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1 Preliminaries

General references for these notes are [Don11; For81; Mir95].

Differential manifolds are usually equipped with other structures. For instance,
every manifold can be given a Riemannian metric. These structures might have local
invariants, as the curvature in the Riemannian case, which distinguishes arbitrarily
small neighborhoods. Other structures, on the contrary, are not distinguished by local
invariants. An example is the structure of a complex manifold.

Definition 1.1. A complex manifold of dimension n is a connected differential manifold
(which we suppose Hausdorff and second countable) equipped with a cover X =∪Uα by
open sets Uα and homeomorphisms (charts) zα : Uα→ zα(Uα) ⊂ Cm such that the maps
zβ ◦ z−1

α : zα(Uα∩Uβ) → zβ(Uα∩Uβ) are biholomorphisms.

Remark 1.2. Sometimes we will consider complex manifolds without the connectedness
hypothesis.

Once a chart cover (we call it an atlas) is defined, one usually considers a maximal
family of charts compatible with the given cover. We are thus allowed to introduce new
charts whenever we need. Maps between complex manifolds are defined as for real
manifolds:

Definition 1.3. A continuous map F : X → Y between complex manifolds is holomorphic
if, for charts zα : Uα→ Cn and wβ : Vβ→ Cn of M and N respectively such that F (Uα) ⊂Vβ,
we have that wβ ◦F ◦ z−1

α : zα(Uα) → wβ(Vβ) is holomorphic.

We say then that two complex manifolds are biholomorphic if there exists a diffeo-
morphism between them which is a holomorphic map.

Definition 1.4. A Riemann surface is a one dimensional complex manifold.

Remark 1.5. The second countability hypothesis in the definition of a complex manifold
can be put aside in the case of dimension one: having an atlas of one dimensional complex
charts on a Hausdorff space implies second countability (Radó’s theorem 1925).

Example 1.6. The Riemann sphere CP1 is a Riemann surface whose underlying topo-
logical manifold is the two dimensional sphere S2. We write S2 = C∪ {∞}. There are two
natural charts:

1. z1 : C∪ {∞} \ {0} =U1 → C defined by z1(z) = 1/z if z ̸= 0 and z1(∞) = 0
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2. z2 : C =U2 → C defined by z2(z) = z

In the intersection U1 ∩U2 = C \ {0} = z1(C \ {0}) = z2(C \ {0}) we obtain

z2 ◦ z−1
1 : C \ {0} → C \ {0}

given by z2 ◦ z−1
1 (z) = 1/z which is a biholomorphism.

This is the most symmetric example of a Riemann surface. It has the largest group
of automorphisms (the group of diffeomorphisms which are holomorphic) namely, the
group of Möbius transformations. The Riemann sphere contains as an open subset the
complex plane whose automorphism group (the similarity group) is a subgroup of the
Möbius group.

Complex manifolds of higher dimensions appear naturally in the theory of Riemann
surfaces. In particular, we will show that every Riemann surface is embedded in a
complex projective space.

Remark 1.7. We will see that any orientable topological surface has a complex structure
making it a Riemann surface. On the contrary, there are higher dimensional manifolds
which don’t admit any complex structure. For instance, a basic open problem is to decide
if the sphere S6 admits a complex structure, the other spheres of dimension bigger than 2
are known not to admit a complex structure.

Particularly important is the study of holomorphic maps of a Riemann surface X
into C (holomorphic functions). That is, continuous functions f : X → C such that for
every chartφ : U → C of M the map f ◦φ−1 :φ(U ) → C is holomorphic. On a (connected)
compact Riemann surface, holomorphic functions are constant. Indeed, there would
be a maximum of the function at a point and the maximum principle applied to f ◦φ−1

on a chart φ : U → C containing that point will force the function to be constant.
A much richer class of functions defined on a Riemann surface are holomorphic

maps from M to the Riemann sphere. Indeed a basic theorem in the theory is that there
exists at least one non-constant meromorphic function. We will see that Riemann-Roch
theorem gives a quantitative description of the space of meromorphic functions. One
may define them in a way which makes appear the algebraic structure of a field on the
space of all meromorphic functions: Meromorphic functions are holomorphic functions
defined on the complement of a closed and discrete subset of points (called poles) such
that viewed through the charts are meromorphic.

Definition 1.8. Let X be a Riemann surface and D ⊂ X a closed and discrete subset. A
meromorphic function is a holomorphic function f : X \D → C such that for all charts the
composition f ◦φ−1 is meromorphic. The set of meromorphic functions on X is denoted
by M (X ).
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A point p ∈ X is a pole of a meromorphic function f if limz→p f (z) =∞. Meromor-
phic functions on a Riemann surface may be interpreted as holomorphic maps into
CP1: it is a consequence of the Riemann removable singularity theorem and we leave it
as an exercise.

Proposition 1.9. Let X be a Riemann surface and f ∈M (X ) be meromorphic function.
Let D ⊂ X be the set of poles of f . Define an extension of f , f̃ : CP1 → CP1, by f̃ (p) =
∞∈ CP1 for all p ∈ D. Then f̃ is a holomorphic map. Conversely, any holomorphic map
f̃ : CP1 → CP1 (which is not identically ∞) defines a meromorphic map on CP1 which is
holomorphic on the complement of D = f̃ −1(∞).

The first part is a consequence of the Riemann removable singularity theorem. For
the converse one needs to show that D is discrete and this follows from the fact that
a holomorphic function defined on a connected domain which is constant on a set
having an accumulation point must be constant.

Remark 1.10. Clearly M (X ) is a field (we supposed that a Riemann surface is connected).
One can prove that if X is a compact Riemann surface, M (X ) is a transcendental exten-
sion of C of degree one. Moreover, any transcendental extension of C of degree one is the
field of meromorphic functions of a Riemann surface.

A holomorphic function defined on some neighborhood of a point in the plane is
determined by the coefficients (an infinite sequence of numbers) of its power series
developement. By contrast, a holomorphic function defined on a Riemann surface
does not have a meaningful power series associated to it, meaning that, up to a change
of chart, one has always the same local form depending only on a natural number
described in the following lemma.

Lemma 1.11. Let φ : Y → X be a non-constant holomorphic map between Riemann
surfaces with φ(y0) = x0. There exist charts pY and pX around y0 and x0 respectively
such that pY (y0) = pX (x0) = 0 and pX ◦φ◦pY

−1(z) = zn for some n ≥ 1.

Proof. Clearly we can assume that there exists local coordinates p ′
Y (we will change that

coordinate next) and pX around y0 and x0, respectively, such that pY (y0) = pX (x0) = 0.
Now, if pX ◦φ◦p ′

Y
−1 is non-constant we may suppose that there exists a holomorphic

function f (w) such that pX ◦φ◦p ′
Y
−1(w) = w n f (w) with n ≥ 1 and f (0) ̸= 0. Therefore,

on some neighborhood of the origin, there exists a holomorphic function h(w) such
that hn(w) = f (w). Observe that the map p : w → wh(w) is a biholomorphism in a
neighborhood of the origin so that pY = p ◦p ′

Y is a new chart around y0. For z = wh(w)

we obtain pX ◦φ◦pY
−1(z) = pX ◦φ◦p ′

Y
−1(w) = w n f (w) = (wh(w))n = zn .
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Observe that in the case n = 1 the map φ is a local biholomorphism at y0 ∈ Y .

Definition 1.12. A point y0 ∈ Y with n ≥ 2 in the above lemma is called a ramification
point and the point x0 ∈ X as above is a branching point of order n of the map φ.

Definition 1.13. Let f ∈M (X ) be a meromorphic function. One defines the order of f at
p ∈ X

or dp ( f ) = n

if, on a local chart φ : U → C with p ∈U and φ(p) = 0, one can write

f ◦φ−1(z) =
∞∑

k=n
ck zk ,

with n ∈ Z and cn ̸= 0.

If f is the null function we usually define or dp ( f ) =∞ for all p ∈ X . Note that this
definition does not depend on the chosen chart. Observe also that if one considers the
meromorphic function as a holomorphic function from X to CP1 then p is a ramification
point of f when n ̸= 0 and the order of ramification is then |n|. The function or dp defines
a valuation on the field M (X ).

Exercises

1. Prove Liouville’s theorem: every bounded holomorphic function defined on C is
constant.

2. Let φ : Y → X be a non-constant holomorphic map between Riemann surfaces.
Show that φ is an open map.

3. Let φ : X → C be a non-constant holomorphic map. Show that |φ| does not attain
its maximum. Conclude that every holomorphic function on a compact Riemann
surface is constant.

4. Letφ : X → C be a non-constant holomorphic map. Show that Reφ does not attain
its maximum.

5. Show that the meromorphic functions on CP 1 are quotients of two polynomials.

6. Let φ : Y → X be a non-constant holomorphic map between compact Riemann
surfaces. Show that φ is surjective. Prove the fundamental theorem of algebra by
considering a polynomial as a holomorphic map between CP 1.
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Meromorphic functions on CP 1 are very simple to describe:

Definition 1.14. A rational function f ∈M (CP 1) is a meromorphic function of the form

f (z) = p(z)

q(z)

where p(z) and q(z) are polynomials with no common factors.

By the exercise above M (CP 1) is the set of rational functions. Here, one can also
define f : CP 1 → CP 1, defining p(z)

q(z) =∞∈ CP 1 if q(z) = 0 and p(z) ̸= 0.
Writing a meromorphic function in the neighborhood of a point a as f (z) = (z −

a)k g (z) where g (a) ̸= 0, we define the order of f (z) at a to be k. The order of the function
defined on CP 1 at ∞ is computed using the chart w = 1/z. So that if p(z) has degree
n and q(z) degree m, then ∞ will have order −(n −m). For a rational function, this
implies that the sum of the orders of the zeros and poles is zero. Conversely, an easy
construction gives

Proposition 1.15. Let zi and w j be two finite disjoint families of points in CP 1 with the
same number of elements. Then there exists a rational function vanishing precisely at ai

and having poles precisely at w j (unique up to a non-vanishing scalar multiplication).
The order of the function at each point being the number of times the point appears in
the families.

Proof. Suppose that there are n points in each family and none of them is ∞. Define∏n
1 (z − zi )∏n

1 (z −wi )
.

In the case zi = ∞ we substitute the factor by z − zi by 1/z. On the other hand, if
wi =∞ we substitute z −wi by z. This clearly gives a rational function with the desired
properties.

This is not true for other Riemann surfaces. One cannot fix arbitrarily the structure
of zeros and poles of a meromorphic function. By the way, it is much more difficult to
prove that there exists a meromorphic function at all.

Observe that the proposition implies that all meromorphic functions on CP1 are
rational. Indeed, it suffices to multiply the meromorphic function by the inverse of the
rational function obtained using the zeros and poles of the meromorphic function to
obtain a constant. One way to describe this result is to say that fixing a formal sum on
CP1 of the form

D =
n∑
i

zi −
n∑
i

wi
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one can find a meromorphic function with poles and zeros as above. D is called a divisor
and it determines up to a non-vanishing scalar the meromorphic function

Another approach to the description of meromorphic functions on CP1 is based on
prescribing the principal part at poles. Suppose we fix n points (zi ) in CP1 (we suppose
here that ∞ is not a pole). each zi being a pole of order at most ni with principal part

ni∑
k=1

ck,i

(z −wi )k
.

Clearly the function
n∑

i=1

ni∑
k=1

ck,i

(z −wi )k

has the principal part at each neighbourhood and is a rational function. Observe that
we can count the number of such functions: it forms a vector space of dimension n +1
(n coefficients of the principal part plus constants). Observe also that in this count we
loose any information on the number of zeros of the meromorphic function.

The proposition above has a generalisation to other Riemann surfaces as Abel’s
theorem. On the other hand, the counting of meromorphic functions described in the
last paragraph is the simplest form of the Riemann-Roch formula.

As a preparation for the general formulation of Riemann-Roch theorem, suppose we
define a divisor given n points in CP1 as the formal sum

D =∑
ni zi ,

where ni ∈ Z satisfy
∑

ni = d ∈ Z. The integer d is called the degree of the divisor D . We
are interested in the dimension of the space, L(D), of meromorphic functions f such
that or dzi f ≥−ni and or dz f = 0 if z ̸= zi for all i together with the null function. That
is, if ni < 0, f has a zero of order at least ni at zi and if ni > 0, f has a pole of order at
most ni at zi . Observe that If d < 0 then L(D) is empty. Indeed if f is meromorphic
we showed that

∑
or dzi f = 0 (Proposition 1.15). The same proposition shows that if

d = 0, dimL(D) = 1. Suppose now that d > 0. We can get rid of all zi with ni < 0 by
adding an appropriate meromorphic function g with poles at those points. We obtain a
new divisor D ′ and the fundamental observation is that the space L(D) is isomorphic to
L(D ′) ( f ∈ D if and only if f /g ∈ D ′) . We can simplify the computation of the dimension
further by adding a meromorphic function with poles at all points of the divisor D ′

except one, say z0 which will have a zero of order d . We obtain in this way a divisor
of the form d .z0. We can suppose in local coordinates that z0 =∞ and then L(D) is
isomorphic to the space of polynomial of degree less that d . That is dimL(D) = d +1.
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Appendix: Projective space
Complex projective space CP n is the quotient of Cn+1−0 by the C∗-actionλ(z1, · · · , zn+1) =

(λz1, · · · ,λzn+1). The orbit containing the point (z1, · · · , zn+1) is denoted [z1, · · · , zn+1]
(the homogeneous coordinates).

Natural charts are given by defining the open sets Ui = { [z1, · · · , zn+1] | zi ̸= 0 } and
φi : Ui → Cn as

φi ([z1, · · · , zn+1]) = (
z1

zi
, · · · ,1, · · · ,

zn+1

zi
)

where the coordinate 1 corresponding to zi /zi should be deleted in the identification
with Cn . The transition functions are given by

φ j ◦φ−1
i (w1, · · · , wn+1) = (

w1

w j
, · · · ,

wn+1

w j
)

where we think (w1, · · · , wn+1) as having the i -coordinate equal to 1 and ( w1
w j

, · · · , wn+1
w j

)

having the j -coordinate equal to 1.
We denote Π : Cn+1 \ {0} → CP n the projection. CP n is a compact manifold as the

projectionΠ is continuous and its restriction to the sphere S2n−1 ⊂ Cn+1 is surjective.
The group GL(n+1,C) of invertible (n+1)×(n+1) matrices acts on CP n : just use the

action on C n+1 and observe that it passes to the quotient. The subgroup C∗ ⊂GL(n+1,C)
of multiples of the identity acts trivialy on the quotient. In fact one can prove the
following.

Proposition 1.16. The group of biholomorphism of CP n is

PGL(n +1,C) =GL(n +1,C)/C∗.

Appendix: Complex manifolds are orientable

Definition 1.17. A differential manifold is orientable if one can choose a covering by
charts (Uα,φα) such that, for any two charts, the Jacobian of φα ◦φ−1

β
is positive. That is,

writing
φα ◦φ−1

β (x1, · · · , xn) = (y1, · · · , yn),

we have

det
∂yi

∂x j
> 0.

Observe that, using differential forms, one can write

d y1 ∧·· ·∧d yn = det (
∂yi

∂x j
)d x1 ∧·· ·∧d xn .
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Proposition 1.18. Any complex manifold is orientable.

Proof. Write
φα ◦φ−1

β (z1, · · · , zn) = (w1, · · · , wn)

for zi = xi + i xi+n and w j = y j + i y j+n so that d zi ∧d z̄i = d(xi + i xi+n)∧d(xi − i xi+n) =
−2i d xi ∧d xi+n and analogously d wi ∧d w̄i =−2i d yi ∧d yi+n . We have therefore

d y1 ∧·· ·∧d y2n = det
∂wi

∂zi
det

∂w̄ j

∂z̄ j
d x1 ∧·· ·∧d x2n

so that

det
∂yi

∂x j
=

∣∣∣∣det
∂wi

∂zi

∣∣∣∣2

> 0.

Appendix: The implicit function theorem
Examples of Riemann surfaces are easily obtained as submanifolds of complex

manifolds by using the implicit function theorem. Here is its simplest version with two
complex coordinates. We will mainly use that version.

Proposition 1.19. Let f be a holomorphic function in two complex variables defined

on { (z, w) | |z| < ε1, |w | < ε2 }. Suppose that f (0,0) = 0 and ∂ f
∂w (0,0) ̸= 0. Then, there

exists 0 < δ1 ≤ ε1,0 < δ2 ≤ ε2 and a unique function φ defined on |z| < δ1 such that
{(z,φ(z)) | |z| < δ1 } = f −1(0)∩ { (z, w) | |z| < δ1, |w | < δ2 }. Moreover, φ is holomorphic.

Proof. As ∂ f
∂w (0,0) ̸= 0, there exists δ2 > 0 such that f (0, w) ̸= 0 for |w | = δ2. There exists

therefore, by compactness, δ1 > 0 such that f (z, w) ̸= 0 for |z| < δ1, |w | = δ2. Writing

fw (z, w) = ∂ f (z,w)
∂w , for each z, the number of zeros of f (z, w) in |w | < δ2 is given by the

holomorphic function

N (z) = 1

2πi

∫
|w |=δ2

fw (z, w)

f (z, w)
d w

which is therefore constant equal to one. The explicit solution is given by the residue
theorem (writing f (z, w) = (w −φ(z))h(z, w) for a non-vanishing function h(z, w)):

φ(z) = 1

2πi

∫
|w |=δ2

w
fw (z, w)

f (z, w)
d w

which is holomorphic in z.
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Corollary 1.20. Suppose that P (w) = w n +a1w n−1 +·· ·+an (with ai holomorphic func-
tions defined on a neighborhood of z) has n distinct solutions w1, · · · , wn at z. Then there
exists unique holomorphic functions f1, · · · , fn (defined on perhaps smaller neighborhood
of z) with fi (z) = wi satisfying P ( fi ) = 0 so that P (w) =Πn

1 (w − fi ).

A more general statement of the implicit function theorem is the following:

Proposition 1.21. Let f = ( f1, · · · , fm) : P → Cm be a holomorphic function defined on
P = { (z, w) | |z| < ε1, |w | < ε2, } where z = (z1, · · · , zn) and w = (w1, · · · , wm). Suppose
that f (0) = 0 and for 1 ≤ i , j ≤ m

det
∂ fi

∂w j
(0,0) ̸= 0.

Then, there exists 0 < δ1 ≤ ε1,0 < δ2 ≤ ε2 and a unique function φ defined on |z| < δ1

such that {(z,φ(z)) | |z| < δ1 } = f −1(0)∩ { (z, w) | |z| < δ1, |w | < δ2 }. Moreover, φ is
holomorphic.

Proof. Apply the real version of the implicit function theorem first to obtain that there
exists δ1 > 0 and a unique function φ defined on |z| < δ1 such that f (z,φ(z)) = 0. It
remains to show that the function is holomorphic. We compute

0 = ∂ fi (z,φ(z))

∂z̄l
= ∂ fi

∂z̄l
+ ∂ fi

∂w̄ j

∂φ̄ j

∂z̄l
+ ∂ fi

∂w j

∂φ j

∂z̄l
.

The first two terms in the right hand side are null because fi is holomorphic. Therefore

∂ fi

∂w j

∂φ j

∂z̄l
= 0.

Because det ∂ fi
∂w j

̸= 0 we conclude that

∂φ j

∂z̄l
= 0.

We mention a simple application of the proposition: if f : Cn+1 → Cn is holomorphic
of constant rank n then the set

{z ∈ Cn+1 | f (z) = 0 }

12



is a Riemann surface (maybe with several connected components). In particular if

F (z, w) = 0

has no solution with simultaneously vanishing derivatives ∂F (z,w)
∂z and ∂F (z,w)

∂w , it defines
a Riemann surface. Indeed, the charts are given by

φ−1(z) = (z, g (z))

or
ψ−1(w) = (h(w), w).

In the intersection of two charts as above we obtain

ψ◦φ−1(z) = g (z)

which is holomorphic with non-vanishing derivative (because ψ◦φ−1 is a bijection in
the intersection).

Appendix: holomorphic differential forms
Holomorphic differential forms are locally defined on every coordinate neighbor-

hood φα(Uα) ⊂ C as
gα(z)d z

where the variable z lives in φα(Uα) and the function gα :φα(Uα) → C is holomorphic.
They satisfy the expected compatibility condition for each intersection Uα∩Uβ which
reads

gβ(w(z))w ′(z) = gα(z),

where w(z) =φβ ◦φ−1
α (z).

Holomorphic functions defined on a compact Riemann surface are constants but
the space of holomorphic forms on a compact Riemann surface is a finite dimensional
complex vector space whose dimension depends only on the topology of the surface.
We will see that it is precisely the genus of the surface. For instance, for an elliptic curve
the holomorphic differentials are all multiples of the ’constant’ form d z. The Riemann
sphere has only the trivial holomorphic form which is identically zero. We can prove
that right now:

Suppose we use the covering of CP 1 by the two open sets U1 and U2 as before. Then
w(z) = 1/z and therefore

− 1

z2
g1(

1

z
) = g2(z).

13



The equation g1(1/z) =−z2g2(z) has only one solution for holomorphic g2 in C and g1

in CP1 \ {0} (in the coordinate w , with ∞ given by w = 0, g1(w) = c0 + c1w +·· ·+ ck w k ).
It is zero.

Example 1.22. Let X be given by an equation F (z, w) = 0 with partial derivatives non-
vanishing simultaneously. Suppose ∂F

∂w ̸= 0 and solve for z. A holomorphic differential
can be obtained as

∂F

∂z
d z

on the coordinate z. On the other hand, using the coordinate w we define

− ∂F

∂w
d w.

The equation
∂F

∂z
d z + ∂F

∂w
d w = 0

shows that the form is well defined on the whole surface. Also, let

d z
∂F
∂w

and

−d w
∂F
∂z

be defined in the corresponding coordinates. As the partial derivatives don’t vanish at the
same time the expressions define a global holomorphic form.

14



2 First examples, Elliptic functions

Examples of open Riemann surfaces are open subsets of C. In particular, the disc
is the most important one being biholomorphic to any simply connected bounded
open domain by the uniformization theorem. Among domains which are not simply
connected, the cylinder is one of the simplest. A cylinder can be realized as a Riemann
surface through any of the open subsets of C where r > 1:

Cr = { z ∈ C | r > |z| > 1 }.

One can prove that for 1 < r1 ̸= r2, Cr1 is not biholomorphic to Cr2 .

2.1 The infinite cylinder

We call the infinite cylinder the set C∗. The infinite cylinder is not biholomorphic to any
Cr with 1 < r <∞. One can obtain C∗ by taking the group of translations Γ generated by
z → z +1 and considering the quotient C/Γ. The biholomorphism between the spaces
is given by the exponential function

z → e2πi z .

We will justify later these assertions and use the following description of meromorphic
functions on C∗: they are in correspondence with meromorphic functions on C which
are periodic with respect to the translation z → z +1. Clearly the holomorphic functions
defined on C∗ are the convergent power series

+∞∑
−∞

an w n .

Convergence is equivalent to the condition limw→±∞ |an |1/n = 0. In terms of the coordi-
nates in C, that gives functions of the form

∑+∞
−∞ an exp2πni z.

A usefull idea to obtain a periodic function on C is to define an infinite sum∑
n∈Z

f (z −n)

where f (z) is any meromorphic function. The problem here is that it is not clear that
the sum will converge. A successful example is obtained by taking the meromorphic
function f (z) = 1

z2 for z ∈ C. Define

P (z) = ∑
n∈Z

1

(z −n)2

15



which is normally convergent on every compact subset of C\Z. Indeed, on each compact
subset of C \ Z contained in a disc of radius R, for all n ≥ 2R we have

|z −n| ≥ n −|z| ≥ n − n

2
= n

2
.

Therefore ∣∣∣∣ 1

(z −n)2

∣∣∣∣≤ 4

n2

and by Montel’s theorem we conclude that P (z) is a meromorphic function on C holo-
morphic on C \ Z which is clearly periodic.

One can also obtain P (z) starting with a function given by an infinite product. In
this way we control the zeros of the function. Namely, define

S(z) = z
∞∏
1

(1− z2

n2
) = z

∞∏
1

(1− z

n
)(1+ z

n
).

The product is normally convergent on compacts as
∑

log(1− z2

n2 ) is normally convergent
on compacts. It’s logarithmic derivative is

Z (z) = S′(z)

S(z)
= 1

z
+

∞∑
1

(
1

z −n
+ 1

z +n

)
= 1

z
+

∞∑
1

2z

z2 −n2

which converges normally on compact subsets of C \ Z. Therefore Z ′(z) is also mero-
morphic on C \ Z. Finally we get back to the meromorphic function

P (z) =−Z ′(z).

Exercise 2.1. Prove the following identities:

1. P (z) =π2 1
sin2(πz)

.

2.
∑∞

1
1

n2 = π2

6 .

3. Z (z) =πcot(πz).

4. S(z) =πsin(πz).

Observe that P (z) is defined on the cylinder but Z (z) and S(z) are not invariant
functions under the translation z → z +1.
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2.2 Elliptic Functions

The next examples of compact Riemann surfaces, after CP 1, consists of complex struc-
tures on a torus. We will show later that any such structure arises as a quotient of C
by a translation group generated by two independent directions one of each we may
suppose (by a conjugation by a similarity transformation z → az +b) to be z → z +1
and the other one z → z +τ with τ ∈ C. More precisely, we will show that any compact
Riemann surface whose underlying manifold is a torus is biholomorphic to an elliptic
curve:

Definition 2.2. Let τ ∈ { z ∈ C | Im z > 0 } and Γτ = Z+Zτ be the additive group generated
by 1,τ ∈ C. We say that Eτ = C/Γτ is the complex torus associated to Γτ.

The set of points inside the parallelogram defined by 1 and τ is called a fundamental
region. Its closure, with some identifications on the boundary, is homeomorphic to a
torus. Observe that any translation of that parallelogram also is a fundamental domain
in the sense that any two points in its interior are contained in different orbits and each
orbit has a point in the domain or its closure.

17



2.2.1 General properties

Meromorphic functions defined on Eτ are identified with meromorphic functions de-
fined on C which are invariant under Γτ (called elliptic functions) but holomorphic
functions which are invariant reduce to constants due to the maximum principle. It is
not obvious that a non-constant function exists but several of its properties, assuming
existence, are simple to state. The following is a basic property.

Proposition 2.3. Let f ∈M (Eτ) be a meromorphic function without poles on the bound-
ary of a fundamental region. Then, the sum of its residues in the fundamental region is
zero.

Proof. The sum of residues in the interior is given by 1
2πi

∫
∂P f (z)d z where P is a paral-

lelogram which is a fundamental domain. By translation invariance the integrals on
opposite sides cancel.

This shows that, in order to construct a meromorphic function on Eτ with only one
pole, its order has to be at least two. A related proposition counts the number of zeros.

Proposition 2.4. Suppose there are no poles or zeros in the boundary of a fundamen-
tal domain. Then the number of zeros is the same as the number of poles counting
multiplicities.

Proof. The proof is simply a corollary to the previous proposition applied to the the
function f ′/ f . In fact the sum of the residues is equal to the number of zeros minus the
number of poles counting multiplicity by the following

Exercise 2.5. If f has no poles nor zeros in ∂P, prove that

1

2πi

∫
∂P

f ′(z)

f (z)
d z = number of zeros in P−number of poles in P

where P is a domain with boundary ∂P.

Another necessary condition on the zeros and poles of a meromorphic function is
given in the following proposition. It turns out that these necessary conditions are also
sufficient (Abel’s theorem).

Proposition 2.6. Suppose there are no poles or zeros in the boundary of a fundamental
domain P. Let ai and b j be two finite disjoint families of points inside P and f an elliptic
function vanishing precisely at ai and having poles precisely at b j (we repeat the points
according to the multiplicity of the zero or pole). Then∑

ai −
∑

b j ∈ Γτ.

18



Proof. The same as above using the following

Exercise 2.7.
1

2πi

∫
∂P

z f ′(z)

f (z)
d z =∑

ai −
∑

bi .

Indeed, taking into account the invariance of f (z) under translations and supposing
that P is the parallelogram with corners 0,1,1+τ,τ, we get

1

2πi

∫
∂P

z f ′(z)

f (z)
d z = 1

2πi

∫ 1

0

(−τ) f ′(z)

f (z)
d z + 1

2πi

∫ τ

0

f ′(z)

f (z)
d z

and observing that 1
2πi

∫ τ
0

f ′(z)
f (z) d z is the number of turns that f (z) describes around the

origin when z follows the segment from 0 to τ and analogously for 1
2πi

∫ 1
0

f ′(z)
f (z) d z, we

obtain

= 1

2πi

(−τ log( f (z))|10 − log( f (z))|τ0
)= n1τ+n2.

2.2.2 Weierstrass function

The next goal is to construct meromorphic functions on Eτ. In the following discussion
we fix a translation τ and let Γτ be the lattice generated by 1 and τ. Several objects
will depend on τ although we will not make it explicit. A direct construction of elliptic
functions is obtained by means of the series

Fn(z) = ∑
γ∈Γτ

1

(z −γ)n
.

One can prove that the series converges absolutely and uniformly on compact sets for
n ≥ 3 so that Fn(z) is meromorphic. To see that, we start with the following

Lemma 2.8. The series ∑
γ∈Γτ−{0}

1

|γ|s

is convergent for s > 2.

Proof. Consider the description of the lattice by the layers n1+n2τ ∈ Γτ with max(|n1|, |n2|) =
n. There are 8n elements of Γτ in that layer. If we let r be the radius of an inscribed
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circle inside the first layer (that is the parallelogram defined by ±(1+τ),±(τ−1)), then
|n1 +n2τ| ≥ r max(|n1|, |n2|). Therefore∑

γ∈Γτ−{0}

1

|γ|s ≤ ∑
n≥1

8n

r sns
= ∑

n≥1

8

r sns−1

which is convergent for s > 2.

Lemma 2.9. The series ∑
γ∈Γτ

1

(z −γ)s

is uniformly convergent on compact sets of C−Γτ for any integer s > 2.

Proof. If K ⊂ C is a compact subset we can assume that, except for finitely many γ,
|γ| ≥ 2|z| for z ∈ K . In that case |z −γ| ≥ |γ|− |z| ≥ |γ|− |γ|

2 = |γ|
2 . Therefore for all z ∈ K

and γ on the complement of a finite subset in Γτ,

∑
γ

1

|z −γ|s ≤ 2s
∑
γ

1

|γ|s

which is convergent for s > 2. Together with the previous lemma, this implies the series
is uniformly convergent by Weierstrass M-test.

Having proved convergence, for each ω ∈ Γτ we obtain

Fn(z +ω) = ∑
γ∈Γτ

1

(z +ω−γ)n
= ∑
γ∈Γτ

1

(z −γ)n

so that Fn(z) is elliptic. In particular the function F3(z) is elliptic. It has a pole of order 3
at 0. To obtain a meromorphic function with a pole of order 2 we solve the equation

P ′(z) =−2F3(z).

A solution is given by the Weierstrass function

P (z) = 1

z2
+ ∑
γ∈Γτ−{0}

(
1

(z −γ)2
− 1

γ2

)
.

The naive idea would be to start with a function with a pole of order two, namely 1
z2 , and

define
∑
γ∈Γτ−{0}

1
(z−γ)2 which would make it invariant under Γτ but unfortunately this

sum is not convergent.
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Lemma 2.10. The series

P (z) = 1

z2
+ ∑
γ∈Γτ−{0}

(
1

(z −γ)2
− 1

γ2

)
.

defines an elliptic function with only one pole of order two modulo the lattice.

Proof. To show convergence, the argument is the same as in the previous lemma. The
general term of the series P satisfies, as in the previous lemma, for |γ| ≥ 2|z| with z in a
compact subset of C \Γτ.∣∣∣∣ 1

(z −γ)2
− 1

γ2

∣∣∣∣= ∣∣∣∣ z(z −2γ)

γ2(z −γ)2

∣∣∣∣≤ 4|z|(5/2|γ|)
|γ|2|γ|2 ≤ 10|z|

|γ|3 .

Therefore, as before, we conclude that the series converges absolutely and uniformly on
compact sets of C \Γτ.

The periodicity is not clear from the formula. But we can use the periodicity of its
derivative to conclude that P (z)−P (z +1) and P (z)−P (z +τ) are constants. The
value of the constants are seen to be zero. In fact, P (−1/2)−P (−1/2+ 1) = 0 and
P (−τ/2)−P (−τ/2+τ) = 0 because P (z) is clearly even.

A meromorphic function on the elliptic curve can be interpreted as a function Eτ→
CP 1. In general, the meromorphic function is locally a bijection but it has ramification
points when its derivatives vanish. It is important then to determine the zeros of P ′:

Lemma 2.11. The zeros of P ′ in a fundamental parallellogram with vertices 0, 1, τ and
1+τ are

1

2
,
τ

2
,

1+τ
2

Proof. As P ′ has order 3, it has only three zeros in the fundamental domain. We have
P ′(z) =−P ′(−z) because P ′ is odd. On the other hand, because P ′ is periodic, P ′(z) =
P ′(z −γ). Therefore, for z = γ/2, P ′ vanishes.

One can prove that the Weierstrass function defined on Eτ assumes each value
on the Riemann sphere exactly twice except for 4 points; three corresponding to the
vanishing of its derivative P ( 1

2 ), P (τ2 ), P ( 1+τ
2 ) and the last one corresponding to the

unique pole of order 2, ∞. That gives an interpretation of the Weierstrass function as a
branched covering of the Riemann sphere by the torus.

The following existence theorem of meromorphic functions on an elliptic curve
should be contrasted to the corresponding existence theorem of rational functions on
the Riemann sphere. The only if part was proven in a previous proposition.
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Theorem 2.12. (Abel’s theorem) Let Eτ be a complex torus with corresponding group Γτ.
Let ai and b j be two finite disjoint families of points in a fundamental domain P with
the same number of elements (greater or equal to 2). Then there exists an elliptic function
vanishing (inside P) precisely at ai and having poles (inside P) precisely at b j if and only
if ∑

ai −
∑

b j ∈ Γτ.

Proof. A constructive proof of this theorem can be given by considering the Weierstrass
sigma functions (see below)

σ(z) = zΠγ∈Γ′(1− z

γ
)e

z
γ+ z2

2γ2 ,

which has only simple zeros at points of Γ. They are not functions defined on the
quotient but their behavior with respect to the lattice is quite simple. In fact

σ(z +γ) = (−1)nγσ(z)eαγ(z+ 1
2γ)

where αγ and nγ depend only on γ ∈ Γ. We define the meromorphic function in the
theorem as

f (z) = σ(z −a1) · · ·σ(z −an)

σ(z −b1) · · ·σ(z −bn)
.

It is easy to verify that f (z) is indeed defined on the quotient.

Let us analyse more precisely the Weierstrass sigma-function. It is an analog of the
function S(z) introduced above.

Lemma 2.13. σ(z) = zΠγ∈Γ′(1− z
γ

)e
z
γ+ z2

2γ2 converges normally on compact subsets of C.

Proof. We obtain for large γ (for instance |γ| ≥ 2|z| pour z dans un compact):∣∣∣∣log

(
(1− z

γ
)e

z
γ+ z2

2γ2

)∣∣∣∣= | log(1− z

γ
)+ z

γ
+ z2

2γ2
| = | z3

3γ3
+ z4

4γ4
+·· · | ≤C | z3

γ3
|

for a constant C , which proves normal convergence.

Define the logarithmic derivative of the σ-function:

ζ(z) = σ′(z)

σ(z)
= 1

z
+ ∑
γ∈Γτ−{0}

(
1

z −γ − 1

γ
+ z

γ2

)
.
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And observe that
P (z) =−ζ′(z).

In order to obtain the transformation law for σ we start first to obtain the one for ζ.
Indeed, as P (z) is doubly periodic, we obtain that, for all z,

ζ(z +1) = ζ(z)+η1

and
ζ(z +τ) = ζ(z)+η2.

Using the definition of ζ we obtain that there are constants c1 and c2 such that

logσ(z +1)− logσ(z) = η1z + c1

and
logσ(z +τ)− logσ(z) = η2z + c2,

therefore
σ(z +1) =σ(z)eη1z+c1 , σ(z +τ) =σ(z)eη2z+c2 .

For z =−1/2 we have σ(1/2) =σ(−1/2)eη1/2+c1 so −eη1/2 = ec1 because σ is odd. Analo-
gously we obtain −eη2/2 = ec2 . We conclude with then that

σ(z +n1 +n2τ) = (−1)n1+n2+n1n2σ(z)e(n1η1+n2η2)(z+ n1+n2τ
2 ).

The two constants η1 and η2 are not independent. We will also need the following
lemma describing an explicit relation between them:

Lemma 2.14. LetΛτ be the lattice 〈1,τ〉 and ζ the meromorphic function on C defined
above. Then

η1τ−η2 = 2πi .

Proof. ζ has a single pole on the interior of a fundamental domain P containing 0.
Therefore

2πi =
∫
∂P
ζ(z)d z =

∫
Γ1

ζ(z)d z +
∫
Γ2

ζ(z)d z +
∫
Γ3

ζ(z)d z +
∫
Γ4

ζ(z)d z

=
∫
Γ1

ζ(z)d z −
∫
Γ1

ζ(z +τ)d z +
∫
Γ2

ζ(z)d z −
∫
Γ2

ζ(z −1)d z

=
∫
Γ1

−η2d z +
∫
Γ2

η1d z = η1τ−η2.
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This lemma implies that there are particular combinations of the function ζ that are
periodic:

Lemma 2.15. Fix k ≥ 1 and a collection of k points (zi )1≤i≤k . The function g (z) =∑k
1 aiζ(z − zi ) is elliptic if and only if

∑k
1 ai = 0.

Proof. Compute g (z +1) =∑k
1 aiζ(z +1−zi ) =∑k

1 aiζ(z −zi )+∑k
1 aiη1 = g (z)+η1

∑k
1 ai

and, analogously, g (z+τ) =∑k
1 aiζ(z+τ−zi ) =∑k

1 aiζ(z−zi )+∑k
1 aiη2 = g (z)+η2

∑k
1 ai .

2.2.3 Divisors on a complex torus

Another description of the set of meromorphic functions is given through divisors on a
Riemann surface X . More precisely we fix a divisor, that is, a formal linear combination

D =∑
z

nz z

where nz ∈ Z are different from zero only for a finite number of z ∈ X . We think of a
divisor as giving the order nz of a possible function at z, except that a function with
precisely these orders might not exist. A divisor defines a function D : X → Z of finite
support, so we denote by D(z) = nz . The degree of a divisor will be the total order
deg (D) =∑

z nz . In particular we call divisor of f the divisor (called a principal divisor)

di v( f ) = ∑
z∈X

or dz( f )z,

and we will show that it has zero degree for any meromorphic function defined on
any compact Riemann surface. There exists an order relation between disors: we say
D1 ≥ D2 if for all z ∈ X , D1(z) ≥ D2(z2). Define the vector space

L(D) = { f ∈M (X ) | f = 0 or di v( f ) ≥−D }

where di v( f ) ≥−D means that, for each z ∈ X , the order of f at z is greater than or equal
to −nz . That is, a meromorphic function in L(D) has poles at zi of order at most ni if
ni > 0 and zeros of order at least ni if ni < 0. For instance, if D = 0, then di v( f ) ≥−D = 0
means that f is holomorphic. Therefore L(0) = C, the constant functions, and dimD = 1.
But also, if D = z, that is, just one point, we obtain that L(D) = C because there are no
meromorphic functions with a single simple pole at one point. As another example
consider L(di v(g )) = { f ∈ M (X ) | f = 0 or di v( f ) ≥ −di v(g ) }. Observe then that
di v( f /g ) = di v( f )−di v(g ) ≥ 0 and therefore f /g is a constant. We conclude that
L(di v(g )) = Cg .
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More generally, two divisors D1 and D2 which differ by a principal divisor (g ) (D2 =
D1 + (g )) are called equivalent divisors and have isomorphic spaces L(D1) and L(D2).
Clearly f → f /g defines an the isomorphism.

If a divisor is strictly negative, that is, ni ≤ 0 with at least one ni non-vanishing, we
clearly have L(D) = {0}. If one add a point [z] to a divisor D one obtains that L(D) ⊂
L(D + z) with codimension at most one. Indeed, if the coefficient of D at z is n, then
define L(D + z) → C as the coefficient of order n + 1 in the Laurent expansion of a
meromorphic function at z. Clearly, L(D) is the kernel of this map.

Exercise 2.16. Let D be an effective divisor on E with d = deg (D) ≥ 1. Then

di m(L(D)) ≤ d .

A deeper theorem describing precisely the dimension of L(D) is the following:

Theorem 2.17. (Riemann-Roch for elliptic functions) Let D be a divisor on E with d =
deg (D) ≥ 1. Then

di m(L(D)) = d .

Proof. Suppose that D =∑
ni [zi ], 1 ≤ i ≤ n is the divisor. We will only prove the theorem

in the case ni ≥ 1 for all i . The general case follows from proposition 2.19. For each i
consider a family of ni complex numbers (cki )1≤k≤ni We write

f (z) = c0 +
∑

c1iζ(z − zi )+∑
c2i P (z − zi )+∑

c3i F3(z − zi )+·· ·+∑
cni i Fn(z − zi ).

The only problem in that expression being that ζ(z − zi ) is not an elliptic function.
The theorem follows because of Lemma 2.15. Indeed, for each i one can choose ni

coefficients of the Laurent expansion and there is a constraint given by the lemma. The
dimension is given then by

∑
i ni −1 where we have to add one dimension because fixing

all Laurent tails determines a function up to a constant.

2.2.4 The Jacobian map

One can state Abel’s theorem in a way more adapted to further generalizations introduc-
ing the Jacobian map J : Di v(Eτ) → Eτ defined by

J (
∑
ni

[zi ]) = [
∑
ni

zi ],

where we use the notation [z] to denote the projection of the point z ∈ C into Eτ. We
state now Abel’s theorem in the following version:
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Theorem 2.18. A divisor D on Eτ is principal if and only if deg(D) = 0 and J (D) = 0.

An important consequence of Abel’s theorem is the observation that one can always
deal with effective divisors on a complex torus in the case degD ≥ 1.

Proposition 2.19. Any divisor with strictly positive degree in Eτ is equivalent to an
effective divisor.

Proof. Suppose deg(D) = d > 0. Define a new divisor of degree 0:

D ′ = D −d [z]

where [z] ∈ E . Choose z such that J (D ′) = 0, that is [d z] = J (D). Then, by Abel’s theorem,
there exists a meromorphic function f such that ( f ) = D −d [z], that is D is equivalent
to d [z], an effective divisor.

2.2.5 The field of meromorphic functions

The field of meromorphic sections is described in the following

Theorem 2.20. M (Eτ) = C(P ,P ′), that is, the field of meromorphic functions is gener-
ated by C, the Weierstrass function and its derivative.

Proof. Suppose first that f ∈M (Eτ) is even of degree n. We choose a,b ∈ C such f (z)−a
and f (z)−b have only simple roots and none of them a zero of P (z). Therefore

f (z)−a

f (z)−b

has zeros in a family ±ai , with 1 ≤ i ≤ n, and poles in a disjoint family ±bi . The function∏
(P (z)−P (ai ))∏
(P (z)−P (bi ))

has the same zeros and poles as f (z)−a
f (z)−b and therefore they are equal up to a multiplicative

constant. This proves that f is in the field generated by P . If f is odd we use the
same argument with the function f /P ′ and for a general function we consider the
decomposition into its even and odd part.

One can understand further the field extension C(P ,P ′) over the field C(P ) via the
study of a differential equation satisfied by P (z) which, in fact, establishes an algebraic
relation between P (z) and P ′(z).
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Proposition 2.21. The Weierstrass function satisfies the equation

P ′(z)2 = 4P 3(z)− g2(τ)P (z)− g3(τ)

where

g2(τ) = 60
∑

γ∈Γτ−{0}

1

γ4

and

g3(τ) = 140
∑

γ∈Γτ−{0}

1

γ6
.

Proof. A simple proof can be given by computing the Laurent series at the origin of P (z)
and P ′(z). One must show that the two sides of the equality have equal Laurent series
up to the constant term. In that case their difference would be a a bounded holomorphic
function vanishing at the origin and therefore, by Liouville, vanishing everywhere.

In order to obtain the Laurent series of P (z) it is useful to consider the series below
satisfying ζ′(z) =−P (z).

ζ(z) = 1

z
+ ∑
γ∈Γτ−{0}

(
1

(z −γ)
+ 1

γ
+ z

γ2

)
Exercise 2.22. The Laurent series of ζ(z) at the origin is

ζ(z) = 1

z
−G4z3 −G6z5 +·· ·

where

Gn = ∑
γ∈Γτ−{0}

1

γn
.

We obtain the following developments

P (z) =−ζ′(z) = 1

z2
+3G4z2 +5G6z4 +·· ·

4P (z)3 = 4

z6
− 36G4

z2
−60G6 +·· ·

P ′(z) =− 2

z3
+6G4z +20G6z3 +·· ·

P ′(z)2 = 4

z6
− 24G4

z2
−80G6 +·· ·

and then a simple computation shows that the Laurent series of each side of the equation
is equal up to zero order.
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Writing t =P (z) and the differential equation as ( d t
d z )

2 = 4t 3 − g2t − g3 we see that
the inverse function of P (z), P −1(t ), would be formally given by∫

1√
4t 3 − g2t − g3

d t .

But those integrals are not well defined in general. The problem is that the function√
4t 3 − g2t − g3 is not well defined in C. For each path of integration (which does not

meet the roots) one can define the integral by analytically extending the function along
the path, but different paths will give different integrals.

In fact, the study of integrals of the form∫
1√
p(t )

d t

were the motivation for the whole theory. In particular one can think of the elliptic
functions as generalizations of the circular functions. For instance∫

1p
1− t 2

d t

is Arcsin(t ) and the inverse function of that integral is a periodic function. The elliptic
functions are inverse functions of the integrals as above with p(t ) of degree three and
they have the remarkable property of being doubly periodic.

The map Eτ− [0] → C2 given by z → (P (z),P ′(z)) defined on the complement of
the pole ([0] is the projection of the lattice on the quotient space) is a holomorphic
embedding whose image is the curve

y2 = 4x3 − g2(τ)x − g3(τ).

But one can extend that embedding to complex projective space.

Theorem 2.23. The map z → (P (z),P ′(z),1) for z ∈ C−Γτ and z → (0,1,0) for z ∈ Γτ
defines a holomorphic embedding Eτ→ CP 2 whose image is the algebraic curve

y2z = 4x3 − g2(τ)xz2 − g3(τ)z3.

Several results about elliptic curves are generalized for any compact Riemann sur-
face. In particular, we will

1. Describe any Riemann surface as a quotient of C, D , the unit disc, or the Riemann
sphere by a discrete group Γ.
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2. Prove that there exist meromorphic functions on any compact surface and, more
generally, give a generalization of Abel’s theorem, Riemann-Roch theorem and
describe the structure of its field of meromorphic functions.

3. Prove that there exists an embedding of a compact Riemann surface as a subman-
ifold of a complex projective space.
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3 Review of topology

3.1 Triangulations and classification of surfaces

A two dimensional topological manifold is called a surface. That is a Hausdorff topo-
logical space M having a cover by open sets Uα and a collection of homeomorphisms
φα : Uα→ R2 which are compatible in the sense that the transition functions

φα ◦φ−1
β :φβ(Uα∩Uβ) →φα(Uα∩Uβ)

are homeomorphisms. We will suppose that it is connected most of the times.
Any two dimensional topological manifold is also a differentiable manifold. That is,

one can find in the same maximal atlas defined as above, a covering Uα and charts φα
such that φα ◦φ−1

β
are diffeomorphisms.

Riemann surfaces being orientable, the surfaces we need to consider are the ori-
entable ones. We exclude for instance the real projective plane. It does not have a
complex structure.

It is convenient to have a combinatorial description of surfaces by means of a
triangulation. This allows a direct computation of some topological invariants of the
surface as the Euler characteristic.

To be more precise define first the standard 2-simplex ∆ given by the convex enve-
lope of the points (vertices) (0,0), (1,0), (0,1) in R2. Each boundary segment is called an
edge. If φ :∆→φ(∆) ⊂ M is a homeomorphism, we call φ(∆) a triangle and the images
of the vertices and edges of the standard simplex are also called vertices and edges of
the triangle.

Definition 3.1. A triangulation of a compact surface M is a finite set of homeomorphisms
φi :∆→φi (∆) ⊂ M covering M, that is,

⋃
i φi (∆) = M, and such that the intersection of

two triangles is either

• empty,

• a vertex or

• an edge of each of the triangles.

In particular the interior of the triangles are disjoint. We can now state the theorem
whose first rigorous proof was given by Radó in 1924.

Theorem 3.2. Any compact surface has a triangulation.
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Remark 3.3. 1. In fact, Radó proved that any surface which has a countable basis of
open sets can be triangulated. For non-compact surfaces, as the number of triangles
is not finite, we need to impose that each point has a neighborhood intersecting
only a finite number of triangles.

2. The existence of a triangulation for a compact manifold dimension 3 was estab-
lished by Moise in 1952, but in dimensions higher than three a topological manifold
might not have a triangulation.

3. One can define orientability for triangulated surfaces by saying that there exists
a compatible orientation on all triangles (they induce opposite orientations on
common edges).

4. Any triangulation of a compact surface may be obtained from another one by a
continuous deformation and a finite sequence of the following elementary moves:

• the creation of a vertex inside a triangle and thereby introducing three new
triangles in the place of the original one and the corresponding inverse opera-
tion,

• replacing the common side of two adjacent triangles of the triangulation by
the other diagonal of the quadrilateral formed by these two triangles (this is
called a flip).

A reference for the classification of compact surfaces is the first chapter of [Mas77]
and we state the main result without proof. Riemann surfaces being orientable surfaces
we state the theorem of classification only for orientable surfaces. A basic surgery
construction is that of connected sum. We start with two surfaces and remove one disc
from each and glue the two surfaces along the boundary of the discs. In fact we can
obtain any surface, apart the sphere, by this surgery procedure applied to tori.

Theorem 3.4. A compact orientable surface is homeomorphic to a sphere or to a connected
sum of tori.

Proof. Sketch: Once we know the surface is triangulated, one can prove the theorem
of classification of compact surfaces by spreading the triangulation of the surface in
the plane to form a polygon with boundary identifications. More precisely, given a
triangulated surface we enumerate its triangles T1,T2, · · · ,Tn in a way that each Ti has
an edge in common with one of the previous triangles in the sequence. If Ti has two
edges in common, we choose one of them to identify to one of the edges on the plane
but leave the other one as a boundary of the polygon thus obtained. The union of the
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first two triangles along the common edge gives a parallelogram with possible boundary
identifications. Adding each triangle makes the number of sides of this polygon jump
by two. At the end we obtain a polygon with a number of sides identifications.

The idea now is to find a normal form for this polygon describing the surface. A usual
normal form is the one which describes the surface as a connected sum of tori. A torus
corresponds to a sequence aba−1b−1 and a handle to sequence aba−1b−1c. Clearly
a1b1a1

−1b1
−1a2b2a2

−1b2
−1 corresponds to a connected sum of two tori. In other words,

adding a handle to a torus. The normal form we look for a surface with g handles is
therefore

a1b1a−1
1 b−1

1 · · ·ag bg a−1
g b−1

g

as in Figure 1) with g ≥ 1 or aa−1 which is a sphere.
This is done using a sequence of operations which simplify the structure of the

identifications on the boundary.

One can show that the following definition does not depend on the triangulation.

Definition 3.5. The Euler characteristic of a triangulated surface is defined by the formula
χ= T −E +V , where T is the number of triangles, E is the number of edges and V is the
number of vertices of a triangulation.

The genus of a surface is related to the Euler characteristic through the formula

χ= 2−2g .

3.2 The fundamental group

In this section we recall some basic concepts of algebraic topology necessary to describe
the topology of a surface. We will not give proofs but, instead, refer to Hatcher for a
complete treatment.

A curve in a topological space X is a continuous map c : [0,1] → X . Two curves c1

and c2 with c1(0) = c2(0) and c1(1) = c2(1) are homotopic (with fixed end points) if there
exists a continuous map F : [0,1]× [0,1] → X such that

1. F|{0}×[0,1] = c1(0) and F|{1}×[0,1] = c1(1)

2. F|[0,1]×{0} = c1 and F|[0,1]×{1} = c2.

A loop in X is a curve c with c(0) = c(1). We can define the product of two loops c1 and c2

such that c1(0) = c2(0) = x0 (we say the loops are based at x0) as the loop c2c1 : [0,1] → X
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a−1

b−1

a1

b1

Figure 1: A surface obtained by boundary identifications on a disc.

a

a−1

Figure 2: A sphere obtained by boundary identifications on a disc.
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c1

c2
1

1

H

Figure 3: A homotopy between two curves c1 and c2.

given by c2c1(t) = c1(2t) for 0 ≤ t ≤ 1/2 and c2c1(t) = c2(2(t −1/2)) for 1/2 ≤ t ≤ 1. The
constant loop is defined to be c(t) = x0 for all t , and the inverse of a loop c is the loop
c−1 defined by c−1(t ) = c(1−t ). We say that two loops are freely homotopic if there exists
a homotopy F : [0,1]× [0,1] → X such that the first condition is not imposed. That is,
the base point may change during the homotopy.

Let X be a manifold and x0 ∈ X a base point. We denote by π1(X , x0), the fundamen-
tal group, the space of homotopy classes of loops based at x0. It has a group structure
induced by the multiplication on loops. Usually we denote by [γ] the class containing
the loop γ.

If x ′
0 is another base point, π1(X , x ′

0) is isomorphic to π1(X , x0). In fact, let c be a
curve with c(0) = x0 and c(1) = x ′

0. Then, one can define an isomorphism of groups
π1(X , x0) →π1(X , x ′

0) by γ→ cγc−1.

Example 3.6. The fundamental group of S1 is isomorphic to Z.

A continuous function f : X → Y between topological spaces such that f (x0) = y0
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induces a homomorphism f∗ : π1(X , x0) → π1(Y , y0). A homeomorphism induces an
isomorphism but an isomorphism between fundamental groups does not imply that the
corresponding topological spaces are homeomorphic. A typical situation of isomorphic
fundamental groups arises in the case of deformation retracts. They are very useful for
computations.

Definition 3.7. A subset K ⊂ X of a topological space is a deformation retract of X if there
exists a homotopy F : X × [0,1] → X such that

• For all x ∈ X , F (x,0) = x.

• For all x ∈ K , F (x, .) = x.

• F (.,1)(X ) ⊂ K .

As in the following picture we can retract the two small segments on the right to
obtain an object with the same fundamental group.

Proposition 3.8. If K ⊂ X is a deformation retract and x0 ∈ K then π1(X , x0) =π1(K , x0).

3.2.1 Group presentations and computations of the fundamental group.

A presentation of a group Γ is given by

Γ= 〈γ1, · · · |r1, · · · 〉.

The γi are the generators and the ri reduced words on the generators (words constructed
with γi or γ−1

i which don’t contain the sequence γiγ
−1
i ). By definition, Γ is the quotient

of the free group on the generators γi by the normal subgroup generated by the relators.
We say that Γ is finitely presented if there exists a presentation with a finitely number of
generators and relators.

Example 3.9.
Z⊕Z = 〈 γ1,γ2 | [γ1,γ2] 〉.

To give the fundamental group by a presentation is very useful for computations. An
application of that description is the following theorem which we quote without proof.
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Theorem 3.10 (Seifert-Van Kampen Theorem). Let M = M1 ∪M2 be the union of two
path-connected open sets with I = M1 ∩M2 path-connected. Suppose the fundamen-
tal groups of M1 and M2 at a base point x0 ∈ I are Γ1 = 〈γ1, · · · |r1, · · · 〉. and Γ2 =
〈δ1, · · · |s1, · · · 〉. Suppose π1(I , x0) is generated by the elements ηi . Write each ηi as φi 1

and φi 2 using the generators of Γ1 and Γ2 respectively. Then

π1(M , x0) = 〈γ1, · · · δ1 · · · |r1, · · · , s1, · · · ,φi 1φ
−1
i 2 〉.

As a first application of the theorem we compute

Exercise 3.11. The fundamental group of the infinity symbol ∞ is the free group with
two generators. More generally, the fundamental group of a bouquet of g circles is the free
group with g generators.

We use the theorem of Seifert-Van Kampen to provide presentations for surface
groups.

Exercise 3.12. The fundamental group of a compact Riemann surface of genus g with a
point deleted is the free group with 2g generators.

We say a surface is of finite type if it is homeomorphic to a compact surface (genus
g ) with a finite number t of points (or disjoint discs) deleted.

Theorem 3.13. The fundamental group of an orientable surface of finite type has a
presentation of the form〈

a1,b1, · · · , ag ,bg ,h1, · · ·ht |Πg
j=1[a j ,b j ]h1 · · ·ht = 1

〉
.

The elements hi correspond to loops around the boundaries. In particular, from the
presentation, we see that if t ̸= 0 the fundamental group is free of rank 2g + t −1.

Exercise 3.14. Prove the theorem using the classification of surfaces in the previous
section.

Can we have isomorphic fundamental groups for non-homeomorphic surfaces?

3.3 Covering spaces

In the following we suppose that the topological spaces are all arc connected and locally
arc connected. In fact we are interested in connected surfaces which are manifolds and
are therefore locally arc connected.

We denote by φ : (Y , y0) → (X , x0) a continuous map φ : Y → X such that φ(y0) = x0.
Recall that it induces the homomorphism φ∗ : π1(Y , y0) → π1(X , x0) defined by [γ] →
[φ◦γ].
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Definition 3.15. A map p : X̃ → X between topological spaces is a covering if each
point x ∈ X has a neighborhood Ux such that p−1(Ux) is a disjoint union of open sets
homeomorphic to Ux under p.

We say that two coverings p1 : X̃1 → X and p2 : X̃2 → X are equivalent if there exists
a homeomorphism p : X̃1 → X̃2 such that p2 ◦p = p1. Coverings have the fundamental
path lifting property:

Proposition 3.16. Let p : (X̃ , x̃0) → (X , x0) be a covering space. A path φ : ([0,1],0) →
(X , x0) can be lifted to a unique path φ̃ : ([0,1],0) → (X̃ , x̃0) satisfying p ◦ φ̃=φ.

Proof. Let L = { t ∈ [0,1] | φ|[0,t ] can be lifted }. We show that this set is open and closed.
It is clearly non-empty as 0 ∈ L. If t0 ∈ L then φ̃(t0) is contained in a unique component
U of p−1(V ) homeomorphic to V , a sufficiently small neighborhood of φ(t0). There
exists therefore a lift of the curve in a neighborhood of t0 by taking (p|U )−1 ◦φ. Similarly
if t0 is a limit of points tn in L we observe that there exists a sufficiently small neigh-
borhood of φ(t0) such that φ̃(tn) are contained in a component U of p−1(V ). As U is a
homeomorphism we can define φ̃(t0). Uniqueness follows by a similar argument.

Using a similar proof we may lift homotopies on X to homotopies on a covering X̃ :

Proposition 3.17. Let p : (X̃ , x̃0) → (X , x0) be a covering space. A homotopy F : [0,1]×
[0,1] → X between two paths φ1 : ([0,1],0) → (X , x0) and φ2 : ([0,1],0) → (X , x0) has
a lift to a unique homotopy F̃ : [0,1]× [0,1] → X̃ between φ̃1 : ([0,1],0) → (X̃ , x̃0) and
φ̃2 : ([0,1],0) → (X̃ , x̃0). In particular, φ̃1(1) = φ̃2(1).

Remark 3.18. 1. The proposition above shows that p∗ :π1(X̃ , x̃0) →π1(X , x0) is injec-
tive.

2. If x̃ ′
0 is another base point for X̃ over x0 then p∗(π1(X̃ , x̃0)) and p∗(π1(X̃ , x̃ ′

0)) are
conjugate.

Definition 3.19. The subgroup p∗π1(X̃ , x̃0) ⊂π1(X , x0) is called the defining subgroup of
the covering.

Definition 3.20. The universal covering of a topological space (arc connected and locally
arc connected) is the covering having trivial defining group.

The definite article above means that two coverings having trivial defining group are
equivalent. It follows from the following basic result about coverings:

Theorem 3.21. There exists a bijection between conjugacy classes of subgroups ofπ1(X , x0)
and equivalence classes of coverings.

37



The construction of the covering space associated to a given subgroup Γ⊂π1(X , x0)
can be accomplished by considering the set of equivalence classes of paths c : [0,1] → X
with c(0) = x0. Equivalence between paths c1 and c2 meaning that c1(1) = c2(1) and that
[c2

−1c1] ∈ Γ. The map p : X̃ → X is given by p([c]) = c(1). For details see [Massey].

Remark 3.22. If X is simply connected any covering is homeomorphic to X .

The covering transformations (or deck transformations) of a covering p : X̃ → X are
those homeomorphisms φ : X̃ → X̃ satisfying π◦φ=π. The description of the covering
group is given in the following theorem.

Theorem 3.23. The group of covering transformations is isomorphic to

N (p∗π1(X̃ , x̃0))/p∗π1(X̃ , x̃0)

where N denotes the normalizer of the group in π1(X , x0).

A covering whose defining subgroup is normal is called a regular or normal covering.
In particular the universal covering is regular and π1(X , x0) is the group of covering
transformations.

Exercises

1. Recall that a mapφ : X → Y is proper if for any compact K ⊂ Y ,φ−1(K ) is compact.
Show that a local homeomorphism between manifolds is a finite covering if and
only if φ is proper.

2. The punctured unit disc D∗ has the upper half-plane as a universal covering.
An explicit map is given by e2πi t . The fundamental group is Z acting on the
half-plane by integer translations. The regular covering corresponding to the
subgroup generated by e2πi m also is the disc with covering group isomorphic to
Z/mZ. The finite coverings of the punctured unit disc are equivalent to the maps
φm : D∗ → D∗ given by z → zm .

3. The torus S1 ×S1 is covered by the plane. Find its regular coverings.

4. Let the annulus A = { r < |w | < 1 }. The map z → exp(2πi log z/logλ), where r =
exp(−2π2/logλ) defines a covering D → A of A by the unit disc D. The covering
group is generated by z →λz.

38



5. Give an example of a surjective map which is a local homeomorphism but which
is not a covering.

6. Let X be a simply connected Riemann surface and f : X → C∗ a holomorphic
function. Prove that there exists a function f̃ : X → C such that exp ◦ f̃ = f .

7. Let M1 and M2 be two manifolds which have the same universal covering M̃ with
projections p1 : M̃ → M1 and p2 : M̃ → M2 and covering transformations group
G1 and G2 respectively. If φ : M1 → M2 is a homeomorphism, then we can lift it to
a homeomorphism φ̃ : M̃ → M̃ . Prove that G2 = φ̃◦G1 ◦ φ̃−1.

3.3.1 Monodromy representation

Let Γ = π1(X , x0) be the fundamental group of a manifold X . Theorem 3.21 states
that finite coverings of X \ S, up to equivalence, are classified by conjugacy classes of
subgroups of Γ of finite index. Fixing a subgroup H ⊂ Γ of index d , the group Γ acts on
the set of cosets Γ/H (a finite set with d elements) transitively. We obtain therefore a
representation of Γ into the permutation group of the set Γ/H , call it Sd (Γ/H):

ρH : Γ→ Sd (Γ/H).

Changing H by a conjugation to H ′ = zH z−1 induces a bijection cz : Sd (Γ/H ) → Sd (Γ/H ′).
Denoting by Cz : Γ→ Γ the conjugation by z we have then two intertwined representa-
tions:

cz ◦ρH = ρH ′ ◦Cz .

Observe also that the stabilizer of the coset H is the subgroup H itself and the stabilizer
of g H is the conjugate Cg (H).

3.4 Group actions

Let G be a group and X a topological manifold.

Definition 3.24. G acts by homeomorphisms on X if there exists a map G ×X → X such
that

1. for fixed g ∈G, the induced map g : X → X is a homeomorphism.

2. (g h)x = g (hx) for all x ∈ X and g ,h ∈G

3. 1x = x for all x ∈ X
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If G×X → X is an action we call the set Gx = {g ∈G | g x = x} the stabilizer or isotropy
of the action at x. The orbit of x ∈ X is the set Gx. The action is said to be transitive if
the orbit of every point coincides with the whole space. The set of all orbits is denoted
X /G and we define a topology on it by imposing that U ⊂ X /G is open if and only if
π−1(U ) ⊂ X is open, where π : X → X /G is the canonical projection. A very special
action is related to covering spaces. We need the following definitions:

Definition 3.25. Let G ×X → X be an action.

1. The action of G is free if no point of X is fixed by an element of G different from the
identity (that is, the isotropy of each element of X is trivial).

2. The action is properly discontinuous if for any compact K ⊂ X the set of all γ ∈G
such that γK ∩K ̸= ; is finite.

Proposition 3.26. Let G × X → X be an action on a manifold X . The quotient X /G
is a manifold with projection X → X /G a covering if the action is free and properly
discontinuous.

Proof. Suppose x ∈ X and Ux is a relatively compact neighborhood. As the action is
properly discontinuous there exists only a finite number of elements in G such that
gŪx ∩Ūx ̸= ;. As the action is free, for each one of those elements, g x ̸= x. As the space
is Hausdorff, we can choose a neighborhood Vx ⊂Ux such that for all g ∈G , gV̄x∩V̄x =;.
This proves that the projection X → X /G is a covering.

The quotient is Hausdorff: suppose x, y ∈ X are two points in distinct orbits. As
X is a manifold, there exists two relatively compact neighborhoods Ux and Uy with
Ūx ∩Ūy =;. As before, because the action is properly discontinuous and free, we may
suppose gŪx∩Ūx =; and gŪy∩Ūy =;. Consider K = Ūx∪Ūy . As the action is properly
discontinuous, the set of elements g ∈G such that g K ∩K = (gŪx ∩Ūy )∪(Ūx ∩gŪy ) ̸= ;
is finite, and by the same argument as before (using the fact that the action is free), we
can choose Ux and Uy smaller such that g K ∩K =; for all g .

In fact the fundamental group of a manifold X acts freely and properly discontinu-
ously in the universal cover X̃ such that the quotient map X̃ → X̃ /π1(X , x0) is equivalent
to the covering X̃ → X .

Exercise 3.27. A discrete subgroup Γ of a topological group G acts freely properly discon-
tinuously on G by the natural action Γ×G →G given by (γ, g ) → γg .

Example 3.28. A subgroup of Rn is discrete if and only if it is generated by a set of linearly
independent vectors.
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Proof. Suppose that the group is generated by a set of linearly independent vectors. By
a linear transformation we can transform the set into a subset of the canonical base
vectors. It is clear that the group is discrete as 0 is an isolated point of the group.

Conversely, suppose that the subgroup Γ⊂ Rn is discrete and use induction on the
dimension. For n = 1, let v be the smallest positive vector. Without loss of generality,
suppose γ ∈ Γ is positive and let k be the largest integer such that kv ≤ γ. Then γ−kv ∈ Γ
and is smaller then v . A contradiction unless γ= kv . We conclude that Γ is generated
by v .

Suppose now that any discrete subgroup in Rn−1 is generated by a set of linearly
independent vectors. Let Γ ⊂ Rn be discrete and v a vector with minimum norm.
Because of the first step of the induction Γ∩ Rv = Zv . Let π : Rn → Rn/Rv be the
quotient map. We claim that π(Γ) is discrete. Suppose vi is a sequence in Γ such that
π(vi ) → 0, that is, vi − ri v → 0 (where we can suppose that ri ≤ 1/2). Then for large
i , vi < v . This implies that vi = 0 for large i so that π(Γ) is discrete. By the induction
hypothesis we can find linearly independent vectors {π(w1), · · · ,π(wm−1)} generating
π(Γ). {v, w1, · · · , wm−1} are linearly independent and generate Γ.
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4 Riemann surfaces as branched covers

4.1 Branched coverings

Recall that a non-constant holomorphic map φ : Y → X can be written locally, in
adapted charts, as pX ◦φ ◦ pY

−1(z) = zn for some n ≥ 1. In the following definition
we generalize this behaviour for maps between two dimensional real manifolds. Here
we use complex coordinates z = x + i y but we don’t assume that there exists complex
structures on the manifolds.

Definition 4.1. A map φ : Y → X between surfaces is a branched covering if

1. The restriction φ|φ−1(X−S)
, where S is a discrete subset of X , is a covering.

2. For each point in y0 ∈φ−1(S) there are coordinates pY around y0 and pX around
x0 =φ(y0) such that pX ◦φ◦pY

−1(z) = zn . The integer n is called the ramification
order of the ramification point y0 or the multiplicity of φ at y0.

Observe that the inclusion map ∆∗ → ∆ satisfies the definition with the choice
S = {0}. This will not happen if we impose that the map φ is proper (that is, for each
compact K ⊂ X , φ−1(K ) is compact). Indeed we mostly use in applications the following
proposition which we leave as an exercise.

Proposition 4.2. Let φ : Y → X be a proper branched cover. Then there exists n ∈ N∗ such
that for all x ∈ X ∑

y∈φ−1(x)

mul tyφ= n.

We say then that the degree of φ is n and write degφ= n.

Definition 4.3. Let φ : Y → X be a branched covering of Riemann surfaces. The ramifica-
tion divisor is the formal sum

Rφ = (
∑

ni −1)yi

where yi are the ramification points and ni their ramification order.

4.1.1 Riemann-Hurwitz formula

Any compact Riemann surface can be described as a branched covering of CP 1 once
we admit the existence of at least one non-constant meromorphic function. From that
description we can easily compute the genus of the surface. We state a more general
version of that computation valid for a covering between compact surfaces.
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Theorem 4.4. Let Y → X be a branched covering of degree d between compact surfaces.
For each ramification point y ∈ Y , let o(y) be its ramification order. Then

χ(Y ) = dχ(X )−∑
(o(y)−1).

Proof. The proof of the theorem follows from the existence of a triangulation with ver-
tices containing the branching locus, that is, the image of all ramification points by the
covering map. We will assume the existence of that triangulation of X . If the simplices
of this triangulation are sufficiently small, the inverse image of the triangulation is
a triangulation of Y . The number of its simplices is d times the number of original
simplices, except for the vertices. Each ramification point diminishes by (o(y)−1) the
maximum number of d times the number of vertices of the original triangulation.

4.2 Riemann existence theorem

Topological coverings of Riemann surfaces inherit a unique complex structure such that
the covering map is holomorphic. The equivalence between two coverings with their
induced complex structure is a biholomorphism. This implies that the classification of
coverings up to equivalence is in fact a classification of holomorphic coverings up to
holomorphic equivalence.

A finite covering of a Riemann surface with a number of points deleted can always
be extended to a branched covering. This follows from the following:

Exercise: The finite coverings, up to equivalence, of the punctured disc D \ {0} are
given by φn : D \ {0} → D \ {0} where φn(z) = zn .

The following theorem is sometimes called the Riemann existence theorem. It
constructs a Riemann surface from a finite covering of a Riemann surface (usually the
Riemann sphere) with a number of points deleted. In this version it can be viewed as
a purely topological property of the existence of extensions of coverings of punctured
surfaces.

Theorem 4.5. If X is a Riemann surface and S ⊂ X is a closed discrete subset, then any
finite covering φ′ : Y ′ → X ′ = X \ S (which we suppose connected) can be extended to a
proper holomorphic map φ : Y → X , where Y is a Riemann surface containing Y ′ such
that Y \ Y ′ is a closed discrete subset.

Proof. At a point s ∈ S there exists a neighborhood Us with Us ∩S = {s} and a coordinate
chartφs : Us → D where D is the unit disc centered at the origin. Asφ′ is a finite covering,
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there exists a finite number of componentsφ′−1(Us \{s}). In fact, φ′ :φ′−1(Us \{s}) →Us \
{s} is a covering. Let V ′ be one of the components. As φ′

|V ′ is a finite covering of the unit

punctured disc, there exists a map ψ′ : V ′ → D \ {0} so that φs ◦φ◦ψ′−1 : D \ {0} → D \ {0}
and such that φs ◦φ◦ψ′−1(z) = zk and therefore we can add the point 0 to D \ {0} and
obtain a holomorphic map from D to D . Let V be the set obtained by adding an abstract
point to V ′ so that ψ : V → D is a homeomorphism and defines a holomorphic chart.
φ|V becomes a branched holomorphic covering. Repeating the procedure for each
component above every Us \ {s} for s ∈ S we obtain the Riemann surface Y .

Remark 4.6. Observe that a covering space of X \ S is determined, up to equivalence, by
its monodromy. That is a representation of ρ :π1(X \S) → Sd where Sd is the permutation
group of d elements such that the image ρ(π1) acts transitively.

4.3 Algebraic functions and the transcendence degree of the field of
meromorphic functions

Let φ : Y → X be a non-constant branched holomorphic covering of degree n between
Riemann surfaces. The map φ∗ : M (X ) → M (Y ) defined by g → g ◦φ is clearly a
monomorphism. Considering the field extension φ∗(M (X )) ⊂ M (Y ) we show the
following

Theorem 4.7. Let φ : Y → X be a branched holomorphic covering of degree n between
Riemann surfaces. Then φ∗(M (X )) ⊂M (Y ) is an algebraic field extension of degree n.

Proof. We prove here that the degree is less than or equal to n In order to prove that the
degree is precisely n we need a result (see Section 8.7) that guarantees the existence of a
meromorphic function which assumes pairwise different values at points of a generic
fiber (that is, whose points are not ramification points).

Let f ∈M (Y ). Let S ⊂ X be a closed discrete subset such thatφ : Y \φ−1(S) → X \S is
a covering. Consider the restriction of f to the meromorphic function f ∈M (Y \φ−1(S)).
We can define meromorphic functions on X \ S by taking the elementary symmetric
functions s1, · · · sn of the n functions f ◦φ−1

i : U → C where φi =φ|Ui : Ui → Y and Ui is
a component of φ−1(U ) (supposing that each component of φ−1(U ) is homeomorphic
to U ). Observe that, by construction, f is a solution of the equation

Πn
i=1(w −φ∗( f ◦φ−1

i )) = w n −φ∗s1w n−1 +·· ·+ (−1)nφ∗sn = 0.

To conclude that the extension is algebraic we need to show that the coefficients si

extend to meromorphic functions on X . We divide the proof in two steps:
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1. If f is holomorphic then si are bounded holomorphic functions on a neighbor-
hood of a point s ∈ S. By Riemann’s removable singularity theorem we can extend
si to a holomorphic function.

2. If f is meromorphic at a point in φ−1(s), consider a coordinate chart z : U → D
such that z(s) = 0. Then (φ∗z)m f is holomorphic if m is large and therefore the
elementary symmetric functions of (φ∗z)m f can be extended to holomorphic
functions of the form zmi si and therefore the si can be extended to meromorphic
functions.

Suppose f0 ∈M (Y ) is an element such that the minimal polynomial is of maximal
degree n0. We show now that M (X )( f0) =M (Y ), thereby proving that the degree of the
extension is less than n. In fact if f ∈M (Y ) is another element we have, by the existence
of a primitive element (M (X ) is of characteristic 0), M (X )( f0, f ) =M (X )(g ) and then

n0 = di mM (X )M (X )( f0) ≤ di mM (X )M (X )( f0, f ) = di mM (X )M (X )(g ) ≤ n0

so that M (X )( f0) =M (X )( f0, f ).

In the following we will prove a converse to that theorem. One of the origins of
Riemann surface theory concerns the study of algebraic equations of the form

w n +a1(z)w n−1 +·· ·+an(z) = 0,

where the coefficients ai (z) are rational functions on CP1. The idea is that the solution
to that equation is, in fact, defined on a Riemann surface Y which is a branched covering
Y → CP 1. We state the theorem in a more general form substituting CP1 for a general
Riemann surface X .

Theorem 4.8. Let X be a Riemann surface and

P (w) = w n +a1w n−1 +·· ·+an

an irreducible polynomial in M (X )[w ] of degree n. Then there exists a Riemann surface
Y , a branched holomorphic covering p : Y → X of degree n and a meromorphic function
F ∈M (Y ) such that

P (F ) = F n +p∗a1F n−1 +·· ·+p∗an = 0.

Definition 4.9. We say that Y is the Riemann surface associated to the irreducible poly-
nomial P.
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Remark 4.10. 1. As M (X ) is a field of characteristic 0, we know that the irreducible
polynomial P (w) ∈M (X )[w ] is separable. That is, its roots in the algebraic closure
of M (X ) are all distinct.

2. Recall that the elementary symmetric polynomial si (t1, · · · , tn) (1 ≤ i ≤ n) of the
variables ti generate the algebra of symmetric polynomials of those variables. Ob-
serve that the functions ai ∈M (X ) are the elementary symmetric functions of the
roots of the polynomial P (w). That is

Π1≤i≤n(w − ti ) = w n − s1w n−1 +·· ·+ (−1)n sn .

Therefore, the polynomial ∆=Πi< j (ti − t j )2 which is clearly symmetric belongs to
M (X ). It is called the discriminant of P (w). In particular, by the previous remark,
the discriminant vanishes identically only if P (w) is reducible.

Proof. The discriminant ∆ of P (w) vanishes at points of X where there are multiple
roots. Therefore, because P (w) is irreducible, ∆ vanishes only on a closed discrete set
of points S which we also suppose contains the poles of ai . Let X ′ = X \ S and define
Y ′ to be the set of all points in (z, w) ∈ (X \ S)×C satisfying the equation P (w) = 0.
By the implicit function theorem (Proposition 1.19) and its corollary, φ′ : Y ′ → X ′ is a
covering map. We extend then this covering to a branched covering φ : Y → X . The
meromorphic function is defined first as a holomorphic function on Y ′ as (z, w) → w
and then by extension (with a similar argument as in the previous theorem) to the whole
of Y . To show that Y is connected, suppose that Y = Y1 ∪·· ·∪Yk is a decomposition
in connected components with φi : Yi → X branched coverings. Then, for each φi the
meromorphic function F restricted to Yi defines a polynomial Pi (w) ∈M (X ) such that
P (w) = P1(w) · · ·Pk (w) contradicting the irreducibility of P (w).

Theorem 4.11. Let k be a finitely generated field of transcendence degree one over C.
Then, there exists a compact Riemann surface X such that M (X ) = k.

Proof. Let z ∈ k generating a purely transcendental extension. Then k/C(z) is a finite
extension (say of degree d) which we can write, by choosing a primitive element f ∈ k as
k = C(z, f ) By the hypothesis, one can write k = C(z)[w]/P , as the quotient ring by the
ideal generated by P (the minimal polynomial in C(z)[w], of degree d , satisfied by f ).

Identify C(z) to the field of rational functions on X = CP1. Now, we construct
the Riemann surface Y associated to P as in theorem 4.8. Let M (Y ) be its field of
meromorphic functions. We may consider z ∈ M (Y ). As P has degree d in w one
obtains that [M (Y ),C(z)] = d = [k,C(z)] and therefore k ∼=M (Y ).
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4.4 Hyperelliptic Riemann surfaces

Let f (z) = (z−a1) · · · (z−ak ) ∈M (CP 1) with distinct roots ai ∈ C. The algebraic function
defined by P (z, w) = w 2 − f is a Riemann surface together with a branched covering
of degree two which is branched on a1, · · ·ak if k is even and on a1, · · ·ak ,∞ if k is odd.
These Riemann surfaces are called hyperelliptic.

Observe that in that case the algebraic curve { (z, w) ∈ C2 | P (z, w) = 0 } is a Riemann
surface by the implicit function theorem as at each solution (z, w) we have Pz ̸= 0 or
Pw ̸= 0.

To understand the topology of hyperelliptic Riemann surfaces, consider the Riemann-
Hurwitz formula to compute their genera. Let X f be the Riemann surface as defined by
P (z, w) = w 2 − f . If k is even we obtain

χ(X f ) = 2χ(CP 1)−k = 4−k

and as the Euler characteristic is given by χ= 2−2g , we obtain g = −2+k
2 = k/2−1. In

the case k is odd we obtain

χ(X f ) = 2χ(CP 1)− (k +1) = 3−k

so that g = −1+k
2 = (k −1)/2. In particular, for k = 3 we obtain an elliptic curve.

Exercises

1. Determine the Riemann surface defined by P (z, w) = z2 −w 3 over CP 1.

2. Determine the genus of the Riemann surface defined by P (z, w) = zn+w n−1 over
CP 1.

3. The field M (CP 1) is C(z), a purely transcendental extension of C.

4.5 Belyi’s theorem

As an application of the construction of a Riemann surface of an algebraic function we
will describe a relation between the field of definition of an algebraic function and the
number of branching points of the covering over CP1.

We say that the Riemann surface X is defined over Q̄ if it is constructed as above
starting with an irreducible polynomial in Q̄[z, w], where Q̄ is the field of algebraic
numbers.

Theorem 4.12 (Belyi). A compact Riemann surface X is defined over Q̄ if and only if there
exists a holomorphic covering π : X → CP 1 branched on three points.
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Proof. We will prove the “only if” part. The other implication being outside our scope
because it needs basic algebraic geometry. We start with a polynomial P ∈ Q̄[z, w]. By
theorem 4.7 there exists φ : X → CP 1 which is branched over a finite set S of algebraic
points. We divide the proof in two steps:

1. We first modify this branched covering to a covering which is branched over
rational points. Take s ∈ S and let h ∈ Q[X ] be its minimal polynomial. The
map h ◦φ : X → CP 1 is a branched covering with branching points contained in
h(S)∪ {h(z) | h′(z) = 0 }. Observe that h(s) = 0 so we made one of the branching
points in S rational at the cost of introducing new branching points. But the
minimal polynomial of a point z0 ∈ {z| h′(z) = 0 } is of degree strictly smaller than
the degree of h and therefore the minimal polynomial of h(z0) ∈ {h(z)| h′(z) = 0 }
has strictly smaller degree too (being in the same field extension as Q(z0)). We
repeat this procedure with each element in S and obtain, by composing with each
minimal polynomial, a branched covering where the new branching points have
minimal polynomials of strictly smaller degrees. Eventually the degree is one and
we obtain only rational branching points.

2. By the previous step, we may suppose that φ : X → CP 1 is branched on rational
points. Now we reduce the number of branching points to at most three. Sup-
posing it is greater than three, we can always assume that {0,1,∞} are among
those points by composing with an automorphism of CP 1. For m,n ∈ Z∗ such that
m +n ̸= 0, consider the map fmn : CP 1 → CP 1 defined by

fmn(z) = (m +n)m+n

mnnn
zm(1− z)n.

The critical values are computed solving f ′
mn(z) = 0 and we obtain that they are

contained in {0,1,∞, m
m+n }. But the branching points are contained in {0,1,∞}.

We conclude that for each rational branching point of φ outside {0,1,∞} we can
find a map fmn so that fmn ◦φ transforms this branching point to one of {0,1,∞}.
This concludes the proof.
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5 Riemann surfaces as quotients

One of the most challenging problems concerning Riemann surfaces is their classifica-
tion. A natural classification is up to equivalence under biholomorphisms. Fortunately
simply connected Riemann surfaces have a simple classification. We will state this
fundamental theorem without proof.

Theorem 5.1 (Riemann uniformization theorem). A simply connected Riemann surface
is biholomorphic to either

1. CP 1

2. C

3. H 1
C = {z ∈ C, |z| < 1}.

This theorem implies that the study of Riemann surfaces is very related to the study
of discrete subgroups of the automorphism groups of the simply connected Riemann
surfaces: Any Riemann surface is biholomorphic to the quotient of one of these simply
connected models by a discrete subgroup of its automorphism group.

Remark 5.2. In higher dimensions the classification of simply connected complex man-
ifolds does not have a clear answer. For instance,it is easy to construct deformations of
the complex two dimensional ball such that any two of those deformed balls are not
biholomorphic.

5.1 Automorphism groups

It will be important to determine for each manifold M its group of biholomorphisms
Aut(M). For the proof of the following theorem we need to recall Schwarz lemma:

Lemma 5.3. Let f : H 1
C → H 1

C be a holomorphic map such that f (0) = 0. Then | f (z)| ≤ |z|
for all z ∈ H 1

C and | f ′(0)| ≤ 1. If | f ′(0)| = 1 or if f (z) = z for some z ̸= 0 then f (z) = e iθz.

Theorem 5.4. The automorphism groups of the simply connected Riemann surfaces are

1. Aut (CP 1) = PSL(2,C) = SL(2,C)/{±I }, all Möbius transformations.

2. Aut (C) = {az +b | a ̸= 0 , b ∈ C}.

3. Aut (H 1
C) = PSU (1,1) = SU (1,1)/{±I }, Möbius transformations preserving the disc.
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Proof. We first describe f ∈ Aut(C), which is an entire function. We have f (z) =
a0 + a1z + ·· · . As f is an automorphism, the image of a neighborhood of infinity is
a neighborhood of infinity. Therefore it can be extended to a holomorphic function
at infinity. We conclude that f (z) is a polynomial and by the fundamental theorem of
algebra, it must be linear.

To show 1. observe that we can write, in homogeneous coordinates, CP 1 = {[z0, z1]},
where z0, z1 are not both null. Any transformation of the form [z0, z1] → [az0+bz1,cz0+
d z1], with ad −bc ̸= 0 is an automorphism. So we have an action PSL(2,C)×CP 1 →
CP 1. Given an element γ ∈ Aut(CP 1) we can find an element γ1 ∈ PSL(2,C) such that
γ◦γ1(∞) =∞. So γ◦γ1 ∈ Aut (C) and we conclude using the description of Aut (C).

To show 3. we observe first that PSU (1,1) ⊂ PSL(2,C). That is, SU (1,1) = {A ∈
SL(2,C) | h(Az, Az) = h(z, z)}, where h(z, w) = z0w 0 − z1w 1 is a hermitian form. So
PSU (1,1) preserves the disc H 1

C = {z ∈ CP 1 | h(z, z) < 0}. If γ ∈ Aut (H 1
C), there exists an

element γ1 ∈ PSU (1,1) such that γ◦γ1(0) = 0. By Schwarz’s lemma we obtain | f ′(0)| ≤ 1
and, as f is a biholomorphism, the same inequality for the inverse function gives
| f ′(0)| = 1. By Schwarz’s lemma we conclude that γ◦γ1(z) = e iθz and that concludes the
proof.

Corollary 5.5. A Riemann surface covered by CP 1 is biholomorphic to CP 1.

Proof. This follows from the fact that any Möbius transformation has a fixed point. It
implies that there is no subgroup of the Möbius group acting freely on CP 1.

On the other hand observe that the involution ι : z →− 1
z̄ defined on CP 1 does not

have fixed points. The quotient space CP 1/〈ι〉 is the real projective plane which is not a
Riemann surface.

Exercise 5.6. A meromorphic function on CP 1 is a holomorphic map of CP 1 on itself.
They are all rational functions, that is f (z) = p(z)

q(z) where p(z) and q(z) are polynomials.

Exercise 5.7. The disc and the half plane HR = {z ∈ C | Im z > 0 } are biholomorphic.
Aut (HR) = PSL(2,R).

Exercise 5.8. If K is a field PSL(n,K ) = PGL(n,K ) if and only if every element of K has
an n-th root. For instance PSL(2,R) ̸= PGL(2,R).

Exercise 5.9. PU (1,1) acts doubly transitively on the boundary. That is given x1, y1, x2, y2 ∈
∂H 1C with xi ̸= yi , there exists an element γ ∈ PU (1,1) such that γx1 = x2 and γy1 = y2.
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5.1.1 Conjugacy classes

It is important to understand the conjugacy classes of elements in the automorphism
groups. Elements in the same conjugacy class act in an “equivalent” way.

Lemma 5.10. An element in PSL(2,C) has one or two fixed points. We have

1. If it has only one fixed point then it is conjugate to z → z +1.

2. If it has only two fixed points it is conjugate to z →λz, λ ̸= 1,0.

Proof. Given any (non-trivial) Möbius transformation we solve the equation

az +b

cz +d
= z.

It has one or two solutions. If it has only one solution, by conjugating with an element
of PSL(2,C), we can suppose that ∞ is that fixed point. In that case the element must
be of the form z → az +b. We immediately see that a = 1 otherwise there would be a
second fixed point. Moreover, by conjugating with z → 1

b z we obtain z → z +1. To show
the second part we observe that we can conjugate an element with two fixed points to
one fixing 0 and ∞. That gives clearly the form z →λz.

We can further refine that lemma to obtain the orbit space by the conjugation action
of PSL(2,C). The proof of the following proposition is a simple consequence of the
lemma.

Proposition 5.11. The conjugacy classes of PSL(2,C) are uniquely represented by the
following elements

1. z → z +1 called parabolic.

2. z → e iθz, 0 ≤ θ ≤π, called elliptic.

3. z → λz, λ ∈ C |λ| > 1, called loxodromic. In the case λ ∈ R we call it a hyperbolic
transformation.

Proof. The first part is contained in the previous lemma. For the second and third part
we observe that if γ(z) = λz, in order to preserve the fixed points, we are allowed to
conjugate by elements of the form z → az, which commute with γ (so irrelevant), or
z → a/z. In that case γ is transformed to gγg−1(z) = 1

λz. This shows the result.

Considering only elements in PSU (1,1) we describe conjugacy classes in the follow-
ing definition.
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Definition 5.12. γ ∈ PSU (1,1) is called

1. Elliptic if it has a fixed point in H 1
C.

2. Parabolic if it has a unique fixed point in ∂H 1
C.

3. Hyperbolic if it has two fixed points in ∂H 1
C.

There exists a convenient description of the conjugacy classes using trace computa-
tions on matrices:

Proposition 5.13. Let γ ∈ PSU (1,1) and consider a lift γ̃ ∈ SU (1,1). Then γ is

1. elliptic if and only if tr 2γ̃< 4,

2. parabolic if and only if tr 2γ̃= 4 and γ is not the identity,

3. hyperbolic if and only if tr 2γ̃> 4.

Observe, however, that conjugation in PSU (1,1) splits certain conjugacy classes in
PSL(2,C) (also, some disappear because they don’t correspond to elements in PSU (1,1)).
For instance, the parabolic class is split in two: z → z +1 and z → z −1. Analogously, the
elliptic class z → e iθ, 0 ≤ θ ≤π splits in two, so that 0 ≤ θ < 2π is the parameterization of
the classes. On the other hand, the only loxodromic classes which appear in PSL(2,C)
are those with λ> 1 and they don’t split.

Remark 5.14. Let �PSU (1,1) = 〈PSU (1,1), z → z̄〉. Using conjugation on that group we
can collapse again the splitting. In particular z → z +1 and z → z −1 are conjugate in
the corresponding group �PSL(2,R).

5.2 The complex plane C and its quotients

Theorem 5.15. A Riemann surface is covered by C if and only if it is biholomorphic to C ,
C \ {0} or a torus.

Proof. We prove first the only if part. The other implication is a consequence of the next
proposition. Let Γ⊂ Aut(C) be the covering group. If γ(z) = az +b is an element of Γ
then a = 1, otherwise γ would have a fixed point. So Γ is generated by translations. We
saw in theorem 3.28 that a discrete subgroup of Aut (C) generated by translations is one
of the following:

1. {i d}
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2. < γ>= Z, a group generated by one translation γ(z) = z +ω
3. < γ1,γ2 >= Z⊕Z, a group generated by two translation γ1(z) = z +ω1 and γ2(z) =

z +ω2 with ω1 and ω2 linearly independent over R .

The first case corresponds to C. For the second case the function z → e2πz/ω establishes
a biholomorphism between C/ < γ> and C \ {0}. In the third case the quotient manifold
is diffeomorphic to a torus.

To complete the theorem we need to show that any torus is covered by C. That is,
using the uniformization theorem, the complex disc (or the half plane) cannot cover a
torus. This follows from the following proposition.

Proposition 5.16. Let Γ ⊂ Aut(HR) be a discrete group without fixed points. If Γ is
abelian, then it is cyclic.

Proof. There are two cases. If I d ̸= γ ∈ Γ is parabolic we can, without loss of generality,
suppose that γ(z) = z+x, where x =±1. A computation then shows that any commuting
element is parabolic. Indeed,(

1 x
0 1

)(
a b
c d

)
=

(
a b
c d

)(
1 x
0 1

)
implies (

a +xc b +xd
c d

)(
a ax +b
c cx +d

)
So xc = 0 and x(a −d) = 0 which implies c = 0 and a = d . That is, the commuting
element is parabolic. By discreteness we obtain that the group generated by the two
elements is cyclic. Analogously, if γ is hyperbolic, without loss of generality, suppose
that γ(z) =λz. We easily conclude (by the lemma bellow) that an element commuting
with it is of the same form and using discreteness we conclude that the subgroup is
cyclic.

Lemma 5.17. Two hyperbolic elements commute if and only if they have the same fixed
points.

Proof. We write one element as z →λz and the other by a general Möbius transforma-
tion. Then, by commutativity(

λ−1/2 0
0 λ1/2

)(
a b
c d

)(
λ1/2 0

0 λ−1/2

)(
d −b
−c a

)
=

(
1 0
0 1

)
A computation shows that b = c = 0.
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Remark 5.18. Observe that if G (any group) acts on M (any space) and g1 commutes
with g2 the fixed points of g1 are preserved by g2 and the fixed points of g2 are preserved
by g1, indeed,

g1(x) = x ⇒ g2g1(x) = g2(x) ⇒ g1(g2(x)) = g2(x).

If γ has only one fixed point any commuting element will have precisely the same fixed
point (so if γ is parabolic the commuting element is also parabolic).

5.3 Fuchsian groups

Definition 5.19. A Fuchsian group is a discrete subgroup of PSU (1,1).

In order to define a quotient of the disc by a discrete group as a Riemann surface
we need to verify that the action is free and properly discontinuous. The action is free
if there are no elliptic elements, also called torsion elements. On the other hand, the
action is always properly discontinuous as is shown by the next theorem.

Theorem 5.20. A subgroup Γ⊂ Aut (H 1
C) is Fuchsian if and only if it acts properly discon-

tinuously.

Proof. Clearly if Γ acts properly discontinuously then it is discrete. Now suppose it is
discrete and it does not act properly discontinuously. Recall the normal family theorem:

Theorem 5.21 (Normal family theorem). Suppose fn :Ω→ C is a family of holomorphic
functions defined on a region of C. If fn is uniformly bounded on each compact subset
of Ω (a normal family) then there exists a subsequence which converges uniformly on
compact subsets (the limit function will then be holomorphic).

We need the following lemma

Lemma 5.22. If a sequence γn ∈ Aut (H 1
C) converges uniformly on compact subsets to γ

then

1. γ ∈ Aut (H 1
C) or

2. γ is a constant function with value some e iθ in the boundary of H 1
C.

Proof. If there exists x0 ∈ H 1
C such that γn(x0) → b with |b| = 1 then by the maximum

modulus principle γ(z) = γ(x0) = b, for all z ∈ H 1
C. Otherwise we have γ : H 1

C → H 1
C

and taking a subsequence if necessary γ−1
n converges uniformly on compact subsets to

δ : H 1
C → H 1

C such that δ◦γ= I d . Therefore γ ∈ H 1
C.
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Back to the proof: if the action is not properly discontinuous there exists a compact
K ⊂ H 1

C and a sequence of distinct elements γn ∈ Γ such that γn(K )∩K ̸= ;. Clearly the
sequence γn is a normal family. Therefore, taking perhaps a subsequence, it converges
uniformly on compact subsets to a holomorphic function. Taking a subsequence if
necessary we have γn(xn) = yn for two sequences (xn) and (yn) in K with lim xn = x and
lim yn = y , therefore limγn(x) = y . We conclude, using the lemma, that γn converges to
an element of Aut (H 1

C), therefore the group is not discrete.

The following lemma is an important technical component of the next theorem.

Lemma 5.23 (Shimizu). If z → z +1 belongs to a Fuchsian group in PSL(2,R), then every
other element γ of the form

az +b

cz +d
satisfies |c| ≥ 1, provided c ̸= 0.

Proof. We set

A1 =
(

a b
c d

)
A0 =

(
1 1
0 1

)
and define by induction for n ≥ 1,

An+1 = An A0 A−1
n .

We compute the coeficients of An+1 obtaining

an+1 = 1− cn an

bn+1 = a2
n

cn+1 =−c2
n

dn+1 = 1+ancn

If c < 1 then cn converges, in fact |cn | = |c|2n−1
. We claim that lim an = 1. Observe

that |an+1| ≤ 1+ |ancn | ≤ 1+ |an |. By induction then |an+1| ≤ n + |a|. We obtain then
|an+1| ≤ 1+|ancn | ≤ 1+|cn |(n +|a|) ≤ 1+|c|2n−1

(n +|a|) and the result follows.

A Fuchsian group Γ ⊂ PSL(2,R) is said to be co-compact if the quotient H 1
C/Γ is

compact. From Shimizu lemma we conclude the following theorem which says that if
a Riemann surface is compact and not the sphere or a quotient of the complex plane
then its fundamental group does not have parabolics.

Theorem 5.24. If Γ ⊂ PSL(2,R) is co-compact without torsion then any non-trivial
element is hyperbolic.
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Proof. If there were a parabolic element, by conjugation we may suppose it z → z +1
and generator of the parabolic group Γ∞ fixing ∞. As

Im(γ(z)) = Im(z)

|cz +d |2

for any γ(z) = az+b
cz+d in Γwe estimate using Shimizu’s lemma that if Im(z) > 1 then

Im(γ(z)) ≤ 1

|c|2Im(z)
< 1

for γ not in Γ∞. Therefore the set { z | − 1
2 < Re z < 1

2 , Im(z) > 1 } passes to the quotient,
but it is not compact, a contradiction.

5.4 Fundamental domains

Definition 5.25. A fundamental domain of a properly discontinous action on a topologi-
cal manifold, Γ×X → X is an open set F ⊂ X such that

1.
⋃
γ∈ΓγF = X , where F is the closure of F

2. If x, y ∈ F they are not in the same orbit.

We do not suppose that the action is free but observe that a fixed point of an element
in Γ is never contained in F . It might be contained in the closure of F .

Example 5.26. A fundamental domain for the action of the additive group generated by
the translations z → z +1 and z → z +τ is the parallelogram defined by the sides 1,τ.

5.4.1 PSL(2,Z)

Theorem 5.27. D = { z ∈ H 1
C | |z| > 1,−1/2 < Re(z) < 1/2 } is a fundamental domain for

PSL(2,Z).

Proof. Again we use

Im(γ(z)) = Im(z)

|cz +d |2
to observe that fixing τ ∈ C, there is only a finite number of elements γ ∈ PSL(2,Z) with
|cτ+d |2 < M for a fixed bound M . This follows because Zτ+Z is a discrete group. Take
γ such that Im(γ(τ)) is maximum. Using the translation we can suppose without loss
of generality that −1/2 ≤ Re(τ) ≤ 1/2. We claim that |γ(τ)| ≥ 1, otherwise using the
inversion s(z) =−1/z we would get Im(sγ(τ)) = Im(γ(τ))

|γ(τ)|2 > Im(γ(τ)). A contradiction.
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Figure 4: A fundamental domain for a triangle group containing PSL(2,Z) as an index
two subgroup. The fundamental domain for PSL(2,Z) is the symmetric double of the
grey region.

Figure 5: A fundamental domain for PSL(2,Z) and some of its translates.
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Suppose now that τ and γ(τ) belong to D̄ . Without loss of generality we may assume
that Im(γ(τ)) ≥ Im(τ). Therefore

|cτ+d | ≤ 1.

Just looking at the imaginary part, that is, Im(cτ+d) = c Imτ≥ c
p

3
2 , we obtain that the

only possibilities are c = 0,1,−1. If c = 0 it follows easily that γ is either the translation
or the identity. If c = 1, we must have |z +d | ≤ 1. We claim that that is only possible if
z =ω or z =−ω̄ or z = i . That can be seen easily in the picture. Analogously we obtain
those two points if c =−1.

5.4.2 Γ(2)

Let πN : SL(2,Z) → SL(2,ZN ) be the homomorphism obtained by reducing modulo N . It
passes to the quotients

φN : SL(2,Z)/{I ,−I } → SL(2,ZN )/{I ,−I }.

The kernel of this homomorphism is called the principal congruence group of level N ,
Γ(N ) ⊂ PSL(2,Z).

The simplest case, Γ(2), acts freely on the complex disc so that H 1
C/Γ(2) is a sphere

with three points deleted.
To understand the action, observe first that the homomorphism φN is clearly surjec-

tive and, as SL(2,Z2) = PSL(2,Z2) has 6 elements which can easily be enumerated:(
1 0
0 1

)(
1 1
0 1

)(
1 0
1 1

)(
0 1
1 0

) (
1 1
1 0

)(
0 1
1 1

)
,

we have, therefore, that Γ(2) ⊂ PSL(2,Z) is of index 6.
The fundamental domain of subgroups of finite index can be computed using the

following lemma.

Lemma 5.28. Suppose D is a fundamental domain for a group G acting on a space
M. Let H ⊂G be a subgroup of index k and H g1, · · · , H gk be its left cosets. Then DH =
g1D ∪·· ·∪ gk D is a fundamental domain for H.

Proof. If x, y ∈ DH and there exists h ∈ H such that y = hx then, as x ∈ gi D and y ∈ g j D ,
we might suppose that g j ȳ = hgi x̄ for x̄, ȳ ∈ D . That is, ȳ = g−1

j hgi x̄ which contradicts

the fact that D is a fundamental domain for G . On the other hand, HDH = M follows
because G =⋃

H gi .
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g1 g2

g3

g4 g5

g6

Figure 6: A fundamental domain for Γ(2) showing the six translates of the fundamental
region of PSL(2,Z) corresponding to each coset.

Left coset representatives of Γ(2) are obtained by chosing an inverse image for each
element of SL(2,Z2):

g1 =
(

1 0
0 1

)
g2 =

(
1 1
0 1

)
g3 =

(
1 0
1 1

)

g4 =
(

0 −1
1 0

)
g5 =

(
1 −1
1 0

)
g6 =

(
0 1
−1 1

)
.

The boundary of the fundamental domain consists of 2 vertical half lines paired by the
parabolic element

γ1 = z → z +2

and two pairs of arcs paired by parabolic elements in the group:

γ2 = g4γ1g−1
4 = z → z

2z +1

for the sides of the region g4D ∪ g6D (where D is the fundamental domain for PSL(2,Z)
found before),

z → 3z −2

2z −1

for the sides of the region g3D ∪ g5D. One should observe that the three points of H 1
C

in the boundary of the region are identified by those pairings and, around that point,
the regions match together to form a complex disc. The quotient is the sphere where 3
points are deleted.
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6 Riemann surfaces as algebraic curves

The principal source of examples of Riemann surfaces comes from subsets of Cn or
complex projective spaces CPn defined by zeros of polynomials. They are called alge-
braic curves. It turns out that every compact Riemann surface can be embedded as
an algebraic curve in CP3. Indeed, a deep theorem proves that any compact Riemann
surface can be embedded as a projective algebraic curve in some CPn . A simple argu-
ment shows then that any complex algebraic curve CPn , n > 3, can be projected as an
embedding into a CP3.

6.1 Affine plane curves

Let
F (x, y) =∑

r,s
cr,s xr y s

be a polynomial in two variables with complex coefficients. That is, F ∈ C[x, y].

Definition 6.1. The affine complex plane curve defined by a non-constant polynomial F
is the set

CF = {(x, y) ∈ C2 | F (x, y) = 0 }

Examples:

1. A complex line is given by the equation ax +by + c = 0.

2. A conic is given by the equation ax2 +bx y + c y2 +d x +e y + f = 0.

3. (Exercise) A homogeneous polynomial in two variables can be factored as a prod-
uct of linear polynomials.

The definition has some obvious problems. Namely, two different polynomials
might define the same curve (think of F (x, y) and F (x, y)2) and the set CF might not
be connected (F (x, y) = x(x +1)). Another problem is that the set CF might not be a
smooth subvariety of C2.

The important notion to address the first problem is that of irreducible polynomial.
F (non-constant polynomial) is irreducible if it cannot be written as F =Q.R where Q
and R are non-constant polynomials. Any polynomial can be written in a unique way
(up to multiplicative constants and permutation of factors) as a product of irreducible
factors. The following theorem shows that CF is determined by the irreducible factors of
F . One can also show that if F is irreducible CF is connected (this is not trivial, see Milne,
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Algebraic Geometry, prop 15.1 https://www.jmilne.org/math/CourseNotes/ AG15.pdf).
We say that a curve CF is irreducible if F is irreducible. We will admit the following
fundamental theorem which we state in the special case of polynomials in two variables:

Theorem 6.2 (Hilbert Nullstellensatz). If F and Q are two polynomials, then Q vanishes
on CF if and only if there exists n ∈ N∗ and a polynomial H ∈ C[x, y] such that Qn = F H.
That is, Qn is in the ideal (F ) ⊂ C[x, y] generated by F .

Therefore, if a polynomial is factored into its prime factors as

F = f n1
1 · · · f nk

k ,

where ni ≥ 1, then
CF =C f1··· fk .

We will say that f1 · · · fk is a minimal polynomial. The curves C fi defined by the irre-
ducible factors of F are the irreducible components of CF .

Definition 6.3. The degree of a curve CF defined by a minimal polynomial F is the degree
of F , that is

d = max{ r + s | cr,s ̸= 0 }.

Definition 6.4. A point (x0, y0) ∈CF is singular if

∂F

∂x
(x0, y0) = ∂F

∂y
(x0, y0) = 0.

Otherwise, it is called a non-singular point. We say a curve is non-singular if it does not
have singular points.

By the implicit function theorem, the curve CF − { si ng ul ar poi nt s } is a complex
submanifold. At a singular point (x0, y0), we can further analyse the curve by computing
the Taylor polynomial

F (x, y) = ∑
m≥1

∑
i+ j=m

1

i ! j !

∂mF

∂xi∂y j
(x0, y0)(x −x0)i (y − y0) j .

The smallest m with ∂m F
∂xi∂y j (x0, y0) ̸= 0 is the order of the singular point. Then, the

homogeneous polynomial∑
i+ j=m

1

i ! j !

∂mF

∂xi∂y j
(x0, y0)(x −x0)i (y − y0) j

has linear irreducible components. Each irreducible component defines a line which is
tangent to the curve at the singular point. We say that the singular point is ordinary if
the number of lines equals the order of the singular point.
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Example 6.5. Let h(y) be a polynomial with no multiple roots (there are no common
roots of h and h′). Set F (x, y) = x2 −h(y) and

CF = {(x, y) ∈ C2 | x2 −h(y) = 0 }.

Note that x2 −h(y) is irreducible (prove it). Singular points in the curve satisfy

∂F

∂x
= 2x = 0

∂F

∂y
= h′(y) = 0.

There are none. Therefore CF is a conected Riemann surface. What happens if h is not a
perfect square? Is CF connected? Is it non-singular?

6.2 Projective plane curves

Affine curves are never compact. Indeed, supposing that F (x, y) depends on x, the
function (x, y) → x is a non-constant holomorphic function on CF . In order to consider
compact surfaces we define projective curves in CP2. We start with a homogeneous
polynomial F (x, y, z) defined on C3.

Definition 6.6. The projective complex curve defined by F is the set

CF = {[x, y, z] ∈ CP2 | F (x, y, z) = 0 }.

We factor homogeneous polynomials by irreducible homogeneous polynomial and
Hilbert’s Nullstellensatz is valid for homogeneous polynomials. So a projective curve is
defined by a minimal polynomial whose irreducible factors have multiplicity one. We
define, as for affine curves, the irreducible components of CF to be the projective curves
defined by the irreducible factors of F .

Definition 6.7. The degree of a curve CF defined by a minimal polynomial F is the degree
of F .

In order to interpret geometrically the degree we define first the intersection mul-
tiplicity of a line and a projective curve. Suppose L ⊂ CP2 is a complex line which is
not an irreducible component of a projective curve CF given by a polynomial F . By
changing coordinates we may suppose that L = { [x, y,0] }. To find the intersections we
solve the equation

F (x, y,0) = 0.

As L is not a component, F (x, y,0) ̸= 0. Also, remark that F (x, y,0) is homogeneous and
therefore it can be factored into deg F linear factors which might be repeated. Each
factor is of the form (bi x −ai y) and the point [ai ,bi ,0] is an intersection point with a
multiplicity defined by the number of times the same factor appears.
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Definition 6.8. A point [x0, y0, z0] ∈CF is singular if

∂F

∂x
(x0, y0, z0) = ∂F

∂y
(x0, y0, z0) = ∂F

∂z
(x0, y0, z0) = 0.

Otherwise, it is called a non-singular point.

Example: A projective line in CP2 is defined by the equation ax +by + cz = 0.

The relation between affine curves and projective curves is made explicit by writing
CP2 = C2 ∪CP1 = { [x, y, z] | z ̸= 0 }∪ { [x, y,0] }. A homogeneous polynomial of degree
d , F (x, y, z), which does not have z as a factor, defines a polynomial F (x, y,1) on C2 of
degree d . And reciprocaly, if F (x, y) =∑

r,s cr,s xr y s is a polynomial of degree d on C2 we
define a degree d homogeneous polynomial on three variables

F̃ (x, y, z) =∑
r,s

cr,s xr y s zd−r−s .

One can interpret the projective curve CF̃ as the compactification of the affine curve CF .
The points at infinity are

{ [x, y,0] | ∑
0≤r≤d

cr,d−r xr yd−r = 0 }.

To each infinity point (ai ,bi ) corresponds an asymptote line in C2 given by

ai x −bi y = 0.

It is also clear that F (x, y, z) is irreducible if and only if F (x, y,1) is irreducible.
The tangent line at a non-singular point is the projective line defined by the equation

∂F

∂x
(x0, y0, z0)x + ∂F

∂y
(x0, y0, z0)y + ∂F

∂z
(x0, y0, z0)z = 0.

Exercise : Prove Euler’s relation: If F is homogeneous of degree d then

∂F

∂x
(x0, y0, z0)x0 + ∂F

∂y
(x0, y0, z0)y0 + ∂F

∂z
(x0, y0, z0)z0 = dF (x0, y0, z0).

The following Lemma relates non-singular points of a projective curve and its affine
curve. It follows immediately from Euler’s relation.
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Lemma 6.9. [x0, y0, z0], with z0 ̸= 0 is a non-singular point of a projective curve defined
by F (x, y, z) if and only if (x0/z0, y0/z0) is a non-singular point of the affine curve defined
by F (x, y,1). The tangent line of CF (x,y,z) at [x0, y0, z0] (restricted to C2 ⊂ CP2) coincides
with the tangent line of CF (x,y,1) at (x0/z0, y0/z0).

Using the previous lemma for each affine coordinate chart of CP2 we conclude that
a projective curve whose points are non-singular is a Riemann surface (one can show
that if all points are non-singular then the homogeneous polynomial is irreducible and
this implies that the curve is connected, this is not true for affine curves as the following
example shows). It is called a smooth projective plane curve.

Example 6.10. Let f (x, y) = x(x −1). The affine curve C f is smooth and reducible (the
union of two parallel lines). On the other hand its compactification CF is given by the
algebraic curve in CP2 defined by F (x, y, z) = x(x − z), a reducible polynomial. Note that
now, CF is not smooth. Indeed, the point (0,1,0) is a singular point.

Example 6.11. Consider the curve defined for g ≥ 1 and pairwise distinct ai ∈ C, 1 ≤ i ≤
2g :

C = {[x, y, z] ∈ CP2 | F (x, y, z) = y2z2g−2 − (x −a1z) · · · (x −a2g z) = 0 }.

We compute the partial derivatives:

∂F

∂x
=−∑

i
(x −a1z) · · · ˆ(x −ai z) · · · (x −a2g z)

∂F

∂y
= 2y z2g−2

∂F

∂z
= (2g −2)y2z2g−1 +∑

i
ai (x −a1z) · · · ˆ(x −ai z) · · · (x −a2g z)

To compute the singular points, observe that from the second equation z = 0 or y = 0. If
y = 0 then z ̸= 0 (otherwise we also have x = 0). We may suppose that z = 1 in that case
and as the ai are pairwise distinct there are no solutions to the first equation in C . If z = 0
analogously we have y ̸= 0. Making x = 0 we see that [0,1,0] is the unique solution of the
equations and therefore is the unique singular point of the curve.

Exercise: Any projective line is biholomorphic to CP1.
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Exercise: A conic in CP2 is defined by a degree two homogeneous polynomial

F (x, y, z) = ax2 +d y2 + f z2 +2bx y +2cxz +2e y z

which can be written as X T AF X where

AF =
 a b c

b d e
c e f


and

X =
 x

y
z


1. Prove that CF is non-singular if and only if det AF ̸= 0.

2. Prove that any smooth projective conic is isomorphic to CP1.

6.3 Algebraic sets and algebraic curves

In order to give some perspective we give in this section a very short introduction to
algebraic geometry. Indeed, algebraic sets in Cn of any dimension are defined as follows.

Consider A = C[x1, · · · , xn] the polynomial ring in n-variables over C.

Definition 6.12. An affine algebraic set defined by a subset T ⊂ A is

Z (T ) = {x ∈ Cn | F (x) = 0 for all F ∈ T }.

So the empty set, any finite subset of Cn , the whole Cn and affine algebraic curves
are examples of algebraic sets. An hypersurface, is an algebraic set defined by one
polynomial. In particular, if the polynomial is linear, the algebraic set is called an
hyperplane. Again, the fact that Z (T ) might have different defining sets is an obvious
problem. One can show that any algebraic set is a finite union of irreducible algebraic
sets which are themselves related to prime ideals of A.

Definition 6.13. An irreducible affine algebraic set (or algebraic variety) X is an algebraic
set whose ideal

I (X ) = {F ∈ A | F (x) = 0 for all x ∈ X }

is prime.
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Recall that a prime ideal I ⊂ A is a proper ideal such that if ab ∈ I , either a ∈ I or b ∈ I .
As an example, if F ∈ C[x, y] is an irreducible polynomial, then the ideal generated bt F
is prime and the complex algebraic curve is therefore an algebraic variety. We define
projective algebraic varieties analogously by considering homogeneous polynomials.
In principle, in CPn we need n −1 equations but one sometimes need more equations.
The best possible situation is given in the following Definition.

Definition 6.14. A smooth complete intersection curve is the set

C = {[x] ∈ CPn | F1(x) = ·· · = Fn−1(x) = 0 }.

where Fi are homogeneous polynomials in Cn+1 such that the (n −1)× (n +1) matrix(
∂Fi

∂x j

)
has maximal rank at each point in C .

As for plane curves we can prove, using the implicit function theorem, that a com-
plete intersection is a complex submanifold. It defines therefore a compact Riemann
surface.

Not all projective curves are complete intersections. But one can show that every
embedding of a Riemann surface in projective space CPn is a local complete intersec-
tion, meaning that it is a projective curve defined by a finite number of homogeneous
polynomials which is locally defined by only (n −1) polynomials satisfying the rank
condition above.

Example The classic example of a local complete intersection is the twisted cubic:

t : CP1 → CP3

defined by t([x, y]) = [x3, x2 y, x y2, y3]. Observe that if x ̸= 0, one can write in a local
chart t ([1, y]) = [1, y, y2, y3]. Otherwise, t ([0,1]) = [0,0,0,1]. The curve is defined by three
equations: x0x3 = x1x2, x0x2 = x2

1 and x1x3 = x2
2 . On each chart xi ̸= 0 one can use two

of them. But one cannot define the curve using only two equations.

6.4 All projective curves can be embedded in CP3

Given a point v ∈ CPn and a hyperplane L not containing it we may define the projection
from v to L, π : CPn \ {v} → L; choose lifts L̃ and p̃ to Cn+1. Given z ∈ CPn \ {v}, choose
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a lift z̃ in Cn+1. Define π(z) = [span(z̃, ṽ)∩ L̃] ∈ L. Here span(z̃, ṽ) is the vector space
generated by z̃, ṽ and the intersection is not empty as di m(L̃) = n and di m(z̃, ṽ) = 2. We
could also consider, more intrinsically, the projective space defined by all lines passing
through v and the projection π to be given by z → [span(z̃, ṽ)] in this space. In the case
v = [0,0, · · · ,1] the projection is given by

[x0, · · · , xn] → [x0, · · · , xn−1,0].

Proposition 6.15. Any smooth projective curve can be embedded in CP3.

Proof. The proof is obtained by projecting a curve embedded in CPn from a linear space
into a convenient CP3. If we want that the projection be an embedding we need to
be careful. The linear space from where we should project should avoid secants and
tangents.

Definition 6.16. A complex line passing through two points of a projective curve is called
a secant.

Suppose that v ∈ CPn and X a projective curve disjoint from v . Clearly, the projection
from p is injective restricted to X if and only if v is not contained in any of the secants
to X .

Lemma 6.17. Let p ∈ X be a point in a smooth projective curve and v ∈ CPn disjoint
from all the secants of X . The projection from p restricted to X is an embedding at p if
and only if v is disjoint from the tangent line to X at p.

Proof. We may suppose that p = [1,0, · · · ,0] and v = {[0, · · · ,0,1]}. The projection from v
is given by [x0, · · · , xn] → [x0, · · · , xn−1,0]. On a neighborhood of p, the smooth projective
curve is given by [1, g1(z), · · · , gn(z)] with g ′

i (z) ̸= 0 for some 1 ≤ i ≤ n −1 if we impose
that the tangent line does not contain v . This completes the proof.

To prove the proposition, we start with a projective curve. Define the complex
manifold defined by triples of points (x, y, z) such that x ̸= y are points in X and z a
point in the secant between x and y . It is of dimension 3 and therefore, its image by the
projection (x, y, z) → z is of maximal dimension 3. We conclude that there are points
in CPn which are not contained in any secant. Analogously, we may conclude that the
set of points contained in a tangent line is of dimension at most 2. If the projective
curve is embedded into a projective space of dimension greater than or equal to 4 we
obtain a point not contained in any secant or tangent line and the projection from that
point embeds X in a projective space of one dimension smaller. We may proceed with
projections until an embedding into CP3.
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Remark 6.18. An embedding into CP2 is not always possible but one can project any
projective algebraic curve onto a singular curve whose singular points are all ordinary
double singularities.

6.5 Intersections of projective curves: Bézout’s theorem

In this section we prove a formula which counts the intersection number of two projec-
tive curves. The formula involves a definition of multiplicity and is best described using
the notion of a divisor. Meromorphic functions on projective curves are obtained by
taking quotients of homogeneous polynomials of the same degree.

Consider a smooth projective curve X and a non-zero homogeneous polynomial F
of degree d .

Definition 6.19. The intersection divisor of F on X , di v(F ) =∑
np p, is the formal sum

of points p ∈ X where F (p) = 0 with np being the order of the meromorphic function
obtained from F by dividing it by a homogeneous polynomial G of the same degree which
is non-vanishing at p.

Observe that the order of the meromorphic function does not depend on the choice
of the non-vanishing homogeneous polynomial G because G(p) ̸= 0. If F is linear, we
call di v(F ) a hyperplane divisor.

In general, the degree of a divisor D = ∑
np p is deg (D) = ∑

np . If F1 and F2 are
homogeneous polynomials of the same degree than di v(F1)−di v(F2) = di v(F1/F2)
which is the divisor of a meromorphic function. But the degree of a principal divisor is
0 so deg (di v(F1)) = deg (di v(F2)). In particular all hyperplane divisors have the same
degree.

Definition 6.20. The degree of a smooth projective curve, deg (X ) is the degree of a
hyperplane divisor.

Exercise: The degree of a smooth plane projective curve coincides with the degree
of the irreducible polynomial defining it.

Bézout’s theorem computes the degree of an intersection divisor:

Theorem 6.21 (Bézout’s theorem). Let X be a smooth curve and F a non-zero homoge-
neous polynomial . Then

deg (di v(F )) = deg (X )deg (F ).

Proof. Let H a homogeneous polynomial of degree 1. Then deg (di v(H deg F )) = deg (di v(F )).
Now deg (di v(H deg F )) = deg (F )deg (di v(H)) = deg (F )deg (X ).
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6.6 Algebraic curves and ramified covers: Plücker’s formula

Given a smooth projective plane curve X ⊂ CP2, not containing the point [0,1,0], defined
by a homogeneous polynomial F we can define a ramified cover π : X → CP1 by taking
the projection from the point [0,1,0], that is π : [x, y, z] → [x, z]. We obtain the Riemann
surface which as ramified cover of CP1.

Proposition 6.22. Let X be a smooth algebraic curve defined by the homogeneous polyno-
mial F in CP2 not containing the point [0,1,0] and π : X → CP1 the projection as above.
Then, the ramification divisor Rπ ⊂ X is equal to di v(∂F

∂y ) (which is a homogeneous
polynomial).

Proof. Without loss of generality we will work on a chart with z ̸= 0. We suppose there-
fore z = 1. By the implicit function theorem, if ∂F

∂y (x0, y0,1) ̸= 0 the projection has multi-

plicity one in [x0, y0,1]. On the other hand, if ∂F
∂y (x0, y0,1) = 0 we have ∂F

∂x (x0, y0,1) ̸= 0
and therefore there exists a holomorphic function g defined on a neighborhood of y0

such that F (g (y), y,1) = 0. In that case

dF (g (y), y,1)

d y
= ∂F

∂x
(g (y), y,1)g ′(y)+ ∂F

∂y
(g (y), y,1) = 0,

so that g ′(y0) = 0. In fact, differentiating again and again we observe that the order of
g ′ at y0 is the same as the order of the function ∂F

∂y at y0 (where x0 is fixed). Therefore
π([g (y), y,1]) = [g (y),1] which in charts is writen y → g (y) has multiplicity at (x0, y0)
given by or dy0

∂F
∂y (x0, y)+1.

Example 6.23. Consider the Fermat curve for d ≥ 1:

C = {[x, y, z] ∈ CP2 | xd + yd + zd = 0 }.

It is a smooth curve. Let π : [x, y, z] → [x, z] be the projection as above. Observe that the
point [0,1,0] does not belong to CF . We have ∂F

∂y (x, y, z) = d yd−1. The ramification points

correspond to y = 0 and are given by solutions to the equation xd + zd = 0. That gives d
solutions. The multiplicity at each solution is or dy=0

∂F
∂y +1 = d.

By Riemann-Hurwitz, we obtain that

χ(C ) = dχ(CP1)−d(d −1)

which gives its genus g = (d−1)(d−2)
2 .
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This computation can be carried on for a any smooth projective plane curve:

Theorem 6.24 (Plücker’s formula). Let X ∈ CP2 be a smooth plane projective curve of
degree d. Then, the genus of X is

g = (d −1)(d −2)

2
.

Proof. Suppose X = { [x, y, z] ∈ CP2 | p(x, y, z) = 0 } and consider the projection π :
[x, y, z] → [x, z] as above (suppose without loss of generality that [0,1,0] does not belong

to X ) and therefore Rπ = di v(∂p
∂y ).

Now, by Bézout, as deg p = d and deg ∂p
∂y = d −1 , we obtain that

deg Rπ = deg(di v(
∂p

∂y
)) = deg p.deg

∂p

∂y
= d(d −1).

Therefore
χ(X ) = dχ(CP1)−d(d −1).

The relation between the compact Riemann surface constructed from an irreducible
polynomial in two variables and the complex algebraic curve obtained through the
associated homogeneous polynomial is given in the following discussion.

Let P (x, y) be an irreducible polynomial of degree d in y . Set VP = { (x, y) ∈ C2 |P (x, y) = 0 }
and Y → CP1 be the compact Riemann surface constructed in theorem 4.8 . In particular,
Y contains, as a dense subset, the set VP \Σwhere

Σ= { (x, y) ∈ C2 | degP (x, ·) < d or
∂P

∂y
(x, y) = ∂P

∂y
(x, y) = 0 }.

One can homogenize P to obtain the (irreducible) homogeneous polynomial P̃ (x, y, z).
Note that the complex curve VP̃ ⊂ CP2 might have singularities. On the other hand Y ,
by construction, is smooth. The relation between the two constructions is given in the
following:

Proposition 6.25. Let P (x, y) be an irreducible polynomial and consider the dense subset
VP \Σ ⊂ Y as above. Then, the inclusion VP \Σ ⊂ VP̃ ⊂ CP2 extends to a holomorphic
surjection

Y →VP̃ .
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7 Riemann surfaces and hyperbolic geometry

An important development was the discovery by Poincaré was that Möbius transforma-
tions preserving the disc were, in fact, isometries of the disc equipped with a metric of
constant negative curvature.

7.1 Riemannian manifolds

A Riemannian manifold is a manifold equipped with a positive definite scalar product
〈 , 〉 defined on the tangent space at each point. Using the Riemannian metric one
defines the length of curves and a metric on the manifold so that the distance between
two points is the infimum of all lengths of curves joining them:

d(p, q) = inf
γ(0)=p,γ(1)=q

L(γ)

where

L(γ) =
∫ 1

0

√〈γ̇, γ̇〉d t

The group of isometries, that is, distance preserving diffeomorphisms of a metric
space M , will be denoted by I som(M). Isometries are determined by their derivative at
one point:

Proposition 7.1. Let M be a connected Riemannian manifold, φ : M → M be an isometry
with φ(p) = p. Then φ∗ : Tp M → Tp M determines φ.

Exercise 7.2. Let E n be the n-dimensional Euclidean space. Show that I som(E n) is the
group {x → Ax +B} where A is orthogonal.

Exercise 7.3. Prove the following exact sequence

0 → Rn → I som(E n) →O(n) → 1

Exercise 7.4. The finite subgroups of O(2) are the cyclic group generated by a rotation
and the dihedral group generated by two reflections.

The discrete subgroups of I som(E 2) were classified in the 19th century. The classifi-
cation starts writing the discrete group Γ inside the exact sequence

0 → T → Γ→ H → 1

where T is the subgroup of translations of Γ and H is a subgroup of O(2). As Γ is discrete,
T is also discrete. Therefore it is either trivial or Z or Z⊕Z. If T is trivial Γ is either finite
cyclic or dihedral. If T has one generator it is one of the seven strip patterns. If T is a
lattice it is one of the 17 crystallographic groups.
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Example 7.5. The triangle groups are those groups generated by reflections in three lines.
If the angles are π/p, π/q and π/r for positive integers p, q,r we should have π/p+π/q+
π/r =π and in this case the group is discrete. That gives three possibilities for (p, q,r ), that
is, (3,3,3), (2,3,6) and (2,4,4). The region inside the triangle is a fundamental domain
for the triangle group. (reflections on the sides of the triangle of angles 2π/3, π/6 and
π/6 also defines a discrete group, this is the only non-obtuse triangle leading to a discrete
group)

Example 7.6. The index two subgroup of orientation preserving isometries of a triangle
group has two generators. If we denote r1, r2 and r3 the reflections on the sides of the
triangles, the subgroup of orientation preserving isometries is generated by r1 ◦ r2 and
r1 ◦ r3. A fundamental domain consists of any two adjacent triangles.

Exercise 7.7. 1. Consider the Riemannian manifold obtained by identifying the two
vertical lines {Re z = 1} and {Re z = 2} on the upper half-plane via the isometry
z → z +1. Prove that this manifold is complete. Hint: show that any geodesic is
defined on R by glueing copies of the vertical band to form the complete Poincaré
half-plane.

2. Consider the Riemannian manifold obtained by identifying the vertical lines {Re z =
1} and {Re z = 2} on the upper half-plane via the isometry z → 2z. That manifold
is not complete. Prove that the sequence (1,2i ) is a Cauchy sequence but it is not
convergent.

Local isometries between Riemannian spaces are very special:

Proposition 7.8. Let d : M → N be a surjective local isometry between Riemannian
manifolds. If M is complete and connected then d is a covering.

7.2 Hyperbolic surfaces

We will start with the half-plane model and define the metric

d s2 = d x2 +d y2

y2
= |d z|2

Im(z)2

Given a metric g on a Riemannian manifold we can define a volume form d v by
imposing d v(X1, · · · , Xn) = 1 for an orthonormal basis. In local coordinates we have

d v =
√

det (gi j )d x1 · · ·d xn . For hyperbolic geometry we get

d v = 1

y2
d xd y.
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Proposition 7.9. PSL(2,R) ⊂ I som(H 1
C).

Proof. We need to show that

|dγ(z)|2
(Imγ(z))2

= |d z|2
(Imz)2

.

This follows from a simple computation.

Proposition 7.10. The geodesics of H 1
C are vertical lines or circles perpendicular to the

R-axis.

Proof. We first observe that given two points with the same x-coordinate, p = (x, y1)
and q = (x, y2) (without loss of generality we suppose y2 > y1), then

d(p, q) = inf
∫ √

d x2 +d y2

y
.

But
∫ p

d y2

y ≤ ∫ p
d x2+d y2

y . As
∫ p

d y2

y ≥ ln(y2/y1) we conclude that

d(p, q) = ln(y2/y1).

We use now the fact that geodesics are preserved by isometries and that vertical lines
are transformed to circles orthogonal to the real axis or to vertical lines by PSL(2,R).

In the following we will call a hyperbolic triangle a simplex in H 1
C whose boundary is

formed by three geodesic segments.

Proposition 7.11. Let ∆ be an hyperbolic triangle with angles α, β and γ. Then

Ar ea(∆) =π−α−β−γ
Proof. Suppose first that the triangle has an ideal point, that is, one of the angles is null,
or, equivalently, one of its vertices is in the boundary of H 1

C. Without loss of generality
we might suppose that the vertex is ∞ and one of the geodesics is the half circle of radius
one centered at the origin. The other two are vertical lines which form angle α and β
with the circle. then

Ar ea(∆) =
∫ ∫

d xd y

y2
=

∫ b

a
d x

∫ ∞
p

1−x2

d y

y2
=

∫ b

a

d xp
1−x2

.

By a change of coordinate x = cosθ we get∫ β

π−α
−sinθ

sinθ
dθ =π−α−β
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.
If the triangle ∆1 is compact we choose one of the vertices (say the one with angle

γ) and prolong one of the sides containing it up to the boundary of H 1
C. We have three

triangles one (containing an ideal point) being the union of the other two. Comparing
their areas:

∆1 =∆1 +∆2 −∆2

A(∆1) =π−α− (β−θ)− (π− (π−γ)−θ) =π−α−β−γ.

Decomposing a polygon in triangles we obtain the following

Corollary 7.12. For a geodesic polygon with n sides denote by α the sum of the internal
angles. Then

A = nπ−2π−α.

Using a geodesic triangulation one can prove Gauss-Bonnet theorem:

Theorem 7.13. If Sg is a hyperbolic surface, then

A =−2πχ.

Proof. We have A =∑
(π−αi −βi −γi ) summing over all triangles, say F of them. The

angles sum to 2π times the number of vertices, say V . Therefore A =π(F −2V ). On the
other hand the number of edges is precisely E = 3F /2. We conclude that χ= F −E +V =
F −3F /2+V =−F /2+V = A/(−2π)

The Poincaré metric on the disc is given by

d s2 = 4|d z|2
(1−|z|2)2

.

The geodesics of the hyperbolic disc are described in the following

Proposition 7.14. The geodesics of the hyperbolic disc are sub-arcs of circles orthogonal
to the boundary of the disc.

Proposition 7.15. Let S be a Riemann surface with a Fuchsian model H 1
C/Γ. If γ is a

hyperbolic element and Lγ the geodesic obtained by projection of its axis then

|tr (γ)| = 2cosh

(
l (Lγ))

2

)
where l (Lγ) is the length of the geodesic.

Proof. We may assume that γ(z) =λ2z. Then l (Lγ) = ∫ λ2

1
d y
y = lnλ2.
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7.3 Poincaré’s polyhedron theorem

Poincaré’s theorem is an efficient method to prove that a given set of transformations of
H 1

C generates a discrete group and to determine the topology of the quotient.
Consider a domain P ⊂ H 1

C whose boundary is a finite union of geodesics segments ci

(called sides). Suppose that the sides are paired. That is, for each ci there exists another
side c ′i and an isometry (called a side-pairing) γi such that c ′i = γi ci and ci = γ−1

i c ′i (the
side might be paired to itself). We will supoose the side pairings reverse the orientation
of the segments. For simplicity we may orient the boundary in the direct sense and
define for each vertex of v0 the image v1 = γv0 where γ is the side-pairing associated to
the side starting at v0. The vertices of the polygonal boundary are then partioned into
cycles. We define the dyhedral angle θv at a vertex v to be the positive internal angle
betwwen the sides meeting at v .

Theorem 7.16. Suppose P is a domain with geodesic sides {ci } and side pairings γi .
Suppose that for each cycle C , ∑

vi∈C

θvi = 2π

where the sum is over all vertices of the cycle. Then, the group Γ generated by the side-
pairings is discrete and the quotient H 1

C/Γ is a Riemann surface. For each cycle Ck , 1 ≤
k ≤ N , let γk

1 , · · · ,γk
nk

be the sequence of side pairings such that γk
1 vk

0 = vk
1 , · · · , vk

0 = γk
nk

vk
n .

A presentation of Γ is then given by

〈γk
i (1 ≤ k ≤ N ) | γk

1 · · ·γk
nk

= 1 for 1 ≤ k ≤ N 〉.

Example: Consider the n-roots of unity in S1. Take the geodesics (circle segments
perpendicular to the boundary) centred at each of these roots with the same radii.
If the radius is near 0 we get n disjoint circle segments. On the opposite case, if the
radius approaches 1, then ,near the origin, we obtain a region which is nearly a regular
euclidean polygon. The angle at a vertex, therefore, varies from π−2π/n (the almost
euclidean regular polygon) to 0 (the ideal regular polygon). Clearly, the angle is a
continuous function and there exists a radius such that the angle between the circles
will be

θ = 2π

n
.

In that case we can apply Poincaré’s theorem to side pairings as in the canonical polygon
defining a surface of genus g ≥ 2. We obtain a Riemann surface of genus g as a quotient
of the disc by the discrete subgroup generated by the side-pairings.
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Remarks:

1. To obtain non-compact Riemann surfaces with finite volume we may allow certain
vertices in the boundary. The angles at these vertices are 0. We need a further
hypothesis: the cycle map γ1 · · ·γn defined as before starting with an ideal vertex
should be parabolic. One can prove that this is equivalent to suppose that the
space P/ ≡, obtained by identifying the sides with the pairings, is a complete
space. In the previous example, if the geodesic segments touch at infinity we
obtain a Riemann surfce of genus g with one puncture.

2. To obtain subgroups with torsion elements we impose that the cycle satisfies∑
vi∈C

θvi = 2π/r

Then, the group Γ generated by the side-pairings (in that case we allow a side to
be paired to itself) is discrete with a presentation given by

〈γk
i (1 ≤ k ≤ N ) | (γk

1 · · ·γk
nk

)rk = 1 for 1 ≤ k ≤ N 〉.

We might also suppose that the side-pairings are not holomorphic (isometries
which don’t preserve the orientation). In that case the quotient is not a Riemann
surface but there will exist a subgroup of finite index which does not have torsion
elements whose quotient is a Riemann surface. The simplest examples of discrete
groups obtained using that version of Poincaré’s theorem are the triangle groups.
We consider a geodesic triangle with angles π/p,π/q,π/r , with positive integers
p, q,r , at the three vertices. The necessary and sufficient condition for the ex-
istence of the triangle is that π/p +π/q +π/r < π. Granted that condition, the
subgroup generated by reflections on each side is discrete and has a presentation
of the form

〈r1,r2,r3 | r 2
i = (r1 ◦ r2)p = (r2 ◦ r3)q = (r3 ◦ r1)r = 1 〉.

3. To obtain surfaces which are not of finite volume we allow the polygon to have
sides on the boundary. There is no side-pairing between them. A vertex which is
in a boundary side is paired to another vertex of the same type by a loxodromic
element (it is a side pairing of the corresponding sides in the interior of hyperbolic
space). The simplest case is that of Schottky groups. The interior sides of the
polygon are given by an even number of non-intersecting geodesics.

76



8 Calculus on a Riemann surface: Hodge theorems

8.1 Forms

We first recall the definitions and introduce notations describing forms on a real two
dimensional manifold X . A 0-form defined on an open subset U of a Riemann surface
is simply a function (complex) defined on an open subset U ⊂ X and we write E 0(U ) for
the space of smooth functions defined over U . A smooth differential 1-form α is written
in local coordinates φ : U → R2 as

φ∗α=φ1d x1 +φ2d x2.

Here, the coefficients φi are complex functions. For a change of coordinates x̃i =
x̃i (x1, x2), it satisfies the relation

φ̃i =
∑ ∂x j

∂x̃i
φ j .

The space of smooth 1-forms over U will be denoted E 1(U ).
The space of 2-forms over U will be denoted E 2(U ). In local coordinates one writes

f d x1 ∧d x2,

where f is a (complex) function. For a change of coordinates, we obtain

f̃ = ∂(x1, x2)

∂(x̃1, x̃2)
,

where ∂(x1,x2)
∂(x̃1,x̃2)

is the Jacobian determinant.
On a Riemann surface we may use complex charts z = x + i y and then write d z =

d x + i d y and d z̄ = d x − i d y . In terms of d z and d z̄ a 1-form is written locally as

ad z +bd z̄.

The space of 1-forms which can be written for every point as ad z in one chart centred
at the point (and therefore in all charts of the Riemann surface) are called forms of type
(1,0). We write E 1,0(U ) the space of 1-forms on U ⊂ X of type (1,0). Analogously the
forms of type (0,1) are written locally as ad z̄ and the space of these forms defined on U
is denoted E 0,1(U ). We have the decomposition

E 1(U ) = E 1,0(U )⊕E 0,1(U ).
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Using local coordinates z = x + i y we may write a differential 2-form as

f d x ∧d y = i

2
f d z ∧d z̄.

We also denote then by E 1,1(U ) = E 2(U ) the space of all 2-forms over U .
One usually considers 1-forms as smooth sections of the cotangent bundle T ∗U and

1-forms of type (1,0) as sections of T ∗1,0, a holomorphic line bundle over X (see the
next chapter).

Recall the exterior differentiation of a 0-form f defined on a surface is, in local
coordinates (x1, x2), given

d f = ∂ f

∂x̃1
d x1 + ∂ f

∂x̃2
d x2.

For a 1-form α=φ1d x1 +φ2d x2 it is

dα= (
∂φ2

∂x1
− ∂φ1

∂x2
)d x1 ∧d x2.

On a Riemann surface one introduces operators ∂ and ∂̄ as projections of the exterior
differentiation into the spaces E 1,0(U ) and E 0,1(U ) respectively. In coordinates,

∂ f = ∂ f

∂z
d z, ∂̄ f = ∂ f

∂z̄
d z̄

and

∂(ad z +bd z̄) = ∂b

∂z
d z ∧d z̄, ∂̄(ad z +bd z̄) = ∂a

∂z̄
d z̄ ∧d z.

Definition 8.1. A 1-form α ∈ E 1(U ) is holomorphic on U ⊂ X if locally it is written as
g (z)d z with g holomorphic . A 1-form defined on the complement of a discrete and closed
subset of U is meromorphic if locally it is written as g (z)d z with g meromorphic.

Remark that α is holomorphic if and only if ∂̄α= 0.

8.2 Integration

Given a differential form α on a surface X and a piece-wise smooth curve c : [0,1] → X
we define the integral ∫

c
α

using local charts φ : U → C with coordinates (x, y). That is, suppose Im(c) ⊂U and
α=φ1d x +φ2d y then ∫

c
α=

∫ (
φ1ẋ +φ2 ẏ

)
d t .

78



If Im(c) is not contained in a single coordinate chart we use a partition 0 = t0 < t1 < ·· · <
tn = 1 of [0,1] so that each c([ti , ti+1]) is contained in a coordinate chart. Clearly this
definition does not depend on the chart because if (x̃, ỹ) are different coordinates then

α=φ1d x+φ2d y =
(
φ1

∂x
∂x̃ +φ2

∂y
∂x̃

)
d x̃+

(
φ1

∂x
∂ỹ +φ2

∂y
∂ỹ

)
d ỹ and therefore by the chain rule

φ1ẋ +φ2 ẏ =φ1d x +φ2d y =
(
φ1
∂x

∂x̃
+φ2

∂y

∂x̃

)
ḋ x̃ +

(
φ1
∂x

∂ỹ
+φ2

∂y

∂ỹ

)
ḋ ỹ

and the integrals are the same.

Proposition 8.2. Let α be a closed form and c,c ′ be homotopic curves between two points
x0, x1 on a surface. Then

∫
c α= ∫

c ′α.

Proof. By Stokes theorem (see next section).

Theorem 8.3. On a simply connected surface every closed 1-form α is exact. That is, there
exists a function F (called a primitive of α) such that α= dF . Two primitives differ by a
constant.

Proof. It follows from the previous proposition by defining F (x) = ∫ x
x0
α as the integral

does not depend on the path of integration.

In general, if X is a Riemann surface and π : X̃ → X is its universal cover, then∫
c̃ π

∗α= ∫
πc̃ α. So if α is a 1-form on a Riemann surface X we can compute its integral∫

c
α= F (c̃(1))−F (c̃(0))

where c̃ is a lift of c to the universal cover of X and F is a primitive of π∗α.

Remark: Let Γ be the group of Deck transformations of the cover π : X̃ → X . If F
is a primitive of the form π∗α then F ◦γ is also a primitive because d(F ◦γ) = dγ∗F =
γ∗dF = γ∗π∗α= (πγ)∗α= π∗α. As two primitives differ by a constant we obtain that
F ◦γ= F +aγ.

Definition 8.4. Let α be a closed one-form defined on a surface X . The period map
associated to α is the homomorphism

π1(X , x0) → C given by c →
∫

c
α.
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Let Γ be the group of Deck transformations of the cover π : X̃ → X and F a primitive
of α defined on X̃ , then the image of the period map is given by the set { aγ | γ ∈ Γ }
where aγ are defined in the remark above. This can be seen easily if we interpret an
element of Γ as a closed curve c with lift c̃. Then∫

c
ω= F (c̃(1))−F (c̃(0)) = F (γc̃(0))−F (c̃(0)) = aγ.

Theorem 8.5. Suppose a closed differential form has all periods zero. Then it has a
primitive.

Proof. Construct explicitly the primitive as F (z) = ∫ z
z0
α where z0 is a point in X . This

function is well defined as the periods are null.

Corollary 8.6. If ω is a closed holomorphic form on a compact Riemann surface such
that the associated period map is zero then ω= 0.

Proof. By the previous theorem the form ω has a primitive. It is holomorphic on a
compact Riemann surface therefore constant.

If φ : V →U is a diffeomorphism, recall the change of variable formula∫ ∫
U

f d xd y =
∫ ∫

V
φ∗ f dud v

which can be written more explicitly as∫ ∫
U

f d xd y =
∫ ∫

V
f ◦φ|∂(x, y)

∂(u, v)
|dud v

where ∂(x,y)
∂(u,v) is the Jacobian determinant. In the case φ is a biholomorphism we have∫ ∫

U
f d z ∧d z̄ =

∫ ∫
V

f ◦φ| d z

d w
|2d w ∧d w̄

To define the integral of a 2-form on a Riemann surface we use a partition of unit
subordinated to a cover by charts. The fundamental theorem we will use is the following
version of Stokes theorem.

Theorem 8.7 (Stokes Theorem). Let α be a smooth 1-form defined on a neighborhood of
a domainΩwith piecewise smooth boundary ∂Ω contained in a surface.∫

∂Ω
α=

∫
Ω

dα.
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8.2.1 The residue theorem

We will admit the following integral formula (for a proof see [Hörmander]).

Theorem 8.8. Let Ω ⊂ C be a connected open domain whose boundary is a union of
finitely many C 1 Jordan curves. Let f ∈C 1(Ω̄). Then, for z ∈Ω,

2πi f (z) =
∫
∂Ω

f (ζ)

ζ− z
dζ+

∫
Ω

∂ f (ζ)/∂ζ̄

ζ− z
dζ∧d ζ̄.

Letω be a meromorphic 1-form which is not identically null. Let p ∈ X and z : U → C
be a chart such that ω is holomorphic on U \ {p}. We define the residue of ω at p as

r esp (ω) = 1

2πi

∫
γ
ω

where γ is a curve with winding number 1 around p contained in U . It is easy to see
that this integral is well defined. It can be computed using a Taylor expansion; write,
using local coordinates, ω= f (z)d z where f (z) has a pole at p and the residue is simply
the coeficient of the term 1

z in the Taylor expansion. If we change the local chart then

ω= g (w)d w = f (z) d w
d z d z and the residue is the same.

Proposition 8.9. If X is compact then∑
p∈X

r esp (ω) = 0

Proof. Stokes theorem. Suppose D = {pi }1≤i≤n are the poles ofω. Choose non-intersecting
neighborhoods Ui containing each pi with boundary γi and compute

∑
i

∫
γi

ω=−
∫

X−⋃
Ui

dω= 0

because dω= ∂̄ω+∂ω= 0.

Proposition 8.10. If X is compact and f is a meromorphic function, then the degree of
the divisor di v( f ) is zero.

Proof. This follows from the proposition above and the fact that deg ( f ) =∑
p∈X r esp (ω)

for ω= d f / f .
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8.3 Homology and Cohomology

8.3.1 The de Rham complex

The de Rham complex over a surface X is

0 → R → E 0(X )
d−→E 1(X )

d−→E 2(X )
d−→0.

where E 0(X ) =C ∞(X ) is the space of C∞ functions on X , E i (X ) is the space of i -forms
on X and d is the exterior differentiation. Poincaré’s lemma says that the sequence is
locally exact. The cohomology groups measure how much the sequence is far from
being exact. Observe that the space of closed or exact forms (respectively forms α such
that dα= 0 or α= dβ for a form β) are vector spaces.

Definition 8.11. The i-th cohomology group H i (X ,R), of the surface X is the quotient of
the space of closed i-forms by the space of exact i-forms.

Observe that di mH 0(X ,R) is the number connected components of X . In fact the
space of exact 0-forms is formed by the trivial vector space of null functions.

In order to compute H 1(X ,R) we will introduce the singular homology. A singular
p-simplex is a differential map from a p-simplex to X . We will write sometimes (P )
for a singular 0-simplex, (P1,P2) for a singular 1-simplex and (P1,P2,P3) for a singular
2-simplex. Fix now an abelian group G (we will mostly use Z,R or C). A p-chain is a finite
linear combination of singular p-simplices with coefficients in G . The space of p-chains
will be noted Cp (with a convention that C−1 = {0}). There exists a boundary operator
∂ : Cp →Cp−1 satifying ∂2c = 0 for any chain c. It is defined on singular simplices by the
formulas (using the obvious notation for the restriction of maps to the boundary of a
simplex)

∂(P ) = 0 ∂(P1,P2) = (P2)− (P1) ∂(P1,P2,P3) = (P2,P3)− (P1,P3)+ (P1,P2)

and extended by linearity to all chains.
A chain c is called a cycle if ∂c = 0 and a boundary if there exists a chain c̃ such that

∂c̃ = c. We define

Definition 8.12. The p-th homology group, Hp (X ,G), is the quotient of the space of cycles,
Zn , by the space of boundaries, Bn .

If the surface X is connected di m H0(X ,R) = 1. If X is compact, orientable and
connected then di m H2(X ,R) = 1. To compute H1(X ,Z), we will invoke van Kampen
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theorem, that describes the first homology as the abelianization of the fundamental
group:

H1(X ,Z) = π1(X , z)

{〈[a,b]〉|a,b ∈π1(X , z)}
.

Using the generators ai ,bi , 1 ≤ i ≤ g for a compact surface of genus g we obtain that
H1(X ,Z) = Z2g . The generators ai ,bi , viewed as a basis of H1(X ,Z) are also called a
canonical basis for the homology. It follows from general theorems on the homology
that we also have H1(X ,R) = R2g .

The relation between homology and cohomology is essentially given by Stokes
theorem on a chain c: ∫

∂c
ω=

∫
c

dω.

Lemma 8.13. If ω is closed and c1 and c2 are two homologous chains then∫
c1

ω=
∫

c2

ω.

Proof. By hypothesis c2 − c1 = ∂C . Apply Stokes theorem.

This lemma shows that the bilinear map in the following theorem is well defined.

Theorem 8.14. Let X be a compact orientable surface of genus p. The bilinear map
H1 ×H 1 → R defined by

(c,ω) →
∫

a
ω

is non-degenerate.

Proof. The fact that (·,ω) is non-zero follows from the fact that if all periods are null, the
form ω is null. On the other hand, given an element c ∈ H1 we construct a form such
that (c,ω) ̸= 0 in the following two lemmas.

Suppose X is orientable. Let γ be simple closed curve in X . We consider an annulus
A containing γ and let A− be the left side and A+ the right side. Let f be a function
with compact support on A− which is one on A− intersected with a neighborhood of γ.
Define then ηγ = d f . Even if f is not continuous, ηγ is C∞ 1-form. On the other hand
ηγ is not exact in general. The form ηγ is dual to γ in the sense of the following lemma.

Lemma 8.15. Let ω be a closed 1-form. Then∫
γ
ω=

∫
X
ηγ∧ω.
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Proof. We compute∫
X
ηγ∧ω=

∫
A−

d f ∧ω=
∫

A−
d( f ω)−

∫
A−

f dω=
∫
γ

f ω=
∫
γ
ω.

Remark: Using notation of the next section we write
∫
γω= (ω,∗ηγ).

Lemma 8.16. Let ai ,bi be an homology basis. Then∫
ai

ηa j =
∫

bi

ηb j = 0
∫

ai

ηb j =−
∫

bi

ηai = δi j .

Proof. The first equality follows from the previous lemma. For the second one, we
compute in the case that a,b are two loops intersecting once at a point with orientation
given by the tangent vectors to a and b at the point of intersection in that order. we
denote by fb a function associated to the loop b with support in A−

b as before. We obtain

=
∫

a
ηb =

∫
a

d fb = 1.

The last equality follows from the explicit form of the function fb at the intersection
point; it corresponds to the integration on a closed interval [0,1] of the derivative of a
function such that f (0) = 0 and f (1) = 1.

8.4 The Dolbeault complex

Recall the Cauchy-Riemann operator ∂̄= 1
2 ( ∂

∂x − i ∂
∂y ) defined on functions on an open

subset U ⊂ C. It is better understood in the guise of an operator:

∂̄ : C ∞(U ) → E 0,1(U )

given by f → ∂ f
∂z̄ d z̄.

Local solvability of the Cauchy-Riemann equation: for each g ∈C∞(U ) there exists
V ⊂U and f ∈C∞(V ) such that

∂ f

∂z̄
= g .

on V . A stronger result is true:

Proposition 8.17 (Dolbeault’s lemma). Let Ω ⊂ C be an open subset and g ∈ C∞(Ω).
Then there exists a function f ∈C∞(Ω) such that

∂ f

∂z̄
= g .
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Proof. There are two cases:

1. In the first case we suppose g of compact support. An explicit solution is given in
terms of the integral formula

f (z) = 1

2πi

∫ ∫
C

g (w)

w − z
d w ∧d w̄ .

The integral is well defined as can be seen by using polar coordinates w − z = r e iθ

so that 1
w−z d w ∧d w̄ = −2i r

r eiθ dr ∧dθ. Because g is of compact support, the integra-
tion is made in a sufficiently large rectangle and therefore we may differentiate
under the integral sign. We obtain making the change w for w − z

∂ f (z)

∂z̄
= lim
ε→0

1

2πi

∫ ∫
|w |>ε

∂g (z +w)

∂z̄

1

w
d w ∧d w̄ .

So

∂ f (z)

∂z̄
= lim
ε→0

1

2πi

∫ ∫
|w |>ε

∂

∂w̄

(
g (z +w)

w

)
d w∧d w̄ =− lim

ε→0

1

2πi

∫ ∫
|w |>ε

d

(
g (z +w)

w
d w

)
= lim
ε→0

1

2πi

∫
|w |=ε

g (z +w)

w
d w = g (z).

2. If suppg ⊂Ω is not compact we construct an exhaustion sequence of compact
sets Kn (Kn ⊂ Int(Kn+1) with Ω \ Kn having no relatively compact component)
and cut-off functions φn with φn |Kn

= 1 and φn |Kn+1
= 0. We solve

∂ fn

∂z̄
=φn g .

We would like to make sense of

f = fn + ( fn+1 − fn)+ ( fn+2 − fn+1)+·· ·
As this sum might not converge we modify each term by a holomorphic function
using Runge’s theorem: As fm+1 − fm , m ≥ 1, is holomorphic on a neighborhood
of Kn there exists a holomorphic function hm onΩ such that

| fm+1 − fm −hm | < 1

2m

on Km . We redefine the sum to be

f = fn + ( fn+1 − fn −hn)+ ( fn+2 − fn+1 −hn+1)+·· ·
Now the sum is uniformly convergent on Km for each m ≥ n so f is well defined
onΩ. Moreover we imediately see that on each Km f solves the equation.
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Remark 8.18. On an n-dimensional complex manifold we have the following exact
sequence

0 →O−→C ∞ ∂̄−→E 0,1 ∂̄−→E 0,2 · · · ,

and more generally

0 →Ωp,q−→E p,q ∂̄−→E p,q+1 ∂̄−→E p,q+2 · · · .

where the vector spaces in the exact sequence are germs of of differential forms. A better
formulation is obtained using sheaf theory.

8.5 Poisson equation and functional analysis

8.5.1 The Laplacian on a Riemann surface

Given a Riemannian manifold the Laplacian operator can be defined. In the case of
real two dimensional manifolds one does not need a metric to define a Laplacian, but
instead a conformal Riemannian structure is enogh.

We write E 1 as the space of C-valued 1-forms. If X is a Riemann surface we define
the space E 1,0 of forms of type (1,0) and the space E 0,1 of forms of type (0,1). One has
the decomposition E 1 = E 1,0 ⊕E 0,1. Note that complex conjugation interchanges E 1,0

and E 0,1.
The Hodge star operator on 1-forms on a Riemann surface is the following:

Definition 8.19 (Hodge star operator). Let α ∈ E 1 and write α=α1 +α2 with α1 ∈ E 1,0,
α2 ∈ E 0,1. Define

∗α=−iα1 + iα2.

In complex coordinates, for α= ad z +bd z̄, we obtain ∗α=−i ad z + i bd z̄. On real
coordinates such that z = x + i y , we have ∗d x = d y and ∗d y = −d x. The geometric
interpretation of the ∗-operator acting on exact 1-forms is given by the formula

(∗d f )(v) = d f (J v).

That is the dual of the J-operator acting on vectors.

Remark 8.20. Note that we don’t need a metric to define the star operator on E 1 on
Riemann surface.
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By a straight computation one can verify that the Hodge star operator defined above
satisfies the following properties:

Proposition 8.21. Let α ∈ E 1. Then

1. ∗∗α=−α
2. ∗ᾱ=∗α

Proposition 8.22. Let α1 ∈ E 1,0, α2 ∈ E 0,1 and f ∈ E 0. Then

1. d ∗α1 =−i ∂̄α1

2. d ∗α2 = i∂α2

3. ∗∂ f =−i∂ f

4. ∗∂̄ f = i ∂̄ f

5. d ∗d f = 2i∂∂̄ f =−2i ∂̄∂ f

Definition 8.23. Let f ∈ E 0. Define the Laplacian ∆ : E 0 → E 2 by the formula

∆ f = d ∗d f .

We say f is harmonic if ∆ f = 0.

In local coordinates z = x + i y we obtain the formula

∆ f =
(
∂2 f

∂x2
+ ∂2 f

∂y2

)
d x ∧d y.

Using the star operator we define a hermitian product on 1-forms over a compact
Riemann surface:

Definition 8.24. Let X be a compact Riemann surface and α1, α2 1-forms in E 1(X ).
Define

〈α1,α2〉 =
∫

X
α1 ∧∗α2.

Clearly 〈α1,α2〉 = 〈α2,α1〉. To show that 〈α,α〉 > 0 for non-vanishing α, write in local
coordinates α= ad z +bd z̄. Then α∧∗α= i (|a|2 +|b|2)d z ∧d z̄ = 2(|a|2 +|b|2)d x ∧d y .
Therefore the integrand is a positive form and the product is 0 if and only if α= 0.
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Remark 8.25. Note that this Hermitian metric on the space of 1-forms does not come
from a pointwise Hermitian metric. On the other hand, once a volume form v is fixed, we
can define a pointwise Hermitian metric (·, ·) by the formula

α1 ∧∗α2 = (α1,α2)v.

Definition 8.26. Let α ∈ E 1.

• α is closed if dα= 0.

• α is co-closed if d ∗α= 0.

• α is harmonic if dα= 0 and d ∗α= 0.

Observe that if α is harmonic then, from dα = 0 and Poincaré’s lemma, we may
write, locally, α= d f , where f ∈ E 0. Therefore α is harmonic if and only if, locally, one
can write α= d f where f is harmonic.

Exercise 8.27.

Prove that α ∈ Ω1,0 (that is, α is holomorphic) if and only if, locally, α = d f with f
holomorphic.

The following proposition is left as an exercise.

Proposition 8.28. The following are equivalent:

1. α is harmonic

2. ∂α= ∂̄α= 0

3. α=α1 +α2 with α1 ∈Ω1,0 and α2 ∈Ω1,0

8.5.2 Riez representation theorem: weak solutions

A fundamental theorem in functional analysis is the following:

Theorem 8.29 (Riez representation theorem). Let H be a Hilbert space and T : H → R be
a bounded linear map. Then there exists xT ∈H such that for every x ∈H , T (x) = 〈xT , x〉.

If H is defined to be the completion of a vector space H equipped with a scalar
product 〈·, ·〉, Riez representation theorem says that if T : H → R is a bounded linear
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map, then there exists a Cauchy sequence (hn) in H (called a weak solution) such that,
for each v in H

T (v) → lim
n→∞〈hn , v〉.

Therefore, in the case of Hilbert spaces obtained by completions of spaces of smooth
functions, one can usually make arguments which only involve estimates on smooth
functions. In particular, if one can prove that the Cauchy sequence (hn) converges to an
element of H one obtains a smooth representation of T (in the context of the Laplacian
this result is called Weyl’s lemma).

We use Riez representation theorem and Weyl’s lemma to find solutions to an equa-
tion

Pφ= ρ,

where P is a differential operator and ρ is a given C∞ function (or section of a bundle).
To find a C∞ solution directly is most of the times hard. The idea therefore is first to
identify a convenient Hilbert space and a linear operator Tρ on this Hilbert space related
to the equation. Then find a ’weak’ solution as an element in the Hilbert space using
Riez theorem. Finally, prove that the ’weak’ solution is in fact regular using Weyl’s lemma.
It turns out that for an important class of operators, one can find solutions outside a
finite dimensional subset of the space of functions (or sections).

8.5.3 The Poisson equation

Consider the equation
∆φ= ρ,

where ρ is a smooth 2-form on a Riemann surface X . Observe that if φ exists, for any
smooth function ψ we have that ∫

X
ψ∆φ=

∫
X
ψρ.

In particular, ∫
X
∆φ=

∫
X
ρ,

which, from Stokes theorem, implies ∫
X
ρ = 0.

This is a necessary condition which turns out to be sufficient:
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Theorem 8.30. On a compact Riemann surface, for any smooth 2-form ρ satisfying∫
X ρ = 0, there exists a smooth function φ such that ∆φ= ρ.

The identity ∫
X
ψ∆φ=−

∫
X

dψ∧∗dφ

suggests the Hilbert space we will work with. Consider C∞(X ) and the bilinear form

〈ψ,φ〉 =
∫

X
dψ∧∗dφ.

This is clearly a metric on the space of smooth functions modulo an additive constant,
C∞(X )/R. To avoid considering the quotient modulo constants we fix a volume form v
on the surface. Define the space of smooth functions satisfying∫

X
ψv = 0.

The completion W of this metric will be our Hilbert space and the operator

Tρ(ψ) =
∫

X
ψρ

will be the linear form associated to the differential operator ∆. The first step then is to
show that this operator is bounded in order to apply Riez representation theorem. That
is, there exists a constant C such that, for all ψ in the Hilbert space,∣∣∣∣∫

X
ψρ

∣∣∣∣2

≤C
∫

X
dψ∧∗dψ.

Clearly, it suffices to prove this bound for smooth functions with null average as this
space is dense in the Hilbert space.

Theorem 8.31. Let X be a compact Riemannn surface with a fixed volume form v and ρ
a smooth 2-form on X satisfying

∫
X ρ = 0. Then, there exists a constant C , such that for

any smooth function ψ on X with
∫

X ψv = 0,∣∣∣∣∫
X
ψρ

∣∣∣∣≤C

(∫
X

dψ∧∗dψ

)1/2

.

Proof. Recall first that
∫

X α∧∗β defines a metric on the space of real 1-forms. Cauchy-
Schwartz inequality states then that∣∣∣∣∫

X
α∧∗β

∣∣∣∣≤ ||α||.||β||,
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where ||α|| = ∫
X α∧∗α As

∫
X ρ = 0 and v is a generator of H 2(X ,R), we obtain that

ρ = dβ where β is a smooth one form. Now, by Stokes and then Cauchy-Schwartz:∣∣∣∣∫
X
ψρ

∣∣∣∣= ∣∣∣∣∫
X
ψdβ

∣∣∣∣= ∣∣∣∣∫
X

dψ∧β
∣∣∣∣≤ ||dψ||.||β|| =C

(∫
X

dψ∧∗dψ

)1/2

for a constant C = (∫
X β∧∗β)1/2.

8.5.4 Weyl’s lemma

The last part of the proof is the regularity proof. It is a special case of more general results
for elliptic operators. We want to show that a weak solution φ (that is a convergent
sequence φn →φ) to the Poisson equation ∆φ= ρ is smooth:

Theorem 8.32. Let φ be a weak solution of the equation ∆φ = ρ where ρ is a smooth
2-form on a closed Riemann surface. Then φ may be represented as a smooth function.

The first observation is that the weak solution can be thought as an element in L2(X ).
Indeed, from Poincaré’s inequality one has

∫
X |φi −φ j |v ≤C

∫
d(φi −φ j )∧∗d(φi −φ j )

(Here, as before, we used a fixed volume form v on X in order to define L2). As φi is a
Cauchy sequence in the Hilbert space defined by the metric on the space of differentials,
it implies that it is also a Cauchy sequence in the L2 norm.

The second observation is that it suffices to prove the result on a local chart. Indeed,
the solution φ ∈ L2(X ) (where φn →φ in L2) to ∆φ= ρ satisfies∫

X
ψρ = l i mn→∞

∫
X

dψ∧∗dφn = l i mn→∞
∫

X
φnd ∗dψ=

∫
X
φd ∗dψ.

Consider only test functions ψ with compact support inside an open subset U ′ ⊂U ⊂ X ,
where U ′ ⊂U is of compact closure and U carries a chart. We must have then∫

U
ψρ =

∫
U
φd ∗dψ.

In the coordinates of the chart we have∫
Ω
ψ f d x =

∫
Ω
φ∆ψ,

with f smooth of compact support inΩ and ψ ∈C∞
0 (Ω′).

We have to show that φ is smooth. The third observation is that it is enough to deal
with ρ = 0. Indeed, first prove that the Poisson equation ∆φ= f , for f ∈C∞

0 (Ω), on an
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open subsetΩ⊂ R2 has a particular explicit solution φ0 ∈C∞(Ω). We will have to show
that all of them are in C∞(Ω). Now, ifφ is any solution,φ−φ0 is a solution of the Poisson
equation with f = 0. To obtain regularity of solutions it suffices then to show that all
solutions of ∆φ= 0 are smooth.

The particular solution is given by a convolution with the function K (x) = 1
2π ln |x|

thought as a locally L1 function on R2. Indeed, in polar coordinates,

1

2π

∫
|x|<ε

ln |x| = 1

2π

∫
0≤r<ε

(lnr )r dr dθ =
∫

0≤r<ε
r lnr dr <∞.

Proposition 8.33. Let f ∈C∞
0 (R2). Then K ∗ f ∈C∞(R2) and

∆(K ∗ f ) = f .

That is K ∗ f is a smooth solution to the Poisson equation.

Proof. From the definition, K ∗ f (x) = ∫
R2 K (y) f (x − y)d y which implies that it is in

C∞(R2) as K is locally L1 and f is smooth. Compute

∆

∫
R2

K (y) f (x − y)d y =
∫

R2
K (y)∆ f (x − y)d y = lim

ε→0

∫
|y |≥ε

K (y)∆ f (x − y)d y.

The limit can be shown to be 0 (exercise).

We finally prove the necessary local regularity result for the Laplace equation (here
we use the notationΩ forΩ′):

Proposition 8.34 (Weyl’s lemma). LetΩ⊂ R2 be a bounded domain and φ ∈ L2(Ω) be a
weak solution of ∆φ= 0 onΩ. Then φ ∈C∞(Ω).

Proof. We consider C∞(Ω) smoothing deformations of φ: Define a function χ with
compact support on the interval [0,1)with value one at a neighborhood of 0 and such
that

∫
[0,1) rχ(r )dr = 1. Define also the family of functions χε : D → R on the unit disc by

the formula

χε(x) = 1

ε2
χ(

|x|
ε

).

Observe that
∫

R2 χε(x)d x = 2π
∫ ε

0
1
ε2χ( r

ε
)r dr = 1. The smoothing is a convolution with

χε. That is, define, for φ ∈ L2(Ω), χε∗φ(x) = ∫
Ωχε(x − y)φ(y)d y , which is smooth and

such that χε(x − y) has compact support inΩ if x ∈Ωε = { x ∈Ω | x +B(x,ε) ⊂Ω }.
The proof is completed by computing ∆(χε∗φ) = 0 and showing that χε∗φ→φ in

the C∞ norm:

92



First,

∆(χε∗φ) =∆(
∫
Ω
χε(x − y)φ(y)d y) =

∫
Ω
∆xχε(x − y)φ(y)d y =

∫
Ω
∆yχε(x − y)φ(y)d y

Observe that for x ∈Ωε, χε(x − y) has compact support and as φ is a weak solution we
conclude that ∆(χε∗φ) = 0.

Secondly, in order to show convergence to a smooth function, we use the mean value
property of harmonic functions. That is, for a smooth harmonic function g defined on
Ω, y ∈Ω and a relatively compact disc B(y,r ) ⊂Ω, we have

g (y) = 1

πr 2

∫
B(y,r )

g (x)d x.

This equality implies uniform bounds in all derivatives of the harmonic function by L1

norms of g (exercise).
The family χε∗φ, using Arzela-Ascoli theorem contains a sequence χεn ∗φ converg-

ing together to all its derivatives to a smooth function φ̃. But this family also converges
in L2 to φ. This concludes the proof.

8.6 Hodge theory

8.6.1 Hodge theorem

In this section we establish the relations between cohomology groups on a Riemann
surface X (which we suppose connected) associated to the following sequences. We
will see later a formulation using sheaf cohomology. The following sequences of homo-
morphisms are not exact and give origin to cohomology groups. The first arrow in each
sequence is the embedding as a subset.

0 → C−→E 0 d−→E 1 d−→E 2 → 0,

0 →O−→E 0 ∂̄−→E 0,1 → 0

and

0 →Ω1,0−→E 1,0 ∂̄−→E 1,1 → 0.

Here O is the set of holomorphic functions over the Riemann surface, Ω1,0 is the set
of holomorphic differentials, E 0 = C ∞ is the set of C∞ functions and E i , j is the set
of smooth forms of type (i , j ). Note that E 1,1 = E 2. In the case of compact Riemann
surfaces O = C.

93



The cohomology groups are, for the first sequence, the usual de Rham cohomology
groups

H 0(X ,C) = kerd = C, H 1(X ,C) = kerd

dE 0
, H 2(X ,C) = E 2

dE 1
.

For the second sequence:

H 0,0(X ,C) = ker ∂̄|E 0 =O , H 0,1(X ,C) = E 0,1

∂̄(E 0)
.

For the third:

H 1,0(X ,C) = ker ∂̄|E 1,0 =Ω1,0
, H 1,1(X ,C) = E 1,1

∂̄(E 1,0)
.

On a compact Riemann surface we clearly have H 0,0(X ,C) = H 0(X ,C) = C. We used
in the proof of the existence theorem the result dimC H 2(X ,C) = 1. On the other hand,
if theorem 8.30 is known, one can use the solution to Poisson equation to compute
that dimC H 2(X ,C) = 1. Indeed, consider ρ ∈ E 2. Let v be a volume form for X which
we normalize so that

∫
X v = 1. If

∫
X ρ = λ ̸= 0, then

∫
X (ρ−λv) = 0 and therefore there

exists a smooth function f ∈ E 0 such that ∆ f = ρ−λv . This implies that [ρ] = λ[v] in
H 2(X ,C).

The main theorem which describes the relations between the cohomology groups is
the following decomposition theorem:

Theorem 8.35. On a compact Riemann surface X we have

H 1,1(X ,C) ∼= H 2(X ,C), H 1,0(X ,C) ∼= H 0,1(X ,C).

Moreover,
H 1(X ,C) ∼= H 1,0(X ,C)⊕H 0,1(X ,C).

Remark 8.36. Note that the theorem implies that if X is a surface of topological genus g
then dim H 1,0(X ,C) = g and we computed the dimensions of all cohomology groups.

Proof. The proof consists in defining explicit isomorphisms and using the solution of
the Poisson equation.

For the first isomorphism: note that E 1,1 → E 2 is an isomorphism of real vector
spaces which induces a (surjective) homomorphism H 1,1(X ,C) → H 2(X ,C) because,
clearly, ∂̄(E 1,0) = (∂̄+∂)(E 1,0) ⊂ dE 1. We need to show it is injective. Suppose ρ ∈ E 1,1

is such that there exists β ∈ E 1 satisfying dβ= ρ (that is ρ is trivial in the cohomology
H 2(X ,C)). This implies that

∫
X ρ = 0 and therefore by the solution of the Poisson equa-

tion there exists a smooth function f ∈ E 0 such that ∆ f =−2i ∂̄∂ f = ρ. This shows that
ρ ∈ ∂̄(E 1,0).
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For the second isomorphism, consider the sequence

Ω1,0 → E 1,0−→E 0,1−→ E 0,1

∂̄(E 0)
= H 0,1(X ,C),

where the second arrow is complex conjugation and the third is the quotient map. We
want to show that the composition

Ω1,0−→ E 0,1

∂̄(E 0)

is an isomorphism of real vector spaces. First we show surjectivity: suppose α ∈ E 0,1 we
need to find β ∈Ω1,0 and f ∈ E 0 such that α= β̄+ ∂̄ f . That is, we need to find f such

that ∂̄(α− ∂̄ f ) = 0. As ∆=−2i ∂̄∂, this equation is

∆ f̄ = ∂̄ᾱ= dᾱ.

This is a Poisson equation which admits a solution. To prove injectivity observe that if
there exists β ∈Ω1,0 such that β̄= ∂̄ f (that is, its image into H 0,1(X ,C) is null), then∫

X
β∧ β̄=

∫
X
β∧ ∂̄ f =−

∫
X
∂̄( f β)+

∫
X

f ∂̄β= 0.

This forces β= 0.
In order to prove the last isomorphism, define for β1 ∈ H 1,0(X ,C) = ker(∂̄) and

[β2] ∈ H 0,1(X ,C) (with β1 ∈ E 1,0 a ∂̄ closed form and we choose β2 ∈ E 0,1 which is ∂
closed by adding a convenient ∂̄ f found by solving Poisson equation), β=β1 +β2. We
see then that dβ = (∂̄+∂)(β1 +β2) = ∂̄β1 +∂β2 = 0. First surjectivity: For an element
β ∈ E 1 (with decomposition β = β1 +β2) such that dβ = 0 we show that there exists
f ∈ E 0 such that

β+d f = (β1 +∂ f )+ (β2 + ∂̄ f ),

with ∂̄(β1 +∂ f ) = 0 and ∂(β2 + ∂̄ f ) = 0. This follows from the solution of the Poisson
equation as dβ= 0 implies ∂̄β1 =−∂β2. For the injectivity, observe that, if β= d f then
β1 = ∂ f and β2 = ∂̄ f but then, ∂̄β1 = ∂̄∂ f = 0 and therefore f is harmonic so constant by
the maximal principle.

8.6.2 Duality

There exist a duality between H 1,0(X ,C) and H 0,1(X ,C) which was implicit in the proof
of the isomorphism H 1,0(X ,C) ∼= H 0,1(X ,C). Define first the bilinear map b : H 1,0(X ,C)×
H 0,1(X ,C) → C by taking representatives β1 ∈Ω1,0 and β2 ∈ E 0,1

B(β1, [β2]) =
∫

X
β1 ∧β2.
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Stokes theorem implies that the bilinear map is well defined and does not depend on
the choice of the representatives.

Proposition 8.37 (Duality). On a compact Riemann surface

H 1,0(X ,C)∗ ∼= H 0,1(X ,C).

Proof. From the definition of the bilinear map, each element in H 0,1(X ,C) defines
an element of the dual H 1,0(X ,C)∗. It remains to show that the bilinear map is non-
degenerate. Supposeα ∈ E 0,1 is such that

∫
X β∧α= 0 for all β ∈Ω1,0. But in the previous

theorem we showed that there exists an element β ∈Ω1,0 such that α= β̄+ ∂̄ f . For this
element ∫

X
β∧α=

∫
X
β∧ β̄> 0.

8.6.3 Orthogonality and Harmonic forms: Hodge theorem

Using the star operator, recall that we defined a hermitian product on 1-forms over a
compact Riemann surface X : For α1, α2 1-forms in E 1(X ),

〈α1,α2〉 =
∫

X
α1 ∧∗α2.

Proposition 8.38. Let X be a compact Riemann surface. Then

1. ∂E 0(X ), ∂̄E 0(X ),Ω1,0(X ) andΩ1,0(X ) are pairwise orthogonal.

2. dE 0(X ) and ∗dE 0(X ) are orthogonal

3. dE 0(X )⊕∗dE 0(X ) = ∂E 0(X )⊕ ∂̄E 0(X ).

Proof. The proof of the first two items is an application of Stokes theorem.

1. Clearly, E 1,0(X ) and E 1,0(X ) = E 0,1(X ) are orthogonal and thereforeΩ1,0(X ) and

Ω1,0(X ) are also orthogonal. For the same reason ∂E 0(X ), ∂̄E 0(X ) are orthogonal.
In order to prove that ∂E 0(X ) is orthogonal to Ω1,0(X ) compute by Stokes, for
f ∈ E 0 and β ∈Ω1,0(X ):∫

X
∂ f ∧∗β=

∫
X
∂( f ∗β)−

∫
X

f ∂∗β= 0,

The other cases are similar.
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2. Compute, by Stokes theorem,

〈d f ,∗d g 〉 =
∫

X
d f ∧∗∗d g =−

∫
X

d f ∧d g = 0.

3. Observe that dα = ∂α+ ∂̄α and ∗dα = −i∂α+ i ∂̄α and therefore we have the
equality.

The spaceΩ1,0(X )⊕Ω1,0(X ) is the space of harmonic forms. Indeed, by the formulae
dα= ∂α+∂̄α and d∗α=−i∂α+i ∂̄αwe obtain dα= d∗α= 0 if and only ifα ∈Ω1,0(X )⊕
Ω1,0(X ). The following decomposition theorem is a consequence of Theorem 8.35.

Theorem 8.39 (Smooth Hodge decomposition). For a compact Riemann surface X ,

E 1(X ) = dE 0(X )⊕∗dE 0(X )⊕Ω1,0(X )⊕Ω1,0(X ).

Proof. If α ∈ E 1(X ) then one can solve d ∗ d f = dα. Moreover if dα ̸= 0 then one
obtains a non-trivial α= ∗d f . By theorem 8.35 any form α such that dα= 0 satisfies

α ∈ dE 0(X )⊕Ω1,0(X )⊕Ω1,0(X ). This proves the decomposition.

8.7 Existence of meromorphic functions

The existence of meromorphic functions with prescribed singularities follows from
Theorem 8.30 or, more precisely, its consequence Theorem 8.35.

Theorem 8.40. Let X be a compact Riemann surface of genus g and z0 ∈ X . There exists
a holomorphic function on X \ {z0}, meromorphic on X with a pole of order at most g +1.

Proof. Let U ⊂ X be a neighborhood in a Riemann surface defined in local coordinates
by |z| < 1. With a slight abuse of notation, we write a function on U using the local
coordinate. For instance, we say that 1/zn is a function defined on U with a singularity
at z0 = 0.

Let χ ∈ C∞
0 (X ) with support in U and such that it is the identity on |z| < 1/2. We

define the differential αn = ∂̄(χ/zn) ∈ X \ {z0}. Observe that αn is null on |z| < 1/2 and
therefore αn is smooth on X .

We want to solve
∂̄u =−αn .
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If there exists a solution, then f = u +χ/zn is a holomorphic function on X \ {z0}, mero-
morphic on X with a pole of order n at z0. The problem is that this equation does not
always have solutions. Indeed, we have αn ∈ ker ∂̄ but

H 0,1 = ker ∂̄

∂̄E 0

might not be trivial.
We know by now that dim H 0,1 = g , the genus of X . In particular, if g = 0, one can

always solve the equation for any n ∈ N. The argument to show existence is to consider
the set of forms {αn}1≤n≤g+1. It gives rise to a set {[αn]}1≤n≤g+1 of classes in H 0,1 which
therefore satisfies a linear relation[

∂̄

(
g+1∑

1
ci
χ

zi

)]
= 0.

One can solve now equation ∂̄u =−α with α= ∂̄
(∑g+1

1 ci
χ

zi

)
to obtain a meromorphic

function f with one single pole at z0 of order at most g +1.

Remark 8.41. 1. The same argument proves the existence of a meromorphic function
with only possible poles at points z1, · · · , zk of order n1, · · · ,nk such that

∑k
1 nk ≤

g +1.

2. The proof depends only on the fact that H 0,1 has a finite dimension.
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9 Riemann-Roch theorem and applications

A quantitative version to the existence of meromorphic functions is given by the Riemann-
Roch theorem. Here we give the classical formulation of the result and in a later section
we will give a formulation using cohomology theory. Let D =∑

ni zi be a divisor on a
Riemann surface X . The relevant spaces are the following:

Definition 9.1. 1. L(D) is the vector space whose non-null elements are meromorphic
functions f satisfying ( f ) ≥−D.

2. L(K −D) is the vector space whose non-null elements are meromorphic functions f
satisfying ( f ) ≥ D−K , where K is the divisor associated to any holomorphic 1-form.

Observe that if ω is any meromorphic form, di v(ω) ( called a canonical divisor) is
computed using the expression of ω in coordinates, f (z)d z, and computing or dp f (z).
As any two meromorphic forms ω1 and ω2 are related by a meromorphic function f ,
that is, ω2 = f .ω1 and therefore di v(ω2) = di v(ω1)+di v( f ). We proved:

Lemma 9.2. Any two canonical divisors are linearly equivalent.

Proposition 9.3. Let K be a canonical divisor of a surface X of genus g . Then

deg K = 2g −2.

Proof. Consider a meromorphic function f : S → CP 1. Suppose there are n poles
(counted with multiplicity). The map f is a ramified cover of degree n. We have that, by
Riemann-Hurwitz,

2−2g = n.2−∑
(or dz f −1).

But deg d f = ∑
(or dz0 f − 1)−∑

(or dz∞ f + 1), where z0 and z∞ are, respectively, the
zeros and poles of f . Therefore deg d f = 2g −2.

One can think of L(D) as the space of meromorphic functions having at worst
singularities at zi of order ni . On the other hand, L(K −D) is identified to the space of
meromorphic 1-forms vanishing at least in order ni at zi . Indeed

L(K −D) = { f ∈M (X ) | di v( f ) ≥−K +D } = { f ∈M (X ) | di v( f )+K ≥ D }

= { f ∈M (X ) | di v( f ω) ≥ D }

where ω is a meromorphic form.
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Theorem 9.4 (Riemann-Roch). Given a divisor D of degree d on a compact Riemann
surface of genus g , we have

dimL(D)−dimL(K −D) = d − g +1.

We postpone the proof of the theorem and give only a heuristic argument. Indeed,
dimL(D) (we suppose D positive) should be at most the d +1 the number of slots in the
Laurent development of a meromorphic function at the possible poles plus one for the
constant functions. Now each holomorphic 1-form ωi , 1 ≤ i ≤ g gives a constraint∑

Reszi ( f ωi ) = 0.

Therefore, we obtain Riemann’s inequality.

dimL(D) ≥ d − g +1.

In order to obtain an equality we take into account the holomorphic 1-forms whose
products with a meromorphic function do not have residues. That is precisely L(K −D).
Those 1-forms do not pose constraints in the account. We obtain then dimL(D) =
d − g +1+dimL(K −D). In the following, we will use the notation l (D) = dimL(D).

9.1 Applications

We write, for a divisor D on a Riemann surface X ,

|D| = { D ′ ∈ Di v(S) | effective and linearly equivalent to D }.

This is not a vector space but it is related to L(D). Indeed, observe that if D ′ = D + (g ),
then (g ) is determined up to a multiplicative constant. From the definitions, l (D) = 0 if
and only if |D| is empty. On the other hand if l (D) ≥ 1, the space |D| is the projective
space defined by L(D) \ {0}, so that

l (D) = di mC|D|+1.

Lemma 9.5. If deg D < 0 then l (D) = 0.

Proof. If f ∈ L(D) is non-zero we have f ≥−D and so deg ( f ) ≥−deg (D) > 0. But the
degree of any non-vanishing principal divisor is zero.

Definition 9.6. Define the vector space

Ω(D) = {abelian differentials which are multiples of −D }

and its dimension i (D) = di mCΩ(D) (the index of speciality).
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In this section we prove that any compact Riemann surface is embedded in a pro-
jective space. We start with some simple consequences of Riemann-Roch. Even if they
have been obtained before, it is worth to see how one can obtain them directly from the
formula.

1. l (K ) = g follows by taking D = 0 in the formula.

2. deg K = 2g −2 follows by taking D = K and the previous result.

3. If deg D > 2g −2 then l (D) = deg (D)−g +1 because l (K −D) = 0 (deg (K −D) < 0).

4. If l (p) ≥ 2 then the surface is CP 1. Indeed, in that case, there is a nontrivial mero-
morphic function f : S → CP 1 with one simple pole at p. f is a biholomorphism.
In fact g = 0 and we obtain l (p) = 2.

5. Elliptic curves. Suppose g = 1. We have deg K = 2g −2 = 0 and therefore l (p) = 1−
1+1+ l (K −p) = 1. That means that there are only constant functions on L(p). On
the other hand l (2p) = 2. So there exists a non-constant meromorphic function,
say x, with a double pole at p. Also, l (3p) = 3 so there exists a meromorphic
function, y , with a triple pole at p. As l (6p) = 6 and 1, x, x2, x3, y, y2, x y are all in
L(6p), there exists a linear relation between them of the form

a +bx + cx2 +d x3 +d y +e y2 + f x y = 0,

with e ̸= 0 (otherwise y would have an even order pole). By a linear change of
coordiantes w can write y2 = x3 + g2x + g3.

Proposition 9.7. If S is a compact surface which is not biholomorphic to CP 1 then at
each point z ∈ S there exists a holomorphic 1-form ω with ω(p) ̸= 0.

Proof. If that is not the case, as all meromorphic one forms are given by gω0 (where g
is meromorphic and ω0 a fixed holomorphic 1-form) and so holomorphic one forms
are L(K ) = { g ; (g )+ (ω0) ≥ 0 }, we obtain that L(K − z) = L(K ). By Riemann-Roch,
l (z) = 1− g +1− g = 2. This means that there exists a meromorphic function with only
one pole at z. This is impossible if the Riemann surface is not CP 1.

From the proposition it is easy to see that the following map is well defined.

Definition 9.8. Let ωi be a basis of holomorphic differentials of a surface X of genus
g ≥ 1. Write ωi (z) = fi (z)d z in local coordinates. The canonical map is the map

φK : X → CP g−1

given by φK (z) = [ f1(z), · · · , fg (z)].
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Lemma 9.9. If φK (p) =φK (q) for two distinct points p, q ∈ X then there exists a ramified
cover of f : X → CP1 of degree 2.

Proof. IfφK (p) =φK (q) thenωi (p) =λωi (q) for all 1 ≤ i ≤ g and a constantλ. Therefore,
for any holomorphic form ω, di vω ≥ p + q if and only if di vω ≥ p. That means, for
D = p +q that L(K −D) = L(K −p). By Riemann-Roch

l (p +q)− l (K −p) = 2− g +1 and l (p)− l (K −p) = 1− g +1.

From the second equation we obtain (as X is not of genus 0, l (p) = 1) we obtain l (K−p) =
g −1. Substituting in the first equation one obtains l (p +q) = 2− g +1+ g −1 = 2. That
is, there exists a meromorphic function with only simple poles at p and q . Therefore it
defines a ramified cover of C P 1 of degree 2.

Proposition 9.10. If X of genus g ≥ 2 is not hyperelliptic than φK is an embedding into
CPg−1.

Proof. φK is of rank one if for any p ∈ X there exists ω ∈Ω1,0 with a zero of order one at
p. Analogously, as in the previous lemma if this does not happen at p then

l (K −2p) = l (K −p).

Then one concludes by Riemann-Roch that l (2p) = 2. We conclude that there exists a
ramified cover of degree 2 X → CP1.
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