which is closed under exterior derivative.

Here, homogeneous ideal means that if α ∈ I and α=α0 +·· ·+αp is its decomposi-
tion with αi ∈Ωi (M) for 0 ≤ i ≤ p then αi ∈ I for all i .

The (algebraic) ideal inΩ∗(M) generated by a 1-form θ is given by all multiples of
this form by functions on the manifold. The differential ideal generated by a 1-form
θ consists of all combinations of θ and dθ. Ideals of this type are studied in Pfaff’s
problem.

A simple case is the ideal generated by a unique closed form. A particular local
description of this ideal, which is simply all multiples of the closed form, is obtained
invoking Poincaré’s lemma.

Lemma 2.10. For any closed (p +1)-form α there exits locally a p-form β such that

α= dβ. (11)

Definition 2.11. Let I be a differential ideal. An integral submanifold is an immersion
φ : N → M such that φ∗ω= 0 for any ω ∈ I .

The most natural example of ideals inΩ∗(M) arises as the ideal ID of forms which
annihilate a distribution D .

There is a correspondence between the distribution D and the ideal ID . If the
distribution is given by k fields, we chose a coordinate system such that at a fixed point
the 1-forms dx1, · · · ,dxk restricted to the distribution are independent, that is, they are
dual to a basis of the distribution at that point. They will then be clearly independent
on a neighborhood. One can write, restricted to the distribution, for k +1 ≤ j ≤ n, dx j =∑k

i=1 c j
i dxi . Therefore one gets (n −k) independent forms dx j −∑k

i=1 c j
i dxi vanishing

on the distribution.
The ideal ID is a differential ideal if, and only, if the distribution is involutive and

Frobenius theorem is stated in this language as the following.1

1See F. Warner, Foundations of differentiable manifolds and Lie groups.
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Theorem 2.12 (Frobenius). Let I be a differential ideal locally (algebraically) generated
by (n −p) independent 1-forms. Then, for each x ∈ M, there exists a unique maximal (of
dimension p) connected integral manifold of I passing through x.

In fact, it suffices that the 1-forms in the statement be of regularity C 1.

Example 1 If the algebraic ideal is generated by a single 1-form θ, then being a differ-
ential ideal means that dθ = θ∧ω, for ω a 1-form. (Hence dθ∧θ = 0.)

Exercise Prove that if θ(x) 6= 0 and θ∧dθ = 0 then, at a neighborhood of x, there exists
a 1-form such that dθ = θ∧α.

Example 2 If the ideal is generated by the 1-form dy −p dx and dp −F (x, y, p)dx in
R3 we obtain one dimensional integral submanifolds which correspond to solutions of
a second order differential equation.

Example 3 A partial differential equation of the form

F

(
xi ,u,

∂u

∂xi

)
= 0 (12)

with 1 ≤ i ≤ n and with certain regularity conditions, can be translated into the problem
of finding integral submanifolds to the ideal generated by du −pi dxi restricted to the
submanifold defined by the function F (xi ,u, pi ) = 0 in R2n+1.

Exercise Consider M = Rn ×Rm with coordinates (x, y) = (x1, · · · , xn , y1, · · · , ym). For
each fixed y = (y1, · · · , ym) ∈ Rm , let ι : Rn → Rm be the canonical embedding. Let ωi be
1-forms on M such that ι∗ωi algebraically generate a differential ideal for each fixed
y ∈ Rm . Then the (algebraic) ideal generated by ωi and dy j for 1 ≤ j ≤ m also is a
differential ideal.

2.2.2 Characteristic distributions

Frobenius theorem for differential ideal, as in 2.12, says that if a differential ideal is
algebraically generated by (n−p) independent one forms then one can find a local coor-
dinate system (x1, · · · , xp , y1, · · · , yn−p ) such that it is locally generated by d y1, · · · ,d yn−p .
The distribution defined locally by y i = const ant is the Frobenius distribution which
is, at each point, dual to the subspace in the cotangent space defined by these forms.
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To a differential ideal I one may associate a distribution D I , called the characteristic
distribution (definition 2.13). If it is of constant rank then one proves it is an involutive
distribution. We call C I , the Cartan system, its dual space in the cotangent space at each
point. It turns out (retraction theorem) that the exterior algebra of the Cartan system
contains generators of the differential ideal and one can write generators of the exterior
differential system using forms on the algebraic ideal generated by C I . This allows
us to reduce the number of variables used in the description of the system analogous
to the case in Frobenius theorem. Indeed, theorem 2.18 establishes that there exists
generators of the ideal I which only depend on the the y-coordinates associated to the
characteristic distribution.

Definition 2.13. Let I be a differential ideal. The characteristic distribution is defined by

D I (x) = {v ∈ Tx M | ιv Ix ⊂ Ix} . (13)

We say that the differential ideal is non-singular if the distribution is of constant rank.

Here Ix is the ideal inΛ∗
x M obtained by evaluating all elements of I at x.

Example In the particular case of a differential ideal generated by only one closed
2-form α the characteristic distribution is given by

D = {v ∈ TM | ιvα= 0} . (14)

For instance, in Rn , the ideal generated by the two form dx1 ∧dx2 +·· ·+dx2p−1 ∧dx2p

has characteristic distribution of dimension n−2p generated by the vectors ∂
∂xi , 2p+1 ≤

i ≤ n.
More generally, one defines the rank of a 2-form α to be the number p satisfying

αp 6= 0 and αp+1 = 0. If the rank is constant the differential ideal generated by a closed
two form is non-singular of dimension n −2p. This can be seen using a normal form of
the 2-form as above at each point.

We can now state Cartan’s result on the integrability of the characteristic distribu-
tions.

Lemma 2.14. The characteristic distribution of a non-singular differential ideal is an
involutive distribution.

Proof. Let I be a differential ideal. From Cartan’s formula LX = d◦ιX + ιX ◦d we obtain
that if X is characteristic then LX I ⊂ I . Suppose now that X and Y are two characteristic
vector fields. From the formula (see equation 47 and Proposition 3.10, pg. 35, in [KoN])

LX ιY − ιY LX = ι[X ,Y ] , (15)
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we that if X and Y are characteristic then [X ,Y ] is characteristic.

Definition 2.15. The annihilator of the characteristic distribution D I ,

C I (x) = {θ ∈ T ∗
x M | θ(v) = 0 v ∈ D I }

is called the Cartan system of I .

The Cartan system describes, at each point, the smallest subspace of T ∗
x M whose

exterior algebra contains generators of the ideal I (x). Although we state it for differential
systems, it is a purely algebraic result valid in the context of an ideal contained in an
exterior algebra.

Theorem 2.16 (retraction theorem). Let I be a non-singular EDI on a manifold M and
C I its Cartan system. Then there exists a set of elements of Λ∗C I which algebraically
generate I . Moreover, C I is the smallest involutive differential system satisfying this
property.

Proof. 1. Suppose J ⊂ T ∗
x M is a subspace such thatΛ∗ J contains generators of I (x).

Then we claim that C I (x) ⊂ J . Indeed, if v ∈ J⊥ and α ∈ I (x) then one can write
α=∑

αi ∧βi with βi ∈Λ∗ J generating I (x). Therefore ιvα=∑
ιvαi ∧βi ∈ I (x) so

that v ∈ D(x) so J⊥ ⊂ D I (x) and we conclude that C I ⊂ J .

2. Suppose thatΛ∗C I (x) does not contains all generators of I (x) and let θ ∈ I (x) be
a minimal degree element which is not inΛ∗C I (x). If v ∈ D I (x), then ιvθ ∈ I (x) is
of lower degree and therefore it belongs to the ideal generated by C I (x).

Let (ei )1≤i≤p be a basis of D(x) and complete it to a full basis of Tx M . Let (θi ) be
the dual basis of T ∗

x M . Observe that the form θ−θ1 ∧ ιe1θ, if written in the basis
(θi ), does not have θ1 in its development2. One can eliminate, in this way, all
terms containing θi for 1 ≤ i ≤ p. We obtain then a form inΛ∗C I (x) which shows
that θ itself is in this space.

Example Consider the differential ideal generated by a 1-form θ. The characteristic
distribution is given by

D = {v ∈ TM | ιvθ = 0, ιv dθ ∈ 〈θ〉 } . (16)

For instance, in Rn , the ideal generated by the 1-form dx2p+1 +xp+1 dx1 +·· ·+x2p dxp

has characteristic distribution of dimension n −2p −1 generated by the vectors ∂
∂xi ,

2For instance, if θ = θ1 ∧θ2 +θ2 ∧θ3 then θ1 ∧ ιe1θ = θ1 ∧θ2
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2p + 2 ≤ i ≤ n. Indeed, observe that in this case, if ιvθ = 0, ιv dθ ∈ 〈θ〉 if and only if
ιv dθ = 0.

Suppose that θ does not vanish on a neighborhood of a point. The condition, for v
such that ιvθ = 0, ιv dθ ∈< θ > is then equivalent to ιv dθ∧θ = 0.

More generally we have the following.

Lemma 2.17. Let θ be a 1-form. Suppose that there exists a number p satisfying dθp∧θ 6=
0 and dθp+1 ∧θ = 0 at each point. Then the differential ideal generated by the 1-form is
non-singular with the characteristic distribution of dimension n −2p −1.

Remark that in the case p = 0, the differential system is involutive and the character-
istic distribution coincides with the distribution kerθ.

In order to prove the claim, first observe that dθp ∧ θ 6= 0 implies that the ideal
generated by θ and dθ has characteristic variety of dimension less than or equal to
n −2p −1, because 2p +1 is the degree of a non-vanishing form in the ideal (which
has generators in the annihilator of the characteristic distribution by the retraction
theorem).

Consider now the map I : kerθ→ T ∗
x M/ < θ > given by the composition of ι : kerθ→

T ∗
x M (defined by ι(v) = ιv dθ) and the projection T ∗

x M → T ∗
x M/〈θ〉. Then, by definition,

the characteristic distribution coincides with D = ker I . Also, clearly we have the identity
dimker I +dimIm I = n −1 as θ is non-vanishing. Now, observe that 0 = ιv (dθp+1 ∧θ) =
(p +1)ιv dθ∧dθp ∧θ. Considering the product ιv dθ∧dθp in the exterior algebra of
T ∗

x M/ < θ > we therefore obtain that dimIm I ≤ 2p as dθp is non-vanishing of degree
2p in the exterior algebra of T ∗

x M/ < θ >. This implies that dimker I ≥ n−1−2p and we
conclude that dimD = n −2p −1.

The generalization of Frobenius theorem to EDI is obtained in the following theorem.
It identifies the Cartan system associated to an ideal as giving the relevant coordinates
of the EDI. It shows that the retraction theorem can be implemented with generators
which depend only on a set of variables transverse to the foliation by the characteristic
distribution.

Theorem 2.18. Suppose I is a EDI such that C I is of constant dimension n −p. There
exists local coordinates (x1, · · · , xp , y1, · · · , yn−p ) such that d y1, · · · ,d yn−p generate C I

such that I is generated by forms which depend only on the variables y i , 1 ≤ i ≤ n −p.

Proof. 1. Frobenius theorem guarantees a coordinate system (x1, · · · , xp , y1, · · · , yn−p )
such that, at each point, C I (x) has the basis (d y i )1≤i≤n−p . The retraction theorem
implies that there are generators of I inΛ∗C I . We have to make sure that one can
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choose generators of I which depend only on the y-coordinates and do not have
any dependence on the x-coordinates.

2. Suppose that I is not the full exterior algebraΛ∗M . We may then write a decompo-
sition of the ideal in homogeneous components, starting with degree one forms,
I = I 1+ I 2+·· · . Let (φk ) be a basis of 1-forms of I 1. Our goal is to find a basis (φ′k )
such that L ∂

∂x j
φ′k = 0, for 1 ≤ j ≤ p and all k. From ι ∂

∂x j
φk = 0 we have, for a fixed

j ,
L ∂

∂x j
φk = ι ∂

∂x j
dφk =∑

l
ak

j lφ
l ,

for functions ak
j l (x, y). A new basis is defined by

φk =∑
r

zk
r φ

′r

where the functions zk
r form a basis (indexed by r ) of the space of functions

satisfying the first order ordinary differential system (here j is fixed)

∂zk

∂x j
=∑

l
ak

j l z l .

Indeed, we compute
∑

l ak
j lφ

l =

L ∂

∂x j
φk =∑

r

∂zk
r

∂x j
φ′r +∑

r
zk

r L ∂

∂x j
φ′r =∑

r

∑
l

ak
j l z l

rφ
′r +∑

r
zk

r L ∂

∂x j
φ′r

=∑
l

ak
j lφ

l +∑
r

zk
r L ∂

∂x j
φ′r .

Therefore
∑

r zk
r L ∂

∂x j
φ′r = 0 and the result follows as (zk

r ) is invertible. By the

same argument applied consecutively to each ∂
∂x j we finally obtain a new basis

satisfying L ∂

∂x j
φk = 0 for all j .

3. Now suppose each I r , for r < q , has generators defined with the y-variables.
Consider a basis (ψk ) n of I q modulo the ideal J q−1 generated by all I r , for r < q .
From ι ∂

∂x j
ψk ∈ J q−1 we have, modulo J q−1,

L ∂

∂x j
ψk ≡ ι ∂

∂x j
dψk ≡∑

l
bk

j lψ
l .

13



By the same argument as in the case of 1-forms we obtain finally a basis (ψ′k )
which satisfies

L ∂

∂x j
ψ′k ≡ 0

modulo J q−1. This implies that

L ∂

∂x j
ψ′k =∑

k
ηk

j ∧ωk
j ,

with ηk
j ∈ J q−1 forms which depend only on the y-variables.

We define now forms θk
j such that L ∂

∂x j
θk

j = ωk
j (see proposition 2.31). Then

ψ′′k =ψ′k −∑
k η

k
j ∧θk

j satisfy L ∂

∂x j
ψ′′k

j = 0.

We repeat the same argument for each ∂
∂x j to obtain then a basis which depends

only on the y-coordinates.

2.2.3 The equivalence problem

The equivalence problem in its simplest form is the following. Let M1 and M2 be
manifolds of the same dimension n and {ωi

1} and {ωi
2} be coframe sections, that is, n

independent 1-forms (at every point of the manifold). Does there exist a diffeomorphism

ψ : M1 → M2 such that ψ∗ωi
2 =ωi

1 ? (17)

To answer that question Cartan used the graph method. The idea is to find the
map ψ by its graph in M1 ×M2. The graph is obtained as an integral submanifold of
a differential ideal. In the following theorem we might have manifolds M1 and M2 of
different dimensions.

Theorem 2.19. Let M1 and M2 be manifolds and π1,π2 be the projections of M1 ×M2

onto M1 and M2 respectively. Let (ωi
2)1≤i≤n be a basis of 1-forms of M2 and (ωi

1)1≤i≤n be
a family of forms M1 respectively. If the ideal of forms on M1 ×M2 generated by

π∗
1 (ωi

1)−π∗
2 (ωi

2) (18)

is a differential ideal then, for each pair (x, y) ∈ M1 ×M2, there exists a map φ : U → M2,
defined on a neighborhood of x, such that φ(x) = y and

φ∗(ωi
2) =ωi

1. (19)
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Proof. The generating 1-forms are linearly independent because ωi
2 are linearly in-

dependent. By Frobenius theorem, there exists a unique maximal submanifold G of
dimension n containing a point (x, y) ∈ M1×M2 which is an integral submanifold of the
differential ideal.

We show now that the submanifold is locally a graph. Consider a vector (v1, v2) ∈
TG ⊂ TM1 ×TM2. If (π1)∗(v1, v2) = 0 then v1 = 0 and therefore

π∗
1 (ωi

1)(v1, v2) =ωi
1((π1)∗(v1, v2)) = 0 (20)

which implies (because G is an integral submanifold of the ideal) that π∗
2ω

i
2(v1, v2) = 0.

We conclude that v2 = 0. Therefore T(x,y)G is isomorphic to Tm1 M1 and π1 is a local
diffeomorphism.

Let F : U →G be a local inverse of π1. We have that F (m) = (m,φ(m)) for a certain
functionφ : U → M2(that isφ=π2◦F ). Moreover, asπ∗

1 (ωi
1)−π∗

2 (ωi
2) = 0 on G , we obtain

F∗(π∗
1 (ωi

1)−π∗
2 (ωi

2)) = 0 and therefore ωi
1 =φ∗(ωi

2).

Remark In the theorem, if (ωi
1)1≤i≤n generates T∗M1 then φ is an immersion. If fur-

thermore the dimension of M1 is n then the map φ is a local diffeomorphism.

Example As a first example we show how Poincaré’s lemma can be proved using
Theorem 2.19 . We let θ be a closed form defined on M1 and dx be the canonical form
on M2 = R. Then π∗

1 (θ)−π∗
2 (dx) generates a differential system. Therefore for any

(x, y) ∈ M1 ×R, there exists a map φ : U → R, defined on a neighborhood of x, such that
φ(x) = y and φ∗(dx) = θ. That is θ = dφ.

Example One special case occurs if we suppose that the coframes in M1 and M2 (which
we suppose of the same dimension) both verify the same differential equation with
constant coefficients:

dωi = c i
j kω

j ∧ωk , (21)

with c i
j k constant numbers shared by both M1 and M2. Here we use Einstein convention

of sum of repeated indices. In order to show that the coframes are equivalent we verify
that the algebraic ideal generated by π∗

1ω
i
1 −π∗

2ω
i
2 is a differential ideal:

d
(
π∗

1ω
i
1 −π∗

2ω
i
2

)
=π∗

1 (dωi
1)−π∗

2 (dωi
2) (22)

=π∗
1

(
c i

j kω
j
1 ∧ωk

1

)
−π∗

2

(
c i

j kω
j
2 ∧ωk

2

)
(23)

= c i
j k

(
π∗

1 (ω j
1 ∧ωk

1 )−π∗
2 (ω j

2 ∧ωk
2 )

)
(24)

= c i
j k

((
π∗

1ω
j
1 −π∗

2ω
j
2

)
∧π∗

1ω
k
1 −π∗

2ω
j
2 ∧

(
π∗

2ω
k
2 −π∗

1ω
k
1

))
(25)
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so that the ideal is differential and M1 and M2 are hence locally equivalent.
The case of Lie groups is particularly important. With any left-invariant frame (Xi )

and its coframe (ωi ) we get structure constants c i
j k verifying the preceding condition:

dωi = c i
j kω

j ∧ωk . (26)

A basis of 1-forms (ωi ) on a manifold M is called a parallelism of M . An automor-
phism of a parallelism (ωi ) defined over a manifold M is a diffeomorphism φ : M → M
such that φ∗ωi =ωi . From unicity in the theorem above we obtain the following corol-
lary.

Corollary 2.20. Any automorphism of a parallelism with a fixed point is the identity.

Observe that an automorphism of a parallelism is an isometry of the manifold
equipped with the Riemannian metric defined by imposing that the coframe (ωi ) is
orthonormal.

A parallelism on M defined by a coframe (ωi ) can also be described by a map
ω : TM → Rn which is an isomorphism restricted to the tangent space at any point. We
note then (M ,ω) a manifold equipped with an Rn-valued 1-form defining a parallelism.
One can define a ω-constant vector field associated to X ∈ Rn as the vector field on M
X̃ (x) =ω−1(X ). For each sufficiently small X ∈ Rn we define an exponential map

exp(x, X ) =φ1(x), (27)

where φ1(x) is the flow of X̃ computed at the time 1. The differential of the exponential
map at the origin is the identity and therefore at each point x ∈ M , exp(x, ·) : U → M is a
diffeomorphism between a neighborhood of the origin and its image.

Exercise Let gk ∈ Aut(M ,ω) be a sequence of automorphisms of M equipped with a
parallelism ω : T M → Rn such that there exists x ∈ M such that gk (x) converges. Then
gk converges to an automorphism in the compact-open topology.

Definition 2.21. A Killing field of (M ,ω) is a vector field X on M such that its flow consists
of elements of the automorphism group.

The definition is equivalent to the condition that LXω
i = 0 for all i .

Let ω : T M → Rn define a parallelism on an n-dimensional manifold M . Let (Xi )
be a dual basis corresponding to ω. The definition of a Killing field X is equivalent to
LX Xi = [X , Xi ] = 0 for all i . The set of Killing fields K i l l (M ,ω) is a Lie subalgebra of the
the algebra of vector fields. Observe that it is of dimension less than n = dim M .
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Proposition 2.22. dimK i l l (M ,ω) ≤ dim M

Proof. Indeed, fix a reference point p ∈ M . For each Killing field X consider the vector
X (p) ∈ Tp M . We show that this map is injective and this implies the proposition. But
if X (p) = Y (p) then the difference X −Y generates automorphisms which have a fixed
point at p and therefore should be trivial.

The subalgebra a ⊂ K i l l (M ,ω) generated by the fields whose flows are globally
defined is shown to be the Lie algebra of Aut (M ,ω).

Theorem 2.23. Let A be a group acting on M by diffeomorphisms and let a be the set of
vector fields whose flows are globally defined in A . If a generates a finite dimensional Lie
subalgebra of the Lie algebra of vector fields then A is a Lie group with Lie algebra a.

Proof. Note exp t X the flow generated by a vector field X ∈ a. First prove that the Lie
algebra a∗ generated by a is equal to a (we still don’t know a is a vector space). Indeed,
consider the simply connected Lie group A∗ whose Lie algebra is a∗ (denote by eY ∈ A∗

the element defined by Y ∈ A∗). If X ,Y ⊂ a, then the flow defined by the composition

exp X exp tY exp−X ,

is defined for all t . The corresponding element in the Lie algebra of a∗, Ade X Y , belongs
then to a for all X ,Y ∈ a. Taking the differential of Ade t X Y at the origin, this implies that
adaa⊂ a. It follows that the vector space generated by a is a∗. It remains to show that a
is itself a vector space. For that sake, consider a set of generators of a∗ contained in a,
{X1, · · · , Xn} and the map

a1X1 +·· ·+an Xn → ea1 X1 · · ·ean Xn ∈ A∗.

This is a local diffeomorphism defined on a neighborhood of the zero vector on a∗.
Therefore, for each Y ∈ a∗ one can write, for sufficiently small t ,

exp tY = exp a1(t )X1 · · ·exp an(t )Xn ,

where ai (t ) are unique. Now, for any t one can obtain

exp tY = (exp
t

n
Y )

n
= (exp a1(t/n)X1 · · ·exp an(t/n)Xn)n ,

which is well defined for n sufficiently large.
We might suppose therefore that a is a Lie algebra and that A∗ is the simply con-

nected Lie group (of smooth flows) generated by a. Clearly, A∗ is a normal subgroup of
A as the conjugation of a flow is also a flow. This implies that A has a unique structure
of a Lie group such that A∗ is its identity component (see section I.3 in Kobayashi).
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2.2.4 Pfaff problem and Darboux normal form

Consider a differential ideal on a manifold generated by a 1-form, say θ. One is interested
in giving a normal form for θ by choosing appropriate coordinates. Pfaff’s problem is
the problem of finding integral manifolds of a system θ = 0 where θ is a 1-form. Here
one can multiply the 1-form by a nowhere zero function and the solutions will be the
same. In other terms, one is interested in finding a coordinate chart where the form
has a simple normal form up to a scalar function. The classification of normal forms is
simpler if we impose a constant rank condition on dθ.

Let θ be a 1-form. Recall, from 2.17, that if there exists a number p satisfying
dθp ∧θ 6= 0 and dθp+1 ∧θ = 0 at each point, then the differential ideal generated by
the 1-form is non-singular with the characteristic distribution of dimension n −2p −1.
From theorem 2.18 one can find local coordinates (x1, · · · , xn−2p−1, y1, · · · , y2p+1) such
that θ depends only on the variables y i , 1 ≤ i ≤ 2p +1. Another way to say this is that
θ =π∗(ω) for the projection in the y-coordinates π : Rn → R2p+1 with dωp ∧ω 6= 0 (that
is, ω is a contact form).

In order to find a normal form for θ it is sufficient to find a normal form for a contact
form. This is the content of Darboux’s theorem. We give a proof which uses Moser’s
trick.

Theorem 2.24. Suppose ω is a contact form on a neighborhood of the origin in R2p+1.
Locally, there exists coordinates such that

ω= dy2p+1 + y1 dy2 +·· ·+ y2p−1 dy2p .

Observe then that the Pfaff form θ will have the same normal form. The idea of the
proof is to obtain a local isotopy ψt fixing the origin for all t ∈ [0,1] such that ψ∗

1 maps ω
to the normal form.

Proof. Let ω0 to be the normal form dy2p+1 + y1 dy2 +·· ·+ y2p−1 dy2p and define

ωt = (1− t )ω0 + tω. (28)

First, without loss of generality, adjust the coordinates y i , using linear algebra, so that
dy2p+1 is equal to ω and dω= dω0 at the origin. With these conditions, it is clear that,
for all t , ωt is contact in a small neighborhood of the origin.

We define the isotopy as the flow defined by a time-dependent vector field vt =
ht Rt + yt to be determined, where yt is horizontal with respect to ωt , that is ωt (yt ) = 0
and Rt is the Reeb vector field of the contact form ωt . We impose that this isotopy
satisfies

ψ∗
t ωt =ω0
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for all t ∈ [0,1]. By the lemma 2.4

0 = d

dt

(
ψ∗

t ωt
)=ψ∗

t (ω̇t + ι(vt )dωt +dι(vt )ωt ) . (29)

The equation is satisfied if and only if

ω̇t + ι(vt )dωt +dι(vt )ωt = 0. (30)

Evaluating at Rt we obtain
ω̇t (Rt )+dht (Rt ) = 0. (31)

Here, for every fixed t we have an equation Rt (ht ) =−ω̇t (Rt ), which can be solved on
a small neighborhood for a function ht . We want vt = 0 at the origin so that the origin
is fixed. Note that for every t , ω̇t = 0 at the origin. We may impose then the condition
ht = 0 and dht = 0 at the origin for all t .

Now equation 30 determines the horizontal component yt . Indeed, combined
with equation 31 it implies that ι(yt )dωt =−(ω̇t +dι(Rt )ωt ) and this equation can be
solved for yt because dωt is a non degenerate bilinear form restricted to the contact
distribution kerωt . The fact that the flow fixes the the origin for all t ∈ [0,1] implies
that the flow is well defined on a small neighborhood of the origin for all t ∈ [0,1]. This
concludes the proof.

An immediate consequence of this result is the normal form for symplectic forms.

Theorem 2.25. Le Ω be a closed two form of constant rank p. Then there exists local
coordinates such that

Ω= dx1 ∧dy1 +·· ·+dxp ∧dy p . (32)

Proof. By Poincaré’s theorem one can write locally Ω= dθ. We apply then the previous
theorem to θ and differentiate back.

2.3 Global problems: contact structures

Let M be a closed manifold and let ξ be a contact distribution. Darboux’s theorem
says that there are no local invariants of that structure. The only invariants of such a
structure a global. We will prove in this section a global Darboux’s theorem giving a
normal form of a contact structure along a compact submanifold. Next, we show that
any deformation of the contact structure is equivalent to itself. This is a rigidity theorem
of contact structures and shows that different contact structures on a given manifold
are far apart. Also, we give a description of vector fields whose flows are automorphisms

19



of the contact structure on the manifold. They are in correspondence with functions on
the manifold. This description shows that the group of diffeomorphisms preserving a
contact structure is infinite dimensional.

Two manifolds equipped with contact structures are called contactomorphic if there
exists a diffeomorphism between them which sends one distribution to the other. Let
ψt be an isotopy (a differentiable family of diffeomorphisms with ψ0 = id) of a manifold
M and let X t be the time-dependent vector field on M defined by X t ◦ψt = ψ̇(t ). That
means that ψt is the flow of X t .

The fundamental theorem for global results is the completeness theorem of flows
on a compact manifold:

Theorem 2.26. On a closed manifold the flow of a vector field (time-dependent or not)
exists for all times.

The following theorem contains, as a special case, Darboux’s local form theorem for
contact structures.

Theorem 2.27 (Local structure around a compact). Let M be a manifold and N ⊂ M a
smooth compact submanifold. Suppose ξ0 and ξ1 are (co-oriented) contact structures
on M which coincide on N ( or more generaly ξ0 ∩T N = ξ1 ∩T N ). Then there exists a
neighborhood of N and an isotopy ψt defined over that neighborhood such that ψ0 = id
and ψ1(ξ0) = ξ1 with ψt |N = id.

Proof. The proof follows the same strategy of that of Darboux’s theorem. Suppose ξ0

and ξ1 are given by the 1-forms α0 and α1 respectively which we assume to coincide on
N . A weaker condition is that α0|T N =α1|T N . Define the 1-form

αt = (1− t )α0 + tα1 (33)

which is clearly contact in a neighborhood of N by compactness. Moreover, at every
point of N , αt =α0 when restricted to T N .

Define the isotopy as the flow defined by the time-dependent vector field vt =
ht Rt + yt where Rt is the Reeb field and yt is horizontal with respect to αt , that is
αt (yt ) = 0.

We need
ψ∗

t αt = ftα0 (34)

for all t ∈ [0,1], where ft is a strictly positive function. As in the proof of the local
Darboux theorem, we use the formula

d

dt

(
ψ∗

t αt
)=ψ∗

t (α̇t + ι(vt )dαt +dι(vt )αt ) . (35)
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Equation 34 is satisfied if and only if

α̇t + ι(vt )dαt +dι(vt )αt = ḟt

ft
◦ψ−1

t .αt . (36)

Evaluating at Rt we obtain

α̇t (Rt )+dht (Rt ) = ḟt

ft
◦ψ−1

t =µt . (37)

For a given function ht , µt is determined and by the previous equation dι(vt )αt is
determined which in turn determines yt .

We want vt = 0 on N in order that the isotopy preserves the form along the submani-
fold N . For that sake we impose the condition

α̇t +dht = 0 (38)

along N . As α̇t |T N
= 0, for all t , we can also impose ht = 0 on N and that condition is

compatible with the previous equation.

Theorem 2.28 (Gray). Let ξt be a smooth family of contact structures on a closed mani-
fold. Then there exists an isotopy ψt such that ψ0 = id and ψ1(ξ0) = ξ1.

Proof. Let αt be a smooth family of forms corresponding to ξt . We need to find a family
of diffeomorphisms ψt such that ψ∗

t αt = ftα0. Let vt be the vector field generating the
isotopy. By Lemma 2.4, this is equivalent to

d

dt

(
ψ∗

t αt
)= ḟtα0 = ḟt

ft
ψ∗

t αt =ψ∗
t (α̇t + ι(vt )dαt +dι(vt )αt ) . (39)

So that a necessary and sufficient condition for the existence of the isotopy is that

α̇t + ι(vt )dαt +dι(vt )αt = ḟt

ft
◦ψ−1

t .αt (40)

We impose that vt is horizontal, that is, αt (vt ) = 0. We obtain the condition

α̇t + ι(vt )dαt = ḟt

ft
◦ψ−1

t .αt . (41)

If Rt is the Reeb vector field for αt we have

α̇t (Rt ) = ḟt

ft
◦ψ−1

t , (42)
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Therefore the function ḟt
ft
◦ψ−1

t is determined by the family αt . Going back to equation
41 the vector vt is determined as the form dαt , restricted to the distribution, is non-
degenerate. As the manifold is closed the vector field vt can be integrated to obtain an
isotopy ψt .

A family of automorphisms ψt with ψ0 = I d of a fixed contact structure ξ defines a
vector field ψ̇|0 which is called an infinitesimal automorphism. In order to determine
the infinitesimal automorphisms, observe that we need to impose

ψ∗
t α= ftα,

for the flow ψt of the infinitesimal automorphism v , where α is a form whose kernel is
ξ. Again, by Lemma 2.4, this is equivalent to

d

dt

(
ψ∗

t α
)= ḟtα= ḟt

ft
ψ∗

t α=ψ∗
t (ι(v)dαt +dι(v)αt ) . (43)

A necessary and sufficient condition for the existence of the flow is that

ι(vt )dα+dι(v)α= ḟt

ft
◦ψ−1

t .α. (44)

Write v =λR+vξ where λR is the component of the vector field in the Reeb direction
R and vξ is in the distribution. Then

ι(vξ)dα+dλ= ḟt

ft
◦ψ−1

t .α.

The condition that v is an infinitesimal automorphism is therefore that, restricted to ξ,

dλ=−ι(vξ)dα.

As dα is non-degenerate when restricted to ξ we obtained the following description of
the Lie algebra of infinitesimal automorphisms.

Theorem 2.29. Let ξ be a contact structure on a manifold. Then to any λ ∈ C∞(M)
one associates an infinitesimal automorphism v = λR + vξ where vξ is defined as the
horizontal vector field satisfying dλ|ξ =−ι(vξ)dα. This map is a bijection.

Observe that infinitesimal automorphisms vanishing at a point give rise to a group
of contactomorphisms with a fixed point x0. In fact this group is infinite dimensional.
It suffices to observe that it corresponds to functions λ which vanish at that point and
such that dλ|ξ(x0) = 0. Compare this with what happens in Riemannian geometry, for
instance, where the group of isometries fixing a point is at most O(n) where n is the
dimension of the manifold.

22



2.4 Formulae of exterior differentiation

We recall some definitions and formulae used in these notes.

Definition 2.30. Let X be a vector field and ω a form defined on a manifold M. Define
the Lie derivative as

LXω= d

dt
ψ∗

t ω

∣∣∣∣
t=0

Here ψt is the flow defined by X .

The Lie derivative is a derivation of degree 0, that is, LX (ω∧α) = (LXω)∧α+ω∧(LXα)
for any forms ω and α.

Proposition 2.31. Let X be a vector field and α a form defined on a manifold. Locally,
one can find a form ω such that LXω=α.

Proof. In local coordinates (x1, · · · , xn), given by the flow box theorem 2.2, we write
X = ∂

∂x1 . Write the forms in the appropriate basis obtained using the generators d xi , the

equation LXω=α decomposes into differential equations in the variable x1

dωI

d x1
=αI

corresponding to each coefficient ωI and αI of the forms in the given basis.

Definition 2.32. Let X be a vector. The inner product ιX :Ωi →Ωi−1, i > 0, on the exterior
algebra is defined as a derivation satisfying

• ιXω=ω(X ) for ω a 1-form.

• ιX (ω∧α) = (ιXω)∧α+ (−1)degωω∧ (ιXα) for any forms ω and α.

The following formulae are frequently used:

LXω= ιX dω+dιXω. (45)

L[X ,Y ] = [LX ,LY ]. (46)

[LX , ιY ] = ι[X ,Y ]. (47)

Lemma 2.33. Let ωt be a time-dependent family of differential forms on M. Then

d

dt

(
ψ∗

t ωt
)=ψ∗

t

(
ω̇t +LX tωt

)
. (48)
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Proof. If ωt is a function then the formula is valid:

d

dt

(
ψ∗

t ωt
)= d

dt

(
ωt (ψt )

)= ω̇t (ψt )+ωt (ψ̇t ) =ψ∗
t

(
ω̇t +LX tωt

)
. (49)

If ωt is a 1-form then

d

dt

(
ψ∗

t ωt
)= lim

h→0

ψ∗
t+hωt+h −ψ∗

t ωt

h
(50)

= lim
h→0

ψ∗
t+hωt+h −ψ∗

t+hωt +ψ∗
t+hωt −ψ∗

t ωt

h
(51)

= lim
h→0

ψ∗
t+hωt+h −ψ∗

t+hωt

h
+ lim

h→0

ψ∗
t+hωt −ψ∗

t ωt

h
=ψ∗

t

(
ω̇t +LX tωt

)
(52)
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3 Lie groups and homogenous spaces

3.1 Lie groups and Lie algebras

We start with the definition of a Lie group. General references for this section are [Wa;
Kn; Il; Sharpe].

Definition 3.1. A Lie group is a group G that is also a differential manifold and such that
the operations of multiplication and inversion are smooth. That is, the maps G ×G →G
and G →G given by (x, y) 7→ x y and x 7→ x−1 are smooth.

Definition 3.2. A homomorphism H →G of Lie groups is a group homomorphism which
is a smooth map. The automorphism group of H is the group of bijective homomorphisms
of H into H.

Note that if we ignore continuity in the definition of homomorphisms of Lie groups
one might obtain a much larger set.

To each Lie group is associated a Lie algebra which can be thought as the space of
tangent vectors at the identity of the group.

Definition 3.3. A Lie algebra g over R is a real vector space of finite dimension equipped
with a bilinear map

[·, ·] : g×g→ g, (53)

satisfying, for any x, y, z ∈ g the anti-commutativity property [x, y] = −[y, x] and the
Jacobi identity:

[[x, y], z] = [x, [y, z]]− [y, [x, z]]. (54)

Definition 3.4. A homomorphism α : h→ g between Lie algebras is a linear map preserv-
ing the Lie bracket, that is, α([X ,Y ]) = [α(X ),α(Y )] for all X ,Y ∈ h. The automorphism
group of h is the group of bijective homomorphisms of h into h.

Let G be a Lie group. If a ∈ G is fixed, then one can consider the translations
La(g ) = ag and Ra(g ) = g a called left and right multiplication respectively.

Definition 3.5. A vector field X on a Lie group G is left invariant if, for any a ∈ G,
(La)∗(X ) = X . Similarly, it is right invariant if (Ra)∗(X ) = X .

Note that this condition means (La)∗(X (g )) = X (ag ).
An important consequence of this definition is that left (or right) invariant vector

fields are determined by their value at the identity of the group and the Lie bracket of
two invariant vector fields is again invariant. Therefore the set of left invariant vector
fields forms a Lie algebra that can be identified to the tangent space of the group at the
identity.
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Definition 3.6. The Lie algebra of a Lie group G is the set

g= {
X ∈C∞(TG)

∣∣∀a ∈G , (La)∗(X ) = X
}

(55)

of left invariant vector fields on G equipped with the bilinear map given by the bracket
between vector fields.

A subgroup H ⊂G which is a Lie group and such that the inclusion map is smooth
is a called a Lie subgroup. Imposing that the inclusion is an embedding is equivalent
to assuming that the subgroup is closed as a subspace of G (this result is called the
closed-subgroup theorem or Cartan theorem).

The relation between Lie algebra homomorphisms and Lie group homomorphisms
is described by the following Theorem. Its proof is an application of Cartan’s method.

Theorem 3.7. Let H and G be Lie groups and φ : H →G a smooth homomorphism. Then
dφe : h→ g is a homomorphism. Conversely, if α : h→ g is a homomorphism and H is
simply connected, then there exists a unique smooth homomorphismφ : H →G such that
α= dφe .

Corollary 3.8. The automorphism group of a simply connected Lie group is isomorphic
to the automorphism group of its Lie algebra.

Exercice What is the group of automorphism of R? One has to distinguish the auto-
morphisms of Lie group from the automorphisms of the group without the differential
structure.

Examples

1. The additive group Rn . The automorphism group coincides with linear isomor-
phisms of Rn , that is to say GL(n,R). But note that the full group of group au-
tomorphisms (not necessarily continuous) of the group Rn contains non-linear
maps.

2. The set of matrices with determinant one SL(n,R) and the usual product of matri-
ces as group law.

3. Let G be a Lie group, N ⊂G be a normal subgroup and K ⊂G a subgroup satisfying
N ∩K = {e} and G = N K . (This last condition means that g ∈ G can always be
written as nk with n ∈ N and k ∈ K .) With these conditions, we say that G is the
semidirect product of K and N and write G = N oK . Observe that if g1 = n1k1

and g2 = n2k2 then g1g2 = n1(k1n2k−1
1 )k1k2.
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An example is given by the affine linear group Aff(Rn) = RnoGL(n,R). Given an
affine transformation T acting on the affine space Rn , the choice of a base point
0 ∈ Rn allows to write

T (x) = c + f (x) (56)

with c ∈ Rn and f ∈ GL(n,R). This decomposition is unique. Hence Aff(Rn) =
Rn GL(n,R). Note that the change of the base point from 0 ∈ Rn to ζ ∈ Rn translates
to:

ζ+T (x −ζ) = ζ+ (c − f (ζ))+ f (x) (57)

therefore the linear part f of T is independent of the choice of the base point, but
the translational part depends on it.

The composition of two transformations T1,T2 is given by:

T1(T2(x)) = c1 + f1(c2 + f2(x)) = (c1 + f1(c2))+ f1 f2(x) (58)

and it proves that Aff(Rn) is indeed the semidirect product RnoGL(n,R).

Note that a convenient representation of the affine group into GL(n+1,R) is given
by

(c, f ) 7→
(

f c
0 1

)
. (59)

4. Semidirect products G = NoK are in correspondance with split exact sequences

1 → N →G → K → 1 (60)

and in the case of the affine group, we have indeed

0 → Rn → Aff(Rn) → GL(n,R) → 1 (61)

with the last morphism being independent of the choice of a base point and
therefore is indeed restricted to the identity on GL(n,R).

5. The three dimensional Heisenberg group Heis(3) is defined as

Heis(3) =


1 x z
0 1 y
0 0 1

∣∣∣∣∣∣ (x, y, z) ∈ R3

 (62)

The group law is again the matrix product and is described by1 x z
0 1 y
0 0 1

1 x ′ z ′

0 1 y ′

0 0 1

=
1 x +x ′ z + z ′+x · y ′

0 1 y + y ′

0 0 1

 (63)

27



Another description of the same group is given by C×R with the group law

(x + i y, z) · (x ′+ i y ′, z ′) =
(
(x +x ′)+ i (y + y ′), z + z ′+ 1

2
(x y ′− y x ′)

)
. (64)

Both descriptions are compatible. One can start with the Lie algebra:

heis(3) =


0 x z
0 0 y
0 0 0

 . (65)

The exponential of an element is

exp

0 x z
0 0 y
0 0 0

=
1 x z + 1

2 x y
0 1 y
0 0 1

 . (66)

Therefore exp: heis(3) → Heis(3) is a diffeomorphism. The group law defines
a group structure on the Lie algebra by taking the logarithm: for X ,Y ∈ heis(3)
define

X ·Y = log(exp(X )exp(Y )) = X +Y + 1

2
[X ,Y ] (67)

and this law on heis(3):0 x z
0 0 y
0 0 0

 ·
0 x ′ z ′

0 0 y ′

0 0 0

=
0 x +x ′ z + z ′+ 1

2 (x y ′− y x ′)
0 0 y + y ′

0 0 0

 (68)

gives the second description.

In the case of the Heisenberg group (which is diffeomorphic to R3) one can use
the group operation on the Lie algebra to determine the automorphisms.

Proposition 3.9. The automorphism group of Heis(3) (described by coordinates
(x + i y, t ) = (z, t ) ∈ C×R) is generated by the following transformations.

(a) Transformations (z, t ) 7→ (A(z), t ) where A : C → C is symplectic with respect
to the form Im(zz ′) = x y ′− y x ′.

(b) Dilations (z, t ) 7→ (az, a2t ), with a ∈ R∗+.

(c) Conjugations by a translation (a + i b,c) ∈ Heis(3): (x + i y, t) 7→ (x + i y, t +
ay −bx).
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(d) The inversion map (z, t ) 7→ (z,−t ).

Proof. We decompose an automorphism φ : Heis(3) → Heis(3) by decomposing
its derivative dφe : heis(3) → heis(3). With a linear automorphism dφe , we can
write dφe (x+i y, t ) = (A(x, y, t ), at +bx+c y), where A a linear transformation and
a,b,c three real numbers.

We note that an automorphism has to preserve the center of the group: if ζ is in the
center, then 0 = dφe [ζ, ·] = [dφeζ,dφe ·] = [dφeζ, ·]. Therefore A can not depend on
t . (The center of heis(3) is exactly (0, t ).)

From (A(x, y), at+bx+c y) one can compose with the conjugation by a translation
such that dφe becomes (A(x, y), at ). (Choose the translation (−c + i b,0).)

Next, if a is negative then we compose with an inversion. We obtain (A′(x, y), |a|t )

with A′ that is either A or A. Then we can compose by a dilatation by λ=p|a|−1

so that we obtain (λA′(x, y), t ).

Now, because t is fixed, λA′ must be a symplectic transformation of C.

Note Hilbert’s 5th problem deals with the question of to what extent a topological
group has a differential structure. This problem has many interpretations. One of
the most important of them was solved by Gleason, Montgomery-Zippin and Yamabe
among other contributions: every connected locally compact topological group without
small subgroups (a neighborhood of the identity does not contain a subgroup other than
the trivial subgroup) is a Lie group.

3.1.1 The Maurer-Cartan form

Given a Lie group G and its Lie algebra g, one might wonder how g controls the full
tangent space TG . Since G is a group, we can always translate TeG to any Tg G by doing
a left translation Lg or a right translation Rg . We choose to identify any tangent space
Tg G with the left translation (Lg )∗TeG . This identification defines a map TG →G ×g
which is encoded by the Maurer-Cartan form.

Definition 3.10. The (left) Maurer-Cartan form on a Lie group G is the g-valued 1-form
θ defined by

∀Xg ∈ Tg G , θ(Xg ) = (Lg )−1
∗ (Xg ) ∈ g. (69)
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Note Let X be a vector field on G , then θ(X ) = v is constant, if and only if, X is left-
invariant and X (g ) = (Lg )∗v . Choosing a basis of g defines a parallelism of G .

Cartan’s formula is also valid for vector valued 1-forms. That is, for any 1-form
α : T M →V with values on a vector space V , we have

dα(X ,Y ) = X (α(Y ))−Y (α(X ))−α([X ,Y ]). (70)

Proposition 3.11 (Structural equation). For any X ,Y ∈ Tg G,

dθ(X ,Y )+ [θ(X ),θ(Y )] = 0. (71)

Proof. We can evaluate dθ(X ,Y ) by assuming that X ,Y are extended by left-invariant
vector fields X ∗ and Y ∗. For any left-invariant vector field X ∗, the image by the Maurer-
Cartan form is constant on X ∗(g ) for any g ∈ G . Therefore X ∗(θ(Y ∗)) and Y ∗(θ(X ∗))
are both zero. Moreover, since X ∗,Y ∗ are left-invariant, so is [X ∗,Y ∗] and therefore
θ([X ∗,Y ∗]) = [θ(X ),θ(Y )].

Maurer-Cartan form in coordinates The choice of a basis (e1, . . . ,en) of g allows us to
write θ = (θ1, . . . ,θn) by duality. With Xi the left-invariant vector field verifying θ(Xi ) = ei ,
we can determine the structure coefficients:

[Xi , X j ] =∑
k

ck
i j Xk . (72)

The structural equation becomes:

dθk (X ,Y ) =−∑
i< j

ck
i jθ

i ∧θ j (73)

and the Maurer Cartan form is:
θ =∑

i
θi ei .

Note Here we use a convention which might be different in some cases (see [KoN] pg.
28) and is sometimes the cause of a factor of 1

2 in the formula. In fact we define

θ1 ∧θ2(X ,Y ) = θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X ) (74)

in contrast with

θ1 ∧θ2(X ,Y ) = 1

2

(
θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X )

)
. (75)
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Example Consider the group SO(2) ⊂ GL(2,R). This group is parametrized as follows:

g (φ) =
(
cosφ −sinφ
sinφ cosφ

)
(76)

In that coordinate, we obtain

dgφ =
(−sinφ −cosφ

cosφ −sinφ

)
dφ (77)

The Lie algebra is one dimensional and is generated by(
0 −1
1 0

)
. (78)

The Maurer-Cartan form translates dgφ for any φ to dg0 by a left translation. There-
fore it is given by

θφ = g (φ)−1 dgφ (79)

=
(
cosφ −sinφ
sinφ cosφ

)−1 (−sinφ −cosφ
cosφ −sinφ

)
dφ (80)

=
(
0 −1
1 0

)
dφ. (81)

Matrix groups If G ⊂ GL(n,R) is a matrix group with Lie algebra g ⊂ Mn×n one can
write the Maurer-Cartan form at g ∈G and it is given by θg = g−1 dg .

Here we interpret dg as the differential of the embedding of G into the space of
matrices Mn×n . In coordinates, if gi j is the embedding, one has θg = g−1

i k dgk j , which is
a g-valued 1-form.

Vector space valued forms The Maurer-Cartan form is an example of vector space
valued form. We define the wedge product of a V1-valued 1-form θ1 and a V2-valued
1-form θ2 to be the V1 ⊗V2-valued form

θ1 ∧θ2(X ,Y ) = θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X ). (82)

If there exists a bilinear map [·, ·] : V ×V →V we note the composition of ∧ (for 1-forms)
and [·, ·] by

[θ1 ∧θ2](X ,Y ) := [θ1(X ),θ2(Y )]− [θ1(Y ),θ2(X )]. (83)

Observe then that [θ(X ),θ(Y )] = 1
2 [θ∧θ](X ,Y ).
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Exercice (g-valued n-forms) Writing, in general, θn for a g-valued n-form we may
define the exterior derivative and the product of two forms accordingly. Prove the
following formulae:

1. [θp ∧θq ] = (−1)pq [θq ∧θp ],

2. (−1)pr [[θp ∧θq ]∧θr ]+ (−1)qr [[θr ∧θp ]∧θq ]+ (−1)qp [[θq ∧θr ]∧θp ].

Moreover,
d[θp ∧θq ] = [dθp ∧θq ]+ (−1)pq+1[θp ∧dθq ]. (84)

Darboux derivatives

A Maurer-Cartan form allows the computation of Darboux derivatives.

Definition 3.12. If f : M →G is smooth and if θ is the Maurer-Cartan form of G then the
Darboux derivative of f is:

f ∗θ = θ ◦ f∗. (85)

Example In Rn the Darboux derivative is in a sense closer to the usual derivative than
the differential. Indeed, recall that if f : Rp → Rn is smooth, then

∀(x, v) ∈ TRn , f∗(x, v) = ( f (x),d fx(v)). (86)

The maps f∗ and d f depend on the base point. But with the Darboux derivative one
identifies all tangent spaces to the tangent space at the origin:

f ∗θ(x, v) = θ( f (x),d fx(v)) = T− f (x)∗(d fx(v)) ∈ T0(Rn) (87)

where T− f (x) is the translation T− f (x)(z) = z − f (x).

Theorem 3.13. Let G be a Lie group with Lie algebra g and M a manifold. Suppose
there exists a g-valued 1-form φ defined on M satisfying the Maurer-Cartan formula
dφ+ 1

2 [φ∧φ] = 0. Then for any m ∈ M there exists a map f : U → G defined on a
neighbourhood of m such thatφ= f ∗θ where θ is the Maurer-Cartan form of G. Moreover
if f ′ : U →G is another map satisfying this condition f ′ = Lh ◦ f for a certain h ∈G.

Proof. We consider, in the product M ×G , the Lie algebra valued form

ω=π∗
1 (φ)−π∗

2 (θ),
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where π1 and π2 are the projections of the product on each of the factors. Let I be the
ideal generated by the components ωi

j of ω. This is a differential ideal because

2dω= 2(π∗
1 (dφ)−π∗

2 (dθ)) =−π∗
1 ([φ∧φ])+π∗

2 ([θ∧θ])

=−[(π∗
1φ−π∗

2θ)∧π∗
1φ]− [π∗

2θ∧ (π∗
1φ−π∗

2θ)]

and we invoke theorem 2.19 (p. 14) to conclude the existence of the map f : U →G .
A submanifold passing through another point (m0,hg ) is clearly given by (m,h f (m))

and by unicity this implies that f ′ = Lh ◦ f .

The exponential map

One parameter subgroups of a group G are defined by elements of the Lie algebra. For
any X ∈ g one defines a homomorphism

expX : R →G , (88)

which is the unique homomorphism satisfying exp∗
X θ = X .

Definition 3.14. The exponential map exp: g→G is defined by

exp(X ) = expX (1). (89)

Although exp has several properties analogous to the real exponential, due to the
non-commutativity, one has a more complicated formula for the product of two expo-
nentials (it is the Baker-Campbell-Hausdorff formula which is only valid locally):

exp(X )exp(Y ) = exp

(
X +Y + 1

2
[X ,Y ]+·· ·

)
. (90)

If φ : H →G is a group homomorphism one has

exp◦dφe =φ◦expe . (91)

Lemma 3.15. Let X ∗ be a left-invariant vector field corresponding to an element X ∈ g.
Then its flow is given as the right multiplication by the exponential map Rexp(t X ).

Proof. Since X ∗ is left-invariant, so must be its flow. Therefore the integral curve at
g ∈G is given by Lg exp(t X ) = Rexp(t X )g . Hence the flow is given by Rexp(t X ).
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3.1.2 The adjoint representation

An action of a Lie group G on a manifold induces a representation of the group on
the automorphism group of the tangent space of a fixed point of the action. For, let
φ : G × M → M be an action with a fixed point G · p = p at p ∈ M . Then for every
g ∈G , define φg : M → M (φg (x) =φ(g , x)) and then the automorphism ρ(g ) =φg ∗|p :

Tp M → Tp M . One verifies that the map ρ : G → Aut(Tp M) defined by ρ(g ) = ρg is a
representation.

In particular the adjoint action G ×G → G defined by (g ,h) 7→ g hg−1 induces the
representation Ad: G → Aut(TeG) (observe that Aut(TeG) is isomorphic to GL(n,R) with
n = dimR G). For g ∈G , Adg is the automorphism

Adg (X ) = d(h 7→ g hg−1)e (X ) = (Lg )∗(Rg−1 )∗X (92)

The adjoint representation is also exactly what we need to compare the Maurer-
Cartan form θ defined by left-invariance with the action by right translations.

Proposition 3.16. For any g ∈G, the Maurer-Cartan form θ verifies

R∗
g θ(X ) = Ad−1

g (θ(X )). (93)

Proof. Assume that X = (Lx)∗v . By the preceding definition, we have:

R∗
g θ(X ) = θ((Rg )∗X ) (94)

= θ((Rg )∗(Lx)∗v) (95)

= θ((Lx)∗(Rg )∗v) (96)

= θ((Rg )∗v) (97)

= (Lg )−1
∗ (Rg )∗v = Ad−1

g v. (98)

The differential of Adg at the origin g = e is denoted by ad: g→ End(TeG):

adX = dAde (X ). (99)

It is in fact given by the bracket of the Lie algebra.

Lemma 3.17. Let X ,Y ∈ g∼= TeG. Then

dAde (X )(Y ) = adX (Y ) = [X ,Y ]. (100)

34



The adjoint automorphism by g ∈G fits in the following commutative diagram

g g

G G

Ad(g )

exp exp

g (·)g

(101)

and the adjoint representation satisfies

g End(g)

G Aut(g)

ad

exp exp

Ad

(102)

More generally, we have:

Proposition 3.18. The differential of the representation Ad: G → Aut(TeG) at g ∈ G
computed at the vector X ∗ = (Lg )∗X ∈ Tg G is

dAdg (X )(Y ) = Adg (adX (Y )). (103)

Proof. Writing a path through g as Lgγ(t ) withγ(0) = e and γ̇(0) = X we have AdLgγ(t )(Y ) =
Adg ◦Adγ(t )(Y ). Therefore

(dAdg (X ))(Y ) = dAdg ◦Adγ(t )

dt

∣∣∣∣
t=0

(Y ) = Adg ◦adX (Y ). (104)

Proposition 3.19. If θG is the Maurer-Cartan form, then for any function ψ with values
in G and any 1-form α with values in g,

Adψψ
∗θG =−ψ−1∗θG , (105)

d
(
Adψ(α)

)= [
−ψ−1∗θG ∧Adψ(α)

]
+Adψdα (106)

= Adψ
([
ψ∗θG ∧α]+dα

)
. (107)

3.2 Homogeneous spaces

Homogeneous spaces will be the flat model geometries. They appear naturally when
there exists a transitive action. Indeed, if G × M → M is a transitive action one can
identify M with the quotient G�Hx

where Hx is the isotropy subgroup of a chosen

element x ∈ M . A different choice g x ∈ M gives rise to the isotropy Hg x = g Hx g−1.
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Definition 3.20. A homogeneous space is a differential manifold obtained by the quotient
of a Lie group G by a closed Lie subgroup H ⊂G. We note the set of left cosets g H by G�H.

The group G acts transitively on the homogeneous space G�H by left translations,
the isotropy subgroup at the identity being H .

Note If H were not closed then the quotient G�H would not be separated with the
quotient topology. In general, an immersion of a Lie group into a Lie group is called a
Lie subgroup. If a subgroup of a Lie group is path-connected then it is a Lie subgroup by
a theorem of Kuranishi-Yamabe. Closed subgroups are, on the other hand, embedded
submanifolds.

Examples

1. The Euclidean space.

The group of the isometries of the Euclidean space is Eucl = RnoO(n). It acts on

Rn with isotropy O(n). Therefore Rn = Eucl�O(n) as homogeneous space.

2. The hyperbolic space.

Hyperbolic space is the simply connected complete constant negative sectional
curvature Riemannian space. Its connected isometry group is SO(n,1) with
isotropy SO(n). Here SO(n,1) is the group preserving the quadratic form(

idRn 0
0 −1

)
. (108)

3. The similarity group acting on Rn .

The connected similarity group is the group Sim(Rn) = Rno (R∗+×O(n)). It is a
subgroup of the affine group Aff(Rn). Transformations of R∗+×O(n) are of the form
λP (x) with λ> 0 and P an orthogonal transformation.

The similarity group is the conformal group acting on Rn . (Each conformal
transformation has to be defined on the full space Rn .) Therefore, it consists
of the transformations of Rn which preserve angles. The isotropy at the origin is
R∗+×O(n).

4. The conformal sphere.

There are more conformal transformations than just Sim(Rn). But those are not
defined strictly on Rn but rather on the one-point compactification Sn . The
conformal sphere is the homogeneous space PO(n +1,1)/Sim(Rn).
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5. The projective space.

The projective space RPn is the homogenous space GL(n +1,R)/H where

H =
{(
? ?

0 A

)∣∣∣∣ A ∈ GL(n,R)

}
. (109)

6. Flag spaces.

The projective space is an example of flag spaces. A flag is a sequence {0} ⊂V1 ⊂
·· · ⊂ Vn = Fn for any field F. For instance, the projective space FPn is the set of
lines in Fn+1.

A complete flag is a flag with dimVi = i . They are maximal in length. When F = C
we get an homogeneous space structure with the quotient

SU(n)�S(U(1)×·· ·×U(1)). (110)

7. Stiefel manifolds.

The space of orthonormal k-frames in Rn (with 0 < k < n) is the Stiefel manifold
S(k,n). It is possible to show that

S(k,n) = SO(n)�SO(n −k). (111)

8. Every manifold is a homogeneous space.

The full group of the diffeomorphisms of a manifold is not a Lie group but might
be described by an analogous structure with infinite dimension.

The easiest situation is for a compact manifold, say M . The smooth diffeomor-
phism group Diff∞(M) has a structure of a Fréchet Lie group which is homeomor-
phic to the space of smooth vector fields. The group Diff∞(M) acts transitively
on M . Therefore, any manifold can be considered as a homogeneous space
Diff∞(M)/H , where H is the isotropy at a point in M , that is to say, the set of
diffeomorphisms fixing the point. We will not deal with infinite dimension Lie
groups.

3.2.1 The tangent space

With a homogeneous space G�H the tangent space can be described infinitesimally and
the action of G (on the left) can be measured.
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At eH , the tangent space is naturally isomorphic to g�h as linear spaces. Therefore,

the tangent bundle of the homogenous spaces TG�H can be seen as a quotient of the
trivial bundle G ×g�h by the right action of H :

(g , v) ·h = (g h,Ad(h)−1v). (112)

We write the quotient as
G ×H g�h. (113)

Note that at the isotropy H ⊂G , the action of h ∈ H on a point pH is hpH = hph−1H
and therefore H acts on TeH

G�H by Ad(h).

Proposition 3.21. There exists a canonical isomorphism

TG�H
∼=G ×H g�h. (114)

Proof. Let π : G →G�H be the quotient map. Let φ : G ×g�h→ TG�H be defined by

φ(g , v) = (g H ,π∗(Lg )∗v). (115)

We prove that this map is well defined in the quotient by the right action of H . Note that
π∗(Rh)∗ =π∗ since π◦Rh =π and π∗(Lg )∗ = (Lg )∗π∗.

φ((g , v) ·h) =φ(g h,Ad(h)−1v) (116)

= (g hH ,π∗(Lg h)∗ Ad(h)−1v) (117)

= (g H , (Lg )∗π∗(Rh)∗v) (118)

= (g H , (Lg )∗π∗v) =φ(g , v) (119)

We can check that this morphism is injective at every point. If φ(g , v) = (g H ,0) then
π∗v = 0 and therefore v ∈ h. It is surjective by dimensionality.

3.2.2 Effective pairs

It is important to keep track of both groups G and H and not only their quotient space.
On the other hand it is reasonable to consider only connected quotients G�H .

Definition 3.22. We will refer as a Klein geometry a pair (G , H) such that the homoge-
neous space G�H is connected.

38



There are two conditions which one can add without much loss of generality, namely,
that the action of G be effective and that G be connected.

Note that if g ∈ G acts trivially on G�H then g eH = eH and therefore g ∈ H . Let
h ∈ H be acting trivially. For any g ∈G and any coset pH we would have that g hg−1pH =
g (h(g−1pH )) is equal to g (g−1pH ) since h acts trivially on g−1pH and therefore g hg−1pH =
pH . So if h acts trivially, then g hg−1 does too.

Definition 3.23. We say that a maximal subgroup K ⊂ H which is normal in G is the
kernel of a Klein geometry. The action of K is trivial and we say that the geometry is
effective if K = {e}.

If K is the maximal normal subgroup in H (the definition implies that K is a closed
subgroup of G) one can consider the effective geometry (G�K , H�K ) which describes

the same homogeneous space as (G�K )�(H�K ). It is diffeomorphic to G�H with an

equivariant action by G�K .

Sometimes one might consider non-effective Klein geometries. For instance, SL(2,R)�SO(2)
corresponds to the hyperbolic geometry but the subgroup Z2 ⊂ SL(2,R) generated by
− id is a maximal normal subgroup contained in SO(2). Nonetheless, this subgroup is
discrete and is does not intervene infinitesimally.

If G is not connected one can consider the connected component containing the
identity Ge ⊂G and we obtain that G�H is diffeomorphic to Ge�(H ∩Ge ) with an equiv-

ariant action by Ge . This follows since if G�H is connected, one has G =Ge H . On the
other hand, one can prove that if H is connected then G is also connected.
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4 Principal bundles

Consider a smooth right free action

µ : P ×H → P (120)

of a Lie group H on a manifold P . We denote Rh the right action of H :

∀h ∈ H ,∀p ∈ P, Rh(p) =µ(p,h). (121)

Such an action µ is called proper if for any K1,K2 compact subsets of P , the set

{h ∈ H |Rh(K1)∩K2 6= ;} (122)

is compact.
Let M be a manifold and H a Lie group. A (right) principal bundle

π : P → M (123)

consists of a manifold P with a right action µ by H which is locally trivial: for each x ∈ M ,
there exists a trivialization over an open set U containing x

Ψ= (π,ψH ) : π−1(U ) →U ×H (124)

that is a diffeomorphism and such that

Ψ(µ(u,h)) = (π(u),ψH (u)h). (125)

A characterization of right actions which gives rise to principal bundles is the follow-
ing.

Proposition 4.1. Let µ : P ×H → P be a proper smooth right free action. Then P�H is a
smooth manifold with the quotient topology and it has a unique smooth structure such
that the projection P → P�H defines a right H-principal bundle.

Example Homogenous spaces are an important class of examples

π : G ×H →G�H (126)

where the right action µ : G ×H →G is the Lie group law:

µ(g ,h) = g h. (127)

This action is indeed proper. For if hi ∈ H and K1,K2 ⊂ G are compact, assume
that Rhi K1 ∩K2 6= ;. We need to prove that hi converge (up to a subsequence). For
each i , let k1

i ∈ K1 and k2
i ∈ K2 such that Rhi k1

i = k2
i . But both k1

i and k2
i converge (up

to a subsequence) to k1 and k2 respectively. Hence hi = (k1
i )−1k2

i converge (up to a
subsequence) to k−1

1 k2. The limit lies in H since it is closed.
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Definition 4.2. Let π1 : P1 → M1 and π2 : P2 → M2 be two right H-principal bundles. A
H-bundle diffeomorphism F : P1 → P2 is a diffeomorphism that preserves the fibers and
verifies F ◦Rh = Rh ◦F (it is right equivariant).

Since an H-bundle diffeomorphism preserves the fibers, it defines a diffeomorphism
f : M1 → M2. Hence, following diagram commutes.

P1 P2

M1 M2

F

π1 π2

f

(128)

4.1 Frame and coframe bundles

4.1.1 Some linear algebra

The linear group of matrices GL(n,R) does not act canonically on a vector space. Indeed,
an isomorphism GL(V ) ' GL(n,R) relies on a choice of a basis of V . However, GL(n,R)
does act canonically on the spaces of the frames and coframes of V . Let

F = {(e1, . . . ,en) is an ordered basis of V } . (129)

We say that F is the space of frames of V .
In order to deal with right actions on principle bundles we will consider the right

action of GL(n,R) on the frame bundle F given by

e ′
i = g−1 j

i e j (130)

where (g j
i ) is a matrix g ∈ GL(n,R). (We assume the Einstein summation convention.)

This right action on F corresponds to a right action on F∗, the space of coframes:

F∗ = {
(e1, . . . ,en) is an ordered basis of V ∗}

. (131)

This last action is given by:

e i ′ = e j bi
j (132)

with (bi
j ) a matrix b ∈ GL(n,R). The correspondance with the action on F is determined

by the relation e i ′(e j ) = δi
j :

e i ′(e j ) = ek bi
k (em g−1m

j ) = bi
k g−1k

j (133)

and the equation bi
k g−1k

j = δi
j shows that b = g in GL(n,R).
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4.1.2 Bundles and the tautological form

Definition 4.3. The frame bundle on a smooth manifold M is the set

F = {
v

∣∣v is a frame at a point of TM
}

. (134)

And the coframe bundle is:

F∗ = {
ω

∣∣ω is a coframe at a point of TM
}

. (135)

By the preceding considerations, we will consider each bundle F and F∗ as a right
principal GL(n,R)-bundle.

Note A reduction of the principal bundle F and F∗ to a subbundle (not necessarily
principal) corresponds generally to the choice of a geometric structure on M .

Definition 4.4. An H-structure on a smooth manifold M is a principal subbundle of F
(or F∗) with fiber a closed subgroup H ⊂ GL(n,R).

Examples

1. A Riemannian geometry on M , that is to say a Riemannian metric, corresponds to
the choice of a subbundle of orthonormal frames or coframes.

2. A conformal geometry on M , that is to say a conformal class of Riemannian
metrics, corresponds to the choice of a subbundle of frames that are orthonormal
up to an homogeneous factor.

3. A contact structure on a 3-manifold M , that is to say the data of an everywhere non-
integrable plane distribution D2 ⊂ TM corresponds to the choice of a subbundle
constituted of vectors (v1, v2, v3) such that (v1, v2) generates D2.

As a matter of fact, those three subbundles are principal. The first for the choice of
O(n) ⊂ GL(n,R), the second with R+O(n) ⊂ GL(n,R) and the last with P2 ⊂ GL(3,R) the
set of the matrices:

P2 =


? ? ?

? ? ?

0 0 ?

⊂ GL(3,R). (136)

A coframe bundle over a manifold is a special principal bundle obtained as a sub-
bundle of the bundle of all coframes over a manifold. They occur naturally when a
geometric structure is described by fixing a set coframes.
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More generally, suppose (U1, {ωi
1}) and (U2, {ωi

2}) are two open sets with sections of
coframes and H a subgroup of GL(n,R), the group of the coframe bundle. We think
of them as two geometric structures defined on these open sets. The equivalence
problem is the question of whether there exists a diffeomorphism ψ : U1 → U2 such

that ψ∗(ωi
2) = ω

j
1hi

j , with (hi
j ) ∈ H . Cartan’s method consists of building a canonical

connection on a principal bundle associated to the geometric structure.
There are two fundamental observations. The first one is that, given a section of

coframes ω j and a group H , it is natural to consider the principal bundle π : P → M of
all coframes ω j hi

j . This doesn’t solve the problem but makes the computations more
intrinsic. The second observation is that one can define n linearly independent 1-forms
on P by, at the point p = {ωi } ∈ P ,

θi
p (v) =ωi

π(p)(π∗(v)).

These forms are called tautological forms. They do not form a basis of forms of P
because all of them vanish on vertical vectors.

Using a local section {ω j } we can trivialize the fiber bundle and write any other

coframe as p = {ω j hi
j }. Then θi

p (v) =ω j
π(p)(π∗(v))hi

j , or in other words,

θi
p =π∗(ω j

π(p))hi
j .

which, by abuse of notations, we write θi
p = ω

j
π(p)h

i
j . or, writing θ = (θ1, · · · ,θn), ω =

(ω1, · · · ,ωn) and h = (hi
j ), as

θ =ωh.

The construction of the coframe principal H-bundle P1 and P2 above U1 and U2 allows
us to consider the lifting of the equivalence problem:

Proposition 4.5. There exists a diffeomorphism φ : U1 →U2 satisfying

φ∗(ωi
2) =ω j

1hi
j

for a function (hi
j ) : U1 → H if and only if there exists a diffeomorphism φ̃ : P1 → P2 such

that
φ̃∗(θ2) = θ1.

Proof. Suppose φ : U1 →U2 such that φ∗(ω2) =ω1h exists (that is (φ−1)∗(ω1) =ω2h−1).
By abuse of notation we write here h−1 for h−1 ◦ψ−1. Define φ̃ : P1 → P2 by

φ̃(ω1g ) =φ−1∗(ω1g ) =ω2h−1g .
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Then, in coordinates as above, φ̃∗θ2ω2h−1g = φ̃∗(ω2h−1g ) =ω1g = θ1ω1g .
On the other hand, if φ̃∗(θ2) = θ1 , we show first of all that φ̃ sends fibers to fibers. If X

is a vertical vector tangent to a fiber of P1 then θ2(φ̃∗(X )) = φ̃∗(θ2)(X ) = θ1(X ) = 0. This
shows that φ̃∗(X ) is vertical. This defines a functionφ : U1 →U2. Now, we can obtain the
result by observing that there exists a function h : U1 → H such that φ∗(ω2) =ω1h.

There exists a related notion of tautological form for a frame bundle π : P → M .
Define the fundamental form θ : TP → Rn by:

θ|v (X ) = (θ1(X ), · · · ,θn(X )) (137)

where θi (X ) are the coefficients of the vector π∗(X ) on the basis v = (v1, · · · , vn). That is,
π∗(X ) =∑

π∗(X )i v i .
A section σ : M → P corresponds to the choice of a frame at each point x ∈ M . A

section σ is also called a moving frame. Any other moving frame α is then determined
by a right translation by a function h : M → H :

α(x) =σ(x)h(x). (138)

4.2 Ehresmann connections

Invariant vector fields With a right principal bundle P , one can consider a canonical
vector field X ∗ associated to any X ∈ h:

X ∗(p) = d

dt
Rexp(t X )p

∣∣∣∣
t=0

. (139)

An alternative definition of X ∗ is the following. With µ : P ×H → P the right action, we
have

X ∗(p) =µ∗|(p,e)(0, X ). (140)

For instance, in the case where P = G is a Lie group and H ⊂ G , we get that X ∗ is
again the left-invariant vector field X ∗(p) = Lp∗(X ).

Definition 4.6. An Ehresmann connection ω on P is an h-valued 1-form satisfying:

1. for any h ∈ H, R∗
hω= Ad(h−1)ω;

2. for any X ∈ h, ω(X ∗) = X .

This definition restricts to the Maurer-Cartan form in the case where M collapses to
one point. Considering the projection G →G/H as a homogeneous space, a connection
is only a part of the Maurer-Cartan form of G .
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Note An equivalent formulation arises if we consider the distribution D defined by the
kernel of ω. That distribution is an invariant horizontal distribution as Rh∗D = D .

Lifting curves An Ehresmann connection defines a way to make a parallel displace-
ment along curves of M from the fiber at the origin of the curve to the fiber at the end of
the curve.

Let γ : [0,1] → M be a smooth path in M . Then there exists a unique lift γ̃ : [0,1] → P
such that

d

dt
γ̃(t ) ∈ kerωγ̃(t ) (141)

with an initial condition γ̃(0) = p.

Lemma 4.7. Both conditions R∗
hω = Ad(h−1)ω and ω(X ∗) = X are equivalent to the

following.
R∗
ψω=ψ∗θH +Ad(ψ)−1ω, (142)

where θH is the Maurer-Cartan form of H and ψ is any smooth function with values in
H.

To be entirely precise, if ψ : X → H is a smooth map, then one defines Rψ : P ×X →
P ×H → P and we state

R∗
ψω(u, v)|(p,x) =ψ∗θH (v)|x +Ad(ψ(x))−1ω(u)|p . (143)

Proof. Since R∗
ψω is a differential form, we can consider separately vectors (u,0) and

(0, v) at (p, x) ∈ P ×X . Since Rψ =µ◦ (id×ψ) we only need to show the equivalence with:

µ∗ω(u, v)|(p,h) = θH (v)+Ad(h)−1ω(u) (144)

since the precomposition by (id×ψ)∗ would conclude the proof.
With vectors (u,0)|(p,h), the product µ∗(u,0) is equal to Rh∗(u). Hence the preceding

formula and the first condition are equivalent.
With vectors (0, v)|(p,h), the product µ∗(0, v) gives exactly V ∗(µ(p,h)) where V ∗ is

the invariant vector field corresponding to θH (v). Hence the preceding formula and the
second condition are equivalent.
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5 Cartan geometries

5.1 Definitions

Definition 5.1. A Cartan geometry modeled on (g,h) is a right H-principal bundle P →
M, with Li e(H) = h, together with a 1-form ω : TP → g, called a Cartan connection,
verifying:

1. at each p ∈ P, ω is an isomorphism Tp P → g;

2. for all h ∈ H, R∗
hω= Ad(h)−1ω;

3. for all X ∈ h and X ∗ the corresponding invariant vector field, ω(X ∗) = X .

Note A Cartan connection defines a parallelism of P since Tp P ' g by ω. Hence
TP ' P ×g.

Note There are many possible choices for models G/H with Li e(G) = g and Li e(H ) = h.
Usually we deal with an effective pair (G , H), with connected groups H and G .

Definition 5.2. The homogeneous space G�H is reductive if there exists a linear decom-
position

g= h⊕p (145)

such that p is Ad(H)-invariant.

Example A semidirect product NoK defines a reductive homogeneous space

NoK /K .

Note When a homogenous space is reductive, one can decompose a Cartan connection
ω that has values in g along h and p, that is to say ω=ωh+ωp. The factor ωh is then an
Ehresmann connection.

By the same proof as in the case of an Ehresmann connection (see 4.7 (p. 45)), we
have:

Lemma 5.3. The two last conditions of the definition of a Cartan connection are equiva-
lent to:

R∗
ψω= Ad(ψ)−1ω+ψ∗θH , (146)

where θH is the Maurer-Cartan form of H and ψ : P → H is any smooth function with
values in H.
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Definition 5.4. The curvature of a Cartan geometry is

Ω(u, v) = dω(u, v)+ [ω(u),ω(v)]. (147)

IfΩ= 0 on TP, then we say that the Cartan geometry is flat.

Homogeneous spaces The simplest example of a Cartan geometry is the fiber bundle
G →G�H equipped with its Maurer-Cartan form θ. In this caseΩ= dθ+ 1

2 [θ∧θ] = 0 is
the structural equation.

Lemma 5.5. If ψ : P → H is any smooth function with values in H then

R∗
ψΩ= Ad(ψ)−1Ω. (148)

Proof. As proved previously, we have R∗
ψω = Ad(ψ)−1ω+ψ∗θH . In the case of linear

groups the formula can be written

R∗
ψω=ψ−1ωψ+ψ−1 dψ.

We compute the pull-back of the curvature. This is most easily obtained in the case of
linear groups and we leave the general case as an exercise.

R∗
ψΩ= R∗

ψ (dω+ω∧ω)

= R∗
ψdω+R∗

ψω∧R∗
ψω

= R∗
ψdω+ (ψ−1ωψ+ψ−1 dψ)∧ (ψ−1ωψ+ψ−1 dψ)

= R∗
ψdω+ψ−1ωψ∧ψ−1ωψ+ψ−1ωψ∧ψ−1 dψ+ψ−1 dψ∧ψ−1ωψ+ψ−1 dψ∧ψ−1ωψ.

We need a formula for d(R∗
ψω). We obtain:

d(R∗
ψω) = d(ψ−1ωψ+ψ−1dψ)

=−ψ−1 dψ∧ψ−1ωψ+ψ−1 dωψ−ψ−1ωψ∧ψ−1 dψ−ψ−1 dψ∧ψ−1 dψ.

Substituting the formula for d(R∗
ψω) above we have

R∗
ψΩ=ψ−1Ωψ= Ad(ψ)−1Ω. (149)

Recall that we can identify Tp H with the tangent space of the fiber at p ∈ P . Indeed
the function H → P defined by h 7→ ph is a diffeomorphism for each fixed p.
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Lemma 5.6. The curvatureΩ(u, v) vanishes if u or v are tangent to the fiber (belong to
Tp H ⊂ Tp P).

Proof. Assume that u ∈ Tp H . Let ψ : P → H be such that ψ(p) = e and ψ∗(u) =−ω(u).
Then

R∗
ψω

∣∣∣
p

(u) =ψ∗θH (u)+Ad(ψ(p))−1ω(u) (150)

=−ω(u)+ω(u) = 0 (151)

hence ω(Rψ∗u) = 0 implies Rψ∗u = 0 and we get

Ad(ψ)−1Ω(u, v) =Ω(Rψ∗u,Rψ∗v) =Ω(0,Rψ∗v) = 0. (152)

5.2 Bianchi identities

The derivative of the curvature gives the Bianchi identities.

Lemma 5.7. Let P → M be a Cartan geometry and ωP its connection. We have

dΩ= [Ω∧ωP ]. (153)

Proof. We differentiate by definition of the curvature.

dΩ= d

(
dωP + 1

2
[ωP ∧ωP ]

)
(154)

= 1

2
d[ωP ∧ωP ] (155)

= 1

2
([dωP ∧ωP ]− [ωP ∧dωP ]) (156)

= [dωP ∧ωP ] (157)

=
[(
Ω− 1

2
[ωP ∧ωP ]

)
∧ωP

]
(158)

= [Ω∧ωP ]− 1

2
[[ωP ∧ωP ]∧ωP ] (159)

= [Ω∧ωP ] (160)

Indeed, [[ωP ∧ωP ]∧ωP ] = 0 by using the Jacobi identity.
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5.3 Example 1: Riemannian geometry

As one can anticipate, a Cartan connection on a Riemannian geometry will be a cer-
tain Ehresmann connection combined with the tautological form. But as usual in
Riemannian geometry, one can consider many connections. Only one will have van-
ishing torsion. It is that property that will determine the corresponding Ehresmann
connection.

We start with a description of Eucl(n), the group of the isometries of the Euclidean
space. This space is the model for the Riemannian geometry. By the identification
Eucl(n) = RnoO(n), one can represent Eucl(n) → GL(n +1,R) by

(x, A) 7→
(

A 0
x 1

)
. (161)

So the Lie algebra is:

eucl(n) =
(
o(n) 0
Rn 1

)
. (162)

An important observation is that the adjoint action by an element of the orthogonal
subgroup is a right translation on the Rn coordinate:(

A−1 0
0 1

)(
I d 0
v 0

)(
A 0
0 1

)
=

(
I d 0
v A 1

)
. (163)

The Maurer-Cartan form θEucl can be written:

θEucl = g−1 dg =
(
ω 0
θ 0

)
, (164)

where ω and θ are respectively the Maurer-Cartan forms of O(n) and Rn . And the
structure equation becomes (

dω+ω∧ω 0
dθ+θ∧ω 0

)
=

(
0 0
0 0

)
. (165)

Given a Riemannian manifold M we obtain the O(n) coframe bundle P of all or-
thogonal basis of the dual tangent space. Part of the Cartan connection is given by
the tautological form which we denote by θ. We will describe the (Levi-Civita) Cartan
connection ωP decomposed as:

ωP =
(
ω 0
θ 0

)
. (166)
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Along any local section σ : U → P , we get a trivialisation π−1(U ) = U × H (Here
H =O(n)). A first observation is that the Maurer-Cartan form of H , A−1 dA, can be seen
as a o(n)-valued 1-form on P by pulling it back by the projection on the second factor.
We observe then that for all X ∈ o(n) and denoting X ∗ the corresponding fundamental
field we have

A−1 dA(X ∗) = X .

Indeed, write a local section as a moving coframe θ = (θi ). A trivialisation of the coframe
bundle is obtained through the map (x, A) → θA. We have

X ∗ = d

dt

(
θAe t X )

|t=0 .

Therefore A−1 dA(X ∗) = A−1 dA( d
dt

(
Ae t X

)
|t=0). The forms θi are defined on M and there-

fore we may, write expanding on a basis of two-forms,

dθi =−∑
j k

ai
j kθ

j ∧θk , (167)

with functions ai
j k verifying ai

j k =−ai
k j . This can be written as

dθ =−θ∧w ,

where w is the matrix (ai
j kθ

k ).
Recall that the tautological form can be written with the help of a moving coframe:

θθA =π∗θA,

which we write, for simplicity, as θ = θA. Now we can differentiate the tautological form
with the help of a moving frame:

dθ = (dθ)A−θdA =−θ∧w A−θdA

=−θA∧ A−1w A−θA A−1 dA.

We obtained therefore a 1-form ω= A−1w A + A−1 dA defined on P with values in
gl(n,R) satisfying

dθ+θ∧ω= 0.

Observe that ω satisfies, for all X ∈ o(n)

ω(X ∗) = X .

This construction depends on the choice of the section. The ambiguity in the definition
of the form ω is explicited by Cartan’s lemma.
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Lemma 5.8. There exists a unique skew-symmetric matrix of 1-forms ω such that

dθ+θ∧ω= 0.

Proof. To understand the ambiguity of ω, suppose there is another one ω′ satisfying the
equation. One obtains that θ∧ (ω−ω′) = 0. Writing ω−ω′ as a matrix c i

j kθ
k one obtains,

using Cartan’s lemma, that c i
j k = c i

k j .

The next step is to obtain the condition of skew-symmetry on ω. Given ω′ satisfying

the equation dθ+θ∧ω′ = 0 we write the equations of skew-symmetry : ai
j k + a j

i k =
a′i

j k +a′ j
i k + c i

j k + c j
i k = 0 and solve them for c i

j k :
We have

c i
j k + c j

i k =−(a′i
j k +a′ j

i k )

−(c j
ki + ck

j i ) =−(a′ j
ki +a′k

j i )

ck
i j + c i

k j = (a′k
i j +a′i

k j )

Adding the three equations gives the unique values c i
j k defining a skew-symmetric ω in

terms of the 1-form ω′.

Proposition 5.9. The eucl-valued form on P given by

ωP =
(
ω 0
θ 0

)
is a Cartan connection on P.

Proof. . The fact that ωP is an isomorphism at each point of P follows from the fact
that θ is a tautological form and from the condition ω(X ∗) = X for X ∈ o(n). We verify
the transformation properties for a Cartan connection. For instance, consider the ω
component of the eucl-valued form. We compute the action by an element A ∈O(n)
on the right of the coframe bundle:

d(θA) = (dθ)A =−θ∧ωA =

=−(θA)∧ (A−1ωA),

which means precisely that
R∗

A(ωθA) = AdA−1ωθ.
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The curvature of the Cartan connection is given by

Ω= dωP +ωP ∧ωP =
(
dω+ω∧ω 0

0 0

)
,

so we obtain that the Cartan geometry is torsion free. Writing W = dω+ω∧ω we may
express in coordinates:

W i
j = R i

j klθ
k ∧θl ,

with R i
j kl =−R j

i kl =−R i
j l k .

The Bianchi identity is given by differentiatingΩ= dωP +ωP ∧ωP , that is

dΩ= dωP ∧ωP −ωP ∧dωP = (Ω−ωP ∧ωP )∧ωP −ωP ∧(Ω−ωP ∧ωP ) =Ω∧ωP −ωP ∧Ω.

Or, in matrix form:

dΩ=
(
dW 0

0 0

)
=

(
W 0
0 0

)(
ω 0
θ 0

)
−

(
ω 0
θ 0

)(
W 0
0 0

)
=

(
W ∧ω−ω∧W 0

W ∧θ 0

)
.

Therefore W ∧θ = 0 (first Bianchi identity) and dW =W ∧ω−ω∧W (second Bianchi
identity). Usually one writes, in coordinates, W i

j ∧θ j = 0 and dW i
j =

∑
k (W i

k ∧ωk
j −ωi

k ∧
W k

j ). Substituting W i
k = R i

j klθ
k ∧θl in the first Bianchi identity one has

R i
j klθ

k ∧θl ∧θ j = 0

which implies R i
j kl +R i

l j k +R i
kl j = 0.

5.3.1 Gauss-Bonnet theorem

In this section we prove Gauss-Bonnet theorem for compact surfaces. In dimension two
the coframe bundle P over the surface Σ is a circle bundle. We consider the tautological
forms θ1,θ2 and the 2x2 skew symmetric connection form ωi

j . In this case there is only

one relevant form ω1
2. The curvature form is then

W =
(

0 dω1
2

−dω1
2 0

)
.

That is, in this case the curvature form on P is exact. Moreover, because the structural
group is abelian, from the formula R∗

g W = Adg−1W =W we obtain thatΩ1
2 is the pull-

back of a form defined on Σwhich we usually denote by K d v where d v = θ1 ∧θ2 is the
volume form associated to the metric in Σ and does not depend of the choice of coframe
{θ1,θ2}.
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Theorem 5.10. Let Σ be a compact oriented surface with Euler characteristic χ(Σ). Fix a
Riemannian metric and let K d v the curvature form on M defined as above. then

1

2

∫
Σ

K d v =χ(Σ).

Proof. Consider a section of P over the complement of a finite number of points F ⊂ M
(this is always possible even if we chose F to have only one point). This is equivalent
to a choice of a global unit vector field on the complement of F . Indeed, choosing a
unit vector field fixes, for an oriented surface, an orthogonal vector field which defines a
positive basis. Reciprocally, from a coframe one can define the dual basis and choose
the first basis vector.

Choose small discs ∆i around the isolated points and one computes using the
section s :Σ\ F → P ;∫

Σ
K d v =

∫
Σ\

⋃
i ∆i

K d v +
∫
⋃

i ∆i

K d v =
∫

s(Σ\
⋃

i ∆i )
Ω1

2 +
∫
⋃

i ∆i

K d v.

Now we use the fact thatΩ is exact and Stokes theorem:∫
Σ

K d v =
∫

s(Σ\
⋃

i ∆i )
dω1

2 +
∫
⋃

i ∆i

K d v =
∫

s(∂
⋃

i ∆i )
ω1

2 +
∫
⋃

i ∆i

K d v.

The last integral tends to zero when the radius of the discs vanish while

1

2π

∫
s(∂

⋃
i ∆i )

ω1
2 → index of the vector field.

Indeed, one computes this integral using a coframe θ′i defined on ∆i , that is, with no
singularities. We may write then (by the formula R∗

gω= Adg−1ω+ g−1d g ) ω1
2 =ω′1

2 +dφ
where φ is the angle between the coframes. Remark that this angle is the same as the
angle between the vector fields associated to them. In the limit, the integration of the
first term disappears as the circles get smaller and the integration of the second term
tends to the index of the singular vector field.

We conclude the proof by invoking Poincaré-Hopf theorem: the index of the vector
field =χ(Σ).

5.4 Example 2: web geometry

Web geometries on R2 are a way to study the geometry of differential equations

dy = F (x, y)dx. (168)

The geometric data correspond to the three distributions defined by the axes and the
tangent lines defined by the differential equation.
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Definition 5.11. A web on R2 is the data of three line distributions L1,L2,L3 ⊂ TR2 such
that any two are linearly independent at each point.

By duality, a line corresponds to the kernel of a form: L1 = kerα1. The forms are
defined up to a scalar multiple. That is, α1 and λα1 generate the same line L1. Hence,
by rescaling, since α3 =λα1 +µα2, we can assume that α3 =α1 −α2.

Definition 5.12. A coframe of a web on R2 is the data of three 1-forms α1,α2,α3 ∈ T∗R2

such that any two are linearly independent at each point and α3 =α1 −α2.

Observe that a coframe is in fact the data of only α1 and α2. So it is indeed a coframe
of R2. The bundle of all coframes of a web on R2 is an R∗-principal bundle. Indeed, if α1

becomes λ1α
1 and α2 becomes λ2α

2 then λ1α
1 −λ2α

2 must still be proportional to α3,
hence λ1 =λ2.

Flat model A flat model for this geometry is given by α1 = dy , α2 = dx and the third
form α3 = dy −dx (this corresponds to the differential equation dy = dx) . We admit
that the invariance group is exactly G = R2oR∗ where R2 acts by translation and the
isotropy H = R∗ by dilation. A representation G → GL(3,R) is given by:

(x, y,λ) 7→
λ 0 0

0 λ 0
x y 1

 . (169)

One can check that in this representation,

Ad(λ−1)(x, y) =
 0 0 0

0 0 0
xλ yλ 0

 . (170)

The Maurer Cartan-form is ω 0 0
0 ω 0
θ1 θ2 0


whose components satisfy the equations

dω= 0,

dθ1 +θ1 ∧ω= 0,

dθ2 +θ2 ∧ω= 0.
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The torsion free Cartan connection Let θ = (θ1,θ2) be the tautological form of the
coframe bundle P .

Proposition 5.13. There exists a unique 1-form ω on P such that

dθ1 =ω∧θ1

dθ2 =ω∧θ2

Moreover, the g valued form

$=
ω 0 0

0 ω 0
θ1 θ1 0


is a Cartan connection.

Proof. We let θi be a section of the tautological forms so that the tautological forms are
described by

θi =λθi .

We obtain then, observing that dθi are basic forms,

dθi = dλ∧θi +λdθi = dλ

λ
∧θi +τiθ1 ∧θ2,

where τi are functions on P . Now we can write

dθ1 = (
dλ

λ
−τ1θ2)∧θ1,

dθ2 = (
dλ

λ
+τ2θ1)∧θ2.

Therefore ω = dλ
λ

+τ2θ1 −τ1θ2. One can also easily verify that the g valued form is a
Cartan connection.

The curvature of that Cartan connection is of the form

Ω= d$+$∧$=
Kθ1 ∧θ2 0 0

0 Kθ1 ∧θ2 0
0 0 0

 ,

where K is a real function defined on P . The component Kθ1 ∧ θ2 is known as the
Blaschke-Chern curvature. Observe that Kθ1 ∧θ2 is well defined on R2.
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Exercise Let T 2 be a torus equipped with a web structure. Then∫
T 2

Kθ1 ∧θ2 = 0.

Application Consider the equation

dy = F (x, y)dx (171)

and the corresponding web

α1 = dy, (172)

α2 = F (x, y)dx, (173)

α3 = dy −F (x, y)dx =α1 −α2 (174)

where F (x, y) does not vanish.
By following the method, we differentiate (α1,α2). It gives:

dα1 = 0 (175)

dα2 = ∂F

∂y
dy ∧dx (176)

= 1

F

∂F

∂y
dy ∧α2 (177)

and it determines a connection formω (actually a pull back by the section of the coframe
bundle) verifying dα=ω∧α:

ω= 1

F

∂F

∂y
dy. (178)

Hence, the Blaschke-Chern curvature is:

dω= ∂

∂x

(
1

F

∂F

∂y

)
dx ∧dy (179)

= 1

F

(
∂2F

∂x∂y
− 1

F

∂F

∂x

∂F

∂y

)
dx ∧dy (180)

= −1

F 2

(
∂2F

∂x∂y
− 1

F

∂F

∂x

∂F

∂y

)
α1 ∧α2. (181)
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For instance, it vanishes for any F (x, y) linear in x and y , or any F independent from
x or y . It does not vanish with F (x, y) = sin(x y). Indeed:

∂2F

∂x∂y
=−x y sin(x y)+cos(x y), (182)

1

F

∂F

∂x

∂F

∂y
= x y

cos(x y)2

sin(x y)
. (183)

5.5 Example 3: path geometry

The model space for path geometry is G�H where G = SL(3,R) and H = B , the so called
Borel subgroup of G of upper triangular matrices. It can be realized as a flag manifold
F12, the space of complete flags in R3. For more details see [IL] and [Mm2].

Definition 5.14. Le M be a real three dimensional manifold and TM be its tangent
bundle.

1. A path structure L = (E 1,E 2) on M is a choice of two line sub-bundles E 1 and E 2

in TM, such that E 1 ∩E 2 = {0} and E 1 ⊕E 2 is a contact distribution.

2. A strict path structure T = (E 1,E 2,θ) on M is a path structure with a fixed contact
form θ such that kerθ = E 1 ⊕E 2.

3. A (local) automorphism of (M ,T ) is a (local) diffeomorphism f of M that preserves
E 1, E 2 and θ.

The condition that E 1 ⊕E 2 be a contact distribution means that, locally, there exists
a one form θ on M such that kerθ = E 1 ⊕E 2 and θ∧dθ is never zero. On the other
hand, for strict path structures we impose the existence of a globally defined contact
form θ. Therefore, strict path structures are unimodular geometries: there exists a
canonical volume form µT = θ∧dθ on M , preserved by the automorphism group of T

(in contrast, path structures are not unimodular).
There exists a unique vector field R such that dθ(R, ·) = 0 and θ(R) = 1, called the

Reeb vector field of θ, that we will also call the Reeb vector field of the strict path structure
T . In particular, the distribution E 1 ⊕E 2 of a strict path structure T is thus oriented,
and the manifold M supporting T is orientable.3

3If the contact distribution is oriented, then there exists a global contact form. Indeed, using a global
metric on the distribution one can define locally a transversal vector to the distribution taking a Lie
bracket of orthonormal vectors in the distribution. This defines a global 1-form.
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Flat path model Flat path geometry is the geometry of real flags in R3. That is the
geometry of the space of all couples (p, l ) where p ∈ RP 2 and l is a real projective line
containing p. The space of flags is identified to the quotient

SL(3,R)�B (184)

where B is the Borel group of all real upper triangular matrices.

Flat strict path model The Heisenberg group Heis(3) is the flat model for the strict
path geometry. With

Heis(3) = {
(x, y, t ) ∈ R3} (185)

and the multiplication defined by (x1, y1, t1)·(x2, y2, t2) = (x1+x2, y1+y2, t1+t2+2(x1 y2−
x2 y1)). We consider the left invariant distributions determined by their value at the
origin:

E1 = ∂

∂x
and E2 = ∂

∂y
(186)

and it has a global corresponding contact form:

θ = dt −x dy + y dx. (187)

5.5.1 Path structures and second order differential equations

A second order differential equation in one variable is described locally as

d2 y

dx2
= F

(
x, y,

dy

dx

)
. (188)

Introducing a new coordinate p = dy
dx , we define a path structure on a neighborhood of

a point in R3 with coordinates (x, y, p):

E1 = ker(dy −p dx)∩ker(dp −F dx), (189)

E2 = ker(dx)∩ker(dy). (190)

The contact structure is defined by the form

θ = dy −p dx. (191)

By defining the forms Z 1 = dx and Z 2 = dp −F dx, one has that dθ = Z 1 ∧Z 2.
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One can show that every path structure is, in fact, locally equivalent to a second
order equation. That is, there exists local coordinates such that E1 and E2 are defined
via a second order differential equation as above.

For, one first finds coordinates such that E2 = kerdx∩kerdy by the flowbox theorem.
Forms which annihilate E2 +E1 should be described by q dx + p dy , for functions q
and p. Without loss of generality, one can assume locally that dx +p dy and using the
contact condition one concludes that x, y, p are local coordinates. Then E1 = ker(αdp +
βdy +γdx)∩ker(dy −p dx) and one let, for α 6= 0, without loss of generality, β= 0 and
α= 1.

Local equivalence (also called point equivalence) between path structures happens
when there exists a local diffeomorphism which gives a correspondence between the
lines defining each structure.

One can choose a contact form θ up to a scalar function and interpret this as follows:
one has an R∗-bundle over the manifold given by the choice of θ at each point (one
might keep only positive multiples for simplicity). Over this line bundle one defines the
tautological form ωθα =π∗θα. This bundle is trivial if and only if there exists a global
contact form θ.

Let θ and local forms Z 1 and Z 2 defining the lines as above such that dθ = Z 1 ∧Z 2.
There exists global forms Z 1 and Z 2 if and only if there exists global vector fields along
the lines. Clearly, if the contact distribution is oriented, it suffices that there exists a
global vector field along one of the foliations by lines.

5.5.2 Examples

Example 1 Consider the Heisenberg group

Heis(3) = {(z, t ) ∈ C×R} (192)

with multiplication defined by (z1, t1) · (z2, t2) = (z1 + z2, t1 + t2 +2Im z1z2). The contact
form

θ = dt +x dy − y dx (193)

is invariant under left multiplications (also called Heisenberg translations). If Λ ⊂
Heis(3) is a lattice then the quotient Λ�Heis(3) is a circle bundle over the torus with a
globally defined contact form.

A lattice Λ determines a lattice Γ⊂ C corresponding to the projection in the exact
sequence

{0} → R → Heis(3) → C → {0}. (194)
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There are many global vector fields in the distribution defined by θ and invariant under
Λ, it suffices to lift a vector field on C invariant under Γ. All circle bundles obtained in
this way are not trivial and the fibers are transverse to the distribution.

Example 2 We consider the torus T 3 with coordinates (x, y, t) ∈ R�Z
3

and the global
contact form

θn = cos(2πnt )dx − sin(2πnt )dy. (195)

There are two canonical global vector fields on the distribution given by

∂

∂t
and sin(2πnt )

∂

∂x
+cos(2πnt )

∂

∂y
. (196)

In this example, the fiber given by the coordinate t has tangent space contained in the
distribution.

Example 3 An homogeneous example is the Lie group SU(2) with left invariant vector
fields X and Y with Z = [X ,Y ] and cyclic commutation relations. The vector fields X
and Y define a path structure on SU(2).

Example 4 Another homogeneous example is the Lie group SL(2,R) with left invariant
vector fields X and Y with Z = [X ,Y ] with [Z , X ] = 2X and [Z ,Y ] =−2Y given by the
generators in sl(2):

X =
(
0 1
0 0

)
(197)

Y =
(
0 0
1 0

)
(198)

Z =
(
1 0
0 −1

)
. (199)

The path structure defined by X and Y induces a path structure on the quotient

Γ�SL(2,R) by a discrete torsion free subgroup Γ⊂ SL(2,R). This structure is invariant
under the flow defined by right multiplication by e t Z .

Example 5 Let Σ be a surface equipped with a Riemannian metric. The geodesic
flow on its unit tangent bundle T1Σ defines a distribution which, together with the
distribution defined by the vertical fibers of the projection of the unit tangent bundle on
Σ, defines a path structure which is not invariant under the geodesic flow. For Σ= H2

R,
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the hyperbolic upper plane, we obtain T1Σ= PSL(2,R) with distributions defined by the
left invariant distributions X −Y and Z (using the same generators of the Lie algebra
sl(2) as in the previous example).

5.5.3 Path structures with a fixed contact form

We now go back to strict path structures, by considering the specific case of Cartan
geometries modeled on Heis(3), the flat model of strict path structures. So G denotes
from now on the subgroup of SL(3,R) defined by

G =


a 0 0
x 1

a2 0
z y a

∣∣∣∣∣∣a ∈ R∗, (x, y, z) ∈ R3

 (200)

and H ⊂G the isotropy subgroup of G defined by

H =


a 0 0
0 1

a2 0
0 0 a

 . (201)

The Heisenberg group is identified to:

Heis(3) =


1 0 0
x 1 0
z y 1

 . (202)

The semidirect structure G = Heis(3)oH is described by the action of H on Heis(3) by
conjugation:  1

a
a2

1
a

1
x 1
z y 1

a
1

a2

a

=
 1

a3x
z 1

a3 y 1

 . (203)

Writing the Maurer-Cartan form of G as the matrixw 0 0
θ1 −2w 0
θ θ2 w

 (204)

one obtains the structural equations:
dθ+θ2 ∧θ1 = 0

dθ1 −3w ∧θ1 = 0

dθ2 +3w ∧θ2 = 0

dw = 0.

(205)
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Let M be a three-manifold equipped with a strict path structure T = (E 1,E 2,θ) with
Reeb vector field R. Now let X1 ∈ E 1, X2 ∈ E 2 be such that dθ(X1, X2) = 1. The dual
coframe of (X 1, X 2,R) is (α1,α2,θ), with two 1-forms α1 and α2 verifying dθ =α1 ∧α2.

At any point x ∈ M , any coframe (θ1,θ2,θ) verifying dθ = θ1 ∧θ2 is of the form

θ1 = a3α1, θ2 = 1

a3
α2 (206)

with a a function with values in R∗.

Definition 5.15. We denote by π : P → M the right R∗-coframe bundle over M given by
the set of coframes (θ1,θ2,θ).

We will denote the tautological forms defined by θ1, θ2 and θ by using the same
letters. That is, we write θi =π∗θi .

Proposition 5.16. There exists a unique Cartan connection on P → M

ω=
w 0 0
θ1 −2w 0
θ θ2 w

 (207)

such that its curvature form is of the form

Ω= dω+ 1

2
[ω∧ω] = dω+ω∧ω=

 dw 0 0
θ∧τ1 −2dw 0

0 θ∧τ2 dw

 (208)

with τ1 ∧θ2 = τ2 ∧θ1 = 0.

Observe that the condition τ1 ∧θ2 = τ2 ∧θ1 = 0 implies that we may write τ1 = τ1
2θ

2

and τ2 = τ2
1θ

1.

Proof. We differentiate the tautological forms. One obtains with θ1 = a3α1:

dθ1 = 3a2 da ∧α1 +a3 dα1 (209)

=−3θ1 ∧ da

a
+a3 (

3v1 ∧α1 +b1θ∧α2) (210)

for a certain function b1 and a 1-form v1 defined on M . Rearranging terms we obtain

dθ1 =−3θ1 ∧
(

da

a
+ v1

)
+a6b1θ∧θ2. (211)
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Analogously we have

dθ2 = 3θ2 ∧
(

da

a
+ v2

)
+ b2

a6
θ∧θ1 (212)

for a certain function b2 and a 1-form v2 defined on M . Observe now that by differenti-
ating dθ =α1 ∧α2 one obtains that

d2θ = 0 = dα1 ∧α2 −α1 ∧dα2 (213)

=−3α1 ∧ v1 ∧α2 −3α1 ∧α2 ∧ v2. (214)

This implies that the terms in θ of v1 and v2 are the same. One can therefore define a
unique w by adding to da

a − v1 the term in v2 which is proportional to θ2.
Unicity of this construction follows easily from Cartan’s lemma. The verification that

it is actually a Cartan connection is left to the reader.

The Heisenberg group as a strict path flat space revisited The Heisenberg group

Heis(3) :=


1 0 0
y 1 0
z x 1

∣∣∣∣∣∣ (x, y, z) ∈ R3


is the model of strict path structures. We consider on Heis(3) the left-invariant structure
(RX̃ ,RỸ , Z̃∗), where X̃ , Ỹ are the left invariant vector fields and Z̃∗ the left invariant
1-form induced by the basis

X =
(

0 0 0
0 0 0
0 1 0

)
,Y =

(
0 0 0
1 0 0
0 0 0

)
, Z =

(
0 0 0
0 0 0
1 0 0

)
(215)

of its Lie algebra. To describe the automorphism group of this structure, we introduce
the subgroups

P =


 a 0 0
0 1

a2 0
0 0 a

 ∣∣∣∣∣∣a ∈ R∗
⊂G =


 a 0 0

y 1
a2 0

z x a

∣∣∣∣∣∣a ∈ R∗, (x, y, z) ∈ R3


of SL(3,R). We verify that

ψ : (h, p) ∈ Heis(3)×P 7→ hp ∈G .

is a group isomorphism between G and the semi-direct product Heis(3)oP , where P
acts on Heis(3) by p ·h := php−1.
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Define the left action of G = Heis(3)oP on Heis(3):

hp · x := h(pxp−1)

for any (h, p) ∈ Heis(3)×P and x ∈ Heis(3).
This action being transitive, it induces an identification of Heis(3) with G/P , by

choosing the identity e for base-point.

Lemma 5.17. G is the automorphism group of the strict path structure on Heis(3).

Proof. It is easy to verify that RX , RY and Z are fixed by the adjoint action of P , so that
G acts on Heis(3) by automorphisms of its strict path structure. In order to show that
this is full automorphism group we use first the Heisenberg translations to reduce the
question to the isotropy group.

An example with constant curvature Consider SL(2,R) with its left invariant vector
fields defined by a Lie algebra basis (E ,F, H) of sl(2) with [E ,F ] = H , [H ,E ] = 2E and
[H ,F ] =−2F . Explicitly:

E =
(
0 1
0 0

)
(216)

F =
(
0 0
1 0

)
(217)

H =
(
1 0
0 −1

)
. (218)

The structural equations of SL(2,R) for a dual basis α1,α2,θ are:
dθ+α1 ∧α2 = 0

dα1 −2α1 ∧θ = 0

dα2 −2θ∧α2 = 0.

(219)

Indeed, note that: (
θ α1

α2 −θ
)
∧

(
θ α1

α2 −θ
)
=

(
α1 ∧α2 −2α2 ∧θ
−2θ∧α2 −α1 ∧α2

)
. (220)

Now, we define a strict path structure on SL(2,R). At any point, we do a left trans-
lation (by SL(2,R)) of (RF,RE , H). It defines a path structure. It is strict with the left
translation of θ. The tautological forms are θ, θ1 = a3α2 and θ2 = a−3α1.
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We can now compare with the previous proposition and the structural equations of
the strict path geometry. That is to say, we compare the two sets of equations:

dθ+α1 ∧α2 = 0

dα1 −2α1 ∧θ = 0

dα2 −2θ∧α2 = 0

and


dθ+θ2 ∧θ1 = 0

dθ2 +3w ∧θ2 = θ∧τ2

dθ1 −3w ∧θ1 = θ∧τ1.

(221)

We read those equations in the section (α1,α2,θ). The first equation of both systems
is indeed verified:

dθ+θ2 ∧θ1 = dθ+α1 ∧α2 = 0. (222)

The equations in second position:

dα1 −2α1 ∧θ = 0 and dθ2 +3w ∧θ2 = θ∧τ2 (223)

show that τ2 = 0 and w must be 2
3θ along the section (α1,α2,θ). The last equations

shows that τ1 = 0 and w is again 2
3θ.

As a consequence, the strict path structure on SL(2,R) has curvature:

Ω=
2

3θ
2 ∧θ1 0 0
0 −2

3θ
2 ∧θ1 0

0 0 2
3θ

2 ∧θ1

 . (224)

One can think of SL(2,R) with the above strict path structure as a constant curvature
model. Observe that one can vary the curvature by choosing different multiples of H .
The curvature sign corresponds then to different choices of orientation.

The automorphism group of this structure is SL(2,R)×R∗. The action is through
left translations by SL(2,R) and right translations by R∗ identified to the one parameter
subgroup {(

e t 0
0 e−t

)∣∣∣∣ t ∈ R
}

(225)

Indeed, this group acts simply transitively on the adapted coframe bundle P over SL(2,R)
and preserves the connection.
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6 Curvature

6.1 Universal covariant derivative

We consider a Cartan geometry P → M with connection ω : T P → g. Although the
following definition makes sense for general maps f : P →V we will consider only the
more interesting case of equivariant maps and, in particular, the curvature function. Let
ρ : H →GL(V ) be a representation of the structural group and f : P →V map satisfying,
for all h ∈ H ,

R∗
h f = ρ(h−1) f .

A special case is the the representation Ad : H → Aut(g) and the function being the
Cartan connection. Another example is the curvature function K : P → V where V =
Hom(Λ2g,g) defined in 6.3.

Definition 6.1. Let f : P →V be an equivariant map. The universal covariant derivative
of f with respect to X ∈ g is the map

DX f :=ω−1(X ) f .

In other words, the universal covariant derivative of f is the map

D f :=ω−1(·) f ∈ g∗⊗V.

Note that it is defined on P and not on M . It is also important to observe that D f is
an equivariant function with values in g∗⊗V with the representation on g∗⊗V given by
Ad∗⊗ρ. The universal covariant derivative along the fibers is easy to compute in the
case of these equivariant functions:

Lemma 6.2. Let f : P → V be a function satisfying the transformation R∗
h f = ρ(h−1) f .

Then, for all X ∈ h,
DX f (p) :=−ρ∗(X ) f (p),

where ρ∗(X ) = d
d t |t=0ρ(e t X ).

Proof. From

DX f (p) =ω−1(X ) f (p) = f∗(ω−1(X ))(p) = d

d t
|t=0 f (pe t X )

we obtain

DX f (p) = d

d t
|t=0ρ(e−t X ) f (p) =−ρ∗(X ) f (p).
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6.2 The curvature function

One can define a function with values on a vector space which contains the same
information as the curvature 2-form. Let V = Hom(Λ2(g/h),g).

Definition 6.3. Let P → M be a Cartan geometry with connection ω and curvature Ω.
We define its curvature function

K : P →V.

by
K (p)(u, v) =Ω(

ω−1(u)|p ,ω−1(v)|p
)

. (226)

It is well defined sinceΩ vanishes on h.

Note The curvature function K has values in h if, and only if, Ω has vanishing torsion.

In the case the Cartan geometry is reductive, one can write g= n⊕h as an H-module
decomposition. One can decompose the universal covariant derivative by projecting it
into n and h. We write Dn for its projection into n and call it the covariant derivative of
the reductive Cartan geometry.

Definition 6.4. Let P → M be a reductive Cartan geometry ( g= n⊕h) with connection
ωn and curvatureΩ. It has constant curvature if K does not depend on P.

Definition 6.5. A reductive Cartan geometry modeled on g = n⊕h is said to be locally
symmetric if the curvature function satisfies DnK = 0.

Let now W ∈ T M and W̃ be the unique lift to T P such that ωh(W̃ ) = 0. Define the
covariant derivative ∇W K by the formula

∇W K = Dω(W̃ )K .

6.2.1 Curvature function on a coframe bundle

In the case the Cartan bundle is a coframe bundle one can use the tautological forms θi

to express the curvature as
Ω= R i

j klθ
i ∧θ j .

Therefore, the curvature function is given by K (ek ,e l ) = R i
j kl . The covariant derivative

of the curvature is given by

D1K (er ⊗ek ⊗e l ) =$−1(er )K (ek ,e l ) = R i
j kl ,r

where dR i
j kl = R i

j kl ,rθ
r .

67



6.3 Mutations

Definition 6.6. Let P → M be a Cartan geometry modeled on (g,h). Its torsion is the
projection of the curvatureΩ by g→ g�h.

Note When the model space is reductive, that is to say there exists p that is Ad(h)-
invariant and g= h⊕p, then the torsion is the p factor ofΩ.

Example In Riemannian geometry the torsion vanishes exactly for the Levi-Civita
connection. It is indeed what we constructed by asking dθ+θ∧ω= 0.

Definition 6.7. Let (g1,h) and (g2,h) be two geometric pairs sharing a same group H
corresponding to h and having two respective adjoint representations Ad1 : H → Aut(g1)
and Ad2 : H → Aut(g2).

A mutation is a linear isomorphism

λ : g1 → g2 (227)

such that

1. for all h ∈ H and u ∈ g1, λ(Ad1(h)(u)) = Ad2(h)(λ(u));

2. λ|h is the identity;

3. in g2�h, we have λ([u, v]) = [λ(u),λ(v)].

Examples The three constant curvature models for the Riemannian geometry are

mutations. Let Rn = Eucl+(n)�SO(n), Sn = SO(n +1)�SO(n) and H n
R = SO(n,1)�SO(n).

The three Lie algebras so(n +1),so(n,1) and eucl(n) are decomposed into so(n)⊕Rn .
Note that so(n) is the Lie algebra of a shared isotropy H = SO(n). Let A ∈ so(n) and
v ∈ Rn . Then the mutations are deduced from the three following representations.

eucl(n) =
{(

A v
0 0

)}
(228)

so(n +1) =
{(

A v
−t v 0

)}
(229)

so(n,1) =
{(

A v
t v 0

)}
(230)
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Proposition 6.8. Let (g1,h) and (g2,h) be two geometric pairs with a mutation λ : g1 →
g2.

If P → M is a Cartan geometry modeled on (g1,h) with Cartan connection ω1 then

ω2 =λ◦ω1 (231)

gives a Cartan connection for P → M modeled on (g2,h). Furthermore, the curvatureΩ1

becomes:

Ω2 =λ◦Ω1 + 1

2
([ω2 ∧ω2]−λ[ω1 ∧ω1]) . (232)

Proof. Since λ is an isomorphism, ω2 is a linear isomorphism at each point: Tp P → g2.
It verifies the other properties since on the equivalent property we have:

R∗
ψω2 = (λ◦ω1)(Rψ∗) (233)

=λ(
ψ∗θH +Ad1(ψ)−1ω1

)
(234)

=ψ∗θH +Ad2(ψ)−1λ◦ω1 (235)

=ψ∗θH +Ad2(ψ)−1ω2. (236)

The identity onΩ2 follows by definition.

Note IfΩ1 has vanishing torsion thenΩ2 does too since λ preserves h.

Theorem 6.9. Let P → M be a Cartan geometry modeled on (g1,h) with connection
ω and curvature Ω. Assume it has constant curvature and vanishing torsion. Then
λ : g1 → g2 ' g1 defined linearly by id (g2 is a linear copy of g1) but with bracket

[u, v]g2 = [u, v]g1 −K (u, v) (237)

defines a mutant geometry on which P → M is flat.

Proof. We prove first that g2 is well defined. It only depends on wether the bracket is
indeed a bracket of Lie algebra. It is certainly anti-symmetric and bilinear since K is a
2-form. The Jacobi identity is comes from the following computation.

[u, [v, w]g2 ]g2 = [u, [v, w]g2 ]g1 −K (u, [v, w]g2 ) (238)

= [u, [v, w]g1 ]g1 − [u,K (v, w)]g1 −K (u, [v, w]g1 )+K (u,K (v, w)) (239)

= [u, [v, w]g1 ]g1 − [u,K (v, w)]g1 −K (u, [v, w]g1 ) (240)

−[v, [u, w]g2 ]g2 =−[v, [u, w]g1 ]g1 + [v,K (u, w)]g1 +K (v, [u, w]g1 ) (241)

[[u, v]g2 , w]g2 =
[
[u, v]g1 , w

]
g1
−K ([u, v]g1 , w)− [K (u, v), w]g1 (242)
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Hence the Jacobi identity only depends on a circular identity of K (u, [v, w ]) and [K (u, v), w ].
For this we use the Bianchi identity.

Let U ,V ,W be ω−1(u),ω−1(v),ω−1(w). Then, since the curvature is constant, (we
now take every bracket in g1)

dΩ(U ,V ,W ) =−Ω([U ,V ],W )+Ω(U , [V ,W ])−Ω(V , [U ,W ]) (243)

and the Bianchi identity say this is equal to

[Ω(U ,V ),ω(W )]− [ω(U ),Ω(V ,W )]+ [ω(V ),Ω(U ,W )]. (244)

With a torsion free curvature we have also:

Ω([U ,V ],W ) = K ([u, v]−K (u, v), w) = K ([u, v], w). (245)

So the Bianchi identity states:

−K ([u, v], w)+K (u, [v, w])−K (v, [u, w]) = [K (u, v), w]−[u,K (v, w)]+[v,K (u, w)] (246)

finishing to prove that [·, ·]g2 is a bracket.
Now we prove that we have indeed a mutation. We need to prove that [Ad(h)u,Ad(h)v]g2 =

Ad(h)[u, v]g1 . This equality will be proved if we show

K (Ad(h)u,Ad(h)v) = Ad(h)K (u, v). (247)

It is true since by constant curvature:

Ω(U ,V ) = Ad(h)−1Ω(Ad(h)U ,Ad(h)V ). (248)

Finally, the new connection is indeed flat by the preceding proposition and a straight-
forward computation.

As an example of mutation using Theorem 6.9 we consider the strict path structure
with constant curvature described in section 5.5.3. Its curvature is given by

Ω=
2

3θ
2 ∧θ1 0 0
0 −2

3θ
2 ∧θ1 0

0 0 2
3θ

2 ∧θ1

 . (249)

Recall that the Lie algebra of G = Heis(3)oP is the algebra g= heis(3)⊗p where p is
the Lie algebra of P , whose adjoint action on heis(3) is described by

[X ,Y ] = Z , [D, X ] = X , [D,Y ] =−Y , [D, Z ] = 0, (250)
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with D the generator of p verifying

exp(tD) =

e
t
3 0 0

0 e−2 t
3 0

0 0 e
t
3

 .

We define, as in Theorem 6.9 a new Lie algebra structure on the vector space g by
the following relation for u, v ∈ g×g:

[u, v]′ := [u, v]−K (u, v). (251)

We denote by g′ the Lie algebra defined by the vector space g endowed with the Lie
bracket [·, ·]′. Now g′ is described by the following relations:

[X ,Y ]′ = Z −3D, [D, X ]′ = X , [D,Y ]′ =−Y , [Z , X ]′ = [Z ,Y ]′ = [D, Z ]′ = 0. (252)

The conclusion of Theorem 6.9 applies and we obtain that this Cartan geometry is a
flat (g′,d) Cartan structure. In the following we will show how to identify the algebra g′

to SL(2,R)× A.
The Lie algebra of SL(2,R)× A is the direct sum sl2 ⊕a, and the copy of H = (

1 0
0 −1

)
in

the right factor of sl2 ⊕a is denoted by T . Note that [T, ·] = 0 on sl2 ⊕a.
We define a group isomorphismΛ : P →∆ by

Λ


a

1
3 0 0

0 a− 2
3 0

0 0 a
1
3


=

((
a

1
2 0

0 a− 1
2

)(
a

1
2 0

0 a− 1
2

))
. (253)

Define a vector space isomorphism g′ → sl2 ⊕a by:

λ(X ) =
√

3

2
E ,λ(Y ) =−

√
3

2
F,λ(Z ) = 3

2
T,λ(D) = 1

2
(H +T ). (254)

A simple computation shows that λ is a Lie algebra isomorphism from g′ to sl2 ⊕a.
One can interpret this isomorphism as a mutation isomorphism λ : heis(3)⊕p→

sl2 ⊕a. That is:

Lemma 6.10. 1. The differential ofΛ at the identity coincide with λ|p : p→ a.

2. For any u, v ∈ g: [λ(u),λ(v)] =λ([u, v]) modulo a (the brackets being respectively
in sl2 ⊕a and heis(3)⊕p).
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3. For any p ∈ P: λ◦ Adp = AdΛ(p)) ◦λ (the adjoint actions being respectively within
the Lie groups Heis(3)oP and SL(2,R)× A).

Proof. 1. This directly follows from the definitions ofΛ and λ.
2. In fact for u, v ∈ g, K (u, v) ∈ p and [λ(u),λ(v)] =λ([u, v]′) =λ([u, v])−λ(K (u, v)).
4. For p ∈ P written as in (253), the matrix of Adp in the basis (X ,Y , Z ,D) is the diagonal
matrix [a, a−1,1,0], and the matrix of AdΛ(p) in the basis (E ,F, H ,T ) is the diagonal
matrix [a, a−1,1,1]. The claim directly follows from the definition of λ.

6.4 Developing map and uniformization of Cartan geometries

6.4.1 Path development

Lemma 6.11. Let f : [0,1] → g be a smooth function. Let ω : TX → g be a complete
parallelism (its constant vector fields ω−1(v) are complete, i.e. have flows fully defined on
R) verifying the structural equation. Then the differential equation

γ∗ω= f dt (255)

has a solution γ : [0,1] → X that is unique once an initial condition γ(0) = x ∈ X is given.

Proof. Note that f dt verifies the structural equation. By Cartan’s method, a local solu-
tion does always exist and is unique once an initial condition is given. We have to show
that a solution can always be extended to the full interval [0,1].

Suppose that a local solution γ is only defined for t < 1. Then γ(t) escapes every
compact set of X when t → 1. But when t → 1, f (t) → v ∈ g and a global solution to
γ∗ω= v exists by completeness of ω on X . A contradiction.

The development of paths follows from this lemma. We let ω= θG be the Maurer-
Cartan form of a Lie group G . Any path δ : [0,1] → P defined on a manifold P equipped
with a g-valued 1-form ω : TP → g gives by pulling back the 1-form δ∗ω. Then by what
precedes, δ∗ω= γ∗θG for a path γ : [0,1] →G .

In our context P will be the total space of a principal bundle P → M and the form ω

will be a Cartan connection.

Definition 6.12. Let P be a smooth manifold equipped with a g-valued 1-form ω. Any
path δ : [0,1] → P determines a path D(δ) : [0,1] →G such that

δ∗ω= D(δ)∗θG (256)

and D(δ) is unique as soon as D(δ)(0) ∈G is prescribed.
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The map giving the endpoint:

E(δ) = D(δ)(0)−1D(δ)(1) (257)

is well defined and does not depend on the choice of D(δ).

The map E is defined on the space of the paths of P . Its values are in G . Now, the
goal is to obtain a map

F : P →G (258)

that would be a complete integration of ω:

F∗θG =ω. (259)

The most natural way would be to fix p ∈ P and define F (z) as E(δ) for any path δ

joining p to z. With this goal in mind, one needs to compare the different values of E for
different paths joining the same points.

A natural assumption is to compare paths that have the same homotopy class in
π1(P, p). Those have indeed same endpoints by E if the space P is flat.

Lemma 6.13. If there exists F such that F∗θG =ω then ω verifies the structural equation

dω+ 1

2
[ω∧ω] = 0. (260)

Proof. This follows by naturality of the pulling-back and the fact that θG itself verifies
the structural equation.

Since η is defined on the whole T[0,1], the function f is bounded.

Proposition 6.14. Let P be a smooth manifold equipped with a g-valued 1-form ω

that verifies the structural equation. If H : [0,1]× [0,1] → P is an homotopy between
δ1 = H(0, t ) and δ2 = H(1, t ) then E(δ1) = E(δ2).

Proof. Since ω verifies the structural equation, one can apply Cartan’s method. Again,
by completeness of the Maurer-Cartan form, it defines a complete integral HG : [0,1]×
[0,1] →G such that

H∗
GθG = H∗ω. (261)

Since H is a homotopy, H∗ω vanishes on [0,1]×{0,1}. Hence HG does too and it furnishes
an homotopy in G . Therefore HG has two equal endpoints for HG (0, t) = D(δ1) and
HG (1, t ) = D(δ2).
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Definition 6.15. Let P be a smooth manifold equipped with a g-valued 1-formω verifying
the structural equation. The monodromy morphism

Φω : π1(P, p) →G (262)

is the value of E (δ) for any δ realizing a chosen class [δ] ∈π1(P, p). It is a group homomor-
phism by concatenation of paths. Its image is the monodromy subgroupΦω(π1(P, p)) ⊂G.

Corollary 6.16. Let P be a smooth manifold equipped with a g-valued 1-form. There
exists a global map F : P →G such that

F∗θG =ω (263)

if, and only if, ω verifies the structural equation and its monodromy is trivial.

6.4.2 Flat Cartan geometries

Now we consider a Cartan geometry P → M . The development F of P in G will allow to
define a developing map from M̃ to G�H . Here we can see M̃ as the space of the paths
of M modulo homotopy.

A first step is to verify that the principal H-bundle structure on P is compatible with
the one on G under F .

Lemma 6.17. Let P → M be a Cartan geometry modeled on a reductive pair (g,h) with a
(non-necessarily flat) Cartan connection ω. Let δ : [0,1] → P be a path and ψ : [0,1] → H
be a smooth function. Then

D(δψ) = D(δ)ψ (264)

if we have the compatibility D(δψ)(0) = D(δ)(0)ψ(0).

Proof. Both D(δψ) and D(δ)ψ are paths on G with same initial point. We only need
to check that their derivatives are equal since the unicity of the development of paths
would conclude. Indeed we have:

D(δψ)∗θG = (δψ)∗ω (265)

= Ad(ψ)−1δ∗ω+ψ∗θH (266)

= Ad(ψ)−1D(δ)∗θG +ψ∗θH (267)

= (D(δ)ψ)∗θG . (268)
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Proposition 6.18. Let P → M be a Cartan geometry modeled on an effective Kleinian
pair (g,h) with a flat Cartan connection ω. Then there exists a local diffeomorphism

D : M̃ →G�H (269)

called a developing map.

Proof. With the universal cover π1 : M̃ → M we define the pulled-back bundle P̃ by

P̃ = {
(p, x) ∈ P × M̃

∣∣πP (p) =π1(x)
}

. (270)

We have the projection maps π̃1 : P̃ → P and πP̃ : P̃ → M̃ . The pulled-back Cartan
connection ωP̃ = π̃1

∗ω defined on P̃ has still flat curvature by naturality.

TP̃ TP g TG

P̃ P G

M̃ M G�H

π̃1∗ ω
ωG

π̃1

πP̃ πP πG

π1

(271)

The short exact sequence of the fiber bundle H → P̃ → M̃ shows that

π1(H ,e) →π1(P̃ , p) →π1(M̃ , x) = {e}. (272)

By composition with the monodromy morphism, we obtain the exact sequence:

{e} =ΦωP̃
(π1(H ,e)) →ΦωP̃

(π1(P̃ , p)) → {e} (273)

showing that the monodromy of P̃ is trivial. (Note that ΦωP̃
(π1(H ,e)) is trivial since

H ⊂ P̃ is developed by the identity diffeomorphism to H ⊂G .)
By the preceding corollary, we obtain a development

FωP̃
: P̃ →G . (274)

It is necessarily a local diffeomorphism that preserves the fibers since ωP̃ identifies the
tangent space of each fiber with h.

Therefore, FωP̃
descends to a developing map

D : M̃ →G�H (275)

that is again a local diffeomorphism.
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Proposition 6.19. Under the same assumptions, the developing map D : M̃ → G�H is
paired with a holonomy morphism

ρ : π1(M , x) →G (276)

that is equivariant:

∀γ ∈π1(M , x),∀y ∈ M̃ , D(γy) = ρ(γ)D(y). (277)

Proof. Recall that with the universal cover π1 : M̃ → M we constructed

P̃ = {
(x, p) ∈ M̃ ×P

∣∣π1(x) =πP (p)
}

. (278)

The left action of π1(M , x) on M̃ can be lifted to P̃ by:

∀γ ∈π1(M), γ · (x, p) = (γ · x, p). (279)

Hence π̃1 ◦γ= π̃1. We obtain:

ωP̃ = π̃1
∗ω= γ∗π̃1

∗ω= γ∗ωP̃ . (280)

Since γ is an automorphism of P̃ , it corresponds to a left translation ρ(γ) of G . For
indeed, with any path η based at p ∈ P̃ , the forms η∗ωP̃ and η∗γ∗ωP̃ are equal and hence
the endpoints of their developments differ by ρ(γ) which does not depends on η. It
can be checked that ρ is indeed a morphism by concatenation of loops in π1(M , x). It
verifies the equivariance property by what precedes.

Theorem 6.20. Let P → M be a Cartan geometry modeled on an effective Kleinian pair
(g,h) with a flat Cartan connection ω. If the Cartan connection ω is complete, that is to
say every ω−1(v) vector field is complete (its flow is defined on R), then the developing
map

D : M̃ →G�H (281)

is a covering map. If G�H is also simply connected then it follows, with Γ= ρ(π1(M , x))
the image of the holonomy morphism, that D is a diffeomorphism and

M ∼= Γ�G�H . (282)

Proof. The developing map D is a cover if, and only if, it has the lifting property. That is
to say, we check that D can lift uniquely any path in G�H with the choice of base points

x ∈ M̃ and D(x) ∈G�H .

Any smooth path δ : [0,1] → G�H can be lifted in G by a path δ̃ : [0,1] → G . Then
δ̃∗θG = f dt . By lemma 6.17 (p. 74), there exists a unique path γ : [0,1] → P̃ such that
γ∗ωP̃ = f dt . Then the projection of γ in M̃ lifts δ by construction.
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Corollary 6.21. Let P be smooth manifold equipped with a complete parallelismω : TP →
g verifying the structural equation. If P is simply connected, then P is diffeomorphic
to G the unique simply connected Lie group with Lie algebra g. Its group law is the
concatenation of paths.

6.4.3 Constant curvature

The preceding construction on flat Cartan geometries can be generalized for Cartan
geometries with constant curvature and flat torsion. Indeed, recall that the mutation of
a pair (g,h) allows us to obtain a Cartan geometry with a flat curvature.

Corollary 6.22. Let P → M be a Cartan geometry modeled on an effective Kleinian pair
(g,h) with Cartan connection ω. Assume that ω is complete, has constant curvature K
and vanishing torsion. Then there exists a Lie group GK which has for Lie algebra a
mutation of g with Lie bracket:

∀x, y ∈ g, [x, y]K = [x, y]g−K (x, y). (283)

If GK�H is simply connected then there exists a subgroup ΓK ⊂GK such that

M ∼= ΓK
�GK�H (284)

by a geometric isomorphism.
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7 Strict path geometry and large automorphism group

7.1 Large automorphism groups: some dynamics

The automorphism group of a geometric structure can be equipped with the compact-
open topology. One can then consider those structures with large symmetries in the
sense that their automorphism group is non-compact. They should be very special
and probably can be described in a more precise way (see [DG]). One example of this
phenomenon is the following theorem by Obata and Lelong-Ferrand ([O; LF]).

Theorem 7.1. Let M be a manifold equipped with a conformal structure such that
Aut(M , [g ]) does not act properly. Then either M is the sphere with its standard conformal
structure or M is Rn with its standard conformal structure.

Observe that if M is compact, the non-compactness of the automorphism group
implies that the conformal structure is flat.

7.1.1 Poincaré’s recurrence theorem

We will need to pass from a non-compact Lie group action to a recurrent action. This is
easily achieved through measure preserving maps.

Definition 7.2. Let (M ,µ) be a finite measure space and φ : M → M be a measurable
map. We say that φ is measure preserving if φ∗µ=µ, that is, for every measurable subset
A ⊂ M we have µ(φ−1(A)) =µ(A).

The simpler examples of measure preserving maps are isometries defined on a Rie-
mannian manifold but more flexible examples are given by symplectic transformations
of a symplectic space. We will deal mainly with smooth transformations over manifolds
equipped with a volume form.

The definition of recurrent point for a dynamical system involves only the topology
of a space:

Definition 7.3. Let M be a Hausdorff topological space and φ : M → M be a map. We say
that x ∈ M is a recurrent point if, for each neighborhood U of x,

{ n ∈ N | f n(x) ∈U }

is infinite.

A basic theorem on dynamical systems is the following Poincaré’s recurrence theo-
rem for maps which are measure preserving
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Theorem 7.4 (Poincaré’s recurrence theorem). Let (M ,µ) be a finite measure space and
φ : M → M be a measure preserving map. Then, for any measurable subset A ⊂ M and for
almost every x ∈ A, the set

{ n ∈ N | φn(x) ∈ A }

is infinite.

Proof. The statement is equivalent to the condition that for any N ∈ N the set

EN (φ) = {
x ∈ A | φn(x) ∈ M \ A for n ≥ N

}
satisfies

µ
(
EN (φ)

)= 0.

Observe that EN (φ) =⋃2N−1
k=N E1(φk ). We need to show therefore only that µ

(
E1(φ)

)= 0.
Observe now that

E = E1(φ) = A∩
∞⋂

n=1
φ−n(M \ A)

so that φ−n(E )∩E =; for n ≥ 1 as E ⊂ A and φ−n(E ) ⊂ M \ A. Therefore, more generally,
we have φ−n(E)∩φ−m(E) =; for all n 6= m.

Now, as the map is measure preserving, one has

µ(M) ≥µ(∪∞
n=1φ

−n(E)
)= ∞∑

n=1
µ

(
φ−n(E)

)= ∞∑
n=1

µ (E) .

We conclude that for a finite measure space µ (E) = 0.

To obtain recurrent points we use the following theorem which is a consequence of
Poincaré’s recurrence theorem.

Theorem 7.5. Let (M ,µ) be a finite measure space where M is a Hausdorff second count-
able space and µ a Borel measure. Let φ : M → M be a measure preserving map. Then,
almost every x ∈ M is recurrent.

Proof. Exercise.

In order to deal with actions by automorphisms groups and not only with iterations
of a single map one introduces the following definitions. Here G is a topological group
which will be a Lie group or a countable discrete group. More generally, G is a locally
compact second countable topological group.

Definition 7.6. Let (M ,µ) be a measure space and G ×M → M be a measurable action.
We say the action is measure preserving if g∗µ=µ for all g ∈G.
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Definition 7.7. Let M be a Hausdorff topological space and G ×M → M be a continuous
action. We say that x ∈ M is a recurrent point for the action if there exists a non-relatively
compact sequence gk ∈G satisfying gk x → x.

If G is a subset of the space of homeomorphisms of M , there exists a sequence gk of
homeomorphisms which leaves every compact in the compact open topology on the
space of homeomorphisms and such that gk x converges to x. Poincaré’s recurrence
theorem implies that measure preserving actions are recurrent almost everywhere (see
[FK]):

Theorem 7.8. Let (M ,µ) be a finite measure space where M is a Hausdorff second count-
able space and µ a Borel measure. Let G ×M → M be a measure preserving action. Then
almost all points of M are recurrent.

Proof. We prove first that for every A ⊂ M and almost all x ∈ A the set

RA = { g ∈G | g x ∈ A }

is not relatively compact. We conclude then the proof by the same argument as in 7.5
using a countable base of open subsets. For each compact subset K ⊂G define

BK = { x ∈ M | g x ∈ Ac for all g ∈ K c }.

We claim that µ(BK ) = 0. As G is a countable union of compact subspaces the comple-
ment of the set RA =⋃

K BK will be of zero measure and the theorem is proved.
In order to prove the claim define for L ⊂G a countable dense symmetric subset (it

contains the inverse of each of its elements), the set:

CK = { x ∈ A | g x ∈ Ac for all g ∈ L∩K c }.

We show now that there exists a sequence of elements (gi ) in L such that g−1
i CK are

disjoint and this clearly proves the theorem as M is of finite measure. In order to
construct the sequence, start with g1 ∈ L and chose g2 such that g2g−1

1 ∈ L∩K c . Clearly
g1(g−1

2 CK ∩ g−1
1 CK ) = g1g−1

2 CK ∩CK = ;. By induction, suppose (gi )1≤i≤r are chosen
such that gi g−1

j ∈ L ∩K c for i , j ≤ r . Then ∩r
i=1(L ∩K c )gi =∩r

i=1L ∩K c gi 6= ; and one
choses gr+1 in the intersection. The sequence is constructed and this finishes the
proof.

A non-wandering point x ∈ M for the action of G is a point such that for every
neighborhood U of x the set

{
g ∈G

∣∣gU ∩U 6= ;}
is not relatively compact. Suppose

now that the measure µ is a non-trivial Borel measure. By Poincaré recurrence theorem,
if the action is measure preserving then all points are non-wandering points.
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In what follows, we consider a special non-compact one parameter subgroup of
diffeomorphisms: Anosov flows. An Anosov flow preserving a geometric structure
imposes a very strong constraint on the geometry. We will see later that even if the group
of automorphisms is discrete (in contrast with a flow) the geometry might be equally
constrained.

7.1.2 Anosov diffeomorphisms and flows

Definition 7.9. Let M be a compact manifold and φ : M → M be a diffeomorphism. We
say φ is an Anosov diffeomorphism if there exists an invariant splitting TM = E s ⊕E u

of the tangent bundle where E s and E u are non-trivial distributions of constant rank
verifying the following estimates (with respect to any Riemannian metric on M).

1. The stable distribution E s is uniformly contracted by ϕn , i.e. there are two con-
stants C > 0 and 0 <λ< 1 such that for any n ∈ N and x ∈ M:∥∥dxϕ

n
∣∣
E s

∥∥≤Cλn . (285)

2. The unstable distribution E s is uniformly expanded by ϕn , i.e. uniformly con-
tracted by (ϕ−n): ∥∥dxϕ

−n
∣∣
E u

∥∥≤Cλn . (286)

The simplest example is the following determinant one linear map defined on R2(
x
y

)
→

(
2 1
1 1

)(
x
y

)
,

which induces a diffeomorphism φ : T2 → T2 on the torus quotient space

T2 = R2/Z2.

Observe that the eigenvalues of A are given byλ= 3+p5
2 andλ−1 = 3−p5

2 with correspond-

ing eigenspaces E s and E u generated by

(
1−p5

2
1

)
and

(
1+p5

2
1

)
. Also, one can identify E s

and E u on the tangent space of the torus which is identified at each point to R2. We
obtain for the euclidean norm:∥∥dxφ

n
∣∣
E s

∥∥= ∥∥ An
∣∣
E s

∥∥=λn ,

and ∥∥dxφ
−n

∣∣
E u

∥∥= ∥∥ A−n
∣∣
E u

∥∥=λn .

Important properties of this map are the following (see [KH]):
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1. The fixed points of φ are dense in the torus.

2. φ is topologically transitive (there exists a dense orbit).

3. φ is topologically mixing (for any two open sets U and V there exists N ∈ N such
that φn(U )∩V for all n ≥ N .

It is not known which compact manifolds admit Anosov diffeomorphisms. It is
a general belief that they must be infranil manifolds, that is, compact quotients of
nilpotent Lie groups by a discrete subgroup. For the 2-torus one can prove that they are
all conjugated by a C 1-diffeomorphism to a linear one corresponding to a determinant
one integer matrix as in the example above.

We get now to the definition of Anosov flows:

Definition 7.10. A non-singular flow (ϕt ) of class C∞ on a closed Riemannian manifold
M is called Anosov, if its differential preserves a splitting TM = E s⊕E 0⊕E u of the tangent
bundle, where E 0 = RX 0 with X 0 the (non-singular) vector field generating (ϕt ), and
where E s and E u are non-trivial distributions of constant rank verifying the following
estimates (with respect to any Riemannian metric on M).

1. The stable distribution E s is uniformly contracted by (ϕt ), i.e. there are two con-
stants C > 0 and 0 <λ< 1 such that for any t ∈ R and x ∈ M:∥∥dxϕ

t
∣∣
E s

∥∥≤Cλt . (287)

2. The unstable distribution E s is uniformly expanded by (ϕt ), i.e. uniformly con-
tracted by (ϕ−t ): ∥∥dxϕ

−t
∣∣
E u

∥∥≤Cλt . (288)

Observe that the definition does not depend on the Riemannian metric because
any two metrics are equivalent on a compact manifold. In the definition of Anosov
flows, no regularity is requested on the stable and unstable distributions. Even if they
are automatically Hölder continuous ([]), E s and E u have, in general, no reason to be
differentiable (even if the flow is C∞).

A first example of an Anosov flow is obtained through the suspension of an Anosov
diffeomorphism:
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Suspension of an Anosov diffeomorphism Let M be a manifold and φ : M → M a
map. The mapping torus is the manifold

Σφ = M × [0,1]/(x,0)v (φ(x),1).

We define the suspension flow ϕt
φ :Σφ→Σφ to be the flow given locally by the formula

ϕt
φ(x, s) = (x, s+t ). Observe then thatϕt

φ(x,1) = (φ(x), t ) for 0 ≤ t ≤ 1 and, more generally,

ϕn−1+t
φ (x,1) = (φn(x), t ) for 0 ≤ t ≤ 1.

Exercise: Prove that the suspension flow of an Anosov diffeomorphism is an Anosov
flow.

The suspension flow has the property that the distribution generated by the stable
and unstable distributions is integrable. Indeed its integral submanifolds are the leaves
M × {s0} where 0 ≤ s0 ≤ 1.

One can define a strong equivalence between flows by imposing conjugation via a
diffeomorphism.

Definition 7.11. Two flows, (ϕt ) on M and (ψt ) on N , are equivalent if there exists a
diffeomorphism h : M → N such that the flow (h−1 ◦ψt ◦h) is equal to (ϕt ).

One usually allows reparametrizations of the orbits as in the following much weaker
notion of equivalence.

Definition 7.12. Two flows (ϕt ) on M and (ψt ) on N are orbit equivalent if there exists
a diffeomorphism h : M → N such that the flow (h−1 ◦ψt ◦h) on M is a time-change of
(ϕt ), i.e. there exists a time-change function τ : R×M → R (satisfying τ(t , x) ≥ 0 for t ≥ 0)
such that ϕτ(t ,x)(x) = (h−1 ◦ψt ◦h)(x) for all (t , x) ∈ R×M.

A particular class of Anosov flows is the one preserving a contact form θ. This implies
that it also preserves a volume form. In dimension three this is θ∧dθ.

An important problem concerns the existence of a dense orbit of a dynamical system
or a group action. Indeed, a dense orbit will imply that the geometry is close to being
homogeneous.

General Anosov flows are not necessarily topologically transitive. The first exam-
ples of nontransitive Anosov flows were constructed in [FW]. On the other hand one
can prove (see [KH]) that the nonwandering set of an Anosov flow admits a spectral
decomposition, that is, a disjoint decomposition

NW =
N⋃

i=1
Ωi
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where each Ωi is a closed invariant subset where the flow is topologically transitive.
In the case of a volume preserving flow, the nonwandering set coincides with the
manifold and therefore the decomposition is trivial and one concludes that the flow is
topologically transitive.

A corollary of this result is the following

Theorem 7.13. Let (φt ) be an Anosov flow on a compact manifold M preserving a contact
form. Then the flow is topologically transitive (it is in fact topologically mixing, see [KH]
pg. 576).

7.1.3 Geodesic flows

Definition 7.14. For a complete Riemannian manifold (M , g ) define the geodesic flow
ϕt : TM → TM by

ϕt (x, v) =
(
expx(t v),

d

dt
expx(t v)

)
. (289)

Exercise Prove that this is indeed a flow.

Note Since geodesics can be parametrized by unit tangent vectors, the flow itself
preserves the unit tangent bundle:

T1M = {
(x, v) ∈ TM

∣∣gx(v, v) = 1
}

. (290)

So we consider the geodesic flow restricted to the unit tangent bundle

ϕt : T1M → T1M (291)

and one should note that the fiber of T1M → M is compact and diffeomorphic to the
(n −1)-sphere.

The hyperbolic half-place Recall that for this model, the metric is given by

ds2 = dx2 +dy2

y2
= |dz|2

(Im z)2
. (292)

The induced volume form is

dv = 1

y2
dx dy. (293)

We recall the description of the geodesics of hyperbolic space and the description of
its isometry group:
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Proposition 7.15. The orientation preserving isometry group of the hyperbolic upper-half
place is PSL(2,R) which acts by Möbius transformations:(

a b
c d

)
· z = az +b

cz +d
. (294)

Proposition 7.16. The geodesics of H2
R are vertical lines or circles perpendicular to the

R-axis.

We also recall the fundamental uniformization theorem describing all complete
hyperbolic surfaces as quotients of H2

R.

Theorem 7.17. Every complete surface of constant curvature −1 is a quotient Γ�
H2

R for a
torsion free discrete subgroup Γ⊂ PSL(2,R)

The orientation preserving isometry group PSL(2,R) acts on T1H2
R with trivial isotropy.

We identify then T1H2
R with PSL(2,R). For instance one can fix the point i ∈ H2

R and the
unit vertical vector v = i based at i and obtain all the other unit vectors (at every other
point) by h · v for h ∈ PSL(2,R).

The geodesic passing through i in the direction v = i is given by i e t and therefore
i e t is again the tangent vector at i e t . In order to identify the flow along that geodesic,
one can observe that the family

g t =
{(

e t/2

e−t/2

)}
(295)

is such that g t · i = i e t . One concludes that the orbit of the vector v by the geodesic flow
is given by g t .

Suppose now that h ∈ PSL(2,R) gives a different vector h · v ∈ T1H2
R. Then the

geodesic determined by this vector is the image of the geodesic determined by v that is
hg t . We obtain therefore that the geodesic flow in PSL(2,R) is given by right multiplica-
tion by g t .

We describe now the stable and unstable distributions. Given a geodesic γv (t ) (say
defined by a vector v based at z), one can consider the set of points equidistant from
a point in the geodesic along positive times and containing z. The limit for t →+∞
is a Euclidean circle tangent to the real line (for geodesics which are half-circles) or
horizontal lines (for vertical geodesics) called the horosphere S+

v . The set of inward
unit orthogonal vectors to a horosphere (called the horocycle in T1H2

R) define geodesics
which all converge towards the same point at infinity as γv (t ). Analogously we define
the horosphere S−

v obtained by taking limits of circles centered on the geodesic along

85



negative times. The set of inward unit orthogonal vectors to that horosphere define
geodesics which all converge towards the same point at infinity as γv (−t ).

The horocycle flow h∗
t : T 1H 2

R → T 1H 2
R is defined to be the map moving vectors along

S+
v to the left of v with unit speed. Analogously, the horocycle flow ht : T 1H 2

R → T 1H 2
R is

defined to be the map moving vectors along S−
v to the right of −v with unit speed. We

have ht =−h∗
−t (−v).

The horosphere S+
ii

is the horizontal line y = 1 in the half plane which is an orbit of
the left action by

h+
t =

(
1 t
0 1

)
In the identification of PSL(2,R) with T 1H 2

R we obtain then that the horocycle flow is

h∗
t (g ) = g ·h+

t .

Analogously the other horocycle flow is given by

ht (g ) = g ·h−
t .

where

h−
t =

(
1 0
t 1

)
.

Exercise: Prove that g t ◦h∗
s = h∗

se t ◦ g t and, analogously, g t ◦hs = hse t ◦ g t .

Consider PSL(2,R) identified with T1H2
R. Any metric defined on Te PSL(2,R) can be

extended to a left-invariant metric which can be seen as an invariant metric on T1H2
R

under the action of PSL(2,R).

Proposition 7.18. The geodesic flow on T1H2
R is Anosov with respect to any left-invariant

metric.

Proof. At v = i ∈ T1
i H2

R, consider the three vectors in Tv T1H2
R corresponding to the three

flows. That is to say:

e0 = d

dt
g t (v)

∣∣∣∣
t=0

=
(1

2 0
0 −1

2

)
, (296)

e1 = d

dt
h∗t (v)

∣∣∣∣
t=0

=
(
0 1
0 0

)
, (297)

e2 = d

dt
ht (v)

∣∣∣∣
t=0

=
(
0 0
1 0

)
. (298)
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We compute ‖g t∗ei‖ for an invariant metric on T1H2
R. We have :

∥∥g t
∗e0

∥∥=
∥∥∥∥g−t

(1
2 0
0 −1

2

)
g t

∥∥∥∥=
∥∥∥∥(1

2 0
0 −1

2

)∥∥∥∥= ‖e0‖, (299)

∥∥g t
∗e1

∥∥=
∥∥∥∥g−t

(
0 1
0 0

)
g t

∥∥∥∥=
∥∥∥∥(

0 e−t

0 0

)∥∥∥∥= e−t‖e1‖, (300)

∥∥g t
∗e2

∥∥=
∥∥∥∥g−t

(
0 0
1 0

)
g t

∥∥∥∥=
∥∥∥∥(

0 0
e t 0

)∥∥∥∥= e t‖e2‖. (301)

On a compact surface Let Σ = Γ0
�H2

R be the quotient by a cocompact lattice Γ0 ⊂
PSL(2,R) (without torsion). Since PSL(2,R) acts simply transitively on the unitary tan-
gent bundle of H2

R, one verifies that the geodesic flow on the unit tangent bundle T1Σ

is smoothly conjugated to the right diagonal flow (by a constant time-change) on the
quotient Γ0

�PSL(2,R).
Geodesic flows of compact hyperbolic surfaces are very specific.

1. Their stable and unstable distributions both are C∞ (because they arise from
left-invariant distributions on the Lie group PSL(2,R)).

2. The distribution E s ⊕E u is moreover a contact distribution and Anosov flows
verifying this last property are called contact-Anosov.

3. If (ϕt ) is a contact-Anosov flow with smooth invariant distributions and X 0 is its
infinitesimal generator, then we define the canonical 1-form θ of (ϕt ) by θ|E s⊕E u =
0 and θ(X 0) = 1. This is a contact form with kernel E s ⊕E u . By construction, (ϕt )
preserves the strict path structure T = (E s ,E u ,θ) that we call canonical.

Note that the structures obtained in this way have a purely geometrical specificity:
the Reeb flow of their contact form is a flow of automorphisms of the structure T (this
has no reason to be true in general). Indeed, the Reeb vector field of the canonical
structure of (ϕt ) is its generator X 0, so that the Anosov flow itself is encoded in the
structure T .

7.2 Strict path geometry with non compact automorphism group

This section is based on [FMMV] (see also [MM]).

Definition 7.19. A group acting on a manifold is topologically transitive if it has a dense
orbit.
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Theorem 7.20. Let (M ,E 1 ⊕E 2,θ) be a strict path structure on a closed three-manifold
M. We assume that Aut(M) is topologically transitive. Then the canonical curvature of M
is constant with vanishing torsion and its connexion is complete. By Theorem 6.20 (p. 76)
and Corollary 6.22:

M ∼= Γ�HeisoR∗
+�R∗

+ or M ∼= Γ�
ãSL(2,R)×R∗

+�∆(R∗
+). (302)

where ∆(R∗+) is the diagonal embedding of R∗+ in the product.

Lemma 7.21. Under those assumptions, the curvature is constant and is of the form

Ω=
Rθ1 ∧θ2

−2Rθ1 ∧θ2

Rθ1 ∧θ2

 . (303)

Proof. A priori, the curvature of M is of the form

Ω=
 dw
τ1

2θ∧θ2 −2dw
0 τ2

1θ∧θ1 dw

 (304)

with τ1
2,τ2

1 two functions and a decomposition of dw into:

dw = Rθ1 ∧θ2 +W 1θ∧θ1 +W 2θ∧θ2 (305)

with R,W 1,W 2 three functions. To prove the theorem, we need to prove that only R is
non zero.

The idea is that an automorphism preserves the curvature, so the curvature must
be stable under a sequence of transformations that is not relatively compact but the
existence of recurrent points impose strong constraints.

Recall that, if h the matrix with diagonal (a, a−2, a), R∗
hω = ω, R∗

hω
1 = a3ω1 and

R∗
hω

2 = 1
a3ω

2. Also, R∗
hΩ= Ad(h)−1Ω and we get:

R∗
hΩ=

 dw
a3τ1

2θ∧θ2 −2dw
0 a−3τ2

1θ∧θ1 dw

 . (306)

Taking into account the change of ω,ω1 and ω2 we obtain the curvature functions
change. Indeed from

R∗
h dw = (R∗

h R)R∗
hθ

1 ∧R∗
hθ

2 + (R∗
hW 1)θ∧R∗

hθ
1 + (R∗

hW 2)θ∧R∗
hθ

2
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= (R∗
h R)θ1 ∧θ2 + (R∗

hW 1)a3θ∧θ1 + (R∗
hW 2)

1

a3
θ∧θ2

and, as this expression is equal to dw , we have

Similarly, we obtain

Rh
∗τ1

2 = a6τ1
2, Rh

∗τ2
1 =

1

a6
τ2

1.

Also, the Bianchi identities link together τ1
2,τ2

1 with W 1 and W 2.

dΩ= [Ω∧ω] (307)

=
 dw
τ1

2θ∧θ2 −2dw
0 τ2

1θ∧θ1 dw

∧
w
θ1 −2w
θ θ2 w

 (308)

=⇒
{

d(τ1
2θ∧θ2) = τ1

2θ∧θ2 ∧w −2dw ∧θ1

d(τ2
1θ∧θ1) =−2τ2

1θ∧θ1 ∧w +dw ∧θ2 (309)

=⇒
{

d(τ1
2θ∧θ2) = τ1

2θ∧θ2 ∧w −2W 2θ∧θ2 ∧θ1

d(τ2
1θ∧θ1) =−2τ2

1θ∧θ1 ∧w +W 1θ∧θ1 ∧θ2 (310)

Now, these two equations clearly imply that if τ2
1 = τ1

2 = 0 then W 1 =W 2 = 0. We need to
show τ2

1 = τ1
2 = 0.

As the group of automorphisms is non-compact and preserves the measure induced
by the contact form we apply Poincaré’s recurrence theorem: almost all points are
recurrent. Let x ∈ M be a recurrent point and ϕk ∈ Aut(M) a non relatively compact
sequence such that ϕk (x) → x.

That means that at x we have ϕ∗
kθ

1 = a3
kθ

1 = R∗
ak
θ1 and ϕ∗

kθ
2 = 1

a3
k
θ2 = R∗

ak
θ2 with

ak →+∞. On the other hand the curvature is preserved by the automorphism group so
ϕ∗

kΩ=Ω. Comparing with the above equation for R∗
ak
Ω= Ad(ak )−1Ω, shows τ1

2 = 0 and
by the same argument τ2

1 = 0.

The fact that there exists a dense orbit implies that the function R defined on the
base manifold M is constant. The proof of the theorem now relies on the completeness
of the structure. By Carrière [Carriere] and Klingler [Klingler] it is indeed the case. (See
also [DZ].) In the proof we assume that the structure is of class C 2. Indeed we use the
dynamics to obtain information about the curvature. If we suppose the structure is of
class C 3 we can give away the hypothesis of the existence of a dense orbit and use the
dynamics again to show that the curvature function is constant.
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Indeed, observe that R is a function defined on M . If the structure is of class C 3,
taking its differential, we write

dR = R0θ+R1θ
1 +R2θ

2,

where (θ,θ1,θ2) is an adapted coframe on M . Now we consider a recurrent point x ∈ M
with φk a non-relatively compact sequence of automorphisms such that φk (x) → x. R is
invariant under automorphisms and therefore we have

dR =φ∗
k (dR) = R0 ◦φkφ

∗
kθ+R1 ◦φkφ

∗
kθ

1 +R2 ◦φkφ
∗
kθ

2.

But φ∗
kθ = θ, φ∗

kθ
1 = akθ

1 and φ∗
kθ

2 = 1
ak
θ2 with ak → ∞ at x. As Ri ◦φk (x) → Ri (x),

we conclude that R1 = R2 = 0. Finally, the fact R0 = 0 is implied by the zero torsion
condition.

7.2.1 Heisenberg lattices with non compact automorphism groups

Consider the basis (e1,e2,e3) of heis(3) with the brackets [e1,e2] = e3 and [·,e3] = 0. The
action of R∗+ on (e1,e2,e3) is given by the diagonal matrices (in this basis)

R∗
+ =


λ λ−1

1

∣∣∣∣∣∣λ ∈ R∗
+

 . (311)

(Note that (e1,e2,e3) corresponds under the connexion to (θ1,θ2,θ).)

Lemma 7.22 ([DZ]). Up to finite index, a closed manifold Γ�
Heis(3)oR∗

�R∗ is given by
a subgroup Γ⊂ Heis(3) that is a cocompact lattice of Heis(3).

A lattice in Heis(3) projects to a lattice in R2 following the following exact sequence

0 → R → Heis(3) → R2 → 0,

giving an exact sequence
0 → Z → Γ→ Γ2 → 0.

In the following proposition we characterize hyperbolic transformations of R2, that
is, transformations written in a basis of eigenvectors as(

φ 0
0 φ−1

)
,

which preserve a lattice of R2. Those transformations will give rise to automorphisms of
the Heisenberg group which preserve a lattice in Heis(3) which will induce an automor-
phism on a compact quotient of the Heisenberg group.
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Proposition 7.23. There exists a non trivial automorphismϕ ∈ R∗+ (identified to diagonal
matrices in SL(2,R)) preserving a cocompact lattice Γ2 of R2 if, and only if, φ verifies a
quadratic equation φ2 = qφ−1 with q ≥ 3 an integer.

Note that in such a case, we can explicitly give a lattice:

Γ2 =
{(

1 φ

φ 1

)(
x
y

)∣∣∣∣ (x, y) ∈ Z2
}

(312)

since indeed the automorphism preserves the lattice:(
φ

φ−1

)(
1 φ

φ 1

)
=

(
φ φ2

1 φ−1

)
(313)

=
(
φ qφ−1
1 q −φ

)
(314)

=
(

1 φ

φ 1

)(
0 −1
1 q

)
(315)

for the last matrix belongs to GL(2,Z).

Proof. If

Γ2 =
(

v1 v2

w1 w2

)
Z2 (316)

then the fact that the automorphism preserves a lattice translates to:(
φ

φ−1

)(
v1 v2

w1 w2

)
=

(
v1 v2

w1 w2

)(
a b
c d

)
. (317)

with (
a b
c d

)
∈ GL(2,Z). (318)

In particular, the trace of the automorphism must be an integer q ∈ Z This proves
that Z[φ] is a quadratic extension of Z. Indeed, note that φ−1 = q −φ and therefore
φ2 = qφ−1. We also have q ≥ 3 since φ 6=φ−1.

Corollary 7.24. Such an automorphism ϕ can not be the time t = 1 of a flow because q is
an integer.

91


